JP2011026638A - Anodization apparatus - Google Patents

Anodization apparatus Download PDF

Info

Publication number
JP2011026638A
JP2011026638A JP2009171366A JP2009171366A JP2011026638A JP 2011026638 A JP2011026638 A JP 2011026638A JP 2009171366 A JP2009171366 A JP 2009171366A JP 2009171366 A JP2009171366 A JP 2009171366A JP 2011026638 A JP2011026638 A JP 2011026638A
Authority
JP
Japan
Prior art keywords
substrate
electrode
electrode member
processed
electrolyte solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009171366A
Other languages
Japanese (ja)
Inventor
Takemine Magari
偉峰 曲
Toru Takahashi
亨 高橋
Hiroki Oi
裕喜 大井
Kiyoshi Mitani
清 三谷
Takeshi Otsuki
剛 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2009171366A priority Critical patent/JP2011026638A/en
Publication of JP2011026638A publication Critical patent/JP2011026638A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Formation Of Insulating Films (AREA)
  • Weting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anodization apparatus capable of preventing the contamination to a substrate to be treated during anodization for forming a porous layer on a semiconductor wafer with a simple process to efficiently form the high grade porous layer. <P>SOLUTION: This invention relates to the anodization apparatus having the porous layer formed on the substrate to be treated which is arranged in an electrolyte solution by passing current between electrodes of an anode and a cathode in the electrolyte solution, wherein the electrode has a structure that at least metallic electrode member is covered with a non-metallic electrode member. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、半導体ウェーハに多孔質層を形成する際に用いられる陽極酸化装置に関する。   The present invention relates to an anodizing apparatus used when forming a porous layer on a semiconductor wafer.

ICカードなどに使用される薄膜半導体デバイスを製造する方法として、半導体ウェーハ表面に多孔質層を形成し、その多孔質層の表面に素子形成領域となる半導体膜を形成し、その半導体膜上に素子を形成した後に多孔質層で剥離して薄膜半導体デバイスを作製する方法がある。   As a method of manufacturing a thin film semiconductor device used for an IC card or the like, a porous layer is formed on the surface of a semiconductor wafer, a semiconductor film serving as an element formation region is formed on the surface of the porous layer, and the semiconductor film is formed on the semiconductor film. There is a method of forming a thin film semiconductor device by peeling off a porous layer after forming an element.

この方法によれば、剥離により薄膜化を行うために、素子を形成した後の半導体ウェーハの裏面側(デバイスを作製する側とは反対側)を従来のように研削・研磨等で除去する必要がなく、その結果、材料ロスが少なく、削り屑などの廃棄物も低減できるため、環境面でのメリットが得られる。さらに、剥離後の半導体ウェーハを再利用することにより、使用するウェーハの枚数を減らすことができるため、製造コストを削減できるというメリットが大いに期待されている。   According to this method, in order to reduce the film thickness by peeling, it is necessary to remove the back side of the semiconductor wafer after forming the element (the side opposite to the side on which the device is manufactured) by grinding / polishing as in the past. As a result, there is little material loss, and wastes such as shavings can be reduced, resulting in an environmental advantage. Furthermore, since the number of wafers to be used can be reduced by reusing the peeled semiconductor wafer, there is a great expectation that the manufacturing cost can be reduced.

このような半導体ウェーハに多孔質層を形成する際には、製造コストや多孔度(porosity)の制御の容易性の観点から陽極酸化装置が用いられている。
陽極酸化装置を用いた多孔質層形成は、例えば、電解質溶液が満たされた槽内に被処理基板及び陽極と陰極の電極を浸漬させて、両電極間に電流を印加することにより、被処理基板が陽極酸化されて多孔質層が形成される。この際用いられる電極としては、通常、白金電極が用いられる。
When forming a porous layer on such a semiconductor wafer, an anodizing apparatus is used from the viewpoint of easy control of manufacturing cost and porosity.
The porous layer formation using the anodizing apparatus is performed by, for example, immersing the substrate to be processed and the anode and cathode electrodes in a tank filled with an electrolyte solution, and applying a current between both electrodes. The substrate is anodized to form a porous layer. As an electrode used at this time, a platinum electrode is usually used.

このような陽極酸化装置において、被処理基板が浸漬又は接触する電解質溶液に上記のような金属電極が接触し、又、被処理基板に通電するために電極が直接接触する場合もあるため、被処理基板が金属汚染されてしまうという問題があった。また、デバイス形成後に低コストでかつ均一な剥離をするために面内分布が均一な多孔質層を、効率的に形成できる装置が求められていた。
上記のような汚染の問題に対して、特許文献1には、電解質溶液を基板表面に連続的に供給させながら陽極酸化を行うことで、電解質溶液は基板表面上で滞留することがないため、汚染を低減できる陽極酸化装置が開示されている。
In such an anodizing apparatus, the metal electrode as described above is in contact with the electrolyte solution in which the substrate to be treated is immersed or is in contact, and the electrode may be in direct contact with the substrate to be energized. There was a problem that the processing substrate was contaminated with metal. Further, there has been a demand for an apparatus that can efficiently form a porous layer having a uniform in-plane distribution in order to perform uniform peeling at low cost after device formation.
For the problem of contamination as described above, Patent Document 1 discloses that the electrolyte solution does not stay on the substrate surface by performing anodization while continuously supplying the electrolyte solution to the substrate surface. An anodizing device that can reduce contamination is disclosed.

特開2000−12537号公報JP 2000-12537 A

しかし、上記のような装置では、従来用いられていた装置とは構造等が異なるため、新たに専用の装置を作製する必要があり、コストが高くなってしまうという問題があった。   However, since the above-described apparatus has a structure and the like different from those conventionally used, there is a problem that it is necessary to newly manufacture a dedicated apparatus and the cost is increased.

本発明は、上記問題点に鑑みてなされたものであって、半導体ウェーハに多孔質層を形成するための陽極酸化中に、被処理基板への汚染を簡易な方法で防止することができ、良質な多孔質層を効率的に形成することができる陽極酸化装置を提供することを目的とする。   The present invention has been made in view of the above problems, and during anodization for forming a porous layer on a semiconductor wafer, contamination of the substrate to be processed can be prevented by a simple method, An object of the present invention is to provide an anodizing apparatus capable of efficiently forming a high-quality porous layer.

上記目的を達成するために、本発明は、少なくとも、電解質溶液中で陽極と陰極の電極間で通電して前記電解質溶液中に配置された被処理基板に多孔質層を形成する陽極酸化装置であって、前記電極は少なくとも金属電極部材が非金属電極部材で覆われた構造を有するものであることを特徴とする陽極酸化装置を提供する。   In order to achieve the above object, the present invention is an anodic oxidation apparatus for forming a porous layer on a substrate to be processed disposed in an electrolyte solution by energizing at least between an anode electrode and a cathode electrode in the electrolyte solution. The electrode has a structure in which at least a metal electrode member is covered with a non-metal electrode member.

このように、陽極酸化装置において、金属電極部材が非金属電極部材で覆われた構造を有する電極であれば、電解質溶液中に金属不純物が溶け出して、被処理基板が汚染されることを簡易な方法で効果的に防止することができる。また、内側に金属電極部材を有することで、電解質溶液及び被処理基板に、電流の損失が少なくかつ均一に通電することができるため多孔質層の形成効率が良い。このため、電極を基板に面接触させた場合には、汚染を防止しながら面内均一な多孔質層を効率的に形成することができる。また、被処理基板に電極を接触させる場合にも、非金属電極部材と接触するため基板に傷等が生じにくい。さらに、従来の装置に対して電極を交換するだけでよいので、本発明の装置は安価で構成できる。
以上より、本発明の陽極酸化装置によれば、基板の汚染を防止しながら、面内均一な多孔質層を簡易な方法で効率的に低コストで形成することができる。
Thus, in the anodizing apparatus, if the metal electrode member is an electrode covered with a non-metal electrode member, it is easy to dissolve the metal impurities in the electrolyte solution and contaminate the substrate to be processed. Can be effectively prevented. Further, since the metal electrode member is provided on the inner side, the electrolyte solution and the substrate to be processed can be energized uniformly with little loss of current, so that the formation efficiency of the porous layer is good. For this reason, when the electrode is brought into surface contact with the substrate, a porous layer having a uniform in-plane can be efficiently formed while preventing contamination. In addition, even when the electrode is brought into contact with the substrate to be processed, the substrate is hardly damaged because of contact with the non-metallic electrode member. Furthermore, the device of the present invention can be constructed at low cost because it is only necessary to replace the electrode with respect to the conventional device.
As described above, according to the anodizing apparatus of the present invention, it is possible to efficiently form an in-plane porous layer efficiently and at low cost while preventing contamination of the substrate.

このとき、前記陽極と陰極の電極が電解質溶液中に浸漬して配置されるものであって、前記電極は、少なくとも前記電極の電解質溶液中に浸漬される部分が前記非金属電極部材で覆われた構造を有するものであることが好ましい。
このように、少なくとも電解質溶液中に浸漬される部分が非金属電極部材で覆われていれば、金属電極部材は電解質溶液に直接には接触しないため、より確実に基板への金属汚染を防止することができる。
At this time, the anode and cathode electrodes are immersed in the electrolyte solution, and at least a portion of the electrode immersed in the electrolyte solution is covered with the nonmetallic electrode member. It is preferable to have a structure.
Thus, if at least the portion immersed in the electrolyte solution is covered with the non-metallic electrode member, the metal electrode member does not come into direct contact with the electrolyte solution, and thus more reliably prevents metal contamination of the substrate. be able to.

このとき、前記陽極の電極が、前記被処理基板の裏面に前記陽極の非金属電極部材が面接触して前記被処理基板を保持する基板保持機構を有するものであることが好ましい。
このような基板保持機構を有するものであれば、基板を保持した際に電極と面接触して電流が基板面内に均一に通電し、多孔質層をより面内均一かつ効率的に形成することができる。
At this time, it is preferable that the electrode of the anode has a substrate holding mechanism that holds the substrate to be processed by bringing the nonmetallic electrode member of the anode into surface contact with the back surface of the substrate to be processed.
If it has such a substrate holding mechanism, when the substrate is held, it comes into surface contact with the electrode, and the current is uniformly supplied in the substrate surface, so that the porous layer is formed more uniformly and efficiently in the surface. be able to.

このとき、前記基板保持機構を有する陽極の電極の金属電極部材は、保持する被処理基板の裏面全面に対応した大きさを有するものであることが好ましい。
このような大きさの金属電極部材であれば、被処理基板全面に均一な通電をより確実に行うことができるため、より効率的に面内均一な多孔質層を形成することができる。
At this time, the metal electrode member of the anode electrode having the substrate holding mechanism preferably has a size corresponding to the entire back surface of the substrate to be processed to be held.
With a metal electrode member having such a size, uniform energization can be more reliably performed on the entire surface of the substrate to be processed, and thus a uniform in-plane porous layer can be formed more efficiently.

前記金属電極部材の材質が、銅、アルミニウム、白金のいずれかとすることができる。
本発明の陽極酸化装置の電極の金属電極部材の材質としては、上記のいずれも用いることができる。
The metal electrode member may be made of copper, aluminum, or platinum.
Any of the above can be used as the material of the metal electrode member of the electrode of the anodizing apparatus of the present invention.

前記非金属電極部材の材質が、シリコン、炭素、導電性樹脂のいずれかであることが好ましい。
本発明の陽極酸化装置の電極の非金属電極部材の材質としては、上記のいずれかであれば、電解質溶液として用いられるHF溶液等に対して耐性を有し、電流も良好に通すため好ましい。
It is preferable that the non-metallic electrode member is made of silicon, carbon, or conductive resin.
The material of the non-metallic electrode member of the electrode of the anodizing apparatus of the present invention is preferably any of the above because it has resistance to an HF solution used as an electrolyte solution and allows a good current to pass therethrough.

以上のように、本発明の陽極酸化装置によれば、半導体ウェーハに多孔質層を形成する際に、簡易な方法で基板の汚染を防止することができ、基板に電極を接触させる場合にも汚染が生じず、面内均一な多孔質層を安価で効率的に形成することができる。   As described above, according to the anodizing apparatus of the present invention, when a porous layer is formed on a semiconductor wafer, contamination of the substrate can be prevented by a simple method, and even when an electrode is brought into contact with the substrate. Contamination does not occur and an in-plane uniform porous layer can be formed efficiently at low cost.

本発明の陽極酸化装置の陽極の実施態様の一例を示す(a)概略断面図と、(b)概略側面図である。It is (a) schematic sectional drawing and (b) schematic side view which show an example of the embodiment of the anode of the anodizing apparatus of this invention. 本発明の陽極酸化装置の実施態様の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the embodiment of the anodizing apparatus of this invention. 本発明の陽極酸化装置の実施態様の他の例を示す構成図である。It is a block diagram which shows the other example of the embodiment of the anodizing apparatus of this invention. 本発明の陽極酸化装置の実施態様の他の例を示す構成図である。It is a block diagram which shows the other example of the embodiment of the anodizing apparatus of this invention. 被処理基板を電極として用いた場合の電源からの導線と基板との接続部を説明するための説明図である。It is explanatory drawing for demonstrating the connection part of the conducting wire from a power supply at the time of using a to-be-processed substrate as an electrode, and a board | substrate. 実施例、比較例において測定した陽極酸化処理後のウェーハ及び未処理のウェーハ中の白金濃度を示すグラフである。It is a graph which shows the platinum density | concentration in the wafer after an anodizing process measured in the Example and the comparative example, and the un-processed wafer. 実施例において測定した処理後のウェーハに形成された多孔質層の厚さの面内分布を示すグラフである。It is a graph which shows the in-plane distribution of the thickness of the porous layer formed in the wafer after the process measured in the Example. 比較例において測定した処理後のウェーハに形成された多孔質層の厚さの面内分布を示すグラフである。It is a graph which shows in-plane distribution of the thickness of the porous layer formed in the wafer after the process measured in the comparative example.

従来、半導体ウェーハに多孔質層を形成する陽極酸化装置の電極として、電解質溶液として用いるHF溶液等に耐性を有する白金電極等を用いていた。しかし、白金電極等の金属電極が浸漬されることで電解質溶液が汚染され、それにより基板も金属汚染されるという問題があった。また、被処理基板に電極を直接接触させて電流を流す構成の装置では、基板裏面全面に電極を接触させると金属汚染が大きく、さらには基板に傷も生じやすくなるため、電極を点接触させて基板への傷や直接的な汚染を低減させていた。しかし、この場合には形成される多孔質層の面内分布が悪くなってしまい、また、多孔質層形成の効率も悪くなってしまうことを、本発明者らが見出した。   Conventionally, as an electrode of an anodizing apparatus for forming a porous layer on a semiconductor wafer, a platinum electrode having resistance to an HF solution used as an electrolyte solution has been used. However, there has been a problem that the electrolyte solution is contaminated by immersing a metal electrode such as a platinum electrode, and the substrate is also contaminated by the metal. In addition, in an apparatus configured to flow an electric current by directly contacting an electrode to the substrate to be processed, if the electrode is brought into contact with the entire back surface of the substrate, the metal contamination is large and the substrate is likely to be damaged. Reduced scratches and direct contamination on the substrate. However, the present inventors have found that in this case, the in-plane distribution of the formed porous layer is deteriorated and the efficiency of forming the porous layer is also deteriorated.

上記のような問題に対して、単にカーボン等の非金属電極を用いた場合には、金属電極と比べて抵抗が大きいため電流の損失が大きく、また、被処理基板や電解質溶液への電流の流れが不均一になってしまうため、多孔質層の厚さや面内分布等の調節が困難となった。
そこで、本発明者らは、陽極酸化装置の電極を、金属電極部材を非金属電極部材で覆う構造とすることで、金属汚染の問題や、多孔質層の面内分布等の問題を同時に解決できることを見出して、本発明を完成させた。
In response to the above problems, when a non-metallic electrode such as carbon is simply used, the resistance is higher than that of the metal electrode, resulting in a large current loss. Also, the current to the substrate to be treated and the electrolyte solution is reduced. Since the flow becomes non-uniform, it is difficult to adjust the thickness and in-plane distribution of the porous layer.
Therefore, the present inventors have solved the problem of metal contamination and the in-plane distribution of the porous layer at the same time by making the electrode of the anodizing device cover the metal electrode member with a non-metal electrode member. The present invention has been completed by finding out what can be done.

以下、本発明の陽極酸化装置について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the anodizing apparatus of the present invention will be described in detail as an example of an embodiment with reference to the drawings. However, the present invention is not limited to this.

本発明の陽極酸化装置は、電解質溶液中で陽極と陰極の電極間で通電して電解質溶液中に配置された被処理基板に多孔質層を形成する陽極酸化装置であって、電極は少なくとも金属電極部材が非金属電極部材で覆われた構造を有するものである。   The anodizing apparatus of the present invention is an anodizing apparatus for forming a porous layer on a substrate to be processed disposed in an electrolyte solution by energizing between an anode and a cathode in the electrolyte solution, and the electrode is at least a metal The electrode member has a structure covered with a nonmetallic electrode member.

このように、陽極酸化装置において、金属電極部材が非金属電極部材で覆われた構造を有する電極であれば、電解質溶液中に金属不純物が溶け出して、被処理基板が汚染されることを簡易な方法で効果的に防止することができる。また、内側に金属電極部材を有することで、電解質溶液及び被処理基板に、電流の損失が少なくかつ均一に通電することができるため多孔質層の形成効率が良い。このため、電極を基板に面接触させた場合には、汚染を防止しながら面内均一な多孔質層を効率的に形成することができる。また、被処理基板に電極を接触させる場合にも、非金属電極部材と接触するため基板に傷等が生じにくい。さらに、従来の装置に対して電極を交換するだけでよいので、本発明の装置は安価で構成できる。従って、低コストで陽極酸化処理をすることができる。   Thus, in the anodizing apparatus, if the metal electrode member is an electrode covered with a non-metal electrode member, it is easy to dissolve the metal impurities in the electrolyte solution and contaminate the substrate to be processed. Can be effectively prevented. Further, since the metal electrode member is provided on the inner side, the electrolyte solution and the substrate to be processed can be energized uniformly with little loss of current, so that the formation efficiency of the porous layer is good. For this reason, when the electrode is brought into surface contact with the substrate, a porous layer having a uniform in-plane can be efficiently formed while preventing contamination. In addition, even when the electrode is brought into contact with the substrate to be processed, the substrate is hardly damaged because of contact with the non-metallic electrode member. Furthermore, the device of the present invention can be constructed at low cost because it is only necessary to replace the electrode with respect to the conventional device. Therefore, the anodizing treatment can be performed at a low cost.

また、陽極酸化装置において、陽極と陰極の電極が電解質溶液中に浸漬して配置される際には、本発明の陽極酸化装置用の電極は、少なくとも電極の電解質溶液中に浸漬される部分が非金属電極部材で覆われた構造を有するものであることが好ましい。
このように、少なくとも電解質溶液中に浸漬される部分が非金属電極部材で覆われていれば、金属電極部材は電解質溶液に接触しないため、より確実に基板への金属汚染を防止することができる。
In the anodizing apparatus, when the anode and cathode electrodes are immersed in the electrolyte solution, the electrode for the anodizing apparatus of the present invention has at least a portion immersed in the electrolyte solution. It is preferable to have a structure covered with a non-metallic electrode member.
Thus, if at least the portion immersed in the electrolyte solution is covered with the non-metallic electrode member, the metal electrode member does not come into contact with the electrolyte solution, so that metal contamination of the substrate can be prevented more reliably. .

また、本発明の陽極酸化装置の陽極が、被処理基板の裏面に陽極の非金属電極部材が面接触して被処理基板を保持する基板保持機構を有するものであることが好ましい。
このような基板保持機構を有するものであれば、基板を保持した際に電極と面接触して電流が基板面内に均一に通電し、多孔質層をより面内均一に形成することができる。
Moreover, it is preferable that the anode of the anodizing apparatus of the present invention has a substrate holding mechanism that holds the substrate to be processed by bringing the nonmetallic electrode member of the anode into surface contact with the back surface of the substrate to be processed.
If it has such a substrate holding mechanism, when the substrate is held, it can come into surface contact with the electrode and the current can be evenly supplied in the substrate surface, so that the porous layer can be formed more uniformly in the surface. .

このとき、基板保持機構を有する陽極の電極の金属電極部材は、保持する被処理基板の裏面全面に対応した大きさを有するものであることが好ましい。
このような大きさの金属電極部材であれば、被処理基板全面に均一な通電をより確実に行うことができるため、面内均一な多孔質層をより確実に形成することができる。
At this time, the metal electrode member of the anode electrode having the substrate holding mechanism preferably has a size corresponding to the entire back surface of the substrate to be processed to be held.
With a metal electrode member having such a size, uniform energization can be more reliably performed on the entire surface of the substrate to be processed, so that an in-plane uniform porous layer can be more reliably formed.

また、本発明の電極の金属電極部材の材質としては、特に限定されず、いずれのものも用いることができるが、銅、アルミニウム、白金のいずれかとすることができる。これらのものであれば、電極材料として汎用されている。   Moreover, it does not specifically limit as a material of the metal electrode member of the electrode of this invention, Although any thing can be used, it can be set as either copper, aluminum, or platinum. These materials are widely used as electrode materials.

また、本発明の電極の非金属電極部材の材質としては、シリコン、炭素、導電性樹脂のいずれかであることが好ましい。
本発明の陽極酸化装置の電極の非金属電極部材の材質としては、上記のいずれかであれば、HF溶液等に対して耐性を有し、電流も良好に通すため好ましい。また、被処理基板に対して、電気特性を劣化させる不純物となりにくい。特に電極を基板と接触させる場合には、非金属電極部材が導電性樹脂であれば基板への傷もより確実に防止できる。
The material of the non-metallic electrode member of the electrode of the present invention is preferably any of silicon, carbon, and conductive resin.
The material of the non-metallic electrode member of the electrode of the anodizing apparatus of the present invention is preferably any of the above because it has resistance to HF solution or the like and can pass current well. Further, it is difficult for impurities to be deteriorated in electrical characteristics with respect to the substrate to be processed. In particular, when the electrode is brought into contact with the substrate, damage to the substrate can be more reliably prevented if the nonmetallic electrode member is a conductive resin.

ここで、本発明の陽極酸化装置について図1、2を用いてより具体的に説明する。図1は、本発明の陽極酸化装置の陽極の実施態様の一例を示す(a)概略断面図と、(b)概略側面図である。図2は、図1に示す陽極を用いた本発明の陽極酸化装置の実施態様の一例を示す概略図である。
図1に示すように、本発明の陽極酸化装置用電極の陽極1aは、非金属電極部材11として例えばシリコン単結晶を用いて、金属電極部材10を非金属電極部材11であるシリコン単結晶基板によって挟んで覆う構造となっている。ここで、陽極1aの基板保持機構として、図1(a)に示すように被処理基板Wに対応した形状の凹部に被処理基板Wをはめ込み、キャリア12によって三箇所で固定することができるようになっている。内部の金属電極部材10の面積は被処理基板Wよりも大きいため基板W全面に均一に通電でき、そして、この金属電極部材10は上部にある電源からの導線との接続部15とつながっている。この接続部15の材質としては、金属電極部材10と同じ材質を用いることができる。ここで、金属電極部材10の形状は特に限定されず、円形、格子状等の形状とすることができる。また、非金属電極部材11としてシリコン単結晶を用いる場合は、抵抗率が数10mΩcm〜数10ΩcmのP型またはN型のシリコン単結晶を用いることにより、被処理基板に所望の多孔質層を形成することができる。
Here, the anodizing apparatus of the present invention will be described more specifically with reference to FIGS. 1A is a schematic sectional view showing an example of an embodiment of an anode of an anodizing apparatus of the present invention, and FIG. 1B is a schematic side view thereof. FIG. 2 is a schematic view showing an example of an embodiment of the anodizing apparatus of the present invention using the anode shown in FIG.
As shown in FIG. 1, the anode 1a of the electrode for an anodic oxidation apparatus of the present invention uses, for example, a silicon single crystal as the nonmetallic electrode member 11, and the silicon single crystal substrate in which the metal electrode member 10 is the nonmetallic electrode member 11. The structure is sandwiched between and covered. Here, as a substrate holding mechanism of the anode 1a, the substrate to be processed W can be fitted into a concave portion having a shape corresponding to the substrate to be processed W as shown in FIG. It has become. Since the area of the internal metal electrode member 10 is larger than that of the substrate to be processed W, the entire surface of the substrate W can be energized uniformly, and the metal electrode member 10 is connected to a connection portion 15 with a lead wire from a power source located above. . As the material of the connection portion 15, the same material as that of the metal electrode member 10 can be used. Here, the shape of the metal electrode member 10 is not particularly limited, and may be a circular shape, a lattice shape, or the like. Further, when a silicon single crystal is used as the non-metallic electrode member 11, a desired porous layer is formed on the substrate to be processed by using a P-type or N-type silicon single crystal having a resistivity of several tens of mΩcm to several tens of Ωcm. can do.

そして、図2に示す本発明の陽極酸化装置2は、槽13内にキャリア12に固定された図1に示す陽極1aと陰極1bとを配置して、被処理基板Wが完全に浸漬するくらいまで、例えばHF溶液のような電解質溶液14で槽13を満たす。陰極1bとしては、上記した陽極1aと同様の構造で、ただし基板保持するための凹部等を有さないものを用いることができる。これにより、陰極からの金属汚染もなくなる。また、キャリア12や槽13の材質としても、特に限定されず、電解質溶液に対して耐性を有する材質であればよく、例えばフッ素樹脂、塩化ビニル樹脂等を用いることができる。
図2に示すように電極を配置して、陽極1aと陰極1bの両方の接続部15を電源と接続して電流を流すことで、陽極に保持された被処理基板Wの陰極側に向いた表面に多孔質層が形成される。
The anodizing apparatus 2 of the present invention shown in FIG. 2 has the anode 1a and the cathode 1b shown in FIG. 1 fixed to the carrier 12 in the tank 13, and the substrate W to be processed is completely immersed. Until the tank 13 is filled with an electrolyte solution 14 such as an HF solution. As the cathode 1b, a cathode having the same structure as the above-described anode 1a, but having no recess for holding the substrate can be used. This eliminates metal contamination from the cathode. The material of the carrier 12 and the tank 13 is not particularly limited as long as the material has resistance to the electrolyte solution. For example, a fluororesin, a vinyl chloride resin, or the like can be used.
As shown in FIG. 2, the electrodes are arranged, and the connection portion 15 of both the anode 1 a and the cathode 1 b is connected to a power source and a current flows, so that the substrate is directed to the cathode side of the substrate W held on the anode. A porous layer is formed on the surface.

ここで、本発明の陽極酸化装置は、図1、2の構造の装置に限定されず、例えば、図3(a)、(b)、(c)、図4に示すような構造の陽極酸化装置とすることができる。
図3(a)に示す陽極酸化装置は、陽極1aと陰極1bを電解質溶液14中に浸漬させて、陽極1aと被処理基板Wを直接接触させて電流を流す構造である。当該構造は、図1、2と同様の構造である。この場合、少なくとも陽極1aに金属電極部材が非金属電極部材で覆われた構造を有する本発明の電極が用いられるのが好ましい。両極とも本発明の電極とするのが尚好ましい。
Here, the anodic oxidation apparatus of the present invention is not limited to the apparatus having the structure shown in FIGS. 1 and 2, and for example, an anodic oxidation having a structure as shown in FIGS. 3 (a), (b), (c) and FIG. It can be a device.
The anodic oxidation apparatus shown in FIG. 3A has a structure in which the anode 1a and the cathode 1b are immersed in the electrolyte solution 14, and the anode 1a and the substrate W to be processed are brought into direct contact with each other to pass a current. This structure is the same as that shown in FIGS. In this case, it is preferable to use the electrode of the present invention having a structure in which at least the anode 1a is covered with a non-metallic electrode member. More preferably, both electrodes are electrodes according to the present invention.

また、図3(a)の構造では、被処理基板W自体を陽極1aとして用いて、陰極1bのみに本発明の電極を用いることもできる。この場合は、被処理基板Wの上部を電源からの導線と接続する。この際の接続方法としては、例えば、図5に示すように、被処理基板Wの上部と金属接続部材20とを両側からシリコン部材21で挟み、そのシリコン部材21の周りに保護ゴム22を巻いて固定することができ、この保護ゴム22は金属接続部材20が電解質溶液に接触しないように保護する役割も有する。   In the structure of FIG. 3A, the substrate W itself can be used as the anode 1a, and the electrode of the present invention can be used only for the cathode 1b. In this case, the upper part of the substrate to be processed W is connected to a lead wire from the power source. As a connection method at this time, for example, as shown in FIG. 5, the upper portion of the substrate W to be processed and the metal connection member 20 are sandwiched between the silicon members 21 from both sides, and a protective rubber 22 is wound around the silicon member 21. The protective rubber 22 also serves to protect the metal connecting member 20 from contact with the electrolyte solution.

次に、図3(b)に示す陽極酸化装置は、陽極1a上に載置された被処理基板Wと槽をOリング16を介して固定し、陰極1bを電解質溶液14中で被処理基板Wに対向配置させる構造である。このような構造の陽極酸化装置であれば、陽極1aは電解質溶液に接触しないため、被処理基板Wと接触する面のみを非金属電極部材で覆うことも可能である。一方、陰極1bは、電解質溶液に浸漬されるため、本発明の金属電極部材が非金属電極部材で覆われた電極が用いられる。   Next, the anodizing apparatus shown in FIG. 3B fixes the substrate to be processed W and the tank placed on the anode 1a through the O-ring 16, and the cathode 1b in the electrolyte solution 14 as the substrate to be processed. This is a structure arranged to face W. In the anodic oxidation apparatus having such a structure, since the anode 1a does not contact the electrolyte solution, it is possible to cover only the surface in contact with the substrate W to be processed with a nonmetallic electrode member. On the other hand, since the cathode 1b is immersed in an electrolyte solution, an electrode in which the metal electrode member of the present invention is covered with a nonmetal electrode member is used.

次に、図3(c)に示す陽極酸化装置は、陽極1aと陰極1bの間に被処理基板Wが配置され、電解質溶液が反対側に移動できないように被処理基板WをOリング16を介して固定する構造である。この場合は、両電極1a、1bを本発明の陽極酸化装置用電極とする。
また、同様の構造で、多数枚の被処理基板Wを処理できるように、図4に示すように被処理基板Wを並べて配置することもできる。
Next, in the anodic oxidation apparatus shown in FIG. 3C, the substrate W to be processed is disposed between the anode 1a and the cathode 1b, and the substrate W is attached to the O-ring 16 so that the electrolyte solution cannot move to the opposite side. It is a structure fixed via. In this case, both electrodes 1a and 1b are electrodes for the anodizing device of the present invention.
In addition, the substrates to be processed W can be arranged side by side as shown in FIG. 4 so that a large number of substrates to be processed W can be processed with the same structure.

以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例、比較例)
図3(a)に示す構造の陽極酸化装置で実施例、比較例で各4枚のシリコンウェーハについて一枚毎に多孔質層を形成した。実施例で用いた電極は、陽極、陰極ともに金属電極部材として白金を用い、非金属電極部材としてシリコンを用い、図1、2に示す本発明の電極とした。比較例では、非金属電極部材を用いることなく、陽極、陰極ともに白金電極を用い、処理されるシリコンウェーハの中心から上に60mmの位置に、陽極の白金電極を点接触させた。
実施例、比較例での処理対象のシリコンウェーハは、直径6インチ(15cm)、p+(0.01〜0.02Ωcm)のPW(Polished Wafer)とした。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to these.
(Examples and comparative examples)
With the anodizing apparatus having the structure shown in FIG. 3A, a porous layer was formed for each of four silicon wafers in the example and the comparative example. The electrodes used in the examples were platinum as a metal electrode member for both the anode and the cathode, and silicon as a non-metal electrode member, and the electrodes of the present invention shown in FIGS. In the comparative example, a platinum electrode was used for both the anode and the cathode without using a non-metal electrode member, and the anode platinum electrode was brought into point contact at a position 60 mm above the center of the silicon wafer to be processed.
The silicon wafer to be processed in the examples and comparative examples was a PW (Polished Wafer) having a diameter of 6 inches (15 cm) and p + (0.01 to 0.02 Ωcm).

陽極酸化条件は、電解質溶液(HF:EtOH(エタノール):HO=1:1:1)中で、電流1.7A、720secで処理した。
上記処理で形成された多孔質層の厚さをウェーハ中心位置(0.0)と上下方向に37.5(−37.5)mm、60.0(−60.0)mmの計5箇所で測定した。測定結果を図7(実施例)、図8(比較例)に示す。
また、上記処理されたウェーハ中の白金濃度を全溶解法で測定した。なお、参考として同条件の4枚のシリコンウェーハで陽極酸化されていない未処理のウェーハ中の白金濃度を全溶解法で測定した。測定結果を図6に示す。
As anodizing conditions, treatment was performed in an electrolyte solution (HF: EtOH (ethanol): H 2 O = 1: 1: 1) at a current of 1.7 A and 720 sec.
The thickness of the porous layer formed by the above processing is 5 locations in total, 37.5 (-37.5) mm and 60.0 (-60.0) mm in the wafer center position (0.0) and in the vertical direction. Measured with The measurement results are shown in FIG. 7 (Example) and FIG. 8 (Comparative example).
Moreover, the platinum concentration in the processed wafer was measured by the total dissolution method. For reference, the platinum concentration in an untreated wafer that was not anodized with four silicon wafers under the same conditions was measured by the total dissolution method. The measurement results are shown in FIG.

図7、8から分かるように、同条件で陽極酸化したにも関わらず、形成された多孔質層の厚さが、比較例に比べて実施例では2倍以上厚く形成された。これは、実施例の単位面積当たりの電流密度を比較例に比べて大きくすることができたためと考えられる。また、図7に示すように、実施例では多孔質層の面内分布が良好であり、図8に示す比較例では、ウェーハの電極を点接触させた位置(ウェーハ中心から60mm)の多孔質層が他の位置に比べて極端に厚くなり、面内分布が悪くなった。
また、図6に示すように、比較例ではウェーハ中の白金濃度が高くなってしまい、実施例では未処理のウェーハと同等で、実施例における処理によって汚染が生じていないことが分かる。
As can be seen from FIGS. 7 and 8, although the anodization was performed under the same conditions, the thickness of the formed porous layer was more than twice as large in the example as compared with the comparative example. This is thought to be because the current density per unit area of the example could be increased compared to the comparative example. Further, as shown in FIG. 7, the in-plane distribution of the porous layer is good in the example, and in the comparative example shown in FIG. 8, the porous material at the position where the electrode of the wafer is in point contact (60 mm from the wafer center). The layer became extremely thick compared to the other positions, and the in-plane distribution deteriorated.
Further, as shown in FIG. 6, in the comparative example, the platinum concentration in the wafer becomes high, and in the example, it is equivalent to the untreated wafer, and it is understood that no contamination is caused by the process in the example.

以上より、本発明の陽極酸化装置であれば、陽極酸化において、面内均一な多孔質層を金属汚染を防止しながら効率的に形成できることがわかった。   From the above, it was found that the anodizing apparatus of the present invention can efficiently form a porous layer having a uniform in-plane surface while preventing metal contamination.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

1a…陽極、 1b…陰極、 2…陽極酸化装置、 10…金属電極部材、
11…非金属電極部材、 12…キャリア、 13…槽、
14…電解質溶液、 15…接続部、 16…Oリング、
20…金属接続部材、 21…シリコン部材、 22…保護ゴム、
W…被処理基板。
DESCRIPTION OF SYMBOLS 1a ... Anode, 1b ... Cathode, 2 ... Anodizing apparatus, 10 ... Metal electrode member,
11 ... Non-metallic electrode member, 12 ... Carrier, 13 ... Tank,
14 ... electrolyte solution, 15 ... connection part, 16 ... O-ring,
20 ... Metal connecting member, 21 ... Silicon member, 22 ... Protective rubber,
W: Substrate to be processed.

Claims (6)

少なくとも、電解質溶液中で陽極と陰極の電極間で通電して前記電解質溶液中に配置された被処理基板に多孔質層を形成する陽極酸化装置であって、前記電極は少なくとも金属電極部材が非金属電極部材で覆われた構造を有するものであることを特徴とする陽極酸化装置。   An anodic oxidation apparatus for forming a porous layer on a substrate to be processed disposed in an electrolyte solution by energizing at least between an anode electrode and a cathode electrode in the electrolyte solution, wherein the electrode has at least a metal electrode member An anodizing device having a structure covered with a metal electrode member. 前記陽極と陰極の電極が電解質溶液中に浸漬して配置されるものであって、前記電極は、少なくとも前記電極の電解質溶液中に浸漬される部分が前記非金属電極部材で覆われた構造を有するものであることを特徴とする請求項1に記載の陽極酸化装置。   The anode and cathode electrodes are immersed in an electrolyte solution, and the electrode has a structure in which at least a portion of the electrode immersed in the electrolyte solution is covered with the nonmetallic electrode member. The anodizing device according to claim 1, wherein the anodizing device is provided. 前記陽極の電極が、前記被処理基板の裏面に前記陽極の非金属電極部材が面接触して前記被処理基板を保持する基板保持機構を有するものであることを特徴とする請求項1又は請求項2に記載の陽極酸化装置。   2. The substrate according to claim 1, wherein the anode electrode has a substrate holding mechanism for holding the substrate to be processed by bringing the non-metallic electrode member of the anode into surface contact with the back surface of the substrate to be processed. Item 3. The anodizing apparatus according to Item 2. 前記基板保持機構を有する陽極の電極の金属電極部材は、保持する被処理基板の裏面全面に対応した大きさを有するものであることを特徴とする請求項3に記載の陽極酸化装置。   4. The anodizing apparatus according to claim 3, wherein the metal electrode member of the anode electrode having the substrate holding mechanism has a size corresponding to the entire back surface of the substrate to be processed. 前記金属電極部材の材質が、銅、アルミニウム、白金のいずれかであることを特徴とする請求項1乃至請求項4のいずれか一項に記載の陽極酸化装置   The material of the said metal electrode member is copper, aluminum, or platinum, The anodizing apparatus as described in any one of Claim 1 thru | or 4 characterized by the above-mentioned. 前記非金属電極部材の材質が、シリコン、炭素、導電性樹脂のいずれかであることを特徴とする請求項1乃至請求項5のいずれか一項に記載の陽極酸化装置。   The anodizing apparatus according to any one of claims 1 to 5, wherein a material of the non-metallic electrode member is any one of silicon, carbon, and conductive resin.
JP2009171366A 2009-07-22 2009-07-22 Anodization apparatus Pending JP2011026638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009171366A JP2011026638A (en) 2009-07-22 2009-07-22 Anodization apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009171366A JP2011026638A (en) 2009-07-22 2009-07-22 Anodization apparatus

Publications (1)

Publication Number Publication Date
JP2011026638A true JP2011026638A (en) 2011-02-10

Family

ID=43635706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009171366A Pending JP2011026638A (en) 2009-07-22 2009-07-22 Anodization apparatus

Country Status (1)

Country Link
JP (1) JP2011026638A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013112880A (en) * 2011-11-30 2013-06-10 Dainippon Screen Mfg Co Ltd Anodization apparatus, anodization system including the same, and semiconductor wafer
WO2019235047A1 (en) * 2018-06-06 2019-12-12 信越半導体株式会社 Anodic oxidation device, anodic oxidation method, and method for manufacturing cathode for anodic oxidation device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198557A (en) * 1992-01-23 1993-08-06 Canon Inc Anodizing device
JPH06275598A (en) * 1993-03-23 1994-09-30 Canon Inc Anode formation device
JP2002541324A (en) * 1999-04-01 2002-12-03 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electrochemical etching apparatus and method for etching an etching body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198557A (en) * 1992-01-23 1993-08-06 Canon Inc Anodizing device
JPH06275598A (en) * 1993-03-23 1994-09-30 Canon Inc Anode formation device
JP2002541324A (en) * 1999-04-01 2002-12-03 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electrochemical etching apparatus and method for etching an etching body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013112880A (en) * 2011-11-30 2013-06-10 Dainippon Screen Mfg Co Ltd Anodization apparatus, anodization system including the same, and semiconductor wafer
WO2019235047A1 (en) * 2018-06-06 2019-12-12 信越半導体株式会社 Anodic oxidation device, anodic oxidation method, and method for manufacturing cathode for anodic oxidation device
CN112154229A (en) * 2018-06-06 2020-12-29 信越半导体株式会社 Anodic oxidation apparatus, anodic oxidation method, and method for manufacturing cathode of anodic oxidation apparatus
KR20210018215A (en) 2018-06-06 2021-02-17 신에쯔 한도타이 가부시키가이샤 Anodizing device, anodic oxidation method, and method of manufacturing cathode of anodizing device
US11248306B2 (en) 2018-06-06 2022-02-15 Shin-Etsu Handotai Co., Ltd. Anodic-oxidation equipment, anodic-oxidation method, and method for producing cathode of anodic-oxidation equipment
TWI783140B (en) * 2018-06-06 2022-11-11 日商信越半導體股份有限公司 Anodizing device, anodizing method, and method for manufacturing cathode of anodizing device
CN112154229B (en) * 2018-06-06 2023-06-09 信越半导体株式会社 Anodic oxidation apparatus, anodic oxidation method, and method for manufacturing cathode of anodic oxidation apparatus

Similar Documents

Publication Publication Date Title
US20060070884A1 (en) Electrochemical processing apparatus and method
US9375821B2 (en) Electrically assisted chemical-mechanical planarization (EACMP) system and method thereof
KR100985270B1 (en) Substrate stage and heat treatment apparatus, and manufacturing method of the said stage
GB2560291A (en) Method for stripping flexible substrate
US8052861B2 (en) Electrolytic etching method and method of producing a solar battery
US10052703B2 (en) Silicon wafer slicing device using wire discharge machining
JP2017028162A5 (en) Method for producing single crystal SiC substrate
KR101510042B1 (en) Rotational metal bar electropolishing device
JP2011026638A (en) Anodization apparatus
US11105014B2 (en) Distribution system for chemical and/or electrolytic surface treatment
JP4912729B2 (en) Outline processing method of silicon carbide single crystal ingot
JP2010185122A (en) Member for passing electric current to anode holder, and anode holder
KR101639564B1 (en) Belt-type Electroforming Apparatus
KR102416775B1 (en) Electrolytic treatment jig and electrolytic treatment method
KR101696144B1 (en) Electropolishing device of micro metal sheet
JP2019210524A (en) Anodic oxidation device, anodic oxidation method, and method of producing cathode of anodic oxidation device
US20050274604A1 (en) Plating apparatus
JP6360768B2 (en) Wire saw
JP2018141188A (en) Flattening treatment method of silicon wafer
JP2005298886A (en) Electrolytic treatment apparatus and method
JP2008274320A (en) Plating tool for electronic component
JP2007113082A (en) Plating device and plating method
JP2019067895A (en) Silicon carbide wafer processing method by photoelectrochemical etching
JP2006131969A (en) Anodic chemical conversion method and apparatus therefor
KR100792338B1 (en) Electric chemical plating cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110921

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130911

A131 Notification of reasons for refusal

Effective date: 20130924

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20131114

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20131203

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140401