JP2011027481A - Method of evaluating earthquake risk - Google Patents

Method of evaluating earthquake risk Download PDF

Info

Publication number
JP2011027481A
JP2011027481A JP2009171587A JP2009171587A JP2011027481A JP 2011027481 A JP2011027481 A JP 2011027481A JP 2009171587 A JP2009171587 A JP 2009171587A JP 2009171587 A JP2009171587 A JP 2009171587A JP 2011027481 A JP2011027481 A JP 2011027481A
Authority
JP
Japan
Prior art keywords
building
layer
earthquake
evaluation method
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009171587A
Other languages
Japanese (ja)
Other versions
JP5418038B2 (en
Inventor
Hitoshi Suwa
仁 諏訪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2009171587A priority Critical patent/JP5418038B2/en
Publication of JP2011027481A publication Critical patent/JP2011027481A/en
Application granted granted Critical
Publication of JP5418038B2 publication Critical patent/JP5418038B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To evaluate PML adapted to a target building by providing a more appropriate method of evaluating an earthquake risk. <P>SOLUTION: In the method of evaluating the earthquake risk for evaluating an earthquake risk of a building including a plurality of layers to be evaluated by PML, loss distribution of the building to the magnitude of earthquake motion that becomes a basis of the PML is calculated, based on a correlation coefficient of occurrence of losses at respective parts between respective layers and respective parts of the building, based on a correlation coefficient between the magnitude of the earthquake motion and response values for the respective parts between respective layers and respective parts, and a correlation coefficient of yield-strength values for the respective parts between the respective layers and respective parts of the building, and loss distribution at the respective layers and respective parts of the building. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、地震により建物の損失を評価する地震リスク評価方法に関する。   The present invention relates to an earthquake risk evaluation method for evaluating a building loss due to an earthquake.

建物の地震リスクの指標として、PML(地震予想最大損失率)を用いることが知られている(例えば、特許文献1参照)。従来から、PMLを求める場合には、建物の各層に存在する各部位(躯体,仕上げ,建築設備など)の損失分布が用いられており、建物の各層に存在する各部位の損失分布は、各層各部位における損失発生の相関を独立あるいは完全相関のいずれかに仮定してシミュレーションされている。   It is known to use PML (Earthquake Expected Maximum Loss Rate) as an index of the earthquake risk of a building (see, for example, Patent Document 1). Conventionally, when calculating PML, the loss distribution of each part (frame, finishing, building equipment, etc.) existing in each layer of the building is used, and the loss distribution of each part existing in each layer of the building is The simulation is performed assuming that the correlation of loss occurrence at each part is either independent or complete.

特開2004−150920号公報JP 2004-150920 A

しかしながら、上述したように、建物の各層に存在する各部位の損失分布をシミュレーションする際に、各層各部位における損失発生の相関を独立と仮定した場合には、建物全体の損失分布のバラツキが小さくなりPMLが過少評価され、完全相関と仮定した場合には、建物全体の損失分布のバラツキが大きくなりPMLが過大評価される傾向があるという課題があった。   However, as described above, when simulating the loss distribution of each part existing in each layer of the building, assuming that the correlation of the loss occurrence in each part of each layer is independent, the variation of the loss distribution of the entire building is small. Therefore, when the PML is underestimated and assumed to be a complete correlation, there is a problem that the dispersion of the loss distribution of the entire building becomes large and the PML tends to be overestimated.

本発明は、上記課題に鑑みてなされたものであり、その目的とするところは、より適切な地震リスク評価方法を提供し、対象建物に適合したPMLを評価することにある。   This invention is made | formed in view of the said subject, The place made into the objective is to provide the more suitable earthquake risk evaluation method, and to evaluate PML suitable for the object building.

かかる目的を達成するために本発明の地震リスク評価方法は、評価対象となる複数の層を有する建物の地震リスクをPMLにて評価する地震リスク評価方法であって、前記PMLの基となる、地震動の大きさに対する前記建物の損失分布を、前記地震動の大きさと前記建物の各層各部位間ごとの応答値との相関係数、及び、前記建物の各層各部位間ごとの耐力値の相関係数、に基づく前記建物の各層各部位間における損失発生の相関係数と、前記建物の各層各部位における損失分布と、に基づいて算出することを特徴とする地震リスク評価方法である。
このような地震リスク評価方法によれば、PMLの基となる地震動の大きさに対する建物の損失分布は、建物の各層各部位間における損失発生の相関係数と、建物の各層各部位における損失分布とに基づいて算出されるので、建物の各層各部位において、地震動の大きさごとの発生する損失とその発生確率に基づいて地震リスクを評価することが可能である。このとき、各層各部位間における損失発生の相関係数は、地震動の大きさと建物の各層各部位間ごとの応答値との相関係数、及び、建物の各層各部位間ごとの耐力値の相関係数、とに基づいて算出されているので、建物の各層に存在する各部位間の相関を任意に設定することが可能である。このため、建物の各層に存在する各部位間の相関を独立あるいは完全相関と仮定してPMLを算出した場合より正確なPMLを得ることが可能であり、評価対象となる建物に適合したPMLに基づいて、より適切な評価をすることが可能である。
In order to achieve such an object, the earthquake risk evaluation method of the present invention is an earthquake risk evaluation method for evaluating an earthquake risk of a building having a plurality of layers to be evaluated by PML, which is a basis of the PML. The loss distribution of the building with respect to the magnitude of the ground motion, the correlation coefficient between the magnitude of the ground motion and the response value for each part of each layer of the building, and the correlation of the proof stress value for each part of each layer of the building The earthquake risk evaluation method is characterized in that the calculation is based on a correlation coefficient of loss occurrence between each part of the building based on the number and a loss distribution in each part of each layer of the building.
According to such a seismic risk evaluation method, the loss distribution of the building with respect to the magnitude of the ground motion that is the basis of the PML includes the correlation coefficient of the loss occurrence between each part of the building and the loss distribution at each part of the building. Therefore, it is possible to evaluate the seismic risk based on the loss and the probability of occurrence for each magnitude of seismic motion in each part of each layer of the building. At this time, the correlation coefficient of the loss generation between each part of each layer is the correlation coefficient between the magnitude of the earthquake motion and the response value for each part of each layer of the building, and the strength value of each part of each layer of the building. Since it is calculated based on the number of relations, it is possible to arbitrarily set the correlation between each part existing in each layer of the building. For this reason, it is possible to obtain a more accurate PML than when PML is calculated on the assumption that the correlation between each part existing in each layer of the building is independent or complete, and the PML suitable for the building to be evaluated is obtained. Based on this, it is possible to make a more appropriate evaluation.

かかる地震リスク評価方法であって、前記建物の各層各部位における損失分布は、前記各層各部位における損失分布の平均値、及び、各層各部位における損失分布の標準偏差であることが望ましい。
このような地震リスク評価方法によれば、各層各部位における損失分布が、各層各部位における損失分布の平均値、及び、各層各部位における損失分布の標準偏差なので、各層各部位における損失分布の信頼性が高い。このため、より信頼性の高い評価結果を得ることが可能である。
In this earthquake risk evaluation method, the loss distribution in each part of each layer of the building is preferably an average value of the loss distribution in each part of each layer and a standard deviation of the loss distribution in each part of each layer.
According to such an earthquake risk evaluation method, the loss distribution in each part of each layer is the average value of the loss distribution in each part of each layer and the standard deviation of the loss distribution in each part of each layer. High nature. For this reason, it is possible to obtain a more reliable evaluation result.

かかる地震リスク評価方法であって、前記応答値は、複数の地震動に対する当該応答値の中央値、及び、前記複数の地震動に対する当該応答値の対数標準偏差であり、前記耐力値は、当該耐力値の中央値、及び、当該耐力値の対数標準偏差であることが望ましい。
このような地震リスク評価方法によれば、応答値は、複数の地震動に対する応答値の中央値、及び、複数の地震動に対する応答値の対数標準偏差であり、耐力値は、耐力値の中央値、及び、耐力値の対数標準偏差なので、さらに信頼性の高い評価結果を得ることが可能である。
In this earthquake risk evaluation method, the response value is a median value of the response values with respect to a plurality of ground motions, and a logarithmic standard deviation of the response values with respect to the plurality of ground motions, and the proof stress value is the proof stress value. And the logarithmic standard deviation of the proof stress value.
According to such an earthquake risk evaluation method, the response value is a median of response values for a plurality of earthquake motions and a logarithmic standard deviation of the response values for a plurality of earthquake motions, and the proof stress is a median of the proof stress values, And since it is the logarithmic standard deviation of the proof stress value, it is possible to obtain a more reliable evaluation result.

本発明によれば、より適切な地震リスク評価方法を提供し、対象建物に適合したPMLを評価することにある。   According to the present invention, a more appropriate seismic risk evaluation method is provided to evaluate a PML suitable for a target building.

本発明に係る地震リスク評価方法の評価フローを示す図である。It is a figure which shows the evaluation flow of the earthquake risk evaluation method which concerns on this invention. 応答値と耐力値の分布を示す図である。It is a figure which shows distribution of a response value and a proof stress value. 各層各部位の被害確率関数を示す図である。It is a figure which shows the damage probability function of each site | part of each layer. 損失発生の相関係数の概念を説明するための図である。It is a figure for demonstrating the concept of the correlation coefficient of loss generation. イベントリスク曲線の作成方法を示す図である。It is a figure which shows the preparation method of an event risk curve. イベント曲線に基づくPMLの評価方法を説明するための図である。It is a figure for demonstrating the evaluation method of PML based on an event curve. 降伏耐力の分布を示す図である。It is a figure which shows distribution of yield strength. 降伏耐力の相関図の一例を示す図である。It is a figure which shows an example of the correlation diagram of yield strength. 模擬地震動の加速度応答スペクトルと目標スペクトルとの比較を示す図である。It is a figure which shows the comparison with the acceleration response spectrum of a simulated earthquake motion, and a target spectrum. 作成された模擬地震動の一例を示す図である。It is a figure which shows an example of the created simulated earthquake motion. 地震動の地表面最大速度が50cm/sのとき、応答層間変形角の相関図の一例を示す図である。It is a figure which shows an example of the correlation diagram of a response interlayer deformation angle when the ground surface maximum speed of an earthquake motion is 50 cm / s. 1層,2層,5層,10層における地表面最大速度と応答値の関係の一例を示す図である。It is a figure which shows an example of the relationship between the ground surface maximum speed and response value in 1st layer, 2nd layer, 5th layer, and 10th layer. 発明評価方法と従来評価方法とにて求められた地震損失曲線を示したグラフである。It is the graph which showed the earthquake loss curve calculated | required with the invention evaluation method and the conventional evaluation method. 発明評価方法と従来評価方法とにて求められたイベントリスク曲線を示したグラフである。It is the graph which showed the event risk curve calculated | required with the invention evaluation method and the conventional evaluation method. 発明評価方法と、従来評価方法1と、従来評価方法2とのPMLの比較を示す図である。It is a figure which shows the comparison of PML of the invention evaluation method, the conventional evaluation method 1, and the conventional evaluation method 2. FIG.

以下、本実施形態の地震リスク評価方法の一例について図を用いて詳細に説明する。   Hereinafter, an example of the earthquake risk evaluation method of the present embodiment will be described in detail with reference to the drawings.

図1は、本発明に係る地震リスク評価方法の評価フローを示す図である。   FIG. 1 is a diagram showing an evaluation flow of an earthquake risk evaluation method according to the present invention.

<<発明の概要>>
本実施形態の地震リスク評価方法は、地表面最大速度にて示される種々の大きさの地震の発生確率と地震の大きさに対する建物の損失率との相関を示すイベントリスク曲線に示されるPMLにより評価する。このイベントリスク曲線の基となる地表面最大速度に対する建物の損失分布は、建物の応答値と耐力値とを用いて算出されるが、応答値と耐力値は、建物全体において一様ではなく、建物の各層各部位においてばらつきが生じている。このため本発明の地震リスク評価方法では、まず、建物を基礎固定の多質点等価せん断型にモデル化して、建物の各層各部位間の応答値及び耐力値の相関係数を求める。次に求められた各層各部位間の応答値及び耐力値の相関係数に基づいて各層各部位間における損失発生の相関係数を求める。そして、求められた各層各部位間における損失発生の相関係数と、建物の各層各部位における損失分布とに基づいて、地震動の大きさに対する建物の損失分布を求めてイベントリスク曲線を作成する。作成されたイベントリスク曲線から求められるPMLにより地震リスクを評価する。
<< Summary of Invention >>
The earthquake risk evaluation method of this embodiment is based on the PML shown in the event risk curve indicating the correlation between the occurrence probability of various magnitude earthquakes indicated by the ground surface maximum velocity and the loss rate of the building with respect to the magnitude of the earthquake. evaluate. The loss distribution of the building with respect to the ground surface maximum speed that is the basis of this event risk curve is calculated using the response value and proof value of the building, but the response value and proof value are not uniform throughout the building, There are variations in each part of the building. For this reason, in the seismic risk evaluation method of the present invention, first, the building is modeled as a multi-mass point equivalent shear type fixed to the foundation, and the correlation coefficient between the response value and the proof stress value between each part of each layer of the building is obtained. Next, the correlation coefficient of the loss generation between each part of each layer is obtained based on the correlation coefficient of the response value and the proof stress value between each part of each layer. Then, based on the obtained correlation coefficient of the loss occurrence between each part of each layer and the loss distribution in each part of each layer of the building, the loss distribution of the building with respect to the magnitude of the earthquake motion is obtained to create an event risk curve. Seismic risk is evaluated by PML obtained from the created event risk curve.

すなわち本発明の地震リスク評価方法は、各層及び各部位間ごとに生じる応答値、及び、破壊しない限度を示す耐力値の相関係数とばらつきを用いて各層及び各部位ごとの損失発生の相関係数を算出し、各層及び各部位ごとの損失発生の相関係数に基づいて算出した建物全体の損失分布に基づいて地震リスクを評価する。
以下に、本実施形態の地震リスク評価方法において指標となるPMLの求め方を図1に基づいて説明する。
That is, the earthquake risk evaluation method of the present invention uses the correlation coefficient and variation of the response value generated for each layer and each part and the yield strength value indicating the limit not to break, and the correlation of loss generation for each layer and each part. The number is calculated, and the earthquake risk is evaluated based on the loss distribution of the entire building calculated based on the correlation coefficient of the loss occurrence for each layer and each part.
Below, the method of calculating | requiring PML used as the parameter | index in the earthquake risk evaluation method of this embodiment is demonstrated based on FIG.

<<本発明に係るPMLの求め方>>
<震源のモデル化>
・震源モデル及び地震発生確率の設定
地震リスクの評価にあたり、まず、建設地の地震危険度を評価する際の震源モデル及び地震発生確率を設定する。
本実施形態では、震源モデルとして地震調査研究推進本部・地震調査委員会が作成した震源モデルを採用し(図1におけるS1)、地震発生確率は、地震調査研究推進本部・地震調査委員会にて提案されているものを採用している(図1におけるS6)。
<< How to Obtain PML According to the Present Invention >>
<Modeling of the epicenter>
・ Setting of hypocenter model and probability of earthquake occurrence When evaluating earthquake risk, first set the hypocenter model and probability of earthquake occurrence when evaluating the earthquake risk of the construction site.
In this embodiment, the seismic source model created by the Earthquake Research Promotion Headquarters / Earthquake Investigation Committee is adopted as the seismic source model (S1 in FIG. 1), and the earthquake occurrence probability is determined by the Earthquake Research Promotion Headquarters / Earth Investigation Committee. The proposed one is adopted (S6 in FIG. 1).

・地表面の最大速度Vの算出
地震が発生した際の建設地の地震の大きさを示す「地表面最大速度」を算出する。
地表面の最大速度についても、地震調査研究推進本部・地震調査委員会にて作成された手法に基づいて算出する。
上記手法によれば、地表面の最大速度Vは、基準地盤における最大速度Vに、表層地盤による速度増幅率ampを乗じることで求められる。
・ Calculation of the maximum speed V of the ground surface Calculate the “maximum speed of the ground surface” indicating the magnitude of the earthquake at the construction site when the earthquake occurred.
The maximum speed of the ground surface is also calculated based on the method created by the Earthquake Research Promotion Headquarters and the Earthquake Research Committee.
According to the above method, the maximum speed V of the ground surface can be obtained by multiplying the maximum speed V 0 on the reference ground by the speed amplification factor amp of the surface ground.

地表面最大速度Vの算出にあたり、まず、地震に対する基準地盤(S波速度600m/s相当)における最大速度Vを、速度距離減衰式、(2.2)式を用いて計算する(図1におけるS2,S3)。
In calculating the ground surface maximum velocity V, first, the maximum velocity V 0 in the reference ground (corresponding to S wave velocity 600 m / s) with respect to the earthquake is calculated using the velocity distance attenuation equation (2.2) (FIG. 1). S2, S3).

次に、表層地盤による速度増幅率ampは、微地形分類に基づいた手法により(2.3)式を用いて計算する(図1におけるS4)。
(2.3)式において、地表から地下30mまでの平均S波速度AVSは(2.4)式より求める。
Next, the speed amplification factor amp by the surface layer ground is calculated using the formula (2.3) by a method based on the fine landform classification (S4 in FIG. 1).
In equation (2.3), the average S wave velocity AVS from the ground surface to 30 m below ground is obtained from equation (2.4).

ところで、地表面最大速度Vを計算する際の不確定要因としては、震源特性、伝播特性、地盤特性が存在する。このため、これらの不確定要因によるバラツキを対数正規分布でモデル化し、地表面最大速度の対数標準偏差ζを、「全国を対象とした確率論的地震動予測地図作成手法の検討」(防災科学技術研究所、2005)に基づいて0.46に設定する。また、バラツキの速度振幅依存性として、基準地盤における最大速度Vが25cm/s以上の領域は、最大速度の値に応じて表1を設定する(図1におけるS5)。 By the way, as an uncertain factor in calculating the ground surface maximum velocity V, there are an earthquake source characteristic, a propagation characteristic, and a ground characteristic. For this reason, the variation due to these uncertain factors is modeled with a lognormal distribution, and the logarithmic standard deviation ζ V of the ground surface maximum velocity is set to “Study on Probabilistic Seismic Motion Prediction Map Making Method for the Whole Country” (Disaster Prevention Science) Set to 0.46 based on Technical Research Institute, 2005). Further, as the speed amplitude dependence of the variation, Table 1 is set according to the value of the maximum speed for the region where the maximum speed V 0 on the reference ground is 25 cm / s or more (S5 in FIG. 1).

<<入力地震動の設定>>
本実施形態においては、入力地震動として、目標スペクトルを設定し、設定した目標スペクトルに適合するように地震動を作成する手法を採用する(図1におけるS7)。目標スペクトルとしては、震源特性,伝播特性,地盤特性の影響を簡易的に考慮するため、建築物荷重指針(1993年版)の加速度応答スペクトルを採用した。
<< Setting of input ground motion >>
In the present embodiment, a method is adopted in which a target spectrum is set as the input seismic motion and the seismic motion is created so as to match the set target spectrum (S7 in FIG. 1). As the target spectrum, the acceleration response spectrum of the building load guideline (1993 version) was adopted in order to easily consider the effects of seismic source characteristics, propagation characteristics, and ground characteristics.

<目標スペクトルの設定>
建築物荷重指針(1993年版)では、地表面の加速度応答スペクトルS(T,h)を(2.7)〜(2.9)式で設定する。
<Target spectrum setting>
In the building load guideline (1993 version), the acceleration response spectrum S A (T, h) of the ground surface is set by the equations (2.7) to (2.9).

ここで、再現期間換算係数RとRは、100年再現期待値に対するr年再現期待値の補正係数なので、その値を1に設定する。また、S(T,h)が一定値をとる区間の上限周期Tは、(2.10)式で与えられる。
Here, since the reproduction period conversion coefficients RA and RV are correction coefficients for the r-year reproduction expected value with respect to the 100-year reproduction expected value, the values are set to 1. Further, the upper limit cycle T c of the section where S A (T, h) takes a constant value is given by the equation (2.10).

ここで、標準地盤において、最大速度に対する最大加速度の比は、A/V=15(sec−1)で与えられている。また、最大加速度の地盤種別補正係数Gは第2種地盤および第3種地盤に対して1.2で与えられ、最大速度の地盤種別補正係数Gは、(2.3)式の表層地盤による速度増幅率ampに設定する。以上の条件により、標準地盤の最大速度Vが計算されると、目標スペクトルとしての地表面の加速度応答スペクトルS(T,h)が設定される。 Here, in the standard ground, the ratio of the maximum acceleration to the maximum speed is given by A 0 / V 0 = 15 (sec −1 ). Also, the soil type correction coefficient G A of maximum acceleration given by 1.2 with respect to the second type ground and the three ground, soil type correction coefficient G V of maximum speed, (2.3) equation surface layer of Set to the speed amplification factor amp by the ground. Under the above conditions, when the maximum velocity V 0 of the standard ground is calculated, the acceleration response spectrum S A (T, h) of the ground surface as the target spectrum is set.

<地震動の包絡関数の設定>
設定された目標となる加速度応答スペクトルS(T,h)に適合する地震動を作成する。地震動の作成は、まず、フーリエ位相スペクトルを、一様乱数で与える。そして、設定されたフーリエ振幅とフーリエ位相を用いて、フーリエ逆変換により時刻歴波形を作成する。つぎに、地震のマグニチュードを与えて、地震動の包絡関数E(t)を「新・地震動のスペクトル解析入門」(鹿島出版会,2002)の手法により(2.11)〜(2.17)式で設定する。
<Setting of envelope function for earthquake motion>
Create a seismic motion that matches the target acceleration response spectrum S A (T, h). To create the ground motion, first, the Fourier phase spectrum is given by a uniform random number. Then, a time history waveform is created by inverse Fourier transform using the set Fourier amplitude and Fourier phase. Next, given the magnitude of the earthquake, the envelope function E (t) of the ground motion is expressed by the formulas (2.11) to (2.17) by the method of “Introduction to new ground motion spectrum analysis” (Kashima Publishing Co., 2002). Set with.

一方、地震動の継続時間Tdを、次式で与える。
また、TaとTbは、地震動の継続時間Tdを用いて(2.16)式と(2.17)式で与える。
そして、時刻歴波形にE(t)を乗じて、第1次の地震動を作成する。このようにして得られた第1次の地震動に対して加速度応答スペクトルを計算し、目標応答スペクトルへ適合するようにフーリエ振幅を補正する。この操作を繰り返して、目標の加速度応答スペクトに適合する地震動を作成する。
On the other hand, the duration Td of earthquake motion is given by the following equation.
Ta and Tb are given by the equations (2.16) and (2.17) using the seismic motion duration Td.
Then, the first seismic motion is created by multiplying the time history waveform by E (t). An acceleration response spectrum is calculated for the primary ground motion obtained in this way, and the Fourier amplitude is corrected so as to match the target response spectrum. This operation is repeated to create a ground motion that matches the target acceleration response spectrum.

<最大速度と平均マグニチュードとの関係>
<Relationship between maximum speed and average magnitude>

<各層各部位の被害確率関数>
次に、建物を、基礎固定の多質点等価せん断型にモデル化し(図1におけるS8)、設定した地震動を用いて地震応答解析を行い、建物各層の応答値を計算する。このとき、建物の降伏耐力と地震動特性のバラツキを反映して応答値の分布を評価するため、建物の降伏耐力と地震動のサンプル値を抽出してモンテカルロシミュレーションを行う(図1におけるS9)。
ここで、降伏耐力のサンプル値の総数をny,地震動のサンプル値の総数をngとし、地震動g(地表面最大速度をVgとする)に対する応答値の中央値Ms(Vg)と応答値の対数標準偏差ζ(Vg)を計算する(図1におけるS10)。
<Damage probability function for each part of each layer>
Next, the building is modeled as a foundation fixed multi-mass point equivalent shear type (S8 in FIG. 1), and seismic response analysis is performed using the set seismic motion to calculate the response value of each layer of the building. At this time, in order to evaluate the distribution of response values reflecting the variation in the yield strength of the building and the seismic motion characteristics, a sample value of the yield strength of the building and the seismic motion is extracted to perform a Monte Carlo simulation (S9 in FIG. 1).
Here, the total number of sample values of yield strength is ny, the total number of sample values of ground motion is ng, and the median value Ms (Vg) of the response value to the ground motion g (the ground surface maximum velocity is Vg) and the logarithm of the response value The standard deviation ζ (Vg) is calculated (S10 in FIG. 1).

次に、地表面最大速度Vg(g=1〜ng)と応答値の中央値Ms(Vg)の関係、及び、地表面最大速度Vg(g=1〜ng)と応答値の対数標準偏差ζ(Vg)の関係を求め、地表面最大速度Vと応答値の中央値Msの関係ならびに地表面最大速度Vと応答値の対数標準偏差ζsを、次式を用いて回帰する。
このとき、各層各部位ごとに耐力値の分布を設定して、地表面最大速度Vに対する各層各部位の損傷確率Pを評価する。
Next, the relationship between the ground surface maximum speed Vg (g = 1 to ng) and the median value Ms (Vg) of the response value, and the logarithmic standard deviation ζ of the ground surface maximum speed Vg (g = 1 to ng) and the response value The relationship of (Vg) is obtained, and the relationship between the ground surface maximum velocity V and the median value Ms of response values and the logarithmic standard deviation ζs of the ground surface maximum velocity V and response values are regressed using the following equations.
At this time, the distribution of the proof stress value is set for each part of each layer, and the damage probability P of each part of each layer with respect to the ground surface maximum velocity V is evaluated.

図2は、応答値と耐力値の分布を示す図であり、図3は、各層各部位の被害確率関数を示す図である。図2において、耐力値は地震動の大きさに関係なく建物側によって決まっているため、一定であるが、応答値が大きくなると耐力値の分布と応答値の分布とに交わりが生じる。この交わりが壊れる確率を示しており地表面最大速度(地震)が大きくなれば壊れる確率が大きくなることが示されている。これを模式的に表したものが図3である。   FIG. 2 is a diagram showing a distribution of response values and proof stress values, and FIG. 3 is a diagram showing a damage probability function of each part of each layer. In FIG. 2, the proof stress value is constant because it is determined by the building regardless of the magnitude of the seismic motion. However, when the response value increases, the distribution of the proof stress value and the distribution of the response value intersect. The probability of this breakage is shown, and it is shown that the probability of breakage increases as the ground surface maximum velocity (earthquake) increases. This is schematically shown in FIG.

応答値Sが耐力値Rを超過すると被害が発生するため、限界状態関数Zは、耐力値Rから応答値Sを減じることで求められる。なお、Z≧0であれば被害無し、Z<0であれば被害有りとなる。
Since damage occurs when the response value S exceeds the proof stress value R, the limit state function Z is obtained by subtracting the response value S from the proof stress value R. If Z ≧ 0, there is no damage, and if Z <0, there is damage.

ここで、応答値Sと耐力値Rの分布をともに対数正規分布でモデル化すると、(2.21)式の限界状態関数に対する信頼性指標βは(2.22)式より評価される(図1におけるS11)。
応答値の対数平均値λsは、(2.19)式の応答値の中央値Mの自然対数をとることで求められる。
(2.23)式の応答値の対数平均値λsと、(2.20)式の応答値の対数標準偏差ζsを(2.22)式に代入すると、信頼性指標βは(2.24)式より計算できる。
Here, when both the distribution of the response value S and the proof stress value R are modeled by a lognormal distribution, the reliability index β for the limit state function of the equation (2.21) is evaluated by the equation (2.22) (FIG. 1 in S11).
Logarithmic mean value λs of the response value is calculated by taking the natural logarithm of the median M S of the response value (2.19) below.
When the logarithmic average value λs of the response values of the equation (2.23) and the logarithmic standard deviation ζs of the response values of the equation (2.20) are substituted into the equation (2.22), the reliability index β is (2.24). ).

従って、被災度(例えば、小破,中破など)に対応した耐力値の対数平均値λと対数標準偏差ζを設定すると、被害確率関数P(V)は次式より評価できる(図1におけるS12)。 Therefore, when the logarithmic average value λ R and logarithmic standard deviation ζ R of the proof stress values corresponding to the degree of damage (for example, small breakage, medium breakage, etc.) are set, the damage probability function P (V) can be evaluated from the following equation (FIG. 1 in S12).

<各層各部位の損失分布>
本実施形態の地震リスク評価方法では、建物全体の損失分布を各層及び各部位ごとの損失発生の相関係数に基づき地震リスクを評価する。ここでは、評価対象となる建物の層数をiにて部位数をkとして、i層の建物が有するk部位について各層及び各部位ごとの損失発生の相関係数に基づき地震リスクを評価する。
<Loss distribution of each part of each layer>
In the earthquake risk evaluation method of this embodiment, the earthquake risk is evaluated based on the loss distribution of the entire building based on the correlation coefficient of the loss occurrence for each layer and each part. Here, assuming that the number of layers of the building to be evaluated is i and the number of parts is k, the earthquake risk is evaluated based on the correlation coefficient of the loss occurrence for each layer and each part of k parts of the i-layer building.

i層k部位において、被災度L(L=1〜nik)に対する損傷確率をPL,ik(V)、復旧費用をCL,ikとすると、i層k部位における損失分布の平均値μik(V)と標準偏差σik(V)は、(2.25)式の被害確率関数P(V)を用いて求められる(図1におけるS13,S14)。
ここで、ΔPL,ikは、被災度Lに応じて次式より求める。
In the i layer k region, if the damage probability for the damage level L (L = 1 to n ik ) is P L, ik (V) and the restoration cost is C L, ik , the average value μ of the loss distribution in the i layer k region ik (V) and standard deviation σ ik (V) are obtained using the damage probability function P (V) of equation (2.25) (S13, S14 in FIG. 1).
Here, ΔP L, ik is obtained from the following equation according to the damage level L.

<建物の損失分布>
建物の損失は、各層各部位の損失の和となるので、地表面最大速度Vに対する建物の損失分布の平均値μc(V)と標準偏差σc(V)は、次式より求められる。図4は、損失発生の相関係数の概念を説明するための図である。
<Distribution of building loss>
Since the building loss is the sum of the loss of each part of each layer, the average value μc (V) and standard deviation σc (V) of the building loss distribution with respect to the ground surface maximum velocity V can be obtained from the following equations. FIG. 4 is a diagram for explaining the concept of the correlation coefficient of loss occurrence.

(2.31)式において、ρik, jlはi層k部位とj層l部位の損失発生の相関係数であり、図4に示すように、耐力値の相関係数ρRik, jlと応答値の相関係数ρSik, jlを用いて評価できる(図1におけるS15、S16)。
このとき、応答値と耐力値の分布がともに対数正規分布でモデル化されているので、損失発生の相関係数ρik, jlは次式から計算できる。
In the equation (2.31), ρ ik, jl is a correlation coefficient of loss occurrence in the i layer k part and the j layer l part, and as shown in FIG. 4, the correlation coefficient ρ Rik, jl of the proof stress value and The response value correlation coefficient ρ Sik, jl can be used for evaluation (S15 and S16 in FIG. 1).
At this time, since the distribution of the response value and the proof stress value are both modeled by logarithmic normal distribution, the correlation coefficient ρ ik, jl of the loss generation can be calculated from the following equation.

(2.32)式において、耐力値の相関係数ρRik, jlは、次式より計算される。
In the equation (2.32), the correlation coefficient ρ Rik, jl of the proof stress value is calculated from the following equation.

また、(2.32)式において、耐力値の変動係数VR,ikとVR, jlは、次式より計算される。
一方、応答値の相関係数ρSik, jl(Vg)は、地震動g(g=1〜ng)の地表面最大速度Vgごとに次式より計算される(図1におけるS18)。
In addition, in equation (2.32), the coefficient of variation V R, ik and V R, jl of the proof stress value are calculated from the following equations.
On the other hand, the correlation coefficient ρ Sik, jl (Vg) of the response value is calculated from the following equation for each ground surface maximum velocity Vg of the ground motion g (g = 1 to ng) (S18 in FIG. 1).

また、(2.32)式において、応答値の変動係数VS,ik(Vg)とVS,jl(Vg)は、次式より計算される。
このとき、(2.32)式における応答値の相関係数ρSik, jlは、地震動g(g=1〜ng)ごとに計算された応答値の相関係数ρSik, jl(Vg)の平均値を用いて評価する。
In the equation (2.32), the response value variation coefficients V S, ik (Vg) and V S, jl (Vg) are calculated from the following equations.
In this case, the correlation coefficient of the response values in (2.32) formula [rho Sik, jl is the correlation coefficient of the ground motion g (g = 1~ng) calculated response value for each [rho Sik, jl (Vg) The average value is used for evaluation.

上式において、パラメータqとrは、建物の損失分布の平均値μ(V)と標準偏差σC(V)を用いて求められる。
In the above equation, the parameters q and r are obtained using the average value μ c (V) and standard deviation σ C (V) of the loss distribution of the building.

一方、90%非超過確率に相当する損失CM (V)は、次式を満足するように求められる。
同様に、90%非超過確率に相当する地震損失曲線SLM(V)は、地表面最大速度を変化させて損失分布の90%非超過確率に相当するCM (v)を連続的に計算することにより評価できる。
On the other hand, the loss C M (V) corresponding to the 90% non-excess probability is obtained so as to satisfy the following equation.
Similarly, the earthquake loss curve SL M (V) corresponding to the 90% non-exceeding probability continuously calculates C M (v) corresponding to the 90% non-exceeding probability of the loss distribution by changing the ground surface maximum velocity. Can be evaluated.

<イベントリスク曲線>
<Event risk curve>

<PML>
<PML>

<<本発明に係る地震リスク評価方法と従来の地震リスク評価方法との比較>>
<比較のための条件>
上述した発明に係る地震リスク評価方法(以下、発明評価方法という)の結果と従来の地震リスク評価方法(以下、従来評価方法という)との結果を比較するにあたり、地震リスク評価の条件を次のように設定する。発明評価方法では、各層各部位における損失発生の相関を任意に設定する。従来評価方法は、2つのケースについて解析する。具体的には、従来の地震リスク評価方法の一方(以下、従来評価方法1という)は、各層各部位における損失が独立して発生すると仮定し、他方(以下、従来評価方法2という)は各層各部位における損失が完全に相関して発生すると仮定して解析する。
そして、各層の降伏耐力の間に相関が生じたときの、発明評価方法と従来評価方法による地震リスク結果を比較する。
<< Comparison of Earthquake Risk Evaluation Method According to the Present Invention and Conventional Earthquake Risk Evaluation Method >>
<Conditions for comparison>
In comparing the results of the earthquake risk evaluation method according to the invention described above (hereinafter referred to as the invention evaluation method) and the results of the conventional earthquake risk evaluation method (hereinafter referred to as the conventional evaluation method), the conditions for the earthquake risk evaluation are as follows: Set as follows. In the invention evaluation method, the correlation of loss occurrence in each part of each layer is arbitrarily set. The conventional evaluation method analyzes two cases. Specifically, one of the conventional seismic risk evaluation methods (hereinafter referred to as “conventional evaluation method 1”) assumes that loss occurs in each part of each layer independently, and the other (hereinafter referred to as “conventional evaluation method 2”) corresponds to each layer. Analysis is performed on the assumption that the loss at each site is completely correlated.
And when the correlation arises between the yield strength of each layer, the earthquake risk result by an invention evaluation method and a conventional evaluation method is compared.

<建物モデルの設定>
本地震リスク評価にて評価の対象となる建物モデルは、例えばRC造10階とする(図1におけるS8)。図7は、降伏耐力の分布を示す図である。
降伏ベースシアー係数は0.3とし、高さ方向の降伏せん断力係数はAi分布で与える。各層の復元力特性は、図7に示すように、ひび割れ耐力Qを降伏耐力Qの1/3に、ひび割れ変形角を1/1500,降伏変形角を1/150に設定し、復元力特性はTakedaモデルで与える。建物の減衰は、1次の減衰定数が3%の剛性比例型で与え、地震応答解析を行う際は瞬間剛性比例型とした。
<Setting of building model>
The building model to be evaluated in this earthquake risk evaluation is, for example, RC 10th floor (S8 in FIG. 1). FIG. 7 is a diagram showing the distribution of yield strength.
The yield base shear coefficient is 0.3, and the yield shear force coefficient in the height direction is given by Ai distribution. Restoring force characteristics of each layer, as shown in FIG. 7, the third of the cracking strength Q C the yield strength Q y, set the cracked deformation angle 1/1500, the yield deformation angle 1/150, resilience The characteristic is given by Takeda model. The building attenuation was given as a stiffness proportional type with a primary damping constant of 3%, and when performing an earthquake response analysis, the instantaneous stiffness proportional type was used.

また、降伏耐力の分布を対数正規分布でモデル化し、降伏耐力の変動係数を「建築物の限界状態設計指針」(日本建築学会、2002)を参考に0.15を設定する。また、各層の降伏耐力の相関係数ρは、全ての層に対して0.8を設定する。
このとき、降伏耐力のサンプル値の総数nyは、100ケースとする。図8は、降伏耐力の相関図の一例を示す図である。
Further, the yield strength distribution is modeled by a logarithmic normal distribution, and the coefficient of variation of the yield strength is set to 0.15 with reference to “Limited State Design Guidelines for Buildings” (Japan Architectural Institute, 2002). Further, the correlation coefficient ρ Q of the yield strength of each layer is set to 0.8 for all the layers.
At this time, the total number ny of yield strength sample values is 100 cases. FIG. 8 is a diagram illustrating an example of a correlation diagram of yield strength.

一方、耐力値として限界層間変形角を採用し、限界層間変形角の中央値と対数標準偏差を、以下で設定する(図1におけるS11)。
On the other hand, the limit interlayer deformation angle is adopted as the proof stress value, and the median value and logarithmic standard deviation of the limit interlayer deformation angle are set as follows (S11 in FIG. 1).

また、被災度に応じた復旧費用は、以下で設定する(図1におけるS13)。
Further, the restoration cost corresponding to the degree of damage is set as follows (S13 in FIG. 1).

<入力地震動の設定>
建設地は、東京(緯度:35.678,経度:139.770)に設定する。このとき、基準地盤に対する速度増幅率は2.273となるので、<目標スペクトルの設定>にて上述した手法に従い加速度応答スペクトルS(T,h)を求める(図1におけるS7)。また、地表面最大速度の中央値と平均マグニチュードの関係を求めると、表4となる。
<Setting of input earthquake motion>
The construction site is set in Tokyo (latitude: 35.678, longitude: 139.770). At this time, since the speed amplification factor with respect to the reference ground is 2.273, the acceleration response spectrum S A (T, h) is obtained according to the method described above in <Target spectrum setting> (S7 in FIG. 1). Further, Table 4 shows the relationship between the median of the ground surface maximum speed and the average magnitude.

(T,h)を目標スペクトルに設定し、地表面最大速度の中央値と平均マグニチュードの関係を用いて、地表面最大速度に応じた模擬地震動を作成する。地表面最大速度は、5〜100cm/sの間で5cm/s刻みで計20レベルを設定し、また模擬地震動を作成するときの位相は乱数で与え、乱数の初期値を変化させてそれぞれの地表面最大速度に対して10波の模擬地震動を作成する。従って、地震動のサンプル値の総数ngは、ng=20×10=200ケースとなる。図9は、模擬地震動の加速度応答スペクトルと目標スペクトルとの比較を示す図であり、図10は、作成された模擬地震動の一例を示す図である。 S A (T, h) is set as the target spectrum, and a simulated earthquake motion corresponding to the ground surface maximum speed is created using the relationship between the median value of the ground surface maximum speed and the average magnitude. The maximum speed of the ground surface is set to 20 levels in 5 cm / s increments between 5 and 100 cm / s, and the phase when creating simulated earthquake motion is given by random numbers. A simulated earthquake motion of 10 waves is created for the maximum surface velocity. Therefore, the total number ng of sample values of seismic motion is ng = 20 × 10 = 200 cases. FIG. 9 is a diagram showing a comparison between an acceleration response spectrum of a simulated earthquake motion and a target spectrum, and FIG. 10 is a diagram showing an example of the created simulated earthquake motion.

<モンテカルロシミュレーション>
降伏耐力と地震動のサンプル値の総数を以下で設定し、両者を組み合わせて計100×200=20000ケースの地震応答解析を行い、建物各層の応答値の分布を計算する(図1におけるS9)。なお、応答値として、応答層間変形角を採用する。
・降伏耐力のサンプル総数:ny=100ケース
・地震動のサンプル総数:ng=200ケース
図11は、地震動の地表面最大速度が50cm/sのとき、応答層間変形角の相関図の一例を示す図である。
<Monte Carlo simulation>
The total number of yield strength and ground motion sample values is set as follows, and a combination of the two is used to perform an earthquake response analysis of a total of 100 × 200 = 20000 cases, and the distribution of response values of each layer of the building is calculated (S9 in FIG. 1). The response interlayer deformation angle is employed as the response value.
・ Total number of yield strength samples: ny = 100 cases ・ Total number of earthquake motion samples: ng = 200 cases FIG. 11 is a diagram showing an example of a correlation diagram of response interlayer deformation angles when the ground surface maximum velocity of earthquake motion is 50 cm / s. It is.

<地表面最大速度と応答値の関係>
建物の各層ごとに、地表面最大速度と応答値の中央値の関係、ならびに地表面最大速度と応答値の対数標準偏差の関係を評価する(図1におけるS15)。
図12は、1層,2層,5層,10層における地表面最大速度と応答値の関係の一例を示す図である。
<Relationship between ground surface maximum speed and response value>
For each layer of the building, the relationship between the ground surface maximum velocity and the median value of the response value and the relationship between the ground surface maximum velocity and the logarithmic standard deviation of the response value are evaluated (S15 in FIG. 1).
FIG. 12 is a diagram illustrating an example of the relationship between the ground surface maximum speed and the response value in the first layer, the second layer, the fifth layer, and the tenth layer.

<損失発生の相関係数>
発明評価方法における応答値の相関係数,耐力値の相関係数,ならびに両者の値を用いて計算された損失発生の相関係数は以下のとおりである(図1におけるS16,S17)。
<Correlation coefficient of loss occurrence>
The correlation coefficient of the response value, the correlation coefficient of the proof stress value, and the correlation coefficient of loss generation calculated using both values in the invention evaluation method are as follows (S16 and S17 in FIG. 1).

従来評価方法1における応答値の相関係数,耐力値の相関係数,ならびに両者の値を用いて計算された損失発生の相関係数は以下のとおりである。
The correlation coefficient of the response value, the correlation coefficient of the proof stress value, and the correlation coefficient of the loss generation calculated using both values in the conventional evaluation method 1 are as follows.

従来評価方法2における応答値の相関係数,耐力値の相関係数,ならびに両者の値を用いて計算された損失発生の相関係数は以下のとおりである。
In the conventional evaluation method 2, the correlation coefficient of the response value, the correlation coefficient of the proof stress value, and the correlation coefficient of the loss generation calculated using both values are as follows.

<地震損失曲線の比較>
損失発生の相関による地震損失曲線を、発明評価方法と従来評価方法とを比較する。図13は、発明評価方法と従来評価方法とにて求められた地震損失曲線を示したグラフである。図13に示すように、発明評価方法にて求められた損失率は、従来評価方法1(独立としたケース)の損失率と従来評価方法2(完全相関としたケース)の損失率との間の値を示している。すなわち、発明評価方法と比較して、従来評価方法1は損失率を過少に、逆に従来評価方法2は損失率を過大に評価している。
<Comparison of earthquake loss curves>
The invention evaluation method and the conventional evaluation method are compared with the earthquake loss curve based on the correlation of loss occurrence. FIG. 13 is a graph showing earthquake loss curves obtained by the invention evaluation method and the conventional evaluation method. As shown in FIG. 13, the loss rate obtained by the invention evaluation method is between the loss rate of the conventional evaluation method 1 (independent case) and the loss rate of the conventional evaluation method 2 (completely correlated case). The value of is shown. That is, compared with the invention evaluation method, the conventional evaluation method 1 underestimates the loss rate, and conversely, the conventional evaluation method 2 overestimates the loss rate.

<イベントリスク曲線の比較>
損失発生の相関によるイベントリスク曲線を、発明評価方法と従来評価方法とを比較する。図14は、発明評価方法と従来評価方法とにて求められたイベントリスク曲線を示したグラフである。図14に示すように、年超過確率が約10−2以下の領域では、発明評価方法にて求められた損失率は、従来評価方法1(独立としたケース)の損失率と従来評価方法2(完全相関としたケース)の損失率との間の値を示している。すなわち、年超過確率が約10−2以下の領域では、従来評価方法1は発明手法と比較して損失率を過少に、従来評価方法2は損失率を過大に評価している。
<Comparison of event risk curves>
The event risk curve based on the correlation of loss occurrence is compared between the invention evaluation method and the conventional evaluation method. FIG. 14 is a graph showing event risk curves obtained by the invention evaluation method and the conventional evaluation method. As shown in FIG. 14, in the region where the annual excess probability is about 10 −2 or less, the loss rate obtained by the invention evaluation method is the loss rate of the conventional evaluation method 1 (independent case) and the conventional evaluation method 2 It shows the value between the loss rate (in the case of perfect correlation). That is, in the region where the annual excess probability is about 10 −2 or less, the conventional evaluation method 1 underestimates the loss rate compared to the inventive method, and the conventional evaluation method 2 overestimates the loss rate.

<PMLの比較>
PMLは、年超過確率Pが1/475となる地震Eに対する損失C(E)で評価できる。
このため、図14のイベントリスク曲線よりPML値を求め、発明評価方法と従来評価方法とを比較する。発明評価方法と比較して、従来評価方法1(独立としたケース)はPMLを過少に、逆に従来評価方法2(完全相関としたケース)はPMLを過大に評価している。
図15は、発明評価方法と、従来評価方法1と、従来評価方法2とのPMLの比較を示す図である。
<Comparison of PML>
The PML can be evaluated by a loss C M (E K ) for an earthquake E K with an annual excess probability P K of 1/475.
Therefore, the PML value is obtained from the event risk curve of FIG. 14, and the invention evaluation method and the conventional evaluation method are compared. Compared with the inventive evaluation method, the conventional evaluation method 1 (independent case) underestimates the PML, and the conventional evaluation method 2 (in the case of complete correlation) overestimates the PML.
FIG. 15 is a diagram showing a PML comparison between the invention evaluation method, the conventional evaluation method 1, and the conventional evaluation method 2.

以上の検討結果より、上記実施形態の地震リスク評価方法によれば、図15に示すように、従来評価方法1(独立としたケース)は発明評価方法と比較してPMLを過少に、従来評価方法2(完全相関としたケース)は発明評価方法と比較してPMLを過大に評価していることが示された。従って、損失発生の相関を反映した発明評価方法を用いて、建物の地震リスクをより正確に評価することが可能である。   From the above examination results, according to the earthquake risk evaluation method of the above embodiment, as shown in FIG. 15, the conventional evaluation method 1 (independent case) has a PML less than the invention evaluation method, and the conventional evaluation method. It was shown that Method 2 (in the case of complete correlation) overestimates PML compared to the invention evaluation method. Therefore, it is possible to more accurately evaluate the earthquake risk of a building by using the invention evaluation method that reflects the correlation of loss occurrence.

すなわち、上記実施形態の地震リスク評価方法によれば、PMLの基となる地震動の大きさに対する建物の損失分布μc(V),σc(V)は、建物の各層各部位間における損失発生の相関係数ρik, jlと、建物の各層各部位における損失分布μik(V),σik(V)とに基づいて算出されるので、建物の各層各部位において、地震動の大きさごとの発生する損失とその発生確率に基づいて地震リスクを評価することが可能である。このとき、各層各部位間における損失発生の相関係数ρik, jlは、地震動の大きさと建物の各層各部位間ごとの応答値との相関係数ρSik, jl、及び、建物の各層各部位間ごとの耐力値の相関係数ρRik, jl、とに基づいて算出されているので、建物の各層に存在する各部位間の相関を任意に設定することが可能である。このため、建物の各層に存在する各部位間の相関を独立あるいは完全相関と仮定してPMLを算出した場合より正確なPMLを得ることが可能である。このため、評価対象となる建物に適合したPMLに基づいて、より適切な評価をすることが可能である。 That is, according to the earthquake risk evaluation method of the above embodiment, the loss distributions μc (V) and σc (V) of the building with respect to the magnitude of the ground motion that is the basis of the PML are the phases of the loss generation between the respective portions of the building. Since it is calculated on the basis of the relation number ρ ik, jl and the loss distribution μ ik (V), σ ik (V) in each part of the building, the occurrence of each level of earthquake motion in each part of the building It is possible to evaluate the seismic risk based on the loss and probability of occurrence. At this time, the correlation coefficient ρ ik, jl of the loss generation between each part of each layer is the correlation coefficient ρ Sik, jl between the magnitude of the earthquake motion and the response value for each part of each layer of the building, and each layer of the building Since it is calculated based on the correlation coefficient ρ Rik, jl of the proof stress value for each part, it is possible to arbitrarily set the correlation between the parts existing in each layer of the building. For this reason, it is possible to obtain a more accurate PML than when the PML is calculated on the assumption that the correlation between the portions existing in each layer of the building is independent or complete. For this reason, it is possible to perform more appropriate evaluation based on the PML suitable for the building to be evaluated.

また、各層各部位における損失分布が、各層各部位における損失分布の平均値μik(V)、及び、各層各部位における損失分布の標準偏差σik(V)なので、各層各部位における損失分布の信頼性が高い。このため、より信頼性の高い評価結果を得ることが可能である。 Further, since the loss distribution in each part of each layer is the average value μ ik (V) of the loss distribution in each part of each layer and the standard deviation σ ik (V) of the loss distribution in each part of each layer, High reliability. For this reason, it is possible to obtain a more reliable evaluation result.

また、応答値Sは、複数の地震動に対する応答値の中央値Ms、及び、複数の地震動に対する応答値の対数標準偏差ζsであり、耐力値Rは、耐力値の中央値、及び、耐力値の対数標準偏差なので、さらに信頼性の高い評価結果を得ることが可能である。   The response value S is a median value Ms of response values for a plurality of ground motions and a logarithmic standard deviation ζs of response values for a plurality of ground motions. A proof stress value R is a median of proof stress values and a proof stress value. Because of the logarithmic standard deviation, it is possible to obtain a more reliable evaluation result.

また、上記実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれることはいうまでもない。   Moreover, the said embodiment is for making an understanding of this invention easy, and is not for limiting and interpreting this invention. The present invention can be changed and improved without departing from the gist thereof, and it is needless to say that the present invention includes equivalents thereof.

V 地表面最大速度
S 応答値
R 耐力値
λs 応答値の対数平均値
ζs 応答値の対数標準偏差
λR 耐力値の対数平均値
ζR 耐力値の対数標準偏差
μc(V) 地震動の大きさに対する建物の損失分布の平均値
σc(V) 地震動の大きさに対する建物の損失分布の標準偏差
μik(V)地震動の大きさに対する建物の各層各部位における損失分布の平均値
σik(V)地震動の大きさに対する建物の各層各部位における損失分布の標準偏差
ρik, jl 建物の各層各部位間における損失発生の相関係数
ρSik, jl 地震動の大きさと建物の各層各部位間ごとの応答値との相関係数
ρRik, jl 建物の各層各部位間ごとの耐力値との相関係数
For V ground surface maximum speed S response value log mean ζs logarithmic standard deviation [mu] c (V) the magnitude of the earthquake motion logarithmic mean zeta R proof stress of logarithmic standard deviation lambda R proof stress response values of R proof stress λs response value Average value of building loss distribution σc (V) Standard deviation of building loss distribution relative to magnitude of ground motion μ ik (V) Average value of loss distribution at each part of the building relative to magnitude of ground motion σ ik (V) Ground motion Standard deviation of loss distribution at each part of the building relative to the size of the building ρ ik, jl Correlation coefficient of loss occurrence between each part of the building ρ Sik, jl The magnitude of the earthquake motion and the response value between each part of the building Correlation coefficient with ρ Rik, jl Correlation coefficient with strength value for each part of each layer of building

Claims (3)

評価対象となる複数の層を有する建物の地震リスクをPMLにて評価する地震リスク評価方法であって、
前記PMLの基となる、地震動の大きさに対する前記建物の損失分布を、
前記建物の各層各部位間ごとの応答値との相関係数、及び、前記建物の各層各部位間ごとの耐力値の相関係数、に基づく前記建物の各層各部位間における損失発生の相関係数と、
前記建物の各層各部位における損失分布と、に基づいて算出することを特徴とする地震リスク評価方法。
An earthquake risk evaluation method for evaluating an earthquake risk of a building having a plurality of layers to be evaluated by PML,
The loss distribution of the building with respect to the magnitude of ground motion, which is the basis of the PML,
Correlation of loss generation between each part of each layer of the building based on a correlation coefficient with a response value for each part of each layer of the building and a correlation coefficient of a proof stress value for each part of each layer of the building Number and
An earthquake risk evaluation method comprising: calculating based on a loss distribution in each part of each layer of the building.
請求項1に記載の地震リスク評価方法であって、
前記建物の各層各部位における損失分布は、前記各層各部位における損失分布の平均値、及び、各層各部位における損失分布の標準偏差であることを特徴とする地震リスク評価方法。
The earthquake risk evaluation method according to claim 1,
The loss distribution in each part of each layer of the building is an average value of the loss distribution in each part of each layer and the standard deviation of the loss distribution in each part of each layer.
請求項1または請求項2に記載の地震リスク評価方法であって、
前記応答値は、複数の地震動に対する当該応答値の中央値、及び、前記複数の地震動に対する当該応答値の対数標準偏差であり、
前記耐力値は、当該耐力値の中央値、及び、当該耐力値の対数標準偏差であることを特徴する地震リスク評価方法。
The earthquake risk evaluation method according to claim 1 or 2,
The response value is a median of the response values for a plurality of ground motions, and a logarithmic standard deviation of the response values for the plurality of ground motions,
The method for evaluating earthquake risk, wherein the proof stress value is a median value of the proof stress value and a logarithmic standard deviation of the proof stress value.
JP2009171587A 2009-07-22 2009-07-22 Seismic risk assessment method Active JP5418038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009171587A JP5418038B2 (en) 2009-07-22 2009-07-22 Seismic risk assessment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009171587A JP5418038B2 (en) 2009-07-22 2009-07-22 Seismic risk assessment method

Publications (2)

Publication Number Publication Date
JP2011027481A true JP2011027481A (en) 2011-02-10
JP5418038B2 JP5418038B2 (en) 2014-02-19

Family

ID=43636409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009171587A Active JP5418038B2 (en) 2009-07-22 2009-07-22 Seismic risk assessment method

Country Status (1)

Country Link
JP (1) JP5418038B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013152197A (en) * 2012-01-26 2013-08-08 Daiwa House Industry Co Ltd Evaluation device, evaluation method and evaluation program for earthquake damage loss of building
JP2014129688A (en) * 2012-12-28 2014-07-10 Daiwa House Industry Co Ltd Fragility curve generation method, device, and program for existing wooden house
JP2014142282A (en) * 2013-01-24 2014-08-07 Daiwa House Industry Co Ltd Fragility curve creation method of buckling restraining brace and loss evaluation method of building employing the same
JP2014153191A (en) * 2013-02-08 2014-08-25 Ohbayashi Corp Calculation system of response value of building caused by earthquake, and method for creating research table of damage to building caused by earthquake

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005208832A (en) * 2004-01-21 2005-08-04 Ohbayashi Corp Earthquake damage evaluation system for building under construction, earthquake risk evaluation system using the same for building under construction, program for executing these systems, and computer-readable recording medium to which these programs are recorded
JP2007093619A (en) * 2006-12-04 2007-04-12 Takenaka Komuten Co Ltd Earthquake damage predicting device, earthquake damage prediction method, and earthquake damage prediction program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005208832A (en) * 2004-01-21 2005-08-04 Ohbayashi Corp Earthquake damage evaluation system for building under construction, earthquake risk evaluation system using the same for building under construction, program for executing these systems, and computer-readable recording medium to which these programs are recorded
JP2007093619A (en) * 2006-12-04 2007-04-12 Takenaka Komuten Co Ltd Earthquake damage predicting device, earthquake damage prediction method, and earthquake damage prediction program

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013042859; 諏訪仁: '損失発生の相関性を考慮した建物の地震リスク評価' 日本建築学会学術講演梗概集B-1 構造1 Vol.2009, 20090720, 3-4 *
JPN6013042862; 諏訪仁 等: '建物の地震リスク評価法の開発 予想最大損失額(PML)評価ソフトの開発' 大林組技術研究所報 No.63, 20010710, 61-66 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013152197A (en) * 2012-01-26 2013-08-08 Daiwa House Industry Co Ltd Evaluation device, evaluation method and evaluation program for earthquake damage loss of building
JP2014129688A (en) * 2012-12-28 2014-07-10 Daiwa House Industry Co Ltd Fragility curve generation method, device, and program for existing wooden house
JP2014142282A (en) * 2013-01-24 2014-08-07 Daiwa House Industry Co Ltd Fragility curve creation method of buckling restraining brace and loss evaluation method of building employing the same
JP2014153191A (en) * 2013-02-08 2014-08-25 Ohbayashi Corp Calculation system of response value of building caused by earthquake, and method for creating research table of damage to building caused by earthquake

Also Published As

Publication number Publication date
JP5418038B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
Zhai et al. Damage spectra for the mainshock–aftershock sequence-type ground motions
KR101490308B1 (en) Apparatus of evaluating health of buildings according to earthquake acceleration measured
Mendes et al. Seismic assessment of masonry “Gaioleiro” buildings in Lisbon, Portugal
Chimamphant et al. Comparative response and performance of base‐isolated and fixed‐base structures
Cheng et al. Simulating building motions using ratios of the Building's natural frequencies and a Timoshenko beam model
Zacharenaki et al. Bias assessment in incremental dynamic analysis due to record scaling
Kalkan et al. Evaluation of modal pushover–based scaling of one component of ground motion: tall buildings
JP5418038B2 (en) Seismic risk assessment method
Ucar Computing input energy response of MDOF systems to actual ground motions based on modal contributions
Ugurhan et al. A methodology for seismic loss estimation in urban regions based on ground-motion simulations
Xiang et al. Damping modification factor for the vertical seismic response spectrum: A study based on Japanese earthquake records
JP2011257237A (en) Earthquake damage prediction method
Han et al. Seismic hazard analysis in low and moderate seismic region-Korean peninsula
Stewart et al. Input ground motions for tall buildings with subterranean levels
Johari et al. Stochastic nonlinear ground response analysis: A case study site in Shiraz, Iran
Liao et al. Earthquake hazard in central Taiwan evaluated using the potentially successive 2013 Nantou Taiwan earthquake sequences
JP5008084B2 (en) Quantitative seismic performance evaluation program for structures
JP2004362311A (en) Earthquake damage evaluation system, earthquake damage evaluation method, earthquake damage evaluation program and storage medium recorded with earthquake damage evaluation program
Lu Three-dimensional seismic analysis of reinforced concrete wall buildings at near-fault sites
Yeow et al. Predicting the maximum total sliding displacement of contents in earthquakes
Parla et al. Basin Effects on the Seismic Fragility of Steel Moment Resisting Frames Structures: Impedance Ratio, Depth, and Width of Basin
Suwal Performance evaluation of a non-ductile reinforced concrete moment frame building
Saygili A probabilistic approach for evaluating earthquake-induced landslides
Naderpour et al. Prevalent pulse influence of near-fault ground motions on base-isolated steel structures
JP2018200313A (en) Method for evaluating input earthquake motion into building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131104

R150 Certificate of patent or registration of utility model

Ref document number: 5418038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150