JP2011021727A - Base isolation structure - Google Patents

Base isolation structure Download PDF

Info

Publication number
JP2011021727A
JP2011021727A JP2009169358A JP2009169358A JP2011021727A JP 2011021727 A JP2011021727 A JP 2011021727A JP 2009169358 A JP2009169358 A JP 2009169358A JP 2009169358 A JP2009169358 A JP 2009169358A JP 2011021727 A JP2011021727 A JP 2011021727A
Authority
JP
Japan
Prior art keywords
support rod
support rods
support
seismic isolation
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009169358A
Other languages
Japanese (ja)
Other versions
JP5153733B2 (en
Inventor
Koji Yamada
耕司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2009169358A priority Critical patent/JP5153733B2/en
Publication of JP2011021727A publication Critical patent/JP2011021727A/en
Application granted granted Critical
Publication of JP5153733B2 publication Critical patent/JP5153733B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple base isolation structure with less dispersion of restoring force. <P>SOLUTION: A support rod 11 includes an extensible support rod body 12, and a coil spring that stores energy by the extension of the support rod body 12 and contracts the support rod body 12 with the stored energy. The lower ends of a pair of support rods 11, 11 are connected in a swingable manner to a foundation 3 at a space, and the upper ends which are the other ends of the pair of support rods 11, 11 are connected in a swingable manner to a building at a space narrower than the lower end space. When a building moves to one support rod 11 side due to an earthquake, the one support rod 11 is rotated to one side without extending, and the other support rod 11 is rotated to the one side while extending. The coil spring of the other extended support rod 11 is compressed to store energy to absorb vibrational energy. Since both support rods 11, 11 are rotated at a predetermined angle with a predetermined length in the contracted state of at least one of the support rods, the load of the building can be supported. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、基礎に支持される建物などの被支持体の免震構造に関する。   The present invention relates to a seismic isolation structure for a supported body such as a building supported by a foundation.

従来の積層ゴム系免震装置は、積層ゴムの材料特性により、剛性のばらつきが20%程度存在し、建物の応答に誤差を与えている。一方、滑り支承による免震装置では、別途、復元力のためのバネと減衰力のダンパーを必要とする。   The conventional laminated rubber-based seismic isolation device has a variation in rigidity of about 20% due to the material characteristics of the laminated rubber, and gives an error in the response of the building. On the other hand, a seismic isolation device using a sliding bearing requires a spring for restoring force and a damper for damping force.

また、全方位水平変位と回転を可能とした球面接触型回転滑り支承体とその支承体を杭頭内に埋設装着した(例えば特許文献1)免震構造なども提案されている。   In addition, a spherical contact type rotary sliding bearing body capable of omnidirectional horizontal displacement and rotation and a seismic isolation structure in which the bearing body is embedded in a pile head (for example, Patent Document 1) have been proposed.

特開2008−144562号公報JP 2008-144562 A

上記特許文献1の免震構造でも、支承体と別個に積層ゴム系の剛性部材が必要となり、構造が複雑になると共に、コストが掛かる問題がある。   Even in the seismic isolation structure of Patent Document 1, a laminated rubber-based rigid member is required separately from the support body, and there is a problem that the structure is complicated and costs are increased.

そこで、本発明は、上記問題点を考慮してなされたものであり、復元力のばらつきが少なく、簡易な免震構造を提供することを目的とする。   Accordingly, the present invention has been made in consideration of the above problems, and an object thereof is to provide a simple seismic isolation structure with little variation in restoring force.

本発明の免震構造は、被支持体とこの被支持体を支持する基礎との間に設ける免震装置において、所定長さで圧縮力に対抗する伸縮可能な支持杆本体と、前記支持杆本体の伸張によりエネルギを蓄えると共に前記蓄えたエネルギにより前記支持体本体を収縮するエネルギ蓄積変換手段とを有する支持杆を用い、対をなす前記支持杆を備え、前記対をなす支持杆の一端を、間隔をおいて前記基礎に揺動自在に連結し、前記対をなす支持杆の他端を、前記一端の間隔より狭い間隔で前記被支持体に揺動自在に連結したことを特徴とする。   The seismic isolation structure of the present invention is a seismic isolation device provided between a supported body and a foundation that supports the supported body, and a support rod body that can extend and contract against a compressive force at a predetermined length; Using a support rod having energy storage conversion means for storing energy by stretching of the main body and contracting the support body by the stored energy, the support rod having a pair is provided, and one end of the pair of support rods is provided. The other end of the pair of support rods is swingably connected to the supported body at a distance narrower than the distance between the one ends. .

これにより、地震により被支持体が一方の支持杆側に移動すると、一方の支持杆は伸張することなく一方側に回転し、他方の支持杆は伸張しながら一方側に回転し、伸張した他方の支持杆のエネルギ蓄積変換手段がエネルギを蓄えることにより、振動エネルギを吸収し、次は、逆に他方の支持杆が収縮しながら他方側に回転し、一方の支持杆が他方側に回転し、初期位置に戻ると、一方の支持杆が伸張しながら回転し、伸張した一方の支持杆のエネルギ蓄積変換手段がエネルギを蓄えることにより、振動エネルギを吸収し、これを繰り返すことにより、免震効果が得られる。また、両支持杆の少なくとも一方が収縮した所定長さで所定角度回転するから、被支持体の荷重を支持することができる。   As a result, when the supported body moves to one support rod side due to an earthquake, one support rod rotates to one side without stretching, and the other support rod rotates to one side while stretching, and the other stretched The energy storage conversion means of the supporting rod absorbs energy by absorbing energy, and then the other supporting rod rotates to the other side while conversely contracting, and the one supporting rod rotates to the other side. When returning to the initial position, one support rod rotates while extending, and the energy storage conversion means of one of the extended support rods stores the energy to absorb the vibration energy, and repeats this to seismically isolate it. An effect is obtained. In addition, since at least one of the support rods rotates by a predetermined angle with a contracted length, the load of the supported body can be supported.

また、本発明の免震構造は、前記支持杆は、前記被支持体の振動を減衰する振動減衰手段を備えることを特徴とする。   Moreover, the seismic isolation structure of the present invention is characterized in that the support rod includes vibration damping means for damping the vibration of the supported body.

これにより、地震時に支持杆が伸縮する際、そのエネルギを吸収して被支持体の振動を減衰することができる。   Thereby, when a support rod expands and contracts at the time of an earthquake, the energy can be absorbed and the vibration of the supported body can be attenuated.

また、本発明の免震構造は、3本以上の前記支持杆を備え、前記複数の支持杆の一端を該支持杆の本数に対応する多角形の頂点位置で前記基礎に揺動自在に連結し、前記複数の支持杆の他端を前記多角形の中央側位置で前記被支持体に揺動自在に連結したことを特徴とする。   Further, the seismic isolation structure of the present invention includes three or more support rods, and one end of the plurality of support rods is swingably coupled to the foundation at a vertex position of a polygon corresponding to the number of the support rods. The other ends of the plurality of support rods are swingably connected to the supported body at the polygonal center position.

地震時には、3本の支持杆が揺動し、この揺動中に少なくとも1本の支持杆が所定長さで回転すると共に、少なくとも1本の支持杆が伸張しながら回転することにより、免震効果を得ることができる。   In the event of an earthquake, the three support rods oscillate, and at least one support rod rotates at a predetermined length during the swinging, and at least one support rod rotates while being stretched, thereby providing seismic isolation. An effect can be obtained.

また、本発明の免震構造は、前記支持杆本体は、一定長さまで伸張した後、引張力に対抗することを特徴とする。   Moreover, the seismic isolation structure of the present invention is characterized in that the support rod main body resists a tensile force after extending to a certain length.

対をなす支持杆をモデルにして説明すると、地震により被支持体が一方の支持杆側に移動すると、一方の支持杆は伸張することなく一方側に回転し、他方の支持杆は伸張しながら一方側に回転し、この他方の支持杆が一定長さまで回転したら、他方の支持杆が引張力に対抗することにより、これ以上、一方側に回転することが防止される。   Explaining using a pair of support rods as a model, when a supported body moves to one support rod side due to an earthquake, one support rod rotates to one side without stretching, while the other support rod extends If it rotates to one side and this other support rod rotates to a certain length, the other support rod opposes the tensile force, thereby preventing further rotation to one side.

本発明の免震構造によれば、支持杆により、被支持体の支持と変位時のエネルギ吸収とを行うことができ、構造簡易にして、量産効果に優れた免震構造を提供できる。   According to the seismic isolation structure of the present invention, it is possible to support the supported body and absorb the energy at the time of displacement by the support rod, and it is possible to provide a seismic isolation structure that is simple in structure and excellent in mass production effect.

本発明の実施例1を示す免震構造の説明図である。It is explanatory drawing of the seismic isolation structure which shows Example 1 of this invention. 同上、被支持体側の連結箇所が異なる説明図である。It is explanatory drawing from which a connection location by the side of a to-be-supported body is different from the above. 同上、支持杆の断面図である。FIG. 3 is a cross-sectional view of the support rod. 同上、免震構造の概略斜視図である。It is a schematic perspective view of a seismic isolation structure same as the above. 同上、免震構造の概略平面図である。It is a schematic top view of a seismic isolation structure same as the above. 同上、免震構造の支持杆の配置が異なる概略平面図である。It is a schematic plan view from which the arrangement | positioning of the support rod of a seismic isolation structure differs as above. 本発明の実施例2を示す免震構造の概略斜視図である。It is a schematic perspective view of the seismic isolation structure which shows Example 2 of this invention. 同上、免震構造の概略平面図である。It is a schematic top view of a seismic isolation structure same as the above. 同上、被支持体側の連結箇所が異なる免震構造の概略平面図である。It is a schematic plan view of the seismic isolation structure from which the connection location by the side of a to-be-supported body is different from the above. 本発明の実施例3を示す免震構造の概略斜視図である。It is a schematic perspective view of the seismic isolation structure which shows Example 3 of this invention. 同上、免震構造の概略平面図である。It is a schematic top view of a seismic isolation structure same as the above.

本発明における好適な実施の形態について、添付図面を参照しながら詳細に説明する。尚、以下に説明する実施の形態は、特許請求の範囲に記載された本発明の内容を限定するものではない。また、以下に説明される構成の全てが、本発明の必須要件であるとは限らない。各実施例では、従来とは異なる新規な免震構造を採用することにより、従来にない免震構造が得られ、その免震構造について記述する。   Preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiments described below do not limit the contents of the present invention described in the claims. In addition, all of the configurations described below are not necessarily essential requirements of the present invention. In each embodiment, an unprecedented base isolation structure is obtained by adopting a new base isolation structure different from the conventional one, and the base isolation structure will be described.

以下、本発明の実施例を、添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1〜図6は本発明の実施例1を示し、免震装置1は、被支持体たる建物2と、この建物2を支持する基礎3との間に設けられ、少なくとも対をなす支持杆11,11を備える。   FIGS. 1-6 shows Example 1 of this invention, and the seismic isolation apparatus 1 is provided between the building 2 which is a to-be-supported body, and the foundation 3 which supports this building 2, and at least makes a pair of support rods. 11 and 11 are provided.

図3に示すように、前記支持杆11は、伸縮可能な支持杆本体12を備え、この支持杆本体12は、筒状ケース13と、この筒状ケース13に挿入された棒状の伸縮杆14とを備え、この伸縮杆14が筒状ケース13の長さ方向に移動することにより、支持杆11が伸縮する。   As shown in FIG. 3, the support rod 11 includes a support rod main body 12 that can be expanded and contracted. The support rod main body 12 includes a cylindrical case 13 and a rod-shaped extendable rod 14 inserted into the cylindrical case 13. The support rod 11 expands and contracts when the telescopic rod 14 moves in the length direction of the cylindrical case 13.

前記筒状ケース13内には、前記支持杆11の伸張により収縮する圧縮コイルバネ15を設け、このコイルバネ15がエネルギ蓄積変換手段である。コイルバネ15が収縮することにより運動エネルギを蓄積し、コイルバネ15が圧縮されると、それ以上支持杆11が伸張することなく、引張力に対抗するよう構成している。また、圧縮されたコイルバネ15は、蓄積した運動エネルギを弾性復元力として開放し、自信が伸張することにより支持杆11を収縮する。さらに、支持杆11の収縮状態(初期状態)における所定長さで、前記伸縮杆14が筒状ケース13に係合することにより、前記支持杆11は圧縮力に対抗し、それ以上収縮することがない。   A compression coil spring 15 is provided in the cylindrical case 13 to be contracted by the extension of the support rod 11, and this coil spring 15 is energy storage conversion means. When the coil spring 15 contracts, kinetic energy is accumulated, and when the coil spring 15 is compressed, the support rod 11 does not extend any more and is configured to resist the tensile force. In addition, the compressed coil spring 15 releases the accumulated kinetic energy as an elastic restoring force, and the support rod 11 contracts when the confidence is expanded. Further, when the support rod 11 is engaged with the cylindrical case 13 at a predetermined length in the contracted state (initial state) of the support rod 11, the support rod 11 opposes the compressive force and further contracts. There is no.

また、前記支持杆11には、エネルギ吸収手段として、振動減衰手段たるダンパー機構16を設け、このダンパー機構16は、粘性流体を利用して前記支持杆本体12の伸縮時のエネルギーを吸収することにより前記建物2の振動を吸収し、建物2の振動を減衰するものが用いられる。   Further, the support rod 11 is provided with a damper mechanism 16 as a vibration damping means as energy absorbing means, and this damper mechanism 16 absorbs energy when the support rod main body 12 is expanded and contracted using a viscous fluid. In this case, the one that absorbs the vibration of the building 2 and attenuates the vibration of the building 2 is used.

前記支持杆11の両端は、ボールジョイント21により、建物2と基礎3とに360度回動可能な揺動可能に連結されている。前記ボールジョイント21は、筒状ケース13及び伸縮杆14の端部に設ける球体22と、この球体22を回転可能に抱持するホルダー23とを備え、このホルダー23が建物2と基礎3に固設される。   Both ends of the support rod 11 are connected to the building 2 and the foundation 3 by a ball joint 21 so as to be capable of rotating 360 degrees. The ball joint 21 includes a sphere 22 provided at the ends of the cylindrical case 13 and the telescopic rod 14 and a holder 23 that rotatably holds the sphere 22. The holder 23 is fixed to the building 2 and the foundation 3. Established.

次に、対をなす支持杆11,11による免震作用について説明する。図1の説明図では、対をなす支持杆11,11を三角形の斜辺位置に配置し、それら支持杆11,11の下部を基礎3に間隔をおいて配置し、この間隔は前記三角形の底辺の長さに対応し、この底辺の長さの2分の1が免震の必要距離Lとなる。前記支持杆11,11の下端の回転中心点P,Qは、ボールジョイント21の回転中心である。また、対をなす支持杆11,11の上端もボールジョイント21により建物2に連結されるが、説明を容易にするため、支持杆11,11の上端の交差位置を中立点Kとし、この中立点Kで支持杆11,11の上端は前記建物2にそれぞれ360度回動自在に連結されているものとする。   Next, the seismic isolation action by the pair of support rods 11 and 11 will be described. In the explanatory view of FIG. 1, the pair of supporting rods 11 and 11 are arranged at the hypotenuse side of the triangle, and the lower portions of the supporting rods 11 and 11 are arranged at intervals on the foundation 3, and this interval is the base of the triangle. The half of the bottom length corresponds to the required distance L for seismic isolation. The rotation center points P and Q at the lower ends of the support rods 11 and 11 are the rotation centers of the ball joint 21. The upper ends of the pair of support rods 11 and 11 are also connected to the building 2 by the ball joint 21, but for the sake of easy explanation, the crossing position of the upper ends of the support rods 11 and 11 is defined as a neutral point K. At the point K, the upper ends of the support rods 11 and 11 are connected to the building 2 so as to be able to rotate 360 degrees.

以下、支持杆11,11はこれらを含む二次元で動作すると仮定して説明する。前記支持杆11は、上述したようにダンパー機構16を備えており、初期長さより縮まらない構造となっている。支持杆11,11が一側(図中右側)に回転し、中立点Kから中立点K´に移動した場合、支持される建物2は一側の支持杆11に支持される。この時の復元力は、支持される建物2が中立点KからK´へ上昇したことにより反作用で生じる。尚、復元力を調整するために、上述したように両支持杆11,11にはコイルバネ15が設けられている。   Hereinafter, description will be made assuming that the support rods 11 and 11 operate in two dimensions including them. The support rod 11 includes the damper mechanism 16 as described above, and has a structure that does not shrink from the initial length. When the support rods 11 and 11 rotate to one side (right side in the figure) and move from the neutral point K to the neutral point K ′, the supported building 2 is supported by the one side support rod 11. The restoring force at this time is generated by a reaction due to the supported building 2 rising from the neutral point K to K ′. In order to adjust the restoring force, as described above, the coil springs 15 are provided on the support rods 11 and 11.

支持杆11,11が他側(図中左側)に回転し、中立点Kから中立点K´´に移動した場合は、支持される建物2は他側の支持杆11により支持される。この時、一側の支持杆11はダンパーとして機能し、中立点K´´−回転中心点Pのように伸びる。   When the support rods 11 and 11 rotate to the other side (left side in the figure) and move from the neutral point K to the neutral point K ″, the supported building 2 is supported by the support rod 11 on the other side. At this time, the support rod 11 on one side functions as a damper and extends like a neutral point K ″ —rotation center point P.

また、図2に示すように、支持杆11,11の他端を交差せずに、間隔をおいて、建物2に連結してもよい。尚、前記他端の間隔は、三角形の底辺に対応する前記一端間の間隔より狭い。この場合、必要距離Lは初期状態の上端位置と回転中心点P,Qの横方向の間隔に対応する。   Moreover, as shown in FIG. 2, you may connect with the building 2 at intervals, without crossing the other end of the support rods 11 and 11. FIG. In addition, the space | interval of the said other end is narrower than the space | interval between the said one ends corresponding to the base of a triangle. In this case, the required distance L corresponds to the horizontal distance between the upper end position in the initial state and the rotation center points P and Q.

前記対をなす支持杆11,11からなる免震構造を用いる場合、図4〜図6に示すように、対をなす支持杆11,11を少なくとも2組用意し、これら2組の前記一端間の方向を交差方向に配置すればよく、図4及び図5では、一方の対をなす支持杆11,11の一端間をX方向、他方の対をなす支持杆11,11の他端間をY方向に配置し、一方の対をなす支持杆11,11の一端間の延長と、他方の対をなす支持杆11,11の一端間の延長とが直交する。また、図6では、一方の対をなす支持杆11,11の一端間をX方向、他方の対をなす支持杆11,11の他端間をY方向にして配置し、一方の対をなす支持杆11,11の一端間の中央において、一方の対をなす支持杆11,11の一端間と他方の対をなす支持杆11,11の一端間の延長とが直交する。   When using the seismic isolation structure comprising the pair of support rods 11 and 11, as shown in FIGS. 4 to 6, at least two pairs of support rods 11 and 11 are prepared, and between the two ends of the two sets 4 and FIG. 5, the X direction is between one end of the support rods 11, 11 forming one pair, and the other end of the support rods 11, 11 forming the other pair in FIGS. The extension between the ends of the support rods 11 and 11 forming one pair and the extension between the one ends of the support rods 11 and 11 forming the other pair are orthogonal to each other. Further, in FIG. 6, one pair of support rods 11, 11 are arranged in the X direction and the other end of the other pair of support rods 11, 11 are arranged in the Y direction to form one pair. In the center between the ends of the support rods 11 and 11, an extension between one end of the support rods 11 and 11 forming one pair and an extension between the ends of the support rods 11 and 11 forming the other pair are orthogonal to each other.

このように本実施例では、被支持体たる建物2とこの建物2を支持する基礎3との間に設ける免震装置において、所定長さで圧縮力に対抗する伸縮可能な支持杆本体12と、支持杆本体12の伸張によりエネルギを蓄えると共に蓄えたエネルギにより支持体本体12を収縮するエネルギ蓄積変換手段たるコイルバネ15とを有する支持杆11を用い、対をなす支持杆11,11を備え、対をなす支持杆11,11の一端である下端を、間隔をおいて基礎3に揺動自在に連結し、対をなす支持杆11,11の他端である上端を、下端の間隔より狭い間隔で建物2に揺動自在に連結したから、地震により建物2が一方の支持杆11側に移動すると、一方の支持杆11は伸張することなく一方側に回転し、他方の支持杆11は伸張しながら一方側に回転し、伸張した他方の支持杆11のコイルバネ15が圧縮されてエネルギを蓄えることにより、振動エネルギを吸収し、次は、逆に他方の支持杆11が収縮しながら他方側に回転し、一方の支持杆11が他方側に回転し、初期位置に戻ると、一方の支持杆11が伸張しながら回転し、伸張した一方の支持杆11のコイルバネ15がエネルギを蓄えることにより、振動エネルギを吸収し、これを繰り返すことにより、免震効果が得られる。また、両支持杆11,11の少なくとも一方が収縮した所定長さで所定角度回転するから、建物2の荷重を支持することができる。   As described above, in this embodiment, in the seismic isolation device provided between the building 2 as the support body and the foundation 3 that supports the building 2, the support rod body 12 that can extend and contract against the compressive force with a predetermined length; A pair of support rods 11, 11 are used, using a support rod 11 having a coil spring 15 as energy storage conversion means for storing energy by stretching the support rod body 12 and contracting the support body 12 by the stored energy, The lower end, which is one end of the pair of support rods 11, 11 is slidably connected to the foundation 3 at an interval, and the upper end, which is the other end of the pair of support rods 11, 11, is narrower than the interval between the lower ends. Since the building 2 is pivotably connected to the building 2 at intervals, when the building 2 moves to one support rod 11 side due to an earthquake, one support rod 11 rotates to one side without stretching, and the other support rod 11 One side while stretching The coil spring 15 of the other support rod 11 that is rolled and stretched is compressed to store energy, so that vibration energy is absorbed. Next, the other support rod 11 rotates to the other side while contracting. When the support rod 11 rotates to the other side and returns to the initial position, one support rod 11 rotates while extending, and the coil spring 15 of the extended one support rod 11 stores energy, thereby absorbing vibration energy. By repeating this, the seismic isolation effect can be obtained. Further, since at least one of the support rods 11 and 11 rotates at a predetermined angle with a contracted length, the load of the building 2 can be supported.

また、このように本実施例では、支持杆11は、被支持体たる建物2の振動を減衰する振動減衰手段たるダンパー機構16を備えるから、地震時に支持杆本体12が伸縮する際、エネルギ吸収手段たるダンパー機構16がその伸縮動のエネルギを吸収しての建物2の振動を減衰することができる。   As described above, in this embodiment, the support rod 11 includes the damper mechanism 16 that is a vibration attenuating means for attenuating the vibration of the building 2 that is a supported body. Therefore, when the support rod main body 12 expands and contracts during an earthquake, energy absorption is performed. The damper mechanism 16 as a means can absorb the expansion and contraction energy and attenuate the vibration of the building 2.

また、このように本実施例では、支持杆本体12は、一定長さまで伸張した後、引張力に対抗するから、対をなす支持杆11,11をモデルにして説明すると、地震により建物2が一方の支持杆11側に移動すると、一方の支持杆11は伸張することなく一方側に回転し、他方の支持杆11は伸張しながら一方側に回転し、この他方の支持杆11が一定長さまで回転したら、他方の支持杆11が引張力に対抗することにより、これ以上、一方側に回転することが防止され、この後、コイルバネ15の弾性復元力により逆方向に戻るようにすることができる。   Further, in this embodiment, since the support rod main body 12 stretches to a certain length and then resists the tensile force, the explanation will be given by using the pair of support rods 11 and 11 as a model. When moving to one support rod 11 side, one support rod 11 rotates to one side without extending, the other support rod 11 rotates to one side while extending, and the other support rod 11 is fixed length. When the other support rod 11 is rotated, the other support rod 11 is prevented from rotating further to one side by resisting the tensile force, and thereafter, it is returned to the opposite direction by the elastic restoring force of the coil spring 15. it can.

図7〜図9は、本発明の実施例2を示し、上記実施例1と同一部分に同一符号を付し、その詳細な説明を省略して詳述する。この例では、3本の前記支持杆11,11,11を用い、これら支持杆11,11,11の一端である下端を、ボールジョイント21により三角形の頂点位置で基礎3に連結し、これら支持杆11,11,11の他端である上端を、ボールジョイント21により前記三角形の中央側位置で建物2に連結する。そして、長さの等しい3本の前記支持杆11,11,11と基礎3の一部の面により三角錐を形成している。   7 to 9 show a second embodiment of the present invention, in which the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. In this example, the three support rods 11, 11, 11 are used, and the lower ends, which are one ends of the support rods 11, 11, 11, are connected to the base 3 at the apex position of the triangle by the ball joint 21, and these support rods are supported. The upper end, which is the other end of the eaves 11, 11, 11, is connected to the building 2 by the ball joint 21 at the central position of the triangle. A triangular pyramid is formed by the three support rods 11, 11, 11 having the same length and a part of the base 3.

図7及び図8では、説明のために3本の支持杆11,11,11の他端である上端を交差して図示しているが、図9に示すように、上端間が離れていてもよく、この場合、全ての支持杆11,11,11が伸びる前の初期状態で、全ての支持杆11,11,11の上端は、前記三角形の内側に位置し、言い換えると全ての支持杆11,11,11は、その上端が三角形の中央側に傾いている。   7 and 8, for the sake of explanation, the upper ends, which are the other ends of the three support rods 11, 11, 11 are crossed and illustrated, but the upper ends are separated as shown in FIG. In this case, in an initial state before all the support rods 11, 11, 11 are extended, the upper ends of all the support rods 11, 11, 11 are located inside the triangle, in other words, all the support rods. 11, 11 and 11 have their upper ends inclined toward the center of the triangle.

このように本実施例では、3本以上(N本以上:Nは3以上の自然数)の支持杆11,11,11を備え、複数の支持杆11,11,11の一端を該支持杆11,11,11の本数に対応する多角形である三角形(N角形)の頂点位置で基礎3に揺動自在に連結し、複数の支持杆11,11,11の他端を三角形の中央側位置で被支持体たる建物2に揺動自在に連結したから、地震時には、3本の支持杆11,11,11が揺動し、この揺動中に少なくとも1本の支持杆11が所定長さで回転すると共に、少なくとも1本の支持杆11が伸張しながら回転することにより、優れた免震効果を得ることができる。   As described above, in this embodiment, the support rods 11, 11, 11 are provided with three or more (N or more: N is a natural number of 3 or more), and one end of the plurality of support rods 11, 11, 11 is provided on the support rod 11. , 11, 11 are pivotally connected to the foundation 3 at the apex position of a triangle (N-gon) which is a polygon corresponding to the number of the support rods 11, and the other ends of the plurality of support rods 11, 11, 11 are positioned at the center side of the triangle. In this case, the three support rods 11, 11, 11 are swung during an earthquake, and at least one support rod 11 has a predetermined length. And at least one supporting rod 11 rotates while being stretched, whereby an excellent seismic isolation effect can be obtained.

図10及び図11は、本発明の実施例2を示し、上記実施例1と同一部分に同一符号を付し、その詳細な説明を省略して詳述する。この例では、4本の前記支持杆11,11,11,11を用い、これら4本の支持杆11,11,11,11と基礎2の一部の面により略四角錐を形成するように4本の支持杆11,11,11,11が配置されている。   10 and 11 show a second embodiment of the present invention, in which the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. In this example, the four support rods 11, 11, 11, 11 are used, and a substantially quadrangular pyramid is formed by the four support rods 11, 11, 11, 11 and a part of the foundation 2. Four support rods 11, 11, 11, 11 are arranged.

このように本実施例においても、3本以上である4本の支持杆11,11,11,11を備え、複数の支持杆11,11,11,11の一端を該支持杆11,11,11,11の本数に対応する多角形である四角形の頂点位置で基礎3に揺動自在に連結し、複数の支持杆11,11,11,11の他端を四角形の中央側位置で被支持体たる建物2に揺動自在に連結したから、上記各実施例と同様な作用・効果を奏する。   Thus, also in this embodiment, there are four support rods 11, 11, 11, 11 that are three or more, and one end of the plurality of support rods 11, 11, 11, 11 is connected to the support rods 11, 11, 11, 11 and 11 are pivotally connected to the base 3 at the vertex positions of a quadrilateral polygon, and the other ends of the plurality of support rods 11, 11, 11, 11 are supported at the center position of the quadrilateral. Since it is connected to the body building 2 so as to be swingable, the same operations and effects as the above-described embodiments can be obtained.

なお、本発明は、前記実施例に限定されるものではなく、種々の変形実施が可能である。例えば、実施例では、エネルギ蓄積変換手段として、圧縮コイルバネを例示したが、引張コイルバネや、液体圧を用いるものなど各種タイプのものを用いることができる。また、実施例とは逆に、支持杆は、一端側に伸縮杆、他端側に筒状ケースを設けてもよい。さらに、実施例では、3本の支持杆を用いる三角錐タイプものと、4本の支持杆を用いる四角錐タイプのものを示したが、5本以上の五角錐以上のタイプのものでもよい。また、ダンパー機構は、実施例で示した粘性流体を利用したもの以外でも、摩擦を利用したものなど各種タイプのものを用いることができる。   In addition, this invention is not limited to the said Example, A various deformation | transformation implementation is possible. For example, in the embodiment, the compression coil spring is exemplified as the energy storage conversion means. However, various types such as a tension coil spring and a device using liquid pressure can be used. Contrary to the embodiment, the support rod may be provided with a telescopic rod on one end side and a cylindrical case on the other end side. Further, in the embodiment, a triangular pyramid type using three support rods and a quadrangular pyramid type using four support rods are shown, but a type of five or more pentagonal pyramids or more may be used. In addition to the damper mechanism using the viscous fluid shown in the embodiment, various types of damper mechanisms such as one using friction can be used.

1 免震装置
2 建物(被支持体)
3 基礎
11 支持杆
12 支持杆本体
13 筒状ケース
14 伸縮杆
15 コイルバネ(エネルギ蓄積変換手段)
16 ダンパー機構(エネルギ吸収装置)
1 Seismic isolation device 2 Building (supported body)
3 foundation 11 support rod 12 support rod main body 13 cylindrical case 14 telescopic rod 15 coil spring (energy storage conversion means)
16 Damper mechanism (energy absorber)

Claims (4)

被支持体とこの被支持体を支持する基礎との間に設ける免震装置において、
所定長さで圧縮力に対抗する伸縮可能な支持杆本体と、前記支持杆本体の伸張によりエネルギを蓄えると共に前記蓄えたエネルギにより前記支持体本体を収縮するエネルギ蓄積変換手段とを有する支持杆を用い、
対をなす前記支持杆を備え、前記対をなす支持杆の一端を、間隔をおいて前記基礎に揺動自在に連結し、前記対をなす支持杆の他端を、前記一端の間隔より狭い間隔で前記被支持体に揺動自在に連結したことを特徴とする免震装置。
In the seismic isolation device provided between the supported body and the foundation that supports the supported body,
A support rod having a stretchable support rod body that opposes a compressive force at a predetermined length, and an energy storage conversion means that stores energy by stretching the support rod body and contracts the support body by the stored energy. Use
A pair of support rods, one end of the pair of support rods being pivotably connected to the foundation at a distance, and the other end of the pair of support rods being narrower than the distance between the one ends A seismic isolation device, wherein the seismic isolation device is swingably connected to the supported body at intervals.
前記支持杆は、前記被支持体の振動を減衰する振動減衰手段を備えることを特徴とすることを特徴とする請求項1記載の免震装置。 The seismic isolation device according to claim 1, wherein the support rod includes vibration attenuating means for attenuating vibration of the supported body. 3本以上の前記支持杆を備え、前記複数の支持杆の一端を該支持杆の本数に対応する多角形の頂点位置で前記基礎に揺動自在に連結し、前記複数の支持杆の他端を前記多角形の中央側位置で前記被支持体に揺動自在に連結したことを特徴とする請求項1又は2記載の免震装置。 Three or more support rods are provided, and one ends of the plurality of support rods are swingably connected to the foundation at polygonal vertex positions corresponding to the number of the support rods, and the other ends of the plurality of support rods The seismic isolation device according to claim 1, wherein the seismic isolation device is swingably connected to the supported body at a center position of the polygon. 前記支持杆本体は、一定長さまで伸張した後、引張力に対抗することを特徴とする請求項1〜3のいずれか1項に記載の免震装置。 The seismic isolation device according to any one of claims 1 to 3, wherein the support rod main body opposes a tensile force after extending to a certain length.
JP2009169358A 2009-07-17 2009-07-17 Seismic isolation device Expired - Fee Related JP5153733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009169358A JP5153733B2 (en) 2009-07-17 2009-07-17 Seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009169358A JP5153733B2 (en) 2009-07-17 2009-07-17 Seismic isolation device

Publications (2)

Publication Number Publication Date
JP2011021727A true JP2011021727A (en) 2011-02-03
JP5153733B2 JP5153733B2 (en) 2013-02-27

Family

ID=43631974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009169358A Expired - Fee Related JP5153733B2 (en) 2009-07-17 2009-07-17 Seismic isolation device

Country Status (1)

Country Link
JP (1) JP5153733B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2423293A2 (en) 2010-08-31 2012-02-29 Kabushiki Kaisha Toshiba Process for production of SiAlON oxynitride phosphors
KR101402030B1 (en) 2013-12-06 2014-06-02 유노빅스이엔씨(주) Suspension type vibration-proof device
JP2015212489A (en) * 2014-05-02 2015-11-26 首都高速道路株式会社 Damper for use in earthquake-resistant structure of bridge and recovery method of earthquake-resistant structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5228117A (en) * 1975-08-29 1977-03-02 Tadayoshi Nakayama Antiiearthquake apparatus
JPH09177845A (en) * 1995-12-28 1997-07-11 Nissan Motor Co Ltd Pad for disc brake for vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5228117A (en) * 1975-08-29 1977-03-02 Tadayoshi Nakayama Antiiearthquake apparatus
JPH09177845A (en) * 1995-12-28 1997-07-11 Nissan Motor Co Ltd Pad for disc brake for vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2423293A2 (en) 2010-08-31 2012-02-29 Kabushiki Kaisha Toshiba Process for production of SiAlON oxynitride phosphors
KR101402030B1 (en) 2013-12-06 2014-06-02 유노빅스이엔씨(주) Suspension type vibration-proof device
JP2015212489A (en) * 2014-05-02 2015-11-26 首都高速道路株式会社 Damper for use in earthquake-resistant structure of bridge and recovery method of earthquake-resistant structure

Also Published As

Publication number Publication date
JP5153733B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
JP6558747B2 (en) Seismic isolation support with gravity control using gravity negative stiffness
WO1995021351A1 (en) Framed structure
JP5153733B2 (en) Seismic isolation device
JP2007198104A (en) Structure foundation built by incorporating force absorbing device
JP2006328655A (en) Base isolation device
JP5728173B2 (en) Vibration control device, steel tower and structure
JP2019019849A (en) Seismic isolation damper and seismic isolation system
JP6916717B2 (en) Disconnector
JP5281528B2 (en) Vertical vibration suppression structure and seismic isolation device
JPH0960334A (en) Three dimensional base insulation method and vibration isolation device
JP3810386B2 (en) Vibration control device using toggle mechanism
JP2008249122A (en) Vibration damping device
JP5143116B2 (en) Seismic isolation device
JP5318483B2 (en) Vibration control device
JP4513095B2 (en) Isolation device
JP2004060404A (en) Base-isolation device and base-isolation structure
JPH10280726A (en) Vibration control mechanism
JP5251936B2 (en) Damping structure of structure
JP5574337B2 (en) Vertical motion isolation system
JP4177991B2 (en) Seismic isolation device
JP2007085068A (en) Aseismic device
JP3747179B2 (en) Seismic isolation structure
JP6415138B2 (en) Damping device for tension material
JP2020060238A (en) Base isolation device
CN219778393U (en) Detachable simulation sand table

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5153733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees