JP2011023523A - Electromagnetic steel sheet laminated core which has good thermal conductivity, and method of manufacturing the same - Google Patents

Electromagnetic steel sheet laminated core which has good thermal conductivity, and method of manufacturing the same Download PDF

Info

Publication number
JP2011023523A
JP2011023523A JP2009166903A JP2009166903A JP2011023523A JP 2011023523 A JP2011023523 A JP 2011023523A JP 2009166903 A JP2009166903 A JP 2009166903A JP 2009166903 A JP2009166903 A JP 2009166903A JP 2011023523 A JP2011023523 A JP 2011023523A
Authority
JP
Japan
Prior art keywords
thermal conductivity
adhesive
core
steel sheet
electromagnetic steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009166903A
Other languages
Japanese (ja)
Inventor
Shuichi Yamazaki
修一 山崎
Hiroyasu Fujii
浩康 藤井
Kazutoshi Takeda
和年 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009166903A priority Critical patent/JP2011023523A/en
Publication of JP2011023523A publication Critical patent/JP2011023523A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve thermal conductivity in the lamination direction of a core (iron core) used for an energy converting electric apparatus such as a motor, generator, and transformer. <P>SOLUTION: Electromagnetic steel sheets used for a core are stacked by bonding across the entire surface through an adhesive layer of ≥0.2 μm and ≤15 μm which is an anaerobic adhesive, with no void generated between the steel sheets. The resulting laminated core has improved thermal conductivity in the lamination direction of the core, with high power. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電動機、発電機や変圧器等のエネルギー変換用電気機器に用いるコア(鉄心)に関するものであり、特に電磁鋼板積層コアとその製造方法に係わる。   The present invention relates to a core (iron core) used for an energy conversion electrical device such as an electric motor, a generator or a transformer, and more particularly to an electromagnetic steel sheet laminated core and a manufacturing method thereof.

電動機、発電機や変圧器では、コアの鉄損や巻き線の銅損などにより温度上昇が起こり、鉄損の小型化や高出力化の阻害要因となる。したがってステータコアの熱伝導性が重要である。   In electric motors, generators, and transformers, the temperature rises due to iron loss of the core and copper loss of the windings, which is an obstacle to downsizing and high output of iron loss. Therefore, the thermal conductivity of the stator core is important.

コアは電磁鋼板を積層し、通常は「かしめ」もしくは溶接により固定したものである。電磁鋼板には、ミクロンオーダーの表面粗さがあるため、積層された鋼板間にはミクロンオーダーの空隙が存在する。
空隙を満たしている空気の熱伝導率は著しく低い(0.03W/mK)ため、このような僅かの空隙であっても、大きな熱抵抗を生ずる。
The core is formed by laminating electromagnetic steel sheets and is usually fixed by “caulking” or welding. Since electromagnetic steel sheets have a surface roughness on the order of microns, there are micron-order voids between the laminated steel sheets.
Since the thermal conductivity of air filling the air gap is remarkably low (0.03 W / mK), even such a small air gap produces a large thermal resistance.

この結果、コアの熱伝導率には大きな異方性が生ずる。すなわち、鋼板面内方向の熱伝導率は鋼板の合金成分から予想される値(数十W/mK)におおよそ一致するものの、積層方向の熱伝導率は鋼板面内方向の1/20〜1/7程度にとどまる。
したがって、コアの抜熱性は鋼材合金成分から期待される値よりも著しく劣る結果となっている。
As a result, a large anisotropy occurs in the thermal conductivity of the core. That is, although the thermal conductivity in the in-plane direction of the steel sheet roughly matches the value expected from the alloy components of the steel sheet (several tens of W / mK), the thermal conductivity in the stacking direction is 1/20 to 1 in the in-plane direction of the steel sheet. It stays around / 7.
Therefore, the heat removal property of the core is significantly inferior to the value expected from the steel alloy component.

本発明者らは、コア積層方向の熱伝導率改善のための方策として、加熱により接着能を発揮するコーティング(接着コーティング)を施した電磁鋼板の使用を提案した(特許文献1参照)。すなわち、接着コーティングの施された電磁鋼板を積層した後加熱接着することにより、鋼板の表面粗さに起因する空隙をできるだけ接着層で充填しようとすするものである。接着コートの成分はアクリルやエポキシ等の樹脂である。この方法により、積層方向の熱伝導率は鋼板面内方向の1/5程度まで改善できる。   As a measure for improving the thermal conductivity in the core lamination direction, the present inventors have proposed the use of a magnetic steel sheet having a coating (adhesive coating) that exhibits adhesive ability by heating (see Patent Document 1). That is, by laminating magnetic steel sheets with adhesive coating and then heat-bonding, an attempt is made to fill the voids due to the surface roughness of the steel sheets with an adhesive layer as much as possible. The component of the adhesive coat is a resin such as acrylic or epoxy. By this method, the thermal conductivity in the stacking direction can be improved to about 1/5 of the in-plane direction of the steel sheet.

しかしながら、接着コーティングによる方法にはいくつかの難点が存在する。
ひとつは、積層体の強度をある程度確保するためには接着コーティングの厚さを片面あたり5g/m2 以上(接着層厚さ8μm以上)確保する必要があり、占積率が劣化することであり、もうひとつは、このように接着層の厚さを薄くできないため、積層方向熱伝導の改善に限界があることである。
さらには、接着コーティングの場合、加熱接着過程で完全に接着層が溶融するわけではないため、空隙層の完全な充填には至っていないという問題点もある。
したがって、高い積層方向の熱伝導率と、占積率及びコア積層強度を両立させることが難しい。
However, there are several difficulties with the adhesive coating method.
One is that in order to secure the strength of the laminate to some extent, it is necessary to secure a thickness of 5 g / m 2 or more per side (adhesive layer thickness of 8 μm or more), and the space factor deteriorates. The other is that since the thickness of the adhesive layer cannot be reduced in this way, there is a limit in improving the heat conduction in the stacking direction.
Furthermore, in the case of adhesive coating, the adhesive layer is not completely melted during the heat-bonding process, so that there is a problem that the gap layer is not completely filled.
Therefore, it is difficult to achieve both high thermal conductivity in the stacking direction, space factor, and core stacking strength.

一方、特許文献2には、鋼板間にオイルを充填する方法が提案されている。
具体的には、オイルが満たされた容器内で電磁鋼板を積層した後、容器内であるいは容器外に取り出した状態で積層方向に荷重をかけて積層体を接合する方法、または、オイルを塗布しながら電磁鋼板を積層してゆき、所定の積層厚みに達した後に荷重をかけて積層体を接合する方法である。
この方法の場合も、鋼板間の空隙は空気ではなくそれよりも熱伝導率の高いオイルで充填されるため、積層方向の熱伝導率の改善が期待できる。また、加圧により余分のオイルを絞り出すことができるため、オイル充填による占積率劣化の抑制や熱抵抗の影響の最小化もできる。
On the other hand, Patent Document 2 proposes a method of filling oil between steel plates.
Specifically, after laminating electrical steel sheets in a container filled with oil, a method of joining the laminate by applying a load in the stacking direction in a state where the steel sheet is taken out of the container or outside the container, or oil is applied In this method, magnetic steel sheets are laminated while a predetermined laminated thickness is reached, and the laminated body is joined by applying a load.
Also in this method, since the gap between the steel plates is filled with oil having a higher thermal conductivity than air, an improvement in the thermal conductivity in the stacking direction can be expected. Moreover, since excess oil can be squeezed out by pressurization, it is possible to suppress deterioration of the space factor due to oil filling and to minimize the influence of thermal resistance.

しかしながら、この方法にも難点がある。オイルには流動性があるため、鋼板から流出し、使用中に空隙が生成して熱伝導率が劣化する。また、コアの発熱によりオイルが分解劣化し気体が発生して空隙を生じ、これも熱伝導率劣化の原因となる。さらには、空隙を充填するオイルには鋼板を強固に固定する能力がないため、積層体を固着する別の手段(かしめや溶接等)が必要である。   However, this method also has drawbacks. Since oil has fluidity, it flows out of the steel sheet, and voids are generated during use, resulting in deterioration of thermal conductivity. Moreover, oil is decomposed and deteriorated due to heat generation of the core, and gas is generated to generate voids, which also causes deterioration of thermal conductivity. Furthermore, since the oil filling the gap does not have the ability to firmly fix the steel plate, another means (such as caulking or welding) for fixing the laminated body is required.

さらに、嫌気性接着剤を用いたコア積層に関しては、以下の公知文献が存在する。
特許文献3には、嫌気性接着剤を用いてコアを積層する方法が開示されている。しかしながら、同公報は積層コアの鉄損低減を目的としたものである。したがって、コア積層方向の熱伝導率が低減できる接着条件、特に接着層厚さに記載がない。
Furthermore, the following publicly known documents exist regarding core lamination using an anaerobic adhesive.
Patent Document 3 discloses a method of laminating a core using an anaerobic adhesive. However, this publication is aimed at reducing the iron loss of the laminated core. Therefore, there is no description in the bonding conditions that can reduce the thermal conductivity in the core lamination direction, in particular, the thickness of the bonding layer.

特許文献4には、嫌気性接着剤を用いてコアを積層する方法が開示されている。しかしながら、同公報は積層コアの占積率低減を目的としたものである。同公報におけるコア積層方法は、あらかじめ鋼板表面の一部に接着剤を充填するくぼみを設け、そのくぼみのみに嫌気性接着剤を塗布する方法である。したがって、全面接着状態とはならず、本発明のように積層方向の熱伝導率を改善するような効果は発現できない。   Patent Document 4 discloses a method of laminating a core using an anaerobic adhesive. However, this publication aims to reduce the space factor of the laminated core. The core lamination method in this publication is a method in which a recess filled with an adhesive is provided in advance on a part of the steel plate surface, and an anaerobic adhesive is applied only to the recess. Therefore, the entire surface is not bonded, and the effect of improving the thermal conductivity in the stacking direction as in the present invention cannot be exhibited.

特許文献5には、効果促進剤を併用した嫌気性接着剤によるコア積層方法が記載されている。しかしながら、同公報における接着の目的は単に積層鋼板の固着にあるため、コアのティース部にのみ点状に接着剤を塗布する方法となっている。したがって、全面接着状態とはならず、本発明のように積層方向の熱伝導率を改善するような効果は発現できない。   Patent Document 5 describes a core lamination method using an anaerobic adhesive in combination with an effect accelerator. However, since the purpose of adhesion in the publication is simply to fix the laminated steel sheets, the adhesive is applied in a dotted manner only to the teeth portion of the core. Therefore, the entire surface is not bonded, and the effect of improving the thermal conductivity in the stacking direction as in the present invention cannot be exhibited.

特開平11−150895号公報JP-A-11-150895 特開2007−104878号公報JP 2007-104878 A 特開昭58−116032号公報JP 58-116032 A 特開2006−101629号公報JP 2006-101629 A 特開2006−334648号公報JP 2006-334648 A 特公昭49−6744号公報Japanese Patent Publication No.49-6744 特開平06−33033号公報Japanese Patent Laid-Open No. 06-33033

本発明は、電動機や発電機、変圧器において、高い積層方向熱伝導率と良好な占積率、積層強度を有するコアおよびその製造方法を提供することを課題とするものである。   An object of the present invention is to provide a core having a high lamination direction thermal conductivity, a good space factor, and a lamination strength in an electric motor, a generator, and a transformer, and a manufacturing method thereof.

本発明によれば、嫌気性接着剤を電磁鋼板表面に両面あたり0.2g/m2 以上15g/m2 以下塗布して硬化接着し、鋼板間に空隙や気泡のない0.2μm以上15μm以下の接着層を形成することにより、良好な積層方向熱伝導率を有するコアを得ることができる。
嫌気性接着剤の塗布量が両面あたり0.2g/m2 を下回ると、鋼板表面の凹凸を接着層で充填することができなくなり、接着力が低下するのみならず積層方向の熱伝導率も劣化する。また、嫌気性接着剤の塗布量が両面あたり15g/m2 を上回ると、溶接コア等に比較して積層方向の熱伝導率が劣るのみならず、占積率が劣化してコアの鉄損特性を損なう。
According to the present invention, the anaerobic adhesive is applied to the surface of the magnetic steel sheet in an amount of 0.2 g / m 2 or more and 15 g / m 2 or less on both sides, and is cured and bonded. By forming the adhesive layer, it is possible to obtain a core having good thermal conductivity in the stacking direction.
If the coating amount of the anaerobic adhesive is less than 0.2 g / m 2 per both sides, it becomes impossible to fill the unevenness on the surface of the steel sheet with the adhesive layer, and not only the adhesive strength is lowered but also the thermal conductivity in the laminating direction. to degrade. Moreover, when the application amount of the anaerobic adhesive exceeds 15 g / m 2 per both sides, not only the thermal conductivity in the laminating direction is inferior to the weld core, but also the space factor deteriorates and the core loss of the core deteriorates. The characteristics are damaged.

さらに、絶縁コーティングが施されていない電磁鋼板、リン酸塩を含有する絶縁コーティングが施された電磁鋼板を用いることにより、積層強度を犠牲にすることなくコア積層方向の熱伝導率を改善することができる。
その他の絶縁皮膜が施された電磁鋼板の場合は、嫌気性接着剤用効果促進剤を併用することにより、積層強度を犠牲にすることなくコア積層方向の熱伝導率を改善することができる。
Furthermore, by using a magnetic steel sheet that is not coated with an insulating coating or a magnetic steel sheet that is coated with a phosphate-containing insulating coating, the thermal conductivity in the core stacking direction is improved without sacrificing the stacking strength. Can do.
In the case of an electromagnetic steel sheet provided with another insulating film, the thermal conductivity in the core lamination direction can be improved without sacrificing the lamination strength by using an anaerobic adhesive effect accelerator in combination.

本発明により、コアの積層方向の熱伝導率が改善されるため、コアの抜熱性が高くなり、モータ等の高出力化に貢献できる。   According to the present invention, the thermal conductivity in the stacking direction of the core is improved, so that the heat removal performance of the core is increased, and it is possible to contribute to high output of a motor or the like.

嫌気性接着剤による接着強度を評価するための試験片形状を説明するための図である。It is a figure for demonstrating the test piece shape for evaluating the adhesive strength by an anaerobic adhesive agent. リン酸塩を主体とする絶縁皮膜が施された電磁鋼板積層コアの熱伝導率の積層方法依存性を示す図である。It is a figure which shows the lamination | stacking method dependence of the thermal conductivity of the electrical steel sheet laminated core to which the insulating film which mainly has a phosphate was given. 絶縁皮膜のない電磁鋼板積層コアおよびクロム酸塩を主体とする絶縁皮膜が施された電磁鋼板積層コアの熱伝導率の積層方法依存性を示す図である。It is a figure which shows the lamination | stacking method dependence of the thermal conductivity of the electrical steel sheet laminated core without an insulating film, and the electrical steel sheet laminated core with which the insulating film mainly composed of chromate was given.

嫌気性接着剤とは、酸素のない条件下でFe等の金属イオンを触媒として硬化する接着剤であり、一般には溶剤を含まず、ねじのゆるみ止めや嵌合部の接着等の用途に用いられる。
嫌気性接着剤は、溶剤を含まないため硬化に際しガスを発生せず、接着層内に気泡が生ずるおそれがない。また、接着層厚さが薄い方が接着強度が得られると言われる。さらに、嫌気性条件下で硬化するため、積層した鋼板内部もきちんと接着することができる。
以上のことから、発明者らは、(a)積層鋼板間に間隙を生じること無く、(b)ミクロンオーダーの接着層厚さで鋼板を十分な接着でき、(c)積層コアの積層方向の熱伝導性が改善できると考えた。そして、これらの予想を以下の手順により確認した。
Anaerobic adhesive is an adhesive that cures using metal ions such as Fe as a catalyst under oxygen-free conditions. Generally, it does not contain solvents and is used for applications such as screw locking and fitting part adhesion. It is done.
The anaerobic adhesive does not contain a solvent and therefore does not generate gas during curing, and there is no risk of bubbles being generated in the adhesive layer. It is said that the thinner the adhesive layer, the better the adhesive strength. Furthermore, since it hardens | cures under anaerobic conditions, the laminated steel plate inside can also be adhere | attached properly.
From the above, the inventors can (a) sufficiently bond the steel plate with an adhesive layer thickness of micron order without causing a gap between the laminated steel plates, and (c) in the stacking direction of the laminated core. We thought that thermal conductivity could be improved. These predictions were confirmed by the following procedure.

まず、2枚の10cm×10cmの電磁鋼板を両面あたり2g/m2 の嫌気性接着剤で貼り合わせ、硬化した後、断面の接着状況を観察したところ、予想通り気泡のない全面接着状態になっていることが判明した。 First, laminated electromagnetic steel plates of the two 10 cm × 10 cm in anaerobic adhesive double-sided per 2 g / m 2, after curing, observation of the bonding conditions of the cross-section, become entirely bonded state without expected bubbles Turned out to be.

嫌気性接着剤は硬化に際し、金属イオンの存在が必要と言われている。一方、電磁鋼板は表面に絶縁皮膜が施されているのが通例である。したがって、絶縁皮膜付き電磁鋼板を嫌気性接着剤で接着した場合、接着できない可能性がある。   Anaerobic adhesives are said to require the presence of metal ions upon curing. On the other hand, the electrical steel sheet is usually provided with an insulating film on the surface. Therefore, when an electrical steel sheet with an insulating film is bonded with an anaerobic adhesive, it may not be bonded.

そこで、接着強度の絶縁皮膜依存性を調査した。絶縁皮膜を施さない電磁鋼板A、特許文献6等に記載されたクロム酸塩を主体とする絶縁皮膜を施した電磁鋼板B、特許文献7等に記載されたリン酸塩を主体とする絶縁皮膜が施された電磁鋼板C、の3種類の電磁鋼板を用意し、嫌気性接着剤により第1図に示すような接着試験片(接着層厚さ2μm)を作成し、引っ張り試験により接着強度を測定した。   Therefore, the dependence of the adhesive strength on the insulating film was investigated. Electrical steel sheet A not provided with an insulating film, Electrical steel sheet B provided with an insulating film mainly composed of chromate described in Patent Document 6 and the like, Insulating film mainly composed of phosphate described in Patent Document 7 and the like Prepare three types of electrical steel sheet with magnetic steel sheet C, and make an adhesion test piece (adhesion layer thickness 2 μm) as shown in Fig. 1 with anaerobic adhesive, and increase the adhesive strength by tensile test. It was measured.

接着にあたっては、嫌気性接着剤のみを用いた場合と、接着剤塗布の前に銅塩と脂肪族アミンを主成分とする嫌気性接着剤用硬化促進剤をあらかじめ塗布乾燥した後嫌気性接着剤により接着した場合の、二つの場合を評価した。   In the case of adhesion, anaerobic adhesive is applied after using anaerobic adhesive alone, and after applying and drying a curing accelerator for anaerobic adhesive mainly composed of copper salt and aliphatic amine before applying the adhesive. Two cases were evaluated when they were bonded together.

第1表に示すように、リン酸塩を主体とする絶縁皮膜が施された電磁鋼板は絶縁皮膜の無い電磁鋼板と概略同程度の接着強度が得られた。すなわち、リン酸塩を主体とする絶縁皮膜が施された電磁鋼板は、硬化促進剤を用いることなしに嫌気性接着剤による接着ができる利点があるといえる。クロム酸塩を主体とする絶縁皮膜の場合でも、硬化促進剤を併用すれば十分な接着強度が得られる。   As shown in Table 1, the electrical steel sheet to which the insulating film mainly composed of phosphate was applied exhibited substantially the same adhesive strength as the electrical steel sheet without the insulating film. That is, it can be said that the electrical steel sheet provided with an insulating film mainly composed of phosphate has an advantage that it can be bonded with an anaerobic adhesive without using a curing accelerator. Even in the case of an insulating film mainly composed of chromate, sufficient adhesion strength can be obtained by using a curing accelerator in combination.

Figure 2011023523
Figure 2011023523

リン酸塩を主体とする絶縁皮膜の場合に効果促進剤が不要となる理由は定かではない。おそらく、皮膜形成時にリン酸塩と鋼板とが反応し、皮膜中にリン酸鉄化合物のようなものが含有されているのではないかと想像され、リン酸鉄化合物が効果促進の作用を有するのではないかと思われる。   The reason why the effect promoter is not necessary in the case of an insulating film mainly composed of phosphate is not clear. Perhaps it is imagined that the phosphate and steel plate react during film formation, and that the film contains something like an iron phosphate compound, and the iron phosphate compound has the effect of promoting the effect. I think that.

次に、嫌気性接着剤による積層方向の熱伝導率改善効果の確認であるが、これは実施例で説明する。   Next, although it is confirmation of the heat conductivity improvement effect of the lamination direction by an anaerobic adhesive, this is demonstrated in an Example.

(実施例1)
リン酸塩を主体とする絶縁皮膜を形成させたJIS規格35A300の電磁鋼板を用意した。前者の電磁鋼板より、かしめ積層したコア、溶接積層したコア、嫌気性接着剤により積層接着したコア、接着コートを塗布し加圧積層接着したコア、を作成した。
嫌気性接着剤による接着コアの場合は、嫌気性接着剤の塗布量を両面あたり0.15〜25g/m2 の範囲で変更したものを用意した。接着コートによる接着コアの場合は、接着コートの塗布量を2〜20g/m2 の範囲で変更したものを用意した。コアの熱伝導率測定には、積層コアにおける鋼板積層方向と鋼板面内方向の双方が評価できるホットディスク法を用いた。
Example 1
A JIS standard 35A300 electrical steel sheet having an insulating film mainly composed of phosphate was prepared. From the former electromagnetic steel sheet, a caulked and laminated core, a welded and laminated core, a core that was laminated and bonded with an anaerobic adhesive, and a core that was applied with an adhesive coat and was pressure-bonded and bonded were prepared.
In the case of an adhesive core made of an anaerobic adhesive, an anaerobic adhesive applied amount was changed in a range of 0.15 to 25 g / m 2 per both sides. In the case of an adhesive core with an adhesive coat, a coating with the adhesive coat applied amount changed in the range of 2 to 20 g / m 2 was prepared. For measuring the thermal conductivity of the core, a hot disk method that can evaluate both the steel sheet lamination direction and the in-plane direction of the laminated core was used.

第2図は上記の実験によって得られた結果である。同図より、まず以下のことが読み取れる。
積層コアでは、積層方向の熱伝導率は面内方向の熱伝導率に比較して劣る。面内方向熱伝導率は積層方法にあまりよらないか、または嫌気性接着剤および接着コートによる接着層の増加と共にわずかに減少する。
積層方向熱伝導率は接着層の減少と共に増大するが、接着層が極端に少ない場合(両面あたり0.2g/m2 未満)は再び劣化する。接着剤の量が極めて少なくなると、鋼板の凹凸を接着剤で埋め尽くして空隙のない接着層を作ることが困難になることが原因と思われる。同一接着剤使用量で比較すると、嫌気性接着剤の方が接着コートより積層方向熱伝導率が大きい。
FIG. 2 shows the results obtained by the above experiment. From the figure, the following can be read first.
In the laminated core, the thermal conductivity in the laminating direction is inferior to the thermal conductivity in the in-plane direction. The in-plane thermal conductivity is less dependent on the laminating method or decreases slightly with increasing adhesion layer due to anaerobic adhesives and adhesive coats.
The thermal conductivity in the stacking direction increases with a decrease in the adhesive layer, but deteriorates again when the adhesive layer is extremely small (less than 0.2 g / m 2 on both sides). If the amount of the adhesive is extremely small, it is considered that it becomes difficult to fill the unevenness of the steel plate with the adhesive to form an adhesive layer without a void. When compared with the same amount of adhesive used, the anaerobic adhesive has a greater thermal conductivity in the stacking direction than the adhesive coat.

溶接コアとの比較を行うことにより、以下のことが読み取れる。
接着コートによるコアでは、溶接コアより良好な積層方向熱伝導率を得るには、接着コートの塗布量を両面あたり8g/m2 以下にする必要があるが、この領域では一般に接着力が減少し、熱伝導率改善とコア強度を両立させることが難しい。
これに対し、嫌気性接着剤による接着の場合は、接着剤の両面あたり塗布量15g/m2 以下で溶接コアより改善が認められ、かつ先述べたように、少なくとも接着剤塗布量2g/m2 でも十分な接着強度を有する。
The following can be read by comparing with the welding core.
In the core by the adhesive coat, in order to obtain better thermal conductivity in the stacking direction than the weld core, the coating amount of the adhesive coat needs to be 8 g / m 2 or less per both sides. However, in this region, the adhesive strength generally decreases. It is difficult to achieve both improved thermal conductivity and core strength.
On the other hand, in the case of bonding with an anaerobic adhesive, improvement is recognized from the weld core at an application amount of 15 g / m 2 or less per both sides of the adhesive, and as mentioned above, at least an adhesive application amount of 2 g / m. Even 2 has sufficient adhesive strength.

したがって、嫌気性接着剤による接着コアは、接着強度と高い積層方向熱伝導率を満足できる。接着コートによる接着積層が嫌気性接着剤による接着積層に比べて積層方向の熱伝導率が劣る理由は、接着コートの接着層内に空隙が残存していることによることに起因するものと推察される。
第2図は、嫌気性接着剤の塗布量が両面で0.2g/m2 未満になると、溶接コアよりも積層方向熱伝導率が劣化することも示している。なお、嫌気性接着剤の硬化後の密度は1.1程度であり、両面あたり塗布量15g/m2 は接着層厚さ15μmに相当する。
Therefore, the adhesive core made of the anaerobic adhesive can satisfy the adhesive strength and the high lamination direction thermal conductivity. The reason why the adhesive lamination by the adhesive coat has a lower thermal conductivity in the laminating direction than the adhesive lamination by the anaerobic adhesive is presumed to be due to the presence of voids in the adhesive layer of the adhesive coat. The
FIG. 2 also shows that the thermal conductivity in the laminating direction deteriorates more than the weld core when the application amount of the anaerobic adhesive is less than 0.2 g / m 2 on both sides. Note that the density of the anaerobic adhesive after curing is about 1.1, and the coating amount of 15 g / m 2 per both sides corresponds to the adhesive layer thickness of 15 μm.

(実施例2)
絶縁皮膜のないJIS規格35A300の電磁鋼板およびクロム酸塩を主体とする絶縁皮膜が施されたJIS規格35A300の電磁鋼板を用意し、前者の鋼板からはそのまま嫌気性接着剤により積層接着したコアを、後者の鋼板からは銅塩と脂肪族アミンを主成分とする嫌気性接着剤用硬化促進剤をあらかじめ塗布乾燥した後嫌気性接着剤により積層接着したコアを作成した。いずれの場合も、嫌気性接着剤の塗布量を両面あたり2〜25g/m2 の範囲で変更した。
比較のためのコアには、クロム酸塩を主体とする絶縁皮膜が施されたJIS規格35A300の電磁鋼板から作成した溶接コアを用いた。
コアの熱伝導率測定には、積層コアにおける鋼板積層方向と鋼板面内方向の双方が評価できるホットディスク法を用いた。
(Example 2)
Prepare a JIS standard 35A300 electrical steel sheet without an insulating film and a JIS standard 35A300 electrical steel sheet with an insulating film mainly composed of chromate. From the latter steel plate, a curing accelerator for anaerobic adhesive composed mainly of a copper salt and an aliphatic amine was applied and dried in advance, and then a core laminated and adhered with an anaerobic adhesive was prepared. In any case, the application amount of the anaerobic adhesive was changed in the range of 2 to 25 g / m 2 per both sides.
As a core for comparison, a weld core made from a magnetic steel sheet of JIS standard 35A300 provided with an insulating film mainly composed of chromate was used.
For measuring the thermal conductivity of the core, a hot disk method that can evaluate both the steel sheet lamination direction and the steel sheet in-plane direction in the laminated core was used.

第3図は上記の実験によって得られた結果である。同図より、絶縁皮膜の無い電磁鋼板およびにクロム酸塩を主体とする絶縁皮膜が施された電磁鋼板の場合も、接着剤塗布量15g/m2 以下の嫌気性接着剤を用いた接着積層により、積層方向の熱伝導率に優れたコアが得られることがわかる。また、クロム酸塩を主体とする絶縁皮膜が施された電磁鋼板の場合は、接着前の嫌気性接着剤用硬化促進剤の塗布乾燥により、十分な接着強度が得られることは前に述べたとおりである。 FIG. 3 shows the results obtained by the above experiment. From the figure, even in the case of an electromagnetic steel sheet without an insulating film and an electromagnetic steel sheet with an insulating film mainly composed of chromate, adhesive lamination using an anaerobic adhesive with an adhesive application amount of 15 g / m 2 or less. Thus, it can be seen that a core having excellent thermal conductivity in the stacking direction can be obtained. In addition, in the case of electrical steel sheets coated with an insulating film mainly composed of chromate, it was mentioned before that sufficient adhesive strength can be obtained by applying and drying the curing accelerator for anaerobic adhesive before bonding. It is as follows.

Claims (6)

0.2μm以上15μm以下の接着層を介して空隙を生ずることなく電磁鋼板が積層固定されたことを特徴とする、良好な熱伝導性を有する積層コア。   A laminated core having good thermal conductivity, characterized in that electromagnetic steel sheets are laminated and fixed without forming a void through an adhesive layer of 0.2 μm or more and 15 μm or less. 嫌気性接着剤を用いて接着層を空隙の無い接着層を形成したことを特徴とする、請求項1に記載の良好な熱伝導性を有する積層コア。   The laminated core having good thermal conductivity according to claim 1, wherein an adhesive layer without an air gap is formed using an anaerobic adhesive. 嫌気性接着剤を、電磁鋼板に片面あたり0.1g/m2 以上7.5g/m2 以下で両面塗布、もしくは電磁鋼板に片面あたり0.2g/m2 以上15g/m2 以下で片面塗布し、電磁鋼板を接着積層することを特徴とする、良好な熱伝導性を有する積層コアの製造方法。 The anaerobic adhesives, double-sided coated at 0.1 g / m 2 or more per side 7.5 g / m 2 or less in the electromagnetic steel sheets, or one surface coated at 0.2 g / m 2 or more per side 15 g / m 2 or less in the electromagnetic steel sheets A method for producing a laminated core having good thermal conductivity, characterized in that electromagnetic steel sheets are bonded and laminated. 絶縁コーティングが施されていない電磁鋼板を用いることを特徴とする、請求項3に記載の良好な熱伝導性を有する積層コアの製造方法。   The method for producing a laminated core having good thermal conductivity according to claim 3, wherein an electromagnetic steel sheet not provided with an insulating coating is used. リン酸塩を含有する絶縁コーティングが施された電磁鋼板を用いることを特徴とする、請求項3に記載の良好な熱伝導性を有する積層コアの製造方法。   The method for producing a laminated core having good thermal conductivity according to claim 3, wherein an electromagnetic steel sheet coated with an insulating coating containing a phosphate is used. 嫌気性接着剤用効果促進剤をあらかじめ塗布乾燥した後、嫌気性接着剤を用いて電磁鋼板を接着積層することを特徴とする、請求項3に記載の良好な熱伝導性を有する積層コアの製造方法。   The laminated core having good thermal conductivity according to claim 3, wherein after applying and drying the effect promoter for anaerobic adhesive in advance, the magnetic steel sheet is bonded and laminated using the anaerobic adhesive. Production method.
JP2009166903A 2009-07-15 2009-07-15 Electromagnetic steel sheet laminated core which has good thermal conductivity, and method of manufacturing the same Pending JP2011023523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009166903A JP2011023523A (en) 2009-07-15 2009-07-15 Electromagnetic steel sheet laminated core which has good thermal conductivity, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009166903A JP2011023523A (en) 2009-07-15 2009-07-15 Electromagnetic steel sheet laminated core which has good thermal conductivity, and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011023523A true JP2011023523A (en) 2011-02-03

Family

ID=43633339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009166903A Pending JP2011023523A (en) 2009-07-15 2009-07-15 Electromagnetic steel sheet laminated core which has good thermal conductivity, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2011023523A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011119418A1 (en) 2011-02-07 2012-08-09 Unisia Jkc Steering Systems Co., Ltd. variable
WO2020129937A1 (en) * 2018-12-17 2020-06-25 日本製鉄株式会社 Laminated core and rotating electric machine
WO2020129940A1 (en) * 2018-12-17 2020-06-25 日本製鉄株式会社 Laminated core and rotating electric machine
WO2020129936A1 (en) 2018-12-17 2020-06-25 日本製鉄株式会社 Stacked core and rotary electric machine
WO2020129938A1 (en) 2018-12-17 2020-06-25 日本製鉄株式会社 Laminated core, core block, rotating electric machine, and method of manufacturing core block
WO2020129928A1 (en) 2018-12-17 2020-06-25 日本製鉄株式会社 Laminated core and rotating electric machine
WO2020129948A1 (en) 2018-12-17 2020-06-25 日本製鉄株式会社 Laminated core, method of producing same, and rotating electric machine
WO2020129925A1 (en) * 2018-12-17 2020-06-25 日本製鉄株式会社 Stator adhesive laminated core and rotating electric machine
WO2020129942A1 (en) 2018-12-17 2020-06-25 日本製鉄株式会社 Stacked core and rotary electric machine
WO2020129926A1 (en) * 2018-12-17 2020-06-25 日本製鉄株式会社 Laminated core and rotating electric machine
WO2020262298A1 (en) 2019-06-26 2020-12-30 日本製鉄株式会社 Core block, stacked core, and rotating electrical machine
WO2022220262A1 (en) * 2021-04-14 2022-10-20 日本製鉄株式会社 Electromagnetic steel sheet and adhesion laminated core production method
WO2022220260A1 (en) * 2021-04-14 2022-10-20 日本製鉄株式会社 Method for manufacturing bonded laminate core and bonded laminate core manufacturing device
US11742129B2 (en) 2018-12-17 2023-08-29 Nippon Steel Corporation Adhesively-laminated core, manufacturing method thereof, and electric motor
US11973369B2 (en) 2018-12-17 2024-04-30 Nippon Steel Corporation Laminated core with center electrical steel sheets adhered with adhesive and some electrical steel sheets fixed to each other on both ends of the center sheets

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58116032A (en) * 1981-12-28 1983-07-11 Hitachi Koki Co Ltd Laminated iron core for rotary electric machine
JPH04145610A (en) * 1990-10-08 1992-05-19 Fukushima Tokai Denshi Kogyo Kk Manufacture of rotary transformer
JPH10256103A (en) * 1997-03-13 1998-09-25 Marcon Electron Co Ltd Method for packaging electronic component
JP2004088970A (en) * 2002-08-29 2004-03-18 Hitachi Ltd Stacked iron core and rotating electric machine and transformer using the same
JP2007044879A (en) * 2005-08-05 2007-02-22 Unitika Ltd Water-based adhesive for thermosensitive stencil printing base paper and thermosensitive stencil printing base paper
JP2008159926A (en) * 2006-12-25 2008-07-10 Denso Corp Soft magnetic member, laminated body of soft magnetic members, and manufacturing method for those materials

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58116032A (en) * 1981-12-28 1983-07-11 Hitachi Koki Co Ltd Laminated iron core for rotary electric machine
JPH04145610A (en) * 1990-10-08 1992-05-19 Fukushima Tokai Denshi Kogyo Kk Manufacture of rotary transformer
JPH10256103A (en) * 1997-03-13 1998-09-25 Marcon Electron Co Ltd Method for packaging electronic component
JP2004088970A (en) * 2002-08-29 2004-03-18 Hitachi Ltd Stacked iron core and rotating electric machine and transformer using the same
JP2007044879A (en) * 2005-08-05 2007-02-22 Unitika Ltd Water-based adhesive for thermosensitive stencil printing base paper and thermosensitive stencil printing base paper
JP2008159926A (en) * 2006-12-25 2008-07-10 Denso Corp Soft magnetic member, laminated body of soft magnetic members, and manufacturing method for those materials

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011119418A1 (en) 2011-02-07 2012-08-09 Unisia Jkc Steering Systems Co., Ltd. variable
JPWO2020129940A1 (en) * 2018-12-17 2021-10-21 日本製鉄株式会社 Laminated core and rotary electric machine
WO2020129938A1 (en) 2018-12-17 2020-06-25 日本製鉄株式会社 Laminated core, core block, rotating electric machine, and method of manufacturing core block
WO2020129936A1 (en) 2018-12-17 2020-06-25 日本製鉄株式会社 Stacked core and rotary electric machine
WO2020129937A1 (en) * 2018-12-17 2020-06-25 日本製鉄株式会社 Laminated core and rotating electric machine
WO2020129928A1 (en) 2018-12-17 2020-06-25 日本製鉄株式会社 Laminated core and rotating electric machine
WO2020129948A1 (en) 2018-12-17 2020-06-25 日本製鉄株式会社 Laminated core, method of producing same, and rotating electric machine
WO2020129925A1 (en) * 2018-12-17 2020-06-25 日本製鉄株式会社 Stator adhesive laminated core and rotating electric machine
WO2020129942A1 (en) 2018-12-17 2020-06-25 日本製鉄株式会社 Stacked core and rotary electric machine
WO2020129926A1 (en) * 2018-12-17 2020-06-25 日本製鉄株式会社 Laminated core and rotating electric machine
US11979059B2 (en) 2018-12-17 2024-05-07 Nippon Steel Corporation Laminated core and electric motor
JPWO2020129938A1 (en) * 2018-12-17 2021-02-15 日本製鉄株式会社 Manufacturing method of laminated core, core block, rotary electric machine and core block
KR20210082509A (en) 2018-12-17 2021-07-05 닛폰세이테츠 가부시키가이샤 Laminated Cores, Core Blocks, Rotating Electric Machines and Methods for Manufacturing Core Blocks
KR20210083313A (en) 2018-12-17 2021-07-06 닛폰세이테츠 가부시키가이샤 Laminated Cores and Rotating Electrical Machines
KR20210088642A (en) 2018-12-17 2021-07-14 닛폰세이테츠 가부시키가이샤 Laminated Cores and Rotating Electrical Machines
KR20210091259A (en) 2018-12-17 2021-07-21 닛폰세이테츠 가부시키가이샤 Laminated core, manufacturing method thereof and rotating electric machine
JPWO2020129937A1 (en) * 2018-12-17 2021-10-21 日本製鉄株式会社 Laminated core and rotary electric machine
CN113169592A (en) * 2018-12-17 2021-07-23 日本制铁株式会社 Laminated iron core and rotating electrical machine
KR20210094627A (en) 2018-12-17 2021-07-29 닛폰세이테츠 가부시키가이샤 Laminated Cores and Rotating Electrical Machines
CN113196616A (en) * 2018-12-17 2021-07-30 日本制铁株式会社 Laminated iron core and rotating electrical machine
CN113243073A (en) * 2018-12-17 2021-08-10 日本制铁株式会社 Laminated iron core and rotating electrical machine
US11973369B2 (en) 2018-12-17 2024-04-30 Nippon Steel Corporation Laminated core with center electrical steel sheets adhered with adhesive and some electrical steel sheets fixed to each other on both ends of the center sheets
WO2020129940A1 (en) * 2018-12-17 2020-06-25 日本製鉄株式会社 Laminated core and rotating electric machine
CN113169595A (en) * 2018-12-17 2021-07-23 日本制铁株式会社 Laminated iron core, iron core block, rotating electrical machine, and method for manufacturing iron core block
TWI744741B (en) * 2018-12-17 2021-11-01 日商日本製鐵股份有限公司 Laminated iron core and rotating electric machine
JPWO2020129926A1 (en) * 2018-12-17 2021-11-04 日本製鉄株式会社 Laminated core and rotary electric machine
TWI753335B (en) * 2018-12-17 2022-01-21 日商日本製鐵股份有限公司 Laminated iron core, iron core block, rotating electrical machine, and manufacturing method of iron core block
JPWO2020129925A1 (en) * 2018-12-17 2021-09-27 日本製鉄株式会社 Adhesive laminated core for stator and rotary electric machine
CN113196616B (en) * 2018-12-17 2024-03-29 日本制铁株式会社 Laminated iron core and rotary electric machine
US11923130B2 (en) 2018-12-17 2024-03-05 Nippon Steel Corporation Laminated core and electric motor
US11915860B2 (en) 2018-12-17 2024-02-27 Nippon Steel Corporation Laminated core and electric motor
EP3902121A4 (en) * 2018-12-17 2022-11-30 Nippon Steel Corporation Stator adhesive laminated core and rotating electric machine
JP7288201B2 (en) 2018-12-17 2023-06-07 日本製鉄株式会社 Laminated core and rotating electric machine
JP7311791B2 (en) 2018-12-17 2023-07-20 日本製鉄株式会社 Laminated core and rotating electric machine
US11710990B2 (en) 2018-12-17 2023-07-25 Nippon Steel Corporation Laminated core with circumferentially spaced adhesion parts on teeth
US11863017B2 (en) 2018-12-17 2024-01-02 Nippon Steel Corporation Laminated core and electric motor
US11742129B2 (en) 2018-12-17 2023-08-29 Nippon Steel Corporation Adhesively-laminated core, manufacturing method thereof, and electric motor
US11855485B2 (en) 2018-12-17 2023-12-26 Nippon Steel Corporation Laminated core, method of manufacturing same, and electric motor
TWI766299B (en) * 2019-06-26 2022-06-01 日商日本製鐵股份有限公司 Core blocks, laminated cores and rotating electrical machines
KR20220010609A (en) 2019-06-26 2022-01-25 닛폰세이테츠 가부시키가이샤 Core blocks, laminated cores and rotating electric machines
WO2020262298A1 (en) 2019-06-26 2020-12-30 日本製鉄株式会社 Core block, stacked core, and rotating electrical machine
TWI813248B (en) * 2021-04-14 2023-08-21 日商日本製鐵股份有限公司 Method for manufacturing a laminated iron core and apparatus for manufacturing a laminated iron core
WO2022220260A1 (en) * 2021-04-14 2022-10-20 日本製鉄株式会社 Method for manufacturing bonded laminate core and bonded laminate core manufacturing device
WO2022220262A1 (en) * 2021-04-14 2022-10-20 日本製鉄株式会社 Electromagnetic steel sheet and adhesion laminated core production method

Similar Documents

Publication Publication Date Title
JP2011023523A (en) Electromagnetic steel sheet laminated core which has good thermal conductivity, and method of manufacturing the same
JP5542765B2 (en) Power module
JP5353618B2 (en) Reactor iron core parts
WO2012039268A1 (en) Reactor, converter, and electric power converter
US10748704B2 (en) Core component, method for manufacturing core component, and reactor
KR20120017015A (en) Laminated core having a soft magnetic material and method for joining core sheets in a bonded manner to form a soft-magnetic laminated core
JP2017011863A (en) Laminated electrical steel plate for motor core and production method therefor
JP4947504B1 (en) Reactor, converter, and power converter
JP2008028290A (en) Reactor device and assembly method thereof
KR20210088642A (en) Laminated Cores and Rotating Electrical Machines
JP2009099793A (en) Manufacturing method of reactor
KR102335462B1 (en) Composite materials for stator laminates and rotor laminates
JP5310460B2 (en) Manufacturing method of laminated core
JP2004088970A (en) Stacked iron core and rotating electric machine and transformer using the same
US10796845B2 (en) Magnetic shunt assembly for magnetic shielding of a power device
JP2013179186A (en) Reactor, component for reactor, converter, and power conversion device
WO2014073380A1 (en) Reactor, converter, power conversion apparatus, and reactor manufacturing method
JP2013179259A (en) Reactor, converter and power conversion device, and core material for reactor
JP2009224531A (en) Iron core for transformer and reactor with small vibration and noise
JP2013179184A (en) Reactor, converter, and power conversion device
WO2017038459A1 (en) Vibration control structure of stationary induction device
JP2012238659A (en) Reactor and manufacturing method of the same
JP2013058535A (en) Power module substrate, power module substrate manufacturing method, power module substrate with heat sink, and power module
JP2012209341A (en) Reactor
WO2013118528A1 (en) Reactor, converter, and power conversion device, and core material for reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120529