JP2011023173A - Dye-sensitized photoelectric conversion element - Google Patents

Dye-sensitized photoelectric conversion element Download PDF

Info

Publication number
JP2011023173A
JP2011023173A JP2009165944A JP2009165944A JP2011023173A JP 2011023173 A JP2011023173 A JP 2011023173A JP 2009165944 A JP2009165944 A JP 2009165944A JP 2009165944 A JP2009165944 A JP 2009165944A JP 2011023173 A JP2011023173 A JP 2011023173A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
dye
base material
conversion element
working electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009165944A
Other languages
Japanese (ja)
Inventor
Yoshiyasu Isobe
芳泰 磯部
Kunihiro Naoe
邦浩 直江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2009165944A priority Critical patent/JP2011023173A/en
Publication of JP2011023173A publication Critical patent/JP2011023173A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Hybrid Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric conversion element which improves its photoelectric conversion efficiency and reduces its weight in the dye-sensitized photoelectric conversion element having an action pole with a metal mesh structure wherein a plurality of metal wires are knitted at a mesh. <P>SOLUTION: In the dye-sensitized photoelectric conversion element 1 having conductivity and having the action pole 5 made from a range where a plurality of linear first base materials 8 and a plurality of linear second base materials 9 are knitted at a mesh, an opening rate of the mesh at the range knitted in the mesh is 0.4-80%. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、色素増感型太陽電池などに用いられる光電変換素子に関する。より詳しくは、光電変換効率に優れた構造を有する色素増感型光電変換素子に関する。   The present invention relates to a photoelectric conversion element used for a dye-sensitized solar cell or the like. More specifically, the present invention relates to a dye-sensitized photoelectric conversion element having a structure excellent in photoelectric conversion efficiency.

色素増感型太陽電池は、スイスのグレッツェルらのグループなどから提案されたもので、高い変換効率を得られる光電変換素子として着目されている(例えば、非特許文献1参照)。
色素増感型太陽電池は、シリコン系の従来型の太陽電池と比較して大幅な低価格化が可能とされているが、発電部に使用される導電性基板の価格が低価格化の障害となっている。従来構造の色素増感型太陽電池においては、特に光が入射する側の電極(窓電極)には、可視光の透過性と高い伝導性が要求されるため、ガラス基板やプラスチック基板上にスズドープ酸化インジウムやフッ素ドープ酸化スズといった透明導電性金属酸化物を塗布した基板が用いられてきた。しかしながら、製造コストが比較的高くなるという問題がある。したがって、そのような高価格の透明導電性基板を用いない、新しい構造の色素増感型太陽電池の研究開発が進められている。
The dye-sensitized solar cell has been proposed by a group such as Gretzel et al. In Switzerland, and has attracted attention as a photoelectric conversion element that can obtain high conversion efficiency (for example, see Non-Patent Document 1).
Dye-sensitized solar cells can be significantly reduced in price compared to silicon-based conventional solar cells, but the price of conductive substrates used in power generation units is an obstacle to lower prices It has become. In a dye-sensitized solar cell having a conventional structure, the electrode (window electrode) on which light enters is particularly required to have visible light transmission and high conductivity. A substrate coated with a transparent conductive metal oxide such as indium oxide or fluorine-doped tin oxide has been used. However, there is a problem that the manufacturing cost is relatively high. Therefore, research and development of a dye-sensitized solar cell having a new structure that does not use such an expensive transparent conductive substrate is underway.

例えば、透明導電性基板の代わりに、金属線を電極として用いた色素増感太陽電池モジュールが開示されている(特許文献1〜5参照)。しかし、導電性に優れる銅(Cu)や銀(Ag)などの金属線は耐食性に劣り、耐食性に優れるチタン(Ti)やタングステン(W)などの金属線は導電性に劣るという問題がある。耐食性に劣る金属線を用いた場合には電解液による腐食が起こり太陽電池セルの機能が損なわれる恐れがあり、導電性が劣る金属線を用いた場合には太陽電池セルの内部抵抗が大きくなり光電変換効率が低くなる。また、Tiで被覆されたCu金属線を使用し、それを対極の周囲に巻いた構造の色素増感型太陽電池モジュールが開示されている(特許文献6参照)。しかし、受光面を大きくするために金属線を長くする必要があり、結果として内部抵抗が大きくなる問題がある。このため、比較的短い複数の金属線をメッシュ状に編んだものを作用電極とする色素増感型太陽電池モジュールも提案されている(特許文献7〜10参照)。   For example, a dye-sensitized solar cell module using a metal wire as an electrode instead of a transparent conductive substrate is disclosed (see Patent Documents 1 to 5). However, metal wires such as copper (Cu) and silver (Ag) having excellent conductivity are inferior in corrosion resistance, and metal wires such as titanium (Ti) and tungsten (W) having excellent corrosion resistance are inferior in conductivity. If a metal wire with poor corrosion resistance is used, corrosion by the electrolyte may occur and the function of the solar cell may be impaired. If a metal wire with poor conductivity is used, the internal resistance of the solar cell will increase. The photoelectric conversion efficiency is lowered. Further, a dye-sensitized solar cell module having a structure in which a Cu metal wire coated with Ti is used and wound around a counter electrode is disclosed (see Patent Document 6). However, in order to increase the light receiving surface, it is necessary to lengthen the metal wire, resulting in a problem that the internal resistance increases. For this reason, a dye-sensitized solar cell module in which a working electrode is formed by knitting a plurality of relatively short metal wires in a mesh shape has also been proposed (see Patent Documents 7 to 10).

特願2007−012545号公報Japanese Patent Application No. 2007-012545 特願2007−012544号公報Japanese Patent Application No. 2007-012544 特開2005−196982号公報JP 2005-196982 A 特表2005−516370号公報JP 2005-516370 gazette 特開2008−108508号公報JP 2008-108508 A 特願2008−147262号公報Japanese Patent Application No. 2008-147262 特開2001−283944号公報JP 2001-283944 A 特開2001−283945号公報JP 2001-283945 A 特表2006−521700号公報JP 2006-521700 A 特表2006−523369号公報JP 2006-523369 A

O'Regan B., Graetzel M., Alow cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 1991年, 353号, 737-739ページO'Regan B., Graetzel M., Alow cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 1991, 353, 737-739

しかしながら、従来のメッシュ状の作用電極では、金属線に塗布される酸化チタンや、作用極と対極の間に介在する電解液の影響により、互いに交差する金属線どうしの接点における電気抵抗が大きくなり、発電効率が低くなるという問題がある。また、太陽電池セルが大面積化する傾向にある今日、その重量の低減が望まれている。
本発明は、上記事情を鑑みてなされたものであり、複数の金属線が網目状に編まれてなる網目状構造の作用極を有する色素増感型光電変換素子において、その光電変換効率を向上するとともに、その重量を軽量化した光電変換素子を提供する。
However, in the conventional mesh-like working electrode, the electrical resistance at the contact point between the metal wires intersecting each other increases due to the influence of titanium oxide applied to the metal wire and the electrolyte solution interposed between the working electrode and the counter electrode. There is a problem that power generation efficiency is lowered. In addition, today, solar cells tend to have a large area, and reduction in weight is desired.
The present invention has been made in view of the above circumstances, and in a dye-sensitized photoelectric conversion element having a working electrode having a network structure in which a plurality of metal wires are knitted in a network shape, the photoelectric conversion efficiency is improved. In addition, a photoelectric conversion element whose weight is reduced is provided.

本発明の請求項1に記載の色素増感型光電変換素子は、導電性を有するとともに線状をなす複数の第1基材および第2基材が網目状に編まれてなる領域からなる作用極を備えてなる色素増感型光電変換素子であって、前記領域における網目の開口率が0.4%以上80%以下であることを特徴とする。
本発明の請求項2に記載の色素増感型光電変換素子は、請求項1において、前記第1基材および前記第2基材のいずれか一方又は両方がチタン被覆された銅線であり、そのチタン被覆された銅線の直径が15μm以上150μm以下であることを特徴とする。
本発明の請求項3に記載の色素増感型光電変換素子は、請求項1又は2において、前記第1基材および前記第2基材のうち、少なくとも一方の基材が、前記領域からその基材の長手方向に延在された部位から構成される集電用配線と、該集電用配線の端部をまとめて電気的に接続された集電部とを有してなることを特徴とする。
The dye-sensitized photoelectric conversion element according to claim 1 of the present invention has an action including a region in which a plurality of first and second base materials that are conductive and have a linear shape are knitted in a mesh shape. A dye-sensitized photoelectric conversion element provided with a pole, wherein the aperture ratio of the mesh in the region is 0.4% or more and 80% or less.
The dye-sensitized photoelectric conversion element according to claim 2 of the present invention is a copper wire in which any one or both of the first base material and the second base material are titanium-coated in claim 1, The titanium-coated copper wire has a diameter of 15 μm or more and 150 μm or less.
The dye-sensitized photoelectric conversion element according to claim 3 of the present invention is the dye-sensitized photoelectric conversion element according to claim 1 or 2, wherein at least one of the first base material and the second base material is removed from the region. It has a current collecting wiring composed of a portion extending in the longitudinal direction of the base material, and a current collecting portion electrically connected together by collecting the end portions of the current collecting wiring. And

本発明の色素増感型光電変換素子によれば、作用極の網目の開口率を0.4%以上80%以下とすることにより、従来の色素増感型光電変換素子よりも、その作用極の単位面積あたりの基材占有面積を減らすことになる。このとき、該単位面積あたりの、第1基材と第2基材とが交差して接する重複部の箇所を減らして内部抵抗を低く抑えることができるので、光電変換効率を向上させることができる。さらに、このとき、該単位面積あたりの重量を軽量化することができ、該単位面積あたりの基材に要するコストを減らすことができる。
また、前記作用極の網目の開口率を0.4%以上80%以下とすることにより、作用極と対極とを介在する電解質が作用極の開口部を透過して、電解質の拡散効率を高めることができるので、光電変換効率を向上させることができる。
本発明の色素増感型光電変換素子において、前記第1基材および前記第2基材がTi被覆されたCu線(以下、Ti被覆Cu線という。)であり、そのTi被覆Cu線の直径が15μm以上150μm以下である場合、前記網目状に編まれてなる領域の屈曲性を向上することができる。
本発明の色素増感型光電変換素子において、前記第1基材および前記第2基材のうち、少なくとも一方の基材が、前記網目状に編まれてなる領域からその基材の長手方向に延在された部位から構成される集電用配線と、該集電用配線の端部をまとめて電気的に接続された集電部とを有してなる場合、該集電部を有する基材から直接集電することが可能になるので、光電変換効率を一層向上させることができる。
According to the dye-sensitized photoelectric conversion element of the present invention, the working electrode has an aperture ratio of 0.4% or more and 80% or less than the conventional dye-sensitized photoelectric conversion element by setting the mesh area of the working electrode to 0.4% or more and 80% or less. This reduces the area occupied by the base material per unit area. At this time, since the internal resistance can be kept low by reducing the number of overlapping portions where the first base material and the second base material intersect and contact each other per unit area, the photoelectric conversion efficiency can be improved. . Furthermore, at this time, the weight per unit area can be reduced, and the cost required for the base material per unit area can be reduced.
Further, by setting the aperture ratio of the mesh of the working electrode to 0.4% or more and 80% or less, the electrolyte interposing the working electrode and the counter electrode passes through the opening of the working electrode and increases the diffusion efficiency of the electrolyte. Therefore, the photoelectric conversion efficiency can be improved.
In the dye-sensitized photoelectric conversion device of the present invention, the first base material and the second base material are Ti-coated Cu wires (hereinafter referred to as Ti-coated Cu wires), and the diameter of the Ti-coated Cu wires. Is 15 μm or more and 150 μm or less, it is possible to improve the flexibility of the region knitted in the mesh shape.
In the dye-sensitized photoelectric conversion element of the present invention, at least one of the first base material and the second base material extends in a longitudinal direction of the base material from a region formed by knitting the mesh. In the case of having a current collector wiring composed of an extended portion and a current collector electrically connected together by collecting the end portions of the current collector wiring, the base having the current collector is provided. Since current can be collected directly from the material, the photoelectric conversion efficiency can be further improved.

本発明に係る色素増感型光電変換素子の一例の概略構成図である。It is a schematic block diagram of an example of the dye-sensitized photoelectric conversion element which concerns on this invention. 本発明に係る色素増感型光電変換素子の一例の断面図である。It is sectional drawing of an example of the dye-sensitized photoelectric conversion element which concerns on this invention. 本発明に係る色素増感型光電変換素子の一例の分解斜視図である。It is a disassembled perspective view of an example of the dye-sensitized photoelectric conversion element which concerns on this invention.

以下、図面を参照しながら、本発明に係る色素増感型光電変換素子の一例について詳細に説明する。   Hereinafter, an example of the dye-sensitized photoelectric conversion element according to the present invention will be described in detail with reference to the drawings.

図1〜3に示すように、本発明に係る色素増感型光電変換素子1は、平面視矩形の発電部2と該発電部2の外部に設けられた集電部3とから構成されており、発電部2において発生した電子が、発電部2の一辺より延在する集電用配線部4を介して集電部3において集電される構成である。
発電部2は、平面視矩形の網目構造の作用極5と、平面視矩形の板状の対極6とがセパレータ10を介して重ね合わされるように構成されている。網目構造の作用極5は、導電性を有する複数の第1基材8と複数の第2基材9と、該第1基材8と第2基材9の周囲に配されて増感色素を担持した多孔質酸化物半導体層13とから構成されており、該多孔質酸化物半導体層13は、増感色素とともに電解質18をも含浸している。
第1基材8と第2基材9とはともに線状をなし、これら第1基材8と第2基材9とが編まれることで矩形の網目構造からなる領域をなしている。この網目構造の拡大図を図1(B)に示す。
As shown in FIGS. 1 to 3, the dye-sensitized photoelectric conversion device 1 according to the present invention includes a power generation unit 2 having a rectangular shape in plan view and a current collection unit 3 provided outside the power generation unit 2. In this configuration, the electrons generated in the power generation unit 2 are collected in the current collection unit 3 via the current collection wiring unit 4 extending from one side of the power generation unit 2.
The power generation unit 2 is configured such that a working electrode 5 having a mesh structure having a rectangular shape in plan view and a plate-like counter electrode 6 having a rectangular shape in plan view are overlapped via a separator 10. The working electrode 5 having a network structure is provided with a plurality of first base materials 8 and a plurality of second base materials 9 having conductivity, and are arranged around the first base material 8 and the second base material 9 so as to be a sensitizing dye. The porous oxide semiconductor layer 13 is impregnated with the electrolyte 18 together with the sensitizing dye.
Both the first base material 8 and the second base material 9 are linear, and the first base material 8 and the second base material 9 are knitted to form a region having a rectangular mesh structure. An enlarged view of this network structure is shown in FIG.

図1(B)では、複数の第1基材8が横線をなし、複数の第2基材9が縦線をなしている。ここで、第1基材8の線径をα1と表し、隣り合う第1基材8間の隙間幅をα2と表し、第2基材9の線径をβ1と表し、隣り合う第2基材9間の隙間幅をβ2と表す。このとき、網目構造の作用極5の網目の開口率Uは、次のように求められる。
作用極5の網目状の領域の縦横の長さをそれぞれX、Yと表し、その領域における第1基材8の本数をpとし、その領域における第2基材9の本数をqとすると、縦の開口幅Lは、L=X−α1×pの計算式で求められ、横の開口幅Wは、W=Y−β1×qの計算式で求めれ、開口率Uは、U=(L×W)÷(X×Y)×100%の計算式で求められる。すなわち、開口率Uは、作用極5の網目状領域の単位面積における第1基材8及び第2基材9の占有しない部分の面積比率である。なお、開口率Uが0%となるのは、前記隙間幅α2または前記隙間幅β2が0であり、縦の開口幅Lと横の開口幅Wとの積が0となる場合である。
本発明に係る色素増感型光電変換素子1は、前記網目状に編まれてなる領域の網目の開口率Uが0.4%以上80%以下であることを特徴とする。
In FIG. 1B, the plurality of first base materials 8 form a horizontal line, and the plurality of second base materials 9 form a vertical line. Here, the wire diameter of the first base material 8 is expressed as α1, the gap width between the adjacent first base materials 8 is expressed as α2, the wire diameter of the second base material 9 is expressed as β1, and the adjacent second base The gap width between the materials 9 is represented as β2. At this time, the mesh opening ratio U of the working electrode 5 of the mesh structure is obtained as follows.
The vertical and horizontal lengths of the mesh-like region of the working electrode 5 are respectively expressed as X and Y, the number of the first base materials 8 in the region is p, and the number of the second base materials 9 in the region is q. The vertical opening width L is obtained by the equation L = X−α1 × p, the horizontal opening width W is obtained by the equation W = Y−β1 × q, and the aperture ratio U is U = (L XW) / (X * Y) * 100%. That is, the aperture ratio U is an area ratio of a portion not occupied by the first base material 8 and the second base material 9 in the unit area of the mesh region of the working electrode 5. The opening ratio U is 0% when the gap width α2 or the gap width β2 is 0 and the product of the vertical opening width L and the horizontal opening width W is 0.
The dye-sensitized photoelectric conversion element 1 according to the present invention is characterized in that an opening ratio U of a mesh woven region is 0.4% or more and 80% or less.

つぎに、図1〜3に示すように、対極6は、板状の導電性基材であり、セパレータ10を挟んで作用極5と重ね合わされている。また対極6は、集電部3と対となる接続部6aを有しており、この接続部6aは、発電部2の外側に延出している。
作用極5と対極6、およびその間に挿入されているセパレータ10は、2枚の上張り14により挟まれており、2枚の上張り14内は電解質18で満たされている。発電部2は4辺において、熱圧着部12によって封止されており、これにより電解質18が上張り14内に封入されている。
Next, as shown in FIGS. 1 to 3, the counter electrode 6 is a plate-like conductive base material, and is overlapped with the working electrode 5 with the separator 10 interposed therebetween. The counter electrode 6 has a connection portion 6 a that is paired with the current collector 3, and the connection portion 6 a extends to the outside of the power generation unit 2.
The working electrode 5 and the counter electrode 6 and the separator 10 inserted between them are sandwiched between two upper layers 14, and the inside of the two upper layers 14 is filled with an electrolyte 18. The power generation unit 2 is sealed on four sides by the thermocompression bonding unit 12, whereby the electrolyte 18 is enclosed in the upper covering 14.

また、作用極5を構成する複数の第1基材8の全てが、作用極5より延長されることで外方へ引き出され集電用配線部4となり、外部においてその端部がまとめられて電気的に接続された集電部3となる。   In addition, all of the plurality of first base materials 8 constituting the working electrode 5 are extended outward from the working electrode 5 to become the current collecting wiring portion 4, and the end portions thereof are gathered outside. The current collector 3 is electrically connected.

以下、各構成要素について、詳細に説明する。
図1で例示した色素増感型光電変換素子1では、第1基材8および第2基材9として、Tiで被覆されたCu線からなるワイヤが使用されている。導電性の高いCu線からなる中心線を、耐食性の高いTiで被覆することにより、該ワイヤで構成される作用極5の内部抵抗を抑えると同時に、該ワイヤの電解液による腐食を抑制することができる。
作用極5は、所定本数の第1基材8および第2基材9が互いに網目状に編まれてなる領域を有している。その第1基材8と第2基材9とは、重複部において互いが接触するように編まれ、矩形をなす網目状構造を有している。このとき、該領域の網目の開口率Uが0.4%以上80%以下となるように、隣り合う第1基材8どうしの隙間幅α2及び隣り合う第2基材9どうしの隙間幅β2は所望の幅に調整される。
Hereinafter, each component will be described in detail.
In the dye-sensitized photoelectric conversion element 1 illustrated in FIG. 1, a wire made of Cu wire coated with Ti is used as the first base material 8 and the second base material 9. By covering the center line made of highly conductive Cu wire with Ti having high corrosion resistance, the internal resistance of the working electrode 5 composed of the wire is suppressed, and at the same time, the corrosion of the wire by the electrolytic solution is suppressed. Can do.
The working electrode 5 has a region in which a predetermined number of first base materials 8 and second base materials 9 are knitted in a mesh shape. The first base material 8 and the second base material 9 are knitted so that they are in contact with each other at the overlapping portion, and have a rectangular network structure. At this time, the gap width α2 between the adjacent first base materials 8 and the gap width β2 between the adjacent second base materials 9 so that the opening ratio U of the mesh in the region is 0.4% or more and 80% or less. Is adjusted to the desired width.

開口率Uとしては、光電変換効率をより高める観点から、0.5%以上70%以下が好ましく、25%以上70%以下がより好ましく、40%以上70%以下がさらに好ましい。開口率Uを高めることにより、作用極5と対極6とを介在する電解液に含まれるヨウ素イオン等の電解質18の拡散効率が高まり、光電変換効率を高めることができる。さらに、開口率Uを高めることにより、前記網目状に編まれてなる領域における第1基材8と第2基材9との重複部の箇所を減らして、該領域の内部抵抗を抑えて光電変換効率を高めることができる。
また、開口率Uとしては、光電変換素子の軽量性を高める観点から、25%以上80%以下が好ましく、40%以上80%以下がより好ましく、60%以上80%以下がさらに好ましい。開口率Uを高めることにより、前記網目状に編まれてなる領域の単位面積あたりの基材の本数を低減することができ、該領域の軽量性を高めることができるとともに、その製造コストを低減することができる。
The aperture ratio U is preferably 0.5% or more and 70% or less, more preferably 25% or more and 70% or less, and further preferably 40% or more and 70% or less from the viewpoint of further increasing the photoelectric conversion efficiency. By increasing the aperture ratio U, the diffusion efficiency of the electrolyte 18 such as iodine ions contained in the electrolytic solution interposing the working electrode 5 and the counter electrode 6 is increased, and the photoelectric conversion efficiency can be increased. Further, by increasing the aperture ratio U, the number of overlapping portions between the first base material 8 and the second base material 9 in the region knitted in the mesh shape is reduced, and the internal resistance of the region is suppressed to reduce photoelectricity. Conversion efficiency can be increased.
Further, the aperture ratio U is preferably 25% or more and 80% or less, more preferably 40% or more and 80% or less, and further preferably 60% or more and 80% or less, from the viewpoint of improving the lightness of the photoelectric conversion element. By increasing the aperture ratio U, it is possible to reduce the number of base materials per unit area of the region knitted in the mesh shape, to increase the lightness of the region, and to reduce its manufacturing cost. can do.

前記網目状に編まれてなる領域の製織方法としては、図1に例示した平織りに限定されず、綾織り、朱子織り等の一般的な布の製織方法と同様の方法を適用できる。その平織りは、織り機上で、第2基材9からなる複数の縦線が一本ずつ交互に上下に分けられ、その上下に分かれた複数の縦線の間に第1基材8からなる横糸が通され、筬で打ち込まれる工程が1サイクルとなる。次のサイクルでは、複数の縦線の上下を前回のサイクルと入れ換えて再び一本ずつ交互に上下に分けられて、その間に横線が通され、筬で打ち込まれる。このようにして織られる場合、製織時の縦線どうしの間隔、縦線と横線の張り具合、および筬の打ち込み具合を適宜調整することにより、前記隙間幅α2及び前記隙間幅β2を所望の幅に調整することができ、前記網目状に編まれてなる領域に所望の開口率Uをもたせることができる。   The weaving method of the region knitted in a mesh shape is not limited to the plain weave illustrated in FIG. 1, and a method similar to a general cloth weaving method such as twill weave or satin weave can be applied. In the plain weaving, a plurality of vertical lines made of the second base material 9 are alternately divided one above the other on the loom, and the first base material 8 is made between the plurality of vertical lines divided up and down. The process in which the weft is passed and driven with a scissors is one cycle. In the next cycle, the top and bottom of a plurality of vertical lines are replaced with the previous cycle, and the lines are alternately separated one by one again. When weaving in this way, the gap width α2 and the gap width β2 are set to desired widths by appropriately adjusting the interval between the vertical lines during weaving, the tension between the vertical lines and the horizontal lines, and the driving condition of the wrinkles. The desired aperture ratio U can be given to the area knitted in the mesh shape.

第1基材8と第2基材9とは、それらが編まれてなる領域において、互いに直交するように編まれていることが好ましい。互いに直行して編まれることにより、第1基材8と第2基材9の重複部における重複面積(第1基材8と第2基材9との接する面積)を最少とし、当該作用極5の内部抵抗を抑えることができる。   It is preferable that the 1st base material 8 and the 2nd base material 9 are knitted so that it may mutually orthogonally cross in the area | region where they are knitted. By being knitted perpendicularly to each other, the overlapping area (the area where the first base material 8 and the second base material 9 are in contact) at the overlapping portion of the first base material 8 and the second base material 9 is minimized, and this action is performed. The internal resistance of the pole 5 can be suppressed.

また、前記網目状に編まれてなる領域は、複数の第1基材8及び複数の第2基材9が編まれてなることによって、第1基材8及び第2基材9が編まれずに構成されたものよりも屈曲性及び構造的強度に優れる。   Further, the region knitted in a mesh shape is formed by knitting a plurality of first base materials 8 and a plurality of second base materials 9 so that the first base material 8 and the second base material 9 are knitted. It is superior in flexibility and structural strength than the one constructed without any modification.

第1基材8および第2基材9の中心線の材料としては、純Cuに限られず、例えば、マグネシウム(Mg)等の比重の軽い金属、Ag等の導電性の高い金属、又はこれらの金属とCuとの合金が好適なものとして挙げられる。さらに、該中心線として、前記金属で被覆した金属線を使用することもでき、例えば純Cuで被覆したアルミニウム(Al)線を中心線としてもよい。
該中心線を被覆する材料としては、Tiに限られず、Wやプラチナ(Pt)等の耐食性の高い金属、又はそれらの金属の合金を用いてもよい。耐食性の高い金属を用いることにより、電解質18による第1基材8及び第2基材9の腐食を抑制することができる。これらの材料は中心線の材料として用いることもできるが、導電性を高める観点から、前記中心線の材料として例示したものがより好ましい。
The material of the center line of the first base material 8 and the second base material 9 is not limited to pure Cu, for example, a light metal such as magnesium (Mg), a highly conductive metal such as Ag, or these An alloy of metal and Cu is preferable. Furthermore, a metal wire coated with the metal can be used as the center line. For example, an aluminum (Al) wire coated with pure Cu may be used as the center line.
The material for covering the center line is not limited to Ti, and a metal having high corrosion resistance such as W or platinum (Pt), or an alloy of these metals may be used. By using a metal having high corrosion resistance, corrosion of the first base material 8 and the second base material 9 by the electrolyte 18 can be suppressed. Although these materials can also be used as the material for the center line, those exemplified as the material for the center line are more preferable from the viewpoint of enhancing conductivity.

Ti被覆Cu線の製造方法としては、公知の方法で行うことができる。例えば、Tiを押出成型等によってパイプ状に形成すると共に、Cuを押出成型等によって線状に形成し、これらTiパイプとCu線を同時に走行させつつTi製パイプの内部にCu線を挿入し、これらを絞って、両者間を密着させて、Ti被覆Cu線を得ることができる。
このような線引き加工法により作製されたTi被覆Cu線は、スパッタ法やめっき加工法等によって製造されたものよりも被覆層の密着性に優れ、その製造コストを低く抑えることができる。
As a method for producing a Ti-coated Cu wire, a known method can be used. For example, Ti is formed into a pipe shape by extrusion molding or the like, and Cu is formed into a linear shape by extrusion molding or the like, and the Cu wire is inserted into the Ti pipe while running these Ti pipe and Cu wire simultaneously, By squeezing them and bringing them into close contact, a Ti-coated Cu wire can be obtained.
A Ti-coated Cu wire produced by such a wire drawing method has better adhesion of the coating layer than that produced by a sputtering method, a plating method or the like, and the production cost can be kept low.

第1基材8及び第2基材9の線径(直径)としては、前記網目状に編まれてなる領域を構成できる太さであればよく、用いる基材の材料の屈曲性及び構造的強度によって適宜調整することができ、例えば10μm以上200μm以下でよい。
該基材がTi被覆Cu線である場合は、その線径(直径)は、15μm以上150μm以下が好ましく、20μm以上100μm以下がより好ましく、30μm以上70μm以下がさらに好ましく、30μm以上50μm以下が特に好ましい。上記範囲の下限値以上とすることにより、前記製織における基材のキンクを抑制することができるため前記網目状に編まれてなる領域の製造が容易となる。また、上記範囲の上限値以下とすることにより、前記網目状に編まれてなる領域の屈曲性、柔軟性、及び可とう性をより高めることができる。
The wire diameters (diameters) of the first base material 8 and the second base material 9 may be any thickness as long as the region formed by the mesh can be formed. It can be appropriately adjusted depending on the strength, and may be, for example, from 10 μm to 200 μm.
When the substrate is a Ti-coated Cu wire, the wire diameter (diameter) is preferably 15 μm or more and 150 μm or less, more preferably 20 μm or more and 100 μm or less, further preferably 30 μm or more and 70 μm or less, and particularly preferably 30 μm or more and 50 μm or less. preferable. By setting it to be equal to or higher than the lower limit of the above range, kinking of the base material in the weaving can be suppressed, and therefore, the manufacture of the region knitted in the mesh shape becomes easy. Moreover, by setting it to the upper limit value or less of the above range, the flexibility, flexibility, and flexibility of the region knitted in the mesh shape can be further enhanced.

図1に示した発電部2において、周囲の4辺のうち側方に位置する辺をそれぞれ第1辺20、第2辺21とし、上下に位置する辺をそれぞれ第3辺22、第4辺23とすると、各第2基材9は、第3辺22から第4辺23まで延在しているとともに、複数の第2基材9が第1辺20から第2辺21まで、所定本数列設されている。
複数の第1基材8は、第3辺22から第4辺23まで所定本数列設されているとともに、第1辺20から集電部3まで延在している。つまり、作用極5を構成する基材のうち第1基材8の全ては、矩形をなす発電部2の一辺より発電部2から延長されるように、外部に引き出されている。第1基材8のうち、第2辺21と集電部3との間の部分は、集電用配線部4となり、作用極5にて発生した電子は、この集電用配線部4を介して集電部に集められる。
延長された第1基材8は、発電部2の外部で集電構造をなすように結線処理が施される。結線する手段としては、特に限定はされず、例えば、導電性のある板材上に全ての第1基材8を半田付けするなどして結線してもよい。
In the power generation unit 2 shown in FIG. 1, of the surrounding four sides, the sides located on the sides are the first side 20 and the second side 21, respectively, and the sides located above and below are the third side 22 and the fourth side, respectively. 23, each second base material 9 extends from the third side 22 to the fourth side 23, and a plurality of second base materials 9 are provided from the first side 20 to the second side 21. There are several lines.
A plurality of first base materials 8 are arranged in a predetermined number from the third side 22 to the fourth side 23 and extend from the first side 20 to the current collector 3. That is, all of the first base materials 8 among the base materials constituting the working electrode 5 are drawn out so as to be extended from the power generation section 2 from one side of the power generation section 2 having a rectangular shape. Of the first base material 8, the portion between the second side 21 and the current collector 3 becomes the current collector wiring 4, and the electrons generated at the working electrode 5 pass through this current collector wiring 4. To the current collector.
The extended first base material 8 is subjected to connection processing so as to form a current collecting structure outside the power generation unit 2. The means for connecting is not particularly limited, and for example, all the first base materials 8 may be soldered on a conductive plate material.

第1基材8および第2基材9のうち、網目状構造をなす部分には、その表面に多孔質酸化物半導体層13が配されており、その表面には少なくとも一部に増感色素及び電解質18が担持されている。第1基材8のうち、集電用配線部4には多孔質酸化物半導体層13が配されることはない
多孔質酸化物半導体層13を形成する半導体は、酸化チタン(TiO)である。この酸化チタンの膜厚は約5μmとしたが、特に限定されるものではなく、例えば、1μm〜50μmであってよい。
多孔質酸化物半導体層13を形成する半導体としては酸化チタンに限ることはなく、一般に色素増感型太陽電池に用いられるものであれば、酸化亜鉛(ZnO)、酸化スズ(SnO)、酸化亜鉛(ZnO)、酸化ニオブ(Nb)、酸化タングステン(WO)など様々な半導体電極が制限なく使用可能である。
Of the first base material 8 and the second base material 9, a porous oxide semiconductor layer 13 is disposed on the surface of a portion having a network structure, and at least part of the surface is a sensitizing dye. And the electrolyte 18 is supported. Of the first substrate 8, the porous oxide semiconductor layer 13 is not disposed on the current collecting wiring portion 4. The semiconductor forming the porous oxide semiconductor layer 13 is titanium oxide (TiO 2 ). is there. The thickness of the titanium oxide is about 5 μm, but is not particularly limited, and may be, for example, 1 μm to 50 μm.
The semiconductor that forms the porous oxide semiconductor layer 13 is not limited to titanium oxide, and is generally zinc oxide (ZnO), tin oxide (SnO 2 ), oxidation, as long as it is used for dye-sensitized solar cells. Various semiconductor electrodes such as zinc (ZnO), niobium oxide (Nb 2 O 5 ), and tungsten oxide (WO 3 ) can be used without limitation.

増感色素としては、例えば、N719、N3、ブラックダイなどのルテニウム錯体、ポルフィリン、フタロシアニン等の含金属錯体をはじめ、エオシン、ローダミン、メロシアニン等の有機色素などを適用することができ、これらの中から用途、使用半導体に適した励起挙動をとるものを適宜選択すれば良い。   Examples of the sensitizing dye include ruthenium complexes such as N719, N3, and black dye, metal-containing complexes such as porphyrin and phthalocyanine, and organic dyes such as eosin, rhodamine, and merocyanine. From the above, it is only necessary to appropriately select one having an excitation behavior suitable for the application and the semiconductor used.

多孔質酸化物半導体層13内には、電解液が含浸されており、この電解液も前記電解質18の一部を構成している。この場合、多孔質酸化物半導体層13内の電解質18は、多孔質酸化物半導体層13内に電解液を含浸させてなるものか、または、多孔質酸化物半導体層13内に電解液を含浸させた後に、この電解液を適当なゲル化剤を用いてゲル化(擬固体化)して、多孔質酸化物半導体層13と一体に形成されてなるもの、あるいは、イオン液体をベースとしたもの、さらには、酸化物半導体粒子及び導電性粒子を含むゲル状の電解質などが用いられる。   The porous oxide semiconductor layer 13 is impregnated with an electrolytic solution, and this electrolytic solution also constitutes a part of the electrolyte 18. In this case, the electrolyte 18 in the porous oxide semiconductor layer 13 is formed by impregnating the porous oxide semiconductor layer 13 with an electrolytic solution, or impregnating the porous oxide semiconductor layer 13 with an electrolytic solution. Then, the electrolyte solution is gelled (pseudo-solidified) using an appropriate gelling agent and formed integrally with the porous oxide semiconductor layer 13 or based on an ionic liquid Further, a gel electrolyte containing oxide semiconductor particles and conductive particles is used.

上記電解液としては、ヨウ素、ヨウ化物イオン、ターシャリーブチルピリジンなどの電解質成分が、エチレンカーボネートやメトキシアセトニトリルなどの有機溶媒やイオン液体に溶解されてなるものが用いられる。
この電解液をゲル化する際に用いられるゲル化剤としては、ポリフッ化ビニリデン、ポリエチレンオキサイド誘導体、アミノ酸誘導体などが挙げられる。
また、揮発性電解液に代えて、一般に色素増感型太陽電池に用いられるものであれば、溶媒がイオン液体であるものやゲル化したものだけではなく、p型無機半導体や有機ホール輸送層といった固体であっても制限なく使用可能である。
As said electrolyte solution, what melt | dissolved electrolyte components, such as an iodine, iodide ion, and tertiary butyl pyridine, in organic solvents and ionic liquids, such as ethylene carbonate and methoxyacetonitrile, is used.
Examples of the gelling agent used for gelling the electrolytic solution include polyvinylidene fluoride, a polyethylene oxide derivative, and an amino acid derivative.
Moreover, if it replaces with volatile electrolyte solution and it is generally used for a dye-sensitized solar cell, not only what a solvent is an ionic liquid or the gelatinized thing but p-type inorganic semiconductor and an organic hole transport layer Even solids such as these can be used without limitation.

上記イオン液体としては、特に限定されるものではないが、室温で液体であり、例えば、四級化された窒素原子を有する化合物をカチオンとした常温溶融塩が挙げられる。
常温溶融塩のカチオンとしては、四級化イミダゾリウム誘導体、四級化ピリジニウム誘導体、四級化アンモニウム誘導体などが挙げられる。
常温溶融塩のアニオンとしては、BF ,PF ,(HF) 、ビストリフルオロメチルスルホニルイミド[N(CFSO ]、ヨウ化物イオンなどが挙げられる。
イオン液体の具体例としては、四級化イミダゾリウム系カチオンとヨウ化物イオンまたはビストリフルオロメチルスルホニルイミドイオンなどからなる塩類を挙げることができる。
Although it does not specifically limit as said ionic liquid, It is a liquid at room temperature, For example, the normal temperature molten salt which used the compound which has the quaternized nitrogen atom as a cation is mentioned.
Examples of the cation of the room temperature molten salt include quaternized imidazolium derivatives, quaternized pyridinium derivatives, and quaternized ammonium derivatives.
Examples of the anion of the room temperature molten salt include BF 4 , PF 6 , (HF) n , bistrifluoromethylsulfonylimide [N (CF 3 SO 2 ) 2 ], and iodide ions.
Specific examples of the ionic liquid include salts composed of quaternized imidazolium-based cations and iodide ions or bistrifluoromethylsulfonylimide ions.

上記酸化物半導体粒子としては、物質の種類や粒子サイズなどは特に限定されるものではないが、イオン液体を主体とする電解液との混和性に優れ、この電解液をゲル化させるようなものが用いられる。また、酸化物半導体粒子は、電解質18の半導電性を低下させることがなく、電解質18に含まれる他の共存成分に対する化学的安定性に優れることが必要である。特に、電解質18がヨウ素/ヨウ化物イオンや、臭素/臭化物イオンなどの酸化還元対を含む場合であっても、酸化物半導体粒子は、酸化反応による劣化を生じないものが好ましい。   The oxide semiconductor particles are not particularly limited in terms of the type and particle size of the substance, but are excellent in miscibility with an electrolyte mainly composed of an ionic liquid and gel the electrolyte. Is used. In addition, the oxide semiconductor particles are required to have excellent chemical stability against other coexisting components contained in the electrolyte 18 without reducing the semiconductivity of the electrolyte 18. In particular, even when the electrolyte 18 includes a redox pair such as iodine / iodide ions or bromine / bromide ions, the oxide semiconductor particles are preferably those that do not deteriorate due to an oxidation reaction.

このような酸化物半導体粒子としては、TiO、SnO、SiO、ZnO、Nb、In、ZrO、Al、WO、SrTiO、Ta、La、Y、Ho、Bi、CeOからなる群から選択される1種または2種以上の混合物が好ましく、その平均粒径は2nm〜1000nm程度が好ましい。 Examples of such oxide semiconductor particles include TiO 2 , SnO 2 , SiO 2 , ZnO, Nb 2 O 5 , In 2 O 3 , ZrO 2 , Al 2 O 3 , WO 3 , SrTiO 3 , Ta 2 O 5 , One or a mixture of two or more selected from the group consisting of La 2 O 3 , Y 2 O 3 , Ho 2 O 3 , Bi 2 O 3 , CeO 2 is preferable, and the average particle size is about 2 nm to 1000 nm. preferable.

上記導電性微粒子としては、導電体や半導体など、導電性を有する粒子が用いられる。
また、導電性粒子の種類や粒子サイズなどは特に限定されるものではないが、イオン液体を主体とする電解液との混和性に優れ、この電解液をゲル化するようなものが用いられる。さらに、電解質18に含まれる他の共存成分に対する化学的安定性に優れることが必要である。
特に、電解質18がヨウ素/ヨウ化物イオンや、臭素/臭化物イオンなどの酸化還元対を含む場合であっても、酸化反応による劣化を生じないものが好ましい。
As the conductive fine particles, conductive particles such as a conductor and a semiconductor are used.
Further, the type and particle size of the conductive particles are not particularly limited, and those that are excellent in miscibility with an electrolytic solution mainly composed of an ionic liquid and that gel the electrolytic solution are used. Furthermore, it is necessary to be excellent in chemical stability against other coexisting components contained in the electrolyte 18.
In particular, even when the electrolyte 18 contains an oxidation-reduction pair such as iodine / iodide ions or bromine / bromide ions, an electrolyte that does not deteriorate due to an oxidation reaction is preferable.

このような導電性微粒子としては、カーボンを主体とする物質からなるものが挙げられ、具体例としては、カーボンナノチューブ、カーボンファイバ、カーボンブラックなどの粒子を例示できる。これらの物質の製造方法はいずれも公知であり、また、市販品を用いることもできる。   Examples of such conductive fine particles include those composed mainly of carbon, and specific examples include particles such as carbon nanotubes, carbon fibers, and carbon black. All methods for producing these substances are known, and commercially available products can also be used.

対極6は、導電性を有する板状をなし、その表面が不導態となるTi板から構成される。また、対極6は、表面にPtからなる触媒膜(不図示)を有している。
対極6の構成は、上述したようなPt被膜Ti板に限るものではなく、Pt板、またはPtを被膜した金属板であってよい。あるいは、カーボン板、またはカーボンを被膜した金属板であってよい。
対極6の厚みは例えば40μmでよく、その被膜の厚みは例えば30nmでよく、それぞれ特に限定されない。
The counter electrode 6 is formed of a Ti plate having a conductive plate shape whose surface is nonconductive. The counter electrode 6 has a catalyst film (not shown) made of Pt on the surface.
The configuration of the counter electrode 6 is not limited to the Pt-coated Ti plate as described above, and may be a Pt plate or a metal plate coated with Pt. Alternatively, it may be a carbon plate or a metal plate coated with carbon.
The thickness of the counter electrode 6 may be 40 μm, for example, and the thickness of the coating may be 30 nm, for example, and is not particularly limited.

作用極5と対極6との間には、作用極5と対極6との短絡を防止するために、非導電性の材料からなるセパレータ10が挿入されている。セパレータ10の材質は、ポリエチレンなどのポリオレフィンであり、厚さは20μm以下であることが好ましいが、電解液に耐え、作用極5と対極6とを絶縁可能であれば、これらに限定はされない。   A separator 10 made of a nonconductive material is inserted between the working electrode 5 and the counter electrode 6 in order to prevent a short circuit between the working electrode 5 and the counter electrode 6. The material of the separator 10 is polyolefin such as polyethylene, and the thickness is preferably 20 μm or less. However, the material is not limited as long as it can withstand the electrolytic solution and insulate the working electrode 5 and the counter electrode 6.

さらに作用極5、対極6、およびセパレータ10は、2枚の上張り14に挟まれる構成となっており、これにより電解質18を封止している。
上張り14は、作用極5の網目状構造部分、および対極6と略同形状の矩形形状をなしており、その4辺において熱圧着部12が形成されている。
上張り14の材料としては、ガスバリア性が高く、電解質18に対して化学的耐性をもち、光透過性を有するものであれば特に制限されない。そのような材料としては、例えばPET等の樹脂を基板とする高ガスバリアフィルム、ガラス板、無アルカリガラス板等が挙げられる。前記高ガスバリアフィルムは、柔軟性、屈曲性が高いので、電極部2に屈曲性を持たせる場合に好適である。また、前記ガラス板及び無アルカリガラス板は、ガスバリア性、化学的耐性、光透過性に優れるので、電極部2の耐久性を高めることができる。なお、前記2枚の上張り14のうち、対極6側の上張り14は、光透過性を有さなくてもよい。
Further, the working electrode 5, the counter electrode 6, and the separator 10 are configured to be sandwiched between two upper layers 14, thereby sealing the electrolyte 18.
The upper layer 14 has a rectangular shape substantially the same shape as the network structure portion of the working electrode 5 and the counter electrode 6, and the thermocompression bonding parts 12 are formed on the four sides thereof.
The material of the upper layer 14 is not particularly limited as long as it has a high gas barrier property, has chemical resistance to the electrolyte 18, and has optical transparency. Examples of such a material include a high gas barrier film having a resin such as PET as a substrate, a glass plate, and an alkali-free glass plate. Since the high gas barrier film has high flexibility and flexibility, it is suitable for providing the electrode part 2 with flexibility. Moreover, since the said glass plate and an alkali free glass plate are excellent in gas barrier property, chemical resistance, and light transmittance, the durability of the electrode part 2 can be improved. Of the two upper coverings 14, the upper covering 14 on the counter electrode 6 side may not have optical transparency.

上述したような構成の色素増感型光電変換素子1は、集電部3に電気機器などの接続導体を介して接続した場合、透光性の上張り14を通して太陽光などの光線を入射させると、発電部2において発生した電子のうち、第1基材8に発生した電子の全てを取り出すことが可能となるため、光電変換効率が著しく向上する。
また、発電部2は、網目状構造の作用極5、薄板状の対極6、および無アルカリガラス板からなる上張り14の組合せであるため、耐久性に優れた光電変換素子の製造が可能となる。
When the dye-sensitized photoelectric conversion element 1 having the above-described configuration is connected to the current collector 3 via a connection conductor such as an electric device, light such as sunlight is incident through the translucent upper covering 14. And since it becomes possible to take out all the electrons which generate | occur | produced in the 1st base material 8 among the electrons which generate | occur | produced in the electric power generation part 2, a photoelectric conversion efficiency improves remarkably.
Further, since the power generation unit 2 is a combination of a working electrode 5 having a mesh structure, a thin plate-like counter electrode 6 and an upper cover 14 made of an alkali-free glass plate, it is possible to manufacture a photoelectric conversion element having excellent durability. Become.

上述した色素増感型光電変換素子1は、第1基材8の一端が延在して集電部3が形成されているが、該集電部3は複数設けることができる。例えば、第1基材8の両端を延在して2つの集電部3が発電部2を挟むように設けてもよく、第2基材9の一端又は両端を延在して、同様に集電部3を設けてもよい。複数の集電部3を設けることにより、第1基材8及び第2基材9に発生した電子の取り出し効率を高めて、光電変換素子1の光電変換効率を高めることができる。   In the dye-sensitized photoelectric conversion element 1 described above, one end of the first substrate 8 extends to form the current collector 3, but a plurality of the current collectors 3 can be provided. For example, the both ends of the first base material 8 may be extended so that the two current collectors 3 sandwich the power generation unit 2, and one end or both ends of the second base material 9 may be extended to similarly A current collector 3 may be provided. By providing the plurality of current collectors 3, the efficiency of extracting electrons generated in the first base material 8 and the second base material 9 can be increased, and the photoelectric conversion efficiency of the photoelectric conversion element 1 can be increased.

[実施例1〜7、比較例1〜3]
図1〜3に示す構造の光電変換素子を以下のとおり作製した。
まず、表1に示す線径のTi被覆Cu線を、縦線と横線とが互いに直交するように織機により網目状に製織し、表1に示す開口率の網目状に編まれてなる領域からなる矩形(5cm×5cm)の作用極を、10種類作製した。なお、縦横に織られるTi被覆Cu線のうち横線の一端は、集電部形成のため、発電部に対して外方に引き出されるように、他端に対して十分長くなるように製織した。これらの各作用極の製織性を以下の基準で評価し、その結果を表1に併記した。
(製織性の評価基準)
製織後の当該作用極の網目状構造を目視検査し、折れ曲がりや破損がなかった:○
製織後の当該作用極の網目状構造を目視検査し、折れ曲がりや破損があった:×
[Examples 1-7, Comparative Examples 1-3]
A photoelectric conversion element having the structure shown in FIGS. 1 to 3 was produced as follows.
First, a Ti-coated Cu wire having a wire diameter shown in Table 1 is woven into a mesh shape by a loom so that vertical lines and horizontal lines are orthogonal to each other, and from a region formed by knitting into a mesh shape having an aperture ratio shown in Table 1. Ten types of rectangular (5 cm × 5 cm) working electrodes were produced. It should be noted that one end of the horizontal wire of the Ti-coated Cu wire woven vertically and horizontally was woven so as to be sufficiently long with respect to the other end so as to be drawn outward with respect to the power generation unit in order to form a current collector. The weaving properties of these working electrodes were evaluated according to the following criteria, and the results are also shown in Table 1.
(Evaluation criteria for weaving)
Visual inspection of the mesh structure of the working electrode after weaving showed no bending or breakage: ○
Visual inspection of the mesh structure of the working electrode after weaving showed that it was bent or damaged: ×

Figure 2011023173
Figure 2011023173

つづいて、各例の作用極の前記網目状に編まれてなる領域を、TiOペースト(Solaronix社製;Ti Nanoxide−T)に浸漬し、つぎに引き上げて乾燥し、再び浸漬するという一連の工程を3回繰り返した。つづいて、TiOが塗布された前記網目状に編まれてなる領域を、電気炉で500℃、1時間焼結して多孔質TiO膜付きの前記網目状に編まれてなる領域を得た。そのTiOの膜厚はおよそ10μmであった。なお、各例の作用極に焼結したTiO2膜は、いずれも同量であった。 Subsequently, the region of the working electrode of each example knitted in the mesh shape is immersed in TiO 2 paste (manufactured by Solaronix; Ti Nanoxide-T), then pulled up, dried, and immersed again. The process was repeated 3 times. Subsequently, the region woven in the mesh shape coated with TiO 2 was sintered in an electric furnace at 500 ° C. for 1 hour to obtain the region knitted in the mesh shape with a porous TiO 2 film. It was. The TiO 2 film thickness was approximately 10 μm. The TiO2 film sintered on the working electrode in each example was the same amount.

次に、各例の作用極のTiO膜付の網目状に編まれてなる領域を、ルテニウム色素(Solaronix社製、RutheAlum535-bisTBA、一般にはN719と呼ばれる)の0.3mM、アセトニトリル/tert-ブタノール=1:1溶液に浸漬し、室温で24時間放置してTiO表面に色素を担持した。色素溶液から引き上げた後、上記混合溶媒で洗浄し、これを作用極とした。 Next, the working electrode of each example was knitted into a network with a TiO 2 film, and a ruthenium dye (Solaronix, RutheAlum535-bisTBA, generally called N719) 0.3 mM, acetonitrile / tert- It was immersed in a butanol = 1: 1 solution and allowed to stand at room temperature for 24 hours to carry the dye on the TiO 2 surface. After pulling up from the dye solution, it was washed with the above mixed solvent and used as a working electrode.

一方、厚さ200μmの圧延Ti板の片面にPt被膜を物理蒸着により形成したものを対極とした。この対極を無アルカリガラス上に設置し、対極の上に厚さ1mmのPETフィルムをセパレーターとして設置し、そのセパレーターの上に前記作用極を設置し、前記作用極の上に無アルカリガラスを設置した。このように無アルカリガラスによって上下をカバーされたセルの4つの側面のうち、3つの側面を熱圧着剤によって封じた。   On the other hand, a counter electrode was formed by forming a Pt film on one side of a rolled Ti plate having a thickness of 200 μm by physical vapor deposition. This counter electrode is placed on alkali-free glass, a PET film with a thickness of 1 mm is placed on the counter electrode as a separator, the working electrode is placed on the separator, and the alkali-free glass is placed on the working electrode. did. Thus, three side surfaces were sealed with the thermocompression-bonding agent among the four side surfaces of the cell covered up and down by alkali-free glass.

つぎに、セルの封止していない1つの側面から、メトキシアセトニトリルを溶媒とする揮発性電解質を注入してセル内を満たした後、その側面を熱圧着剤によって封止して、セルを完全に密封した。
なお、セルの側面を封止する際、作用極を構成するTi被覆Cu線のうち、長い横線の一端側を、セルの外へ引き出してから、セルを封止した。引き出された複数の横線は銅板にはんだ付けして集電部とした。また、作用極および対極の熱圧着部には、あらかじめアイオノマー樹脂を接着しておき、封止後の電解液の漏洩を防ぐようにした。
Next, from one side of the cell that is not sealed, a volatile electrolyte containing methoxyacetonitrile as a solvent is injected to fill the inside of the cell, and then the side is sealed with a thermocompression bonding agent to complete the cell. Sealed.
When sealing the side surface of the cell, one end side of the long horizontal line out of the Ti-coated Cu wire constituting the working electrode was drawn out of the cell, and then the cell was sealed. A plurality of horizontal lines drawn out were soldered to a copper plate to form a current collector. In addition, an ionomer resin was bonded in advance to the thermocompression bonding portions of the working electrode and the counter electrode so as to prevent leakage of the electrolytic solution after sealing.

<光電変換効率の評価>
以上のようにして作製された実施例1〜7および比較例1〜3の各色素増感型光電変換素子のセルに対して、ソーラーシミュレータ(AM1.5、100mW/cm)を用いて光を照射し、電流電位曲線を測定し、その光電変換効率を求めた。その結果を表1に併記した。
<Evaluation of photoelectric conversion efficiency>
The solar simulator (AM1.5, 100 mW / cm 2 ) was used for light for each of the dye-sensitized photoelectric conversion element cells of Examples 1 to 7 and Comparative Examples 1 to 3 manufactured as described above. Was measured, the current-potential curve was measured, and the photoelectric conversion efficiency was determined. The results are also shown in Table 1.

以上の結果から、本発明に係る実施例1〜7の色素増感型光電変換素子は、比較例1〜3の色素増感型光電変換素子に比べて、いずれも光電変換効率に優れることが明らかである。
また、本発明に係る実施例1〜7の色素増感型光電変換素子の作用極の開口率は、比較例1〜3の色素増感型光電変換素子の作用極の開口率よりも高いため、単位面積あたりの作用極の重量について、実施例の方が比較例よりも軽くなることは明らかである。したがって、本発明に係る実施例1〜7の色素増感型光電変換素子は、比較例1〜3の色素増感型光電変換素子に比べて、いずれも軽量性に優れることが明らかである。
From the above results, the dye-sensitized photoelectric conversion elements of Examples 1 to 7 according to the present invention are all excellent in photoelectric conversion efficiency as compared with the dye-sensitized photoelectric conversion elements of Comparative Examples 1 to 3. it is obvious.
Moreover, since the aperture ratio of the working electrode of the dye-sensitized photoelectric conversion elements of Examples 1 to 7 according to the present invention is higher than the aperture ratio of the working electrode of the dye-sensitized photoelectric conversion elements of Comparative Examples 1 to 3. As for the weight of the working electrode per unit area, it is clear that the example is lighter than the comparative example. Therefore, it is clear that the dye-sensitized photoelectric conversion elements of Examples 1 to 7 according to the present invention are all superior in light weight as compared with the dye-sensitized photoelectric conversion elements of Comparative Examples 1 to 3.

<屈曲性の評価>
前述と同様に、実施例1〜7および比較例1〜3の10種類の作用極を作製した。ただし、MIT試験機の規格に合わせるため、その網目状に編まれてなる領域のサイズを10mm×185mmに変更した。この作用極の製織性を以下の基準で評価した。
(製織性の評価基準)
製織後の当該作用極の網目状構造を目視検査し、折れ曲がりや破損がなかった:○
製織後の当該作用極の網目状構造を目視検査し、折れ曲がりや破損があった:×
<Evaluation of flexibility>
Similarly to the above, 10 types of working electrodes of Examples 1-7 and Comparative Examples 1-3 were produced. However, in order to conform to the standard of the MIT testing machine, the size of the region knitted in a mesh shape was changed to 10 mm × 185 mm. The weaving property of this working electrode was evaluated according to the following criteria.
(Evaluation criteria for weaving)
Visual inspection of the mesh structure of the working electrode after weaving showed no bending or breakage: ○
Visual inspection of the mesh structure of the working electrode after weaving showed that it was bent or damaged: ×

さらに、この作用極に対して、MIT屈曲試験を以下の条件で行い、各作用極の屈曲性を以下の基準で評価し、その結果を表1に併記した。
(MIT屈曲試験条件)
屈曲角度は270°、屈曲回数は3万回、屈曲速度は毎分175回、張力は500gf、曲率半径は1mmで行った。
(屈曲性の評価基準)
試験後の当該作用極の網目状構造を目視検査し、折れ曲がりや破損がなかった:○
試験後の当該作用極の網目状構造を目視検査し、折れ曲がりや破損があった:×
Furthermore, the MIT bending test was performed on the working electrode under the following conditions, and the flexibility of each working electrode was evaluated according to the following criteria. The results are also shown in Table 1.
(MIT flex test conditions)
The bending angle was 270 °, the number of bendings was 30,000, the bending speed was 175 times per minute, the tension was 500 gf, and the radius of curvature was 1 mm.
(Evaluation criteria for flexibility)
Visual inspection of the network structure of the working electrode after the test showed no bending or breakage: ○
After the test, the network structure of the working electrode was visually inspected, and there was bending or breakage: ×

以上の結果から、本発明に係る実施例1〜7の色素増感型光電変換素子のうち、実施例1〜6の作用極の屈曲性が優れることは明らかである。したがって、当該実施例の色素増感型光電変換素子の作製に使用された無アルカリガラスを、例えばPET等を基板とする高ガスバリア性のフィルムに換えた場合、当該実施例の色素増感型光電変換素子の屈曲性が優れることは明らかである。   From the above results, it is clear that among the dye-sensitized photoelectric conversion elements of Examples 1 to 7 according to the present invention, the working electrodes of Examples 1 to 6 have excellent flexibility. Therefore, when the alkali-free glass used in the production of the dye-sensitized photoelectric conversion element of the example is replaced with a high gas barrier film having, for example, PET as a substrate, the dye-sensitized photoelectric of the example is used. It is clear that the conversion element has excellent flexibility.

本発明は、金属線を電極に用いた光電変換素子に広く適用可能である。   The present invention is widely applicable to photoelectric conversion elements using metal wires as electrodes.

1…色素増感型光電変換素子、2…発電部、3…集電部、4…集電用配線部、5…作用極、6…対極、8…第1基材、9…第2基材、10…セパレータ、12…熱圧着部、13…多孔質酸化物半導体層、14…上張り、15…網目状構造部、18…電解質。 DESCRIPTION OF SYMBOLS 1 ... Dye-sensitized photoelectric conversion element, 2 ... Power generation part, 3 ... Current collection part, 4 ... Current collection wiring part, 5 ... Working electrode, 6 ... Counter electrode, 8 ... 1st base material, 9 ... 2nd group Materials: 10 ... Separator, 12 ... Thermocompression bonding part, 13 ... Porous oxide semiconductor layer, 14 ... Overlay, 15 ... Network structure part, 18 ... Electrolyte.

Claims (3)

導電性を有するとともに線状をなす複数の第1基材および第2基材が網目状に編まれてなる領域からなる作用極を備えてなる色素増感型光電変換素子であって、
前記領域における網目の開口率が0.4%以上80%以下であることを特徴とする色素増感型光電変換素子。
A dye-sensitized photoelectric conversion element comprising a working electrode composed of a region in which a plurality of first base materials and second base materials that are conductive and linear are knitted in a mesh shape,
The dye-sensitized photoelectric conversion element, wherein an opening ratio of the mesh in the region is 0.4% or more and 80% or less.
前記第1基材および前記第2基材のいずれか一方又は両方がチタン被覆された銅線であり、そのチタン被覆された銅線の直径が15μm以上150μm以下であることを特徴とする請求項1に記載の色素増感型光電変換素子。   One or both of the first substrate and the second substrate are titanium-coated copper wires, and the titanium-coated copper wire has a diameter of 15 μm or more and 150 μm or less. 1. The dye-sensitized photoelectric conversion element according to 1. 前記第1基材および前記第2基材のうち、少なくとも一方の基材が、前記領域からその基材の長手方向に延在された部位から構成される集電用配線と、
該集電用配線の端部をまとめて電気的に接続された集電部とを有してなることを特徴とする請求項1又は2に記載の色素増感型光電変換素子。
Among the first base material and the second base material, at least one base material is a current collecting wiring composed of a portion extending from the region in the longitudinal direction of the base material;
3. The dye-sensitized photoelectric conversion element according to claim 1, further comprising: a current collecting portion in which end portions of the current collecting wiring are collectively connected.
JP2009165944A 2009-07-14 2009-07-14 Dye-sensitized photoelectric conversion element Pending JP2011023173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009165944A JP2011023173A (en) 2009-07-14 2009-07-14 Dye-sensitized photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009165944A JP2011023173A (en) 2009-07-14 2009-07-14 Dye-sensitized photoelectric conversion element

Publications (1)

Publication Number Publication Date
JP2011023173A true JP2011023173A (en) 2011-02-03

Family

ID=43633074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009165944A Pending JP2011023173A (en) 2009-07-14 2009-07-14 Dye-sensitized photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP2011023173A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011060662A (en) * 2009-09-11 2011-03-24 Fujikura Ltd Dye-sensitized photoelectric conversion element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000231942A (en) * 1999-02-12 2000-08-22 Nikon Corp Pigment sensitization solar battery
JP2000285977A (en) * 1999-03-31 2000-10-13 Fuji Photo Film Co Ltd Photoelectric conversion element and photocell
JP2001283941A (en) * 2000-03-29 2001-10-12 Hitachi Maxell Ltd Photoelectric transfer element
JP2005197176A (en) * 2004-01-09 2005-07-21 Bridgestone Corp Electrode for dye sensitization solar cell and dye sensitization solar cell
JP2007073505A (en) * 2005-08-09 2007-03-22 Sumitomo Chemical Co Ltd Photoelectric conversion element
JP2007280906A (en) * 2006-04-12 2007-10-25 Sony Corp Functional device and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000231942A (en) * 1999-02-12 2000-08-22 Nikon Corp Pigment sensitization solar battery
JP2000285977A (en) * 1999-03-31 2000-10-13 Fuji Photo Film Co Ltd Photoelectric conversion element and photocell
JP2001283941A (en) * 2000-03-29 2001-10-12 Hitachi Maxell Ltd Photoelectric transfer element
JP2005197176A (en) * 2004-01-09 2005-07-21 Bridgestone Corp Electrode for dye sensitization solar cell and dye sensitization solar cell
JP2007073505A (en) * 2005-08-09 2007-03-22 Sumitomo Chemical Co Ltd Photoelectric conversion element
JP2007280906A (en) * 2006-04-12 2007-10-25 Sony Corp Functional device and manufacturing method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7013003466; JIS標準ふるい表抜粋(JIS Z 8801-1-2000) , 20130911 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011060662A (en) * 2009-09-11 2011-03-24 Fujikura Ltd Dye-sensitized photoelectric conversion element

Similar Documents

Publication Publication Date Title
KR101024876B1 (en) Photovoltaic cells utilizing mesh electrodes
JP2008130547A (en) Vertically stacked dye sensitive solar cell module, and manufacturing method therefor
CN102396101A (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP2010040391A (en) Photoelectric conversion element
KR100921754B1 (en) Dye-Sensitized Solar Cell And Method Of Fabricating The Same
JP5647484B2 (en) Network for working electrode, working electrode, method for producing the same, and dye-sensitized solar cell
JP5134867B2 (en) Photoelectric conversion element
JP5114499B2 (en) Photoelectric conversion element
JP5398441B2 (en) Dye-sensitized photoelectric conversion element
JP5460159B2 (en) Dye-sensitized photoelectric conversion element
JP2011023173A (en) Dye-sensitized photoelectric conversion element
JP5216411B2 (en) Photoelectric conversion element
JP5095148B2 (en) Working electrode substrate and photoelectric conversion element
JP5687873B2 (en) Working electrode and dye-sensitized solar cell having the same
JP5398442B2 (en) Method for producing dye-sensitized photoelectric conversion element and dye-sensitized photoelectric conversion element
JP5460198B2 (en) Dye-sensitized photoelectric conversion element
JP5398449B2 (en) Dye-sensitized photoelectric conversion element
JP5398498B2 (en) Dye-sensitized photoelectric conversion element
JP2011070876A (en) Dye-sensitized photoelectric conversion element
JP5604090B2 (en) Dye-sensitized photoelectric conversion element
JP5398440B2 (en) Photoelectric conversion element
JP2013051143A (en) Electrode for photoelectric conversion element and photoelectric conversion element
JP5337460B2 (en) Photoelectric conversion element
JP5398516B2 (en) Method for producing working electrode, working electrode, and photoelectric conversion element
JP5398504B2 (en) Dye-sensitized photoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131217