JP2011020893A - Firing method for molded product and holding tool for firing the molded product - Google Patents

Firing method for molded product and holding tool for firing the molded product Download PDF

Info

Publication number
JP2011020893A
JP2011020893A JP2009167459A JP2009167459A JP2011020893A JP 2011020893 A JP2011020893 A JP 2011020893A JP 2009167459 A JP2009167459 A JP 2009167459A JP 2009167459 A JP2009167459 A JP 2009167459A JP 2011020893 A JP2011020893 A JP 2011020893A
Authority
JP
Japan
Prior art keywords
molded body
firing
holder
sintered
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009167459A
Other languages
Japanese (ja)
Other versions
JP5212291B2 (en
Inventor
Yoshiaki Mayuzumi
良享 黛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009167459A priority Critical patent/JP5212291B2/en
Publication of JP2011020893A publication Critical patent/JP2011020893A/en
Application granted granted Critical
Publication of JP5212291B2 publication Critical patent/JP5212291B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Furnace Charging Or Discharging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a sintered product having no cracks or warping, and to dispense with the use such as of cold isostatic press (CIP), which increases the number of steps for producing a molded product, in order to simplify the process. <P>SOLUTION: A molded product of a plate form is fired in a firing furnace to produce a sintered plate. The molded product is formed into a polygonal plate, and the molded product is fired in the state that the molded product is made to stand by a holding tool so that one corner of the molded product faces vertically downward. This means that the lowest corner of the polygonal plate of the molded product is received by the holder member of the holding tool, and one main face of a pair of main faces of the molded product is received by the support member of the holding tool. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、スパッタリング法、電子ビーム蒸着法、イオンプレーティング法等の蒸着材として用いられる焼結体を得るために成形体を焼成する方法と、成形体の焼成時にこの成形体を保持するための保持具に関するものである。   The present invention relates to a method of firing a molded body to obtain a sintered body used as a vapor deposition material such as a sputtering method, an electron beam vapor deposition method, and an ion plating method, and to hold the molded body during firing of the molded body. It is related with a holder.

従来、板状の成形体を焼成する場合、この成形体の最も広い面積を有する平面(主面)を敷板に接触させた状態、即ち平置きにした状態で焼成炉内で焼成される。このとき成形体と敷板との摩擦を軽減するために、成形体と敷板との間に敷粉やブロックなどが介装される。   Conventionally, when a plate-shaped molded body is fired, it is fired in a firing furnace in a state where the flat surface (main surface) having the widest area of the molded body is in contact with the floor plate, that is, in a flat state. At this time, in order to reduce the friction between the molded body and the floor plate, a floor powder, a block, or the like is interposed between the molded body and the floor plate.

しかし、上記成形体の焼成方法では、成形体が敷粉やブロック等により汚染(contamination)されるおそれがあった。また上記成形体の焼成方法では、成形体と敷板との間に敷粉やブロックなどを介装しても、未だ成形体と敷粉等との間に発生する摩擦が大きいため、焼結体に割れが発生したり、或いは反りが発生する問題点があった。更に上記成形体の焼成方法では、成形体が敷粉やブロックと広い面積で接触しているため、成形体の焼成炉内への収容枚数が少なくなって処理量が減少し、焼成速度が遅くなるとともに冷却時間が長くなる問題点もあった。   However, in the above-described method for firing a molded body, the molded body may be contaminated with bed powder or blocks. Further, in the above-mentioned method of firing the molded body, even if a floor powder or a block is interposed between the molded body and the floor plate, the friction generated between the molded body and the floor powder is still large. There was a problem that cracking occurred or warpage occurred. Furthermore, in the above-mentioned method for firing a molded body, since the molded body is in contact with the spread powder or block over a wide area, the number of molded bodies accommodated in the firing furnace is reduced, the processing amount is reduced, and the firing speed is slow. In addition, there is a problem that the cooling time becomes longer.

これらの点を解消するために、インジウム化合物とスズ化合物との混合物を板状に成形した後、この板状成形体を立てた状態で焼成炉に入れ、この板状成形体の主板面の両面を炉内雰囲気に晒して焼成するITOの焼成方法が開示されている(例えば、特許文献1参照。)。このように構成されたITOの焼成方法では、反りや色ムラのないITO焼結体を焼成できるので、平坦な焼結体を高い歩留まりで得られるようになっている。   In order to eliminate these points, after forming a mixture of an indium compound and a tin compound into a plate shape, the plate-like molded body is put in a firing furnace in a standing state, and both surfaces of the main plate surface of the plate-shaped molded body are placed. A method of firing ITO is disclosed in which the material is fired by exposing it to a furnace atmosphere (see, for example, Patent Document 1). In the ITO firing method configured in this way, an ITO sintered body free from warpage and color unevenness can be fired, and a flat sintered body can be obtained with a high yield.

また、金型プレスの下ポンチ上に、下ポンチとは独立した板状物が介在するプレス金型を用い、セラミック粉末をプレス圧力100kg/cm2(10MPa)以上300kg/cm2(30MPa)以下で金型プレスして成形密度50%未満の成形体を調製し、粉末プレス成形体を上記板状体と一体で取り出した後、成形体のみを真空封入し、1ton/cm2(100MPa)以上の圧力で複数回の静水圧プレス(CIP)処理を行って成形体密度を50%以上とした後、焼成するセラミックターゲットの製造方法が開示されている(例えば、特許文献2参照。)このように構成されたセラミックターゲットの製造方法では、割れや反りがなく、歩留まりや生産速度に優れ、スパッタ特性にも優れたターゲットを製造できるようになっている。 In addition, using a press mold in which a plate-like material independent of the lower punch is interposed on the lower punch of the mold press, the ceramic powder is pressed at a pressure of 100 kg / cm 2 (10 MPa) to 300 kg / cm 2 (30 MPa). After pressing the mold with a die to prepare a molded body having a molding density of less than 50%, the powder press molded body is taken out integrally with the plate-like body, and then only the molded body is vacuum-sealed, and 1 ton / cm 2 (100 MPa) or more A method of manufacturing a ceramic target that is fired after a hydrostatic press (CIP) process is performed at a pressure of 50 ° C. for a compact density of 50% or more is disclosed (for example, see Patent Document 2). With the ceramic target manufacturing method configured as above, it is possible to manufacture a target that is free of cracks and warpage, has excellent yield and production speed, and has excellent sputter characteristics. That.

特開平8−169770号公報(請求項1及び2、段落[0005]、段落[0026])JP-A-8-169770 (Claims 1 and 2, paragraphs [0005] and [0026]) 特開平6−182732号公報(請求項1、段落[0008])JP-A-6-182732 (Claim 1, paragraph [0008])

しかし、上記従来の特許文献1に示されたITOの焼成方法では、板状成形体の側面を下側にして炉内に立てたときに、板状成形体の側面の全てが炉内の敷板に接触するため、板状成形体と敷板との間に発生する摩擦が大きく、焼結体に割れが発生したり、或いは反りが発生する問題点があった。また、上記従来の特許文献2に示されたセラミックターゲットの製造方法では、成形体に対して複数回の静水圧プレス(CIP)処理を行っており、成形体を作製するためのプロセスが複雑であり、工数が増大して製造コストを押上げる問題点があった。   However, in the above-described conventional ITO firing method disclosed in Patent Document 1, when the plate-shaped molded body is placed in the furnace with the side surface of the plate-shaped body facing down, all of the side surfaces of the plate-shaped molded body are laid in the furnace. Therefore, there is a problem that the friction generated between the plate-like molded body and the base plate is large, and the sintered body is cracked or warped. Moreover, in the manufacturing method of the ceramic target shown by the said conventional patent document 2, the hydrostatic press (CIP) process is performed with respect to a molded object in multiple times, and the process for producing a molded object is complicated. There is a problem that the man-hour increases and the manufacturing cost increases.

本発明の第1の目的は、割れや反りのない焼結体を得ることができる、成形体の焼成方法及びその成形体の焼成用保持具を提供することにある。本発明の第2の目的は、成形体を作製するための工数を増大させる静水圧プレス(CIP)等を用いずに済み、プロセスを簡素化できる、成形体の焼成方法及びその成形体の焼成用保持具を提供することにある。本発明の第3の目的は、成形体からガスが比較的スムーズに抜けることにより、色ムラの発生を抑制できるとともに、焼結体の密度を向上できる、成形体の焼成方法及びその成形体の焼成用保持具を提供することにある。本発明の第4の目的は、焼成時の成形体の昇温速度と焼結体の降温速度を大幅に速くすることができる、成形体の焼成方法及びその成形体の焼成用保持具を提供することにある。   A first object of the present invention is to provide a method for firing a molded body and a holder for firing the molded body, which can obtain a sintered body free from cracks and warpage. The second object of the present invention is to eliminate the use of an isostatic press (CIP) or the like that increases the number of steps for producing a molded body, and can simplify the process, and a method for firing the molded body and firing the molded body. It is to provide a holding tool. A third object of the present invention is to provide a method for firing a molded body and a molded body that can suppress the occurrence of uneven color and improve the density of the sintered body by allowing gas to escape from the molded body relatively smoothly. The object is to provide a holder for firing. The fourth object of the present invention is to provide a method for firing a molded body and a holder for firing the molded body, which can greatly increase the temperature rising rate of the molded body and the temperature lowering rate of the sintered body during firing. There is to do.

本発明の第1の観点は、板状の成形体を焼成炉内で焼成して板状の焼結体を製造する方法において、成形体が多角形板状に形成され、成形体のいずれかの突出した頂点が鉛直方向下向きになるように成形体を保持具により立てて保持した状態で焼成することを特徴とする。   According to a first aspect of the present invention, there is provided a method for producing a plate-like sintered body by firing a plate-like formed body in a firing furnace, wherein the formed body is formed into a polygonal plate shape. The molded body is fired in a state where it is held upright and held by a holder so that the protruding top is vertically downward.

本発明の第2の観点は、第1の観点に基づく発明であって、更に多角形板状の成形体の最下部の突出した頂点を保持具のホルダ部材が受け、成形体の一対の主面のうち一方の主面を保持具のサポート部材が受けることを特徴とする。   A second aspect of the present invention is an invention based on the first aspect, wherein the holder member of the holder receives the projecting vertex of the lowermost part of the polygonal plate-shaped molded body, and a pair of main parts of the molded body. One of the surfaces is received by a support member of the holder.

本発明の第3の観点は、第2の観点に基づく発明であって、更にサポート部材の成形体を受ける面の水平面に対する角度θが70〜90度であることを特徴とする。   A third aspect of the present invention is an invention based on the second aspect, and is characterized in that the angle θ of the surface that receives the molded body of the support member with respect to the horizontal plane is 70 to 90 degrees.

本発明の第4の観点は、多角形板状の成形体の焼成時に、成形体のいずれかの突出した頂点が鉛直方向下向きになるように成形体を立てた状態に保持する成形体の焼成用保持具である。   According to a fourth aspect of the present invention, when the polygonal plate-shaped molded body is fired, the molded body is held in a state where the molded body is held up so that any protruding vertex of the molded body faces downward in the vertical direction. It is a holding tool.

本発明の第5の観点は、第4の観点に基づく発明であって、更に保持具が、多角形板状の成形体の最下部の突出した頂点を受けるホルダ部材と、成形体の一対の主面のうち一方の主面を受けるサポート部材とを備えたことを特徴とする。   A fifth aspect of the present invention is an invention based on the fourth aspect, wherein the holder further receives a projecting apex at the bottom of the polygonal plate-like molded body, and a pair of the molded body And a support member that receives one of the main surfaces.

本発明の第6の観点は、第5の観点に基づく発明であって、更にサポート部材の成形体を受ける面の水平面に対する角度θが70〜90度であることを特徴とする。   A sixth aspect of the present invention is the invention based on the fifth aspect, and is characterized in that the angle θ of the surface that receives the molded body of the support member with respect to the horizontal plane is 70 to 90 degrees.

本発明の第1の観点の焼成方法又は第4の観点の保持具では、多角形板状に形成された成形体のいずれかの突出した頂点が鉛直方向下向きになるように成形体を保持具により立てて保持した状態で焼成するので、多角形板状の成形体と保持具との接触面積が極めて小さく、焼成時に成形体が収縮しても、焼結体が殆ど摩擦なく速やかに収縮する。この結果、焼結体に割れが発生することはない。また従来のセラミックターゲットの製造方法のような成形体を作製するための工数を増大させる静水圧プレス(CIP)等を用いずに済むので、四角形板状の成形体の作製するためのプロセスを簡素化できる。また焼成時に四角形板状の成形体が収縮するけれども、この成形体が極めて小さい面積で保持具に接触しているため、成形体からガスが比較的スムーズに抜けて、色ムラの発生を抑制できるとともに、焼結体の密度を向上できる。更に焼成時に成形体の保持具との接触面積が極めて小さいので、焼成時における成形体の昇温速度と焼結体の降温速度を大幅に速くすることができる。この結果、比較的少ないエネルギで成形体を焼成して焼結体を得ることができる。   In the firing method according to the first aspect of the present invention or the holder according to the fourth aspect, the molded body is held so that any protruding vertex of the molded body formed in a polygonal plate shape is vertically downward. Since it is fired in a state where it is held upright, the contact area between the polygonal plate-shaped molded body and the holder is extremely small, and even if the molded body shrinks during firing, the sintered body shrinks quickly with almost no friction. . As a result, no cracks occur in the sintered body. Moreover, it is not necessary to use a hydrostatic pressure press (CIP) or the like that increases the number of steps for producing a molded body as in the conventional method for producing a ceramic target, so that the process for producing a rectangular plate-like molded body is simplified. Can be In addition, the rectangular plate-shaped molded body shrinks during firing, but since this molded body is in contact with the holder in an extremely small area, the gas can be discharged from the molded body relatively smoothly, and the occurrence of color unevenness can be suppressed. At the same time, the density of the sintered body can be improved. Furthermore, since the contact area between the molded body and the holder during firing is extremely small, the temperature rising rate of the molded body and the temperature lowering rate of the sintered body during firing can be greatly increased. As a result, a sintered body can be obtained by firing the molded body with relatively little energy.

本発明の第2の観点の焼成方法又は第5の観点の保持具では、ホルダ部材が多角形板状の成形体の略全ての重量を狭い面積で受け、サポート部材が上記成形体の一方の主面を極めて小さい圧力で受けるので、成形体は平板状態に保たれた状態で焼成されるとともに、成形体が意図せずに倒れることはなく、反りのない焼結体を得ることができる。また四角形板状の成形体が、ホルダ部材に対して大きな圧力であるけれども極めて小さい面積で接触し、サポート部材に対して広い面積であるけれども極めて小さい圧力で接触するため、焼成時に成形体が収縮しても、成形体がサポート部材に対して速やかにずれていくとともに、成形体からガスが比較的スムーズに抜けていく。この結果、成形体に割れが発生せず、色ムラの発生を抑制できるとともに、焼結体の密度を向上できる。   In the firing method according to the second aspect of the present invention or the holder according to the fifth aspect, the holder member receives substantially the entire weight of the polygonal plate-like molded body in a small area, and the support member is one of the molded bodies. Since the main surface is received with an extremely small pressure, the molded body is fired in a flat state, and the molded body does not fall down unintentionally, and a sintered body without warping can be obtained. In addition, the square plate-shaped molded body contacts the holder member with a very small area but with a very small area, and contacts the support member with a large area but with a very small pressure. Even so, the molded body quickly shifts with respect to the support member, and the gas escapes from the molded body relatively smoothly. As a result, cracks do not occur in the molded body, generation of color unevenness can be suppressed, and the density of the sintered body can be improved.

本発明の第1実施形態の保持具で四角形板状の成形体を保持している状態を示す図2のA−A線断面図である。It is the sectional view on the AA line of FIG. 2 which shows the state which hold | maintains the square-plate-shaped molded object with the holder of 1st Embodiment of this invention. 図1のB−B線断面図である。It is the BB sectional view taken on the line of FIG. 本発明の第2実施形態の保持具で四角形板状の成形体を保持している状態を示す図4のC−C線断面図である。It is CC sectional view taken on the line of FIG. 4 which shows the state holding the square-plate-shaped molded object with the holder of 2nd Embodiment of this invention. 図3のD−D線断面図である。It is the DD sectional view taken on the line of FIG. 比較例5の保持具により四角形板状の成形体を保持した状態を示す斜視図である。10 is a perspective view showing a state in which a rectangular plate-shaped molded body is held by a holder of Comparative Example 5. FIG. 図5のE−E線断面図である。It is the EE sectional view taken on the line of FIG. 比較例6の保持具により四角形板状の成形体を保持した状態を示す斜視図である。10 is a perspective view showing a state in which a rectangular plate-like molded body is held by a holder of Comparative Example 6. FIG. 図7のF−F線断面図である。It is the FF sectional view taken on the line of FIG.

次に本発明を実施するための形態を図面に基づいて説明する。
<第1の実施の形態>
図1及び図2に示すように、成形体11を焼成炉内で焼成するとき、この成形体11は保持具12により保持される。上記成形体11は、この実施の形態では、金属酸化物粉末とバインダと有機溶剤とを混合して調製されたスラリーを噴霧乾燥して混合造粒粉末を得た後に、この造粒粉末を型に入れて所定の圧力で成形(1軸プレス成形等)することにより、四角形板状に形成される。また保持具12は、四角形板状の成形体11の焼成時に、この成形体11のいずれかの突出した頂点が鉛直方向下向きになるように成形体11を立てた状態に保持するように構成される。具体的には、保持具12は、四角形板状の成形体11の最下部の突出した頂点を受けるホルダ部材13と、この成形体11の一対の主面のうち一方の主面を受けるサポート部材14とを備える。
Next, an embodiment for carrying out the present invention will be described with reference to the drawings.
<First Embodiment>
As shown in FIGS. 1 and 2, when the molded body 11 is fired in a firing furnace, the molded body 11 is held by a holder 12. In this embodiment, the molded body 11 is obtained by spray-drying a slurry prepared by mixing a metal oxide powder, a binder, and an organic solvent to obtain a mixed granulated powder, and then molding the granulated powder. And formed into a square plate by molding at a predetermined pressure (uniaxial press molding or the like). In addition, the holder 12 is configured to hold the molded body 11 in a standing state so that any protruding vertex of the molded body 11 faces downward in the vertical direction when firing the rectangular plate-shaped molded body 11. The Specifically, the holder 12 includes a holder member 13 that receives the projecting apex at the bottom of the rectangular plate-shaped molded body 11, and a support member that receives one main surface of the pair of main surfaces of the molded body 11. 14.

ホルダ部材13は、直方体状のベース部13aと、ベース部13aの水平な上面中央に上方に突設された受け部13bとを有する。ベース部13aと受け部13bは、アルミナやマグネシアなどの酸化物系の多孔質セラミック、或いは炭化ケイ素や窒化ケイ素などの非酸化系の多孔質セラミックにより一体的に形成される。受け部13bの上面中央には略V字状の切欠き部13cが形成され、この切欠き部13cに成形体11の最下部の突出した頂点が収容される。切欠き部13cの開き角αは成形体11の最下部の突出した頂点の角度と略同一に形成される。また切欠き部13cの開口上端の間隔Hは、四角形板状の成形体11の最下部の突出した頂点を含む鉛直面と交差する対角線の長さの5〜60%、好ましくは10〜30%の範囲に設定される。ここで、間隔Hを、成形体11の最下部の突出した頂点を含む鉛直面と交差する対角線の長さの5〜60%の範囲内に限定したのは、5%未満では成形体11を安定して保持できず、60%を越えるとホルダ部材13と成形体11との接触面積が大きくなり過ぎて焼成後の焼結体に割れが発生してしまうからである。更に切欠き部13cの底辺の鉛直線に対する角度θは70〜90度、好ましくは75〜85度に設定される。これは、切欠き部13cの底辺の鉛直線に対する角度θをサポート部材14の成形体11を受ける面の水平面に対する角度θと同一にして、切欠き部13cの底辺が成形体11の最下部の突出した頂点を含む辺を均一な圧力で受けるためである。   The holder member 13 has a rectangular parallelepiped base portion 13a and a receiving portion 13b protruding upward at the center of the horizontal upper surface of the base portion 13a. The base portion 13a and the receiving portion 13b are integrally formed of an oxide-based porous ceramic such as alumina or magnesia, or a non-oxidizing porous ceramic such as silicon carbide or silicon nitride. A substantially V-shaped notch 13c is formed in the center of the upper surface of the receiving part 13b, and the projecting vertex of the lowermost part of the molded body 11 is accommodated in the notch 13c. The opening angle α of the notch 13c is formed to be substantially the same as the angle of the protruding vertex at the bottom of the molded body 11. The interval H between the upper ends of the notches 13c is 5 to 60%, preferably 10 to 30% of the length of the diagonal line intersecting the vertical plane including the projecting apex at the bottom of the rectangular plate-shaped molded body 11. Is set in the range. Here, the interval H is limited to the range of 5 to 60% of the length of the diagonal line intersecting the vertical plane including the projecting vertex at the bottom of the molded body 11. This is because it cannot be stably held, and if it exceeds 60%, the contact area between the holder member 13 and the molded body 11 becomes too large and cracks occur in the sintered body after firing. Furthermore, the angle θ with respect to the vertical line of the bottom of the notch 13c is set to 70 to 90 degrees, preferably 75 to 85 degrees. This is because the angle θ with respect to the vertical line of the bottom of the notch 13 c is made the same as the angle θ with respect to the horizontal plane of the surface of the support member 14 that receives the molded body 11, and the bottom of the notch 13 c is the lowermost part of the molded body 11. This is because the side including the protruding vertex is received with uniform pressure.

サポート部材14は、ベース部13aの上面にボルト16により固定される固定部14aと、この固定部14aから立設された起立部14bとを有する。固定部14aと起立部14bは、アルミナやマグネシアなどの酸化物系の多孔質セラミック、或いは炭化ケイ素や窒化ケイ素などの非酸化系の多孔質セラミックにより一体的に形成される。起立部14bの成形体11を受ける面の水平面に対する角度θは、上述したように、70〜90度、好ましくは75〜85度に設定される。即ち、起立部14bの成形体11の受け面と固定部14aの下面とのなす角度が上記θとなる。ここで、起立部14bの成形体11を受ける面の水平面に対する角度θを70〜90度の範囲内に限定したのは、70度未満では起立部14bの成形体11を受ける圧力が大きくなり過ぎて、焼成時に成形体11が収縮したときに、成形体11が起立部14bに対して速やかにずれず、焼結体に割れが発生したり或いは色ムラが発生するおそれがあり、90度を越えると成形体11が倒れてしまうからである。   The support member 14 has a fixed portion 14a fixed to the upper surface of the base portion 13a by a bolt 16, and an upright portion 14b erected from the fixed portion 14a. The fixed portion 14a and the upright portion 14b are integrally formed of an oxide-based porous ceramic such as alumina or magnesia, or a non-oxidizing porous ceramic such as silicon carbide or silicon nitride. As described above, the angle θ of the surface of the upright portion 14b that receives the molded body 11 with respect to the horizontal plane is set to 70 to 90 degrees, preferably 75 to 85 degrees. That is, the angle formed by the receiving surface of the molded body 11 of the upright portion 14b and the lower surface of the fixed portion 14a is θ. Here, the angle θ with respect to the horizontal plane of the surface that receives the molded body 11 of the upright portion 14b is limited to the range of 70 to 90 degrees. If the angle θ is less than 70 degrees, the pressure that receives the molded body 11 of the raised section 14b becomes too large. When the molded body 11 contracts during firing, the molded body 11 may not be quickly displaced with respect to the upright portion 14b, and the sintered body may be cracked or uneven in color. It is because the molded object 11 will fall if it exceeds.

なお、上記切欠き部13cの向きは成形体11の重心Gの位置によって変更することが好ましい。即ち、切欠き部13cの下辺を含む鉛直面内に成形体11の重心Gが位置するように切欠き部13cの向きが設定される。具体的には、成形体11が正方形板状である場合には、切欠き部13cの向きは上向きに設定され、成形体11が長方形板状である場合には、切欠き部13cの向きは斜め上向きに設定される。これにより成形体11は保持具12により主面の左右のバランスが保たれた状態で保持される。   The orientation of the notch 13c is preferably changed according to the position of the center of gravity G of the molded body 11. That is, the orientation of the notch 13c is set so that the center of gravity G of the molded body 11 is located in the vertical plane including the lower side of the notch 13c. Specifically, when the molded body 11 has a square plate shape, the orientation of the cutout portion 13c is set upward, and when the molded body 11 has a rectangular plate shape, the orientation of the cutout portion 13c is Set diagonally upward. As a result, the molded body 11 is held by the holder 12 in a state where the left and right balance of the main surface is maintained.

このように構成された保持具12を用いて四角形板状の成形体11を焼成する方法を説明する。先ず四角形板状の成形体11の最下部の突出した頂点をホルダ部材13の切欠き部13cに挿入し、この成形体11の一方の主面をサポート部材14に接触させた状態で成形体11を焼成すると、ホルダ部材13の受け部13bが成形体11の略全ての重量を狭い面積で受け、サポート部材14の起立部14bが上記成形体11の一方の主面を極めて小さい圧力で受ける。この結果、成形体11は平板状態に保たれた状態で焼成されるとともに、成形体11が意図せずに倒れることはなく、反りのない焼結体を得ることができる。また四角形板状の成形体11が、受け部13bに対して大きな圧力であるけれども極めて小さい面積で接触し、起立部14bに対して広い面積であるけれども極めて小さい圧力で接触するため、焼成時に成形体11が収縮しても、成形体11が起立部14bに対して速やかにずれていくとともに、成形体11からガスが比較的スムーズに抜けていく。この結果、成形体11に割れが発生せず、色ムラの発生を抑制できるとともに、焼結体の密度を向上できる。更にこの実施の形態では、成形体11を作製するための工数を増大させる静水圧プレス(CIP)等を用いずに、工数の少ない1軸プレス成形等で成形体11を作製できるので、成形体11の作製するためのプロセスを簡素化できる。   A method for firing the rectangular plate-shaped molded body 11 using the holder 12 configured as described above will be described. First, the projecting vertex of the lowermost portion of the rectangular plate-shaped molded body 11 is inserted into the notch 13c of the holder member 13, and the molded body 11 is in a state where one main surface of the molded body 11 is in contact with the support member 14. Is fired, the receiving portion 13b of the holder member 13 receives substantially the entire weight of the molded body 11 in a narrow area, and the upright portion 14b of the support member 14 receives one main surface of the molded body 11 with a very small pressure. As a result, the molded body 11 is fired in a state of being maintained in a flat plate state, and the molded body 11 does not fall down unintentionally, and a sintered body without warping can be obtained. In addition, the quadrangular plate-shaped molded body 11 is in contact with the receiving portion 13b with a very small area although having a large pressure, and is in contact with the standing portion 14b with a very small pressure although having a large area. Even if the body 11 contracts, the molded body 11 quickly shifts with respect to the standing portion 14b, and the gas escapes from the molded body 11 relatively smoothly. As a result, cracks do not occur in the molded body 11, the occurrence of color unevenness can be suppressed, and the density of the sintered body can be improved. Furthermore, in this embodiment, the molded body 11 can be produced by uniaxial press molding or the like with less man-hours without using a hydrostatic press (CIP) or the like that increases the number of steps for producing the molded body 11. 11 can be simplified.

<第2の実施の形態>
図3及び図4は本発明の第2の実施の形態を示す。図3及び図4において図1及び図2と同一符号は同一部品を示す。この実施の形態では、ホルダ部材53のベース部53a上面の水平面に対する角度θを70〜90度、好ましくは75〜85度に設定される。また切欠き部53cの底辺の鉛直線に対する角度もベース部53a上面の水平面に対する角度θと同一に設定される。一方、サポート部材54において、起立部54bの成形体11の受け面と固定部54aの下面とのなす角度は直角(90度)となるように設定される。これは、サポート部材54をベース部53a上面に取付けたときに、起立部54bの成形体11を受ける面の水平面に対する角度θが70〜90度、好ましくは75〜85度になるようにするためである。上記以外は第1の実施の形態と同一に構成される。
<Second Embodiment>
3 and 4 show a second embodiment of the present invention. 3 and 4, the same reference numerals as those in FIGS. 1 and 2 denote the same components. In this embodiment, the angle θ of the upper surface of the base 53a of the holder member 53 with respect to the horizontal plane is set to 70 to 90 degrees, preferably 75 to 85 degrees. The angle of the bottom of the notch 53c with respect to the vertical line is also set to be the same as the angle θ with respect to the horizontal plane of the upper surface of the base 53a. On the other hand, in the support member 54, the angle formed between the receiving surface of the molded body 11 of the standing portion 54b and the lower surface of the fixed portion 54a is set to be a right angle (90 degrees). This is because when the support member 54 is attached to the upper surface of the base portion 53a, the angle θ of the surface that receives the molded body 11 of the standing portion 54b with respect to the horizontal plane is 70 to 90 degrees, preferably 75 to 85 degrees. It is. The configuration other than the above is the same as that of the first embodiment.

このように構成された保持具52では、ベース部53aの上面の水平面に対する角度θを70〜90度、好ましくは75〜85度に設定することにより、受け部53b及びサポート部材54が比較的簡単な形状になるため、保持具52を製造するための型の製造コストの低減或いは保持具52の加工工数の低減を図ることができる。また、このように構成された保持具52を用いて四角形板状の成形体11を焼成する方法は、第1の実施の形態と略同様であるので、繰返しの説明を省略する。   In the holder 52 configured as described above, the receiving portion 53b and the support member 54 are relatively simple by setting the angle θ with respect to the horizontal plane of the upper surface of the base portion 53a to 70 to 90 degrees, preferably 75 to 85 degrees. Therefore, it is possible to reduce the manufacturing cost of the mold for manufacturing the holder 52 or reduce the number of processing steps of the holder 52. In addition, the method for firing the rectangular plate-shaped molded body 11 using the holder 52 configured in this manner is substantially the same as that in the first embodiment, and thus the repeated description is omitted.

なお、上記第1及び第2の実施の形態では、成形体を四角形板状に形成したが、三角形板状、五角形板状、或いは六角形以上の板状に形成してもよい。また、上記第1及び第2の実施の形態では、保持具をホルダ部材及びサポート部材により構成したが、成形体が比較的厚い場合、例えば成形体の厚さが、三角形板状の成形体の最下部の突出した頂点の対辺の長さ、或いは四角形以上の板状の成形体の最下部の突出した頂点を含む鉛直線と交差する対角線のうち最も長い対角線の長さの5%以上である場合には、成形体が主面の方向に倒れ難いため、サポート部材を用いなくてもよい。この場合、多角形板状に形成された成形体のいずれかの突出した頂点が鉛直方向下向きになるように成形体を保持具により立てて保持した状態で焼成するので、多角形板状の成形体と保持具との接触面積が極めて小さく、焼成時に成形体が収縮しても、焼結体が殆ど摩擦なく速やかに収縮する。この結果、焼結体に割れが発生することはない。また焼成時に四角形板状の成形体が収縮するけれども、この成形体が極めて小さい面積で保持具に接触しているため、成形体からガスが比較的スムーズに抜けて、色ムラの発生を抑制できるとともに、焼結体の密度を向上できる。更に焼成時に成形体の保持具との接触面積が極めて小さいので、焼成時における成形体の昇温速度と焼結体の降温速度を大幅に速くすることができる。この結果、比較的少ないエネルギで成形体を焼成して焼結体を得ることができる。   In the first and second embodiments, the molded body is formed in a quadrangular plate shape, but may be formed in a triangular plate shape, a pentagonal plate shape, or a hexagonal plate shape or more. Moreover, in the said 1st and 2nd embodiment, although the holder was comprised by the holder member and the support member, when a molded object is comparatively thick, for example, the thickness of a molded object is a triangular plate-shaped molded object. It is 5% or more of the length of the longest diagonal line among the diagonal lines intersecting the vertical line including the projecting vertex at the bottom of the lowermost protruding vertex of the quadrangular or more plate-shaped molded body. In this case, since the molded body hardly falls down in the direction of the main surface, the support member need not be used. In this case, since the molded body is fired in a state where it is held upright by a holder so that any protruding vertex of the molded body formed in a polygonal plate shape is vertically downward, the polygonal plate-shaped molding is performed. The contact area between the body and the holder is extremely small, and even if the molded body shrinks during firing, the sintered body shrinks quickly with almost no friction. As a result, no cracks occur in the sintered body. In addition, the rectangular plate-shaped molded body shrinks during firing, but since this molded body is in contact with the holder in an extremely small area, the gas can be discharged from the molded body relatively smoothly, and the occurrence of color unevenness can be suppressed. At the same time, the density of the sintered body can be improved. Furthermore, since the contact area between the molded body and the holder during firing is extremely small, the temperature rising rate of the molded body and the temperature lowering rate of the sintered body during firing can be greatly increased. As a result, a sintered body can be obtained by firing the molded body with relatively little energy.

次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
先ず平均粒径3μmの酸化亜鉛粉末と平均粒径2μmの酸化ガリウム粉末の混合粉末を1軸プレス成形(圧力:100MPa)を行って、縦、横及び厚さがそれぞれ180mm、250mm及び15mmの四角形板状の成形体を5枚作製した。なお、酸化亜鉛粉末や酸化ガリウム粉末の平均粒径は、レーザー回折・散乱法(マイクロトラック法)に従い、日機装社製のFRA型を用い、分散媒としてヘキサメタりん酸Naを使用し、1回の測定時間を30秒として3回測定した値を平均化して求めた。
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
First, a mixed powder of zinc oxide powder having an average particle diameter of 3 μm and gallium oxide powder having an average particle diameter of 2 μm is subjected to uniaxial press molding (pressure: 100 MPa), and squares having a length, width and thickness of 180 mm, 250 mm and 15 mm, respectively. Five plate-shaped compacts were produced. The average particle size of zinc oxide powder or gallium oxide powder is determined by using a FRA type manufactured by Nikkiso Co., Ltd. according to a laser diffraction / scattering method (microtrack method), and using sodium hexametaphosphate as a dispersion medium. The value measured three times with a measurement time of 30 seconds was obtained by averaging.

次に図1及び図2に示すように、上記成形体11を保持具12により保持した。具体的には、保持具12は、四角形板状の成形体11の最下部の突出した頂点を受けるホルダ部材13と、この成形体11の一対の主面のうち一方の主面を受けるサポート部材14とを備える。またホルダ部材13は、直方体状のベース部13aと、このベース部13aの水平な上面中央に上方に突設された受け部13bとを有し、サポート部材14は、ベース部13aの上面にボルト16により固定される固定部14aと、この固定部14aから立設された起立部14bとを有する。サポート部材14をホルダ部材13に取付け、このときの起立部14bの成形体11を受ける面の水平面に対する角度θを80度に設定した。また切欠き部13cを上向きに設定し、その開き角αを上向きに90度に設定し、切欠き部13cの開口上端の間隔Hは成形体11の最下部の突出した頂点を含む鉛直面と交差する対角線の長さの20%に設定した。更にこの状態で成形体11を保持具12とともに焼成炉に入れ、大気雰囲気中で1300℃に5時間保持して焼結体を5枚作製した。これらの焼結体を実施例1とした。   Next, as shown in FIGS. 1 and 2, the molded body 11 was held by a holder 12. Specifically, the holder 12 includes a holder member 13 that receives the projecting apex at the bottom of the rectangular plate-shaped molded body 11, and a support member that receives one main surface of the pair of main surfaces of the molded body 11. 14. The holder member 13 has a rectangular parallelepiped base portion 13a and a receiving portion 13b protruding upward at the center of the horizontal upper surface of the base portion 13a. The support member 14 is bolted to the upper surface of the base portion 13a. 16 has a fixed portion 14a fixed by 16 and an upright portion 14b erected from the fixed portion 14a. The support member 14 was attached to the holder member 13, and the angle θ with respect to the horizontal plane of the surface that received the molded body 11 of the standing portion 14b at this time was set to 80 degrees. Further, the notch 13c is set upward, the opening angle α is set 90 ° upward, and the interval H between the upper ends of the openings of the notch 13c is a vertical plane including the projecting apex at the bottom of the molded body 11. It was set to 20% of the length of intersecting diagonal lines. Further, in this state, the molded body 11 was placed in a firing furnace together with the holder 12, and held at 1300 ° C. for 5 hours in an air atmosphere to produce five sintered bodies. These sintered bodies were referred to as Example 1.

<比較例1>
先ず実施例1の成形体と同一材質かつ同一形状の成形体(縦180mm、横250mm、厚さ15mm)を3枚作製した。次にこれらの成形体の最も広い面積を有する平面(主面)を酸化アルミニウム製の敷板に接触させた状態、即ち成形体を敷板上に平置きにした状態で焼成炉に入れ、大気雰囲気中で1300℃に5時間保持して焼結体を3枚作製した。これらの焼結体を比較例1とした。
<Comparative Example 1>
First, three molded bodies (180 mm long, 250 mm wide, 15 mm thick) of the same material and shape as the molded body of Example 1 were produced. Next, in the state where the flat surface (main surface) having the largest area of these molded bodies is in contact with the aluminum oxide floor plate, that is, in the state where the molded body is placed flat on the floor plate, it is placed in a firing furnace. And held at 1300 ° C. for 5 hours to produce three sintered bodies. These sintered bodies were referred to as Comparative Example 1.

<比較例2>
先ず実施例1の成形体と同一材質かつ同一形状の成形体(縦180mm、横250mm、厚さ15mm)を3枚作製した。次に敷板上に平均粒径0.5mmの酸化アルミニウム製の敷粉を敷き詰めた。更に上記成形体の最も広い面積を有する平面(主面)を敷粉に接触させた状態、即ち成形体を敷粉上に平置きにした状態で焼成炉に入れ、大気雰囲気中で1300℃に5時間保持して焼結体を3枚作製した。これらの焼結体を比較例2とした。
<Comparative Example 2>
First, three molded bodies (180 mm long, 250 mm wide, 15 mm thick) of the same material and shape as the molded body of Example 1 were produced. Next, an aluminum oxide bed powder having an average particle size of 0.5 mm was spread on the floor plate. Further, in the state in which the flat surface (main surface) having the widest area of the molded body is in contact with the bed powder, that is, in the state where the molded body is placed flat on the bed powder, the molded body is placed in a firing furnace and heated to 1300 ° C. in an air atmosphere. Three sheets of sintered bodies were produced by holding for 5 hours. These sintered bodies were referred to as Comparative Example 2.

<比較例3>
先ず実施例1の成形体と同一材質かつ同一形状の成形体(縦180mm、横250mm、厚さ15mm)を3枚作製した。次に敷板上に酸化アルミニウム製のブロック(縦:180mm、横:250mm、高さ:15mm)を敷き詰めた。更に上記成形体の最も広い面積を有する平面(主面)をブロックに接触させた状態、即ち成形体をブロック上に平置きにした状態で焼成炉に入れ、大気雰囲気中で1300℃に5時間保持して焼結体を3枚作製した。これらの焼結体を比較例3とした。
<Comparative Example 3>
First, three molded bodies (180 mm long, 250 mm wide, 15 mm thick) of the same material and shape as the molded body of Example 1 were produced. Next, a block made of aluminum oxide (vertical: 180 mm, horizontal: 250 mm, height: 15 mm) was spread on the floor plate. Furthermore, the molded body was placed in a firing furnace in a state where the flat surface (main surface) having the largest area was in contact with the block, that is, in a state where the molded body was placed flat on the block, and was heated at 1300 ° C. for 5 hours in an air atmosphere. Holding, three sintered bodies were produced. These sintered bodies were referred to as Comparative Example 3.

<比較例4>
先ず実施例1の成形体と同一材質かつ同一形状の成形体(縦180mm、横250mm、厚さ15mm)を3枚作製した。次にこの成形体の横方向の側面(横250mm×厚さ15mmの面)を敷板に接触させた状態、即ち成形体を敷板上に横長に立てた状態で焼成炉に入れ、大気雰囲気中で1300℃に5時間保持して焼結体を3枚作製した。これらの焼結体を比較例3とした。
<Comparative example 4>
First, three molded bodies (180 mm long, 250 mm wide, 15 mm thick) of the same material and shape as the molded body of Example 1 were produced. Next, this molded body was placed in a firing furnace in a state in which the lateral side surface (surface having a width of 250 mm × thickness of 15 mm) was brought into contact with the floor plate, that is, the molded body was placed in a horizontally long state on the floor plate. Three sintered bodies were produced by holding at 1300 ° C. for 5 hours. These sintered bodies were referred to as Comparative Example 3.

<比較例5>
先ず図5及び図6に示すような保持具2を作製した。この保持具2は、酸化アルミニウム製の敷板2aと、この敷板2a上に縦方向に220mmの長い間隔をあけかつ横方向に20mmの短い間隔をあけて長方形の各角部に立設された酸化アルミニウム製の4本の柱部材2bとを備える。柱部材2bの横断面は一辺10mmの正方形であった。次に実施例1の成形体11と同一材質かつ同一形状の成形体11(縦180mm、横250mm、厚さ15mm)を7枚作製した。更にこれらの成形体11の横方向の側面(横250mm×厚さ15mmの面)を敷板2aに接触させた状態、即ち成形体11を敷板2a上に横長に立てた状態で、成形体11を4本の柱部材2bの短い間隔内に遊挿した。このとき4本の柱部材2bの短い間隔(20mm)が成形体11の厚さ(15mm)より僅かに広く形成されているため、成形体11の一方の主面をこの面に対向する2本の柱部材2bに面接触させた。この状態で成形体11を保持具2とともに焼成炉に入れ、大気雰囲気中で1300℃に5時間保持して焼結体を7枚作製した。これらの焼結体を比較例5とした。なお、図5及び図6では、保持具2により1枚の成形体11を保持しているが、実際には敷板上に縦方向に220mmの長い間隔をあけた2本の柱部材を、横方向に20mmの短い間隔をあけて8箇所(柱部材の総本数:16本)にそれぞれ立設して、7枚の成形体をそれぞれ保持できるようにした。
<Comparative Example 5>
First, a holder 2 as shown in FIGS. 5 and 6 was produced. The holder 2 is made of an aluminum oxide floor plate 2a, and an oxide film provided on the floor plate 2a with a long interval of 220 mm in the vertical direction and a short interval of 20 mm in the horizontal direction. And four pillar members 2b made of aluminum. The cross section of the column member 2b was a square having a side of 10 mm. Next, seven molded bodies 11 (length 180 mm, width 250 mm, thickness 15 mm) of the same material and shape as the molded body 11 of Example 1 were produced. Further, in a state where the lateral side surfaces (surfaces of 250 mm wide × 15 mm thick) of these molded bodies 11 are in contact with the floor plate 2a, that is, in a state where the molded body 11 is placed on the floor plate 2a in a horizontally long state, The four pillar members 2b were loosely inserted within a short interval. At this time, since the short interval (20 mm) between the four column members 2b is formed slightly wider than the thickness (15 mm) of the molded body 11, two main surfaces of the molded body 11 are opposed to this surface. The column member 2b was brought into surface contact. In this state, the molded body 11 was placed in a firing furnace together with the holder 2, and held at 1300 ° C. for 5 hours in an air atmosphere to produce seven sintered bodies. These sintered bodies were referred to as Comparative Example 5. 5 and 6, the single molded body 11 is held by the holder 2, but in reality, two pillar members having a long interval of 220 mm in the vertical direction are placed on the floor plate in the horizontal direction. Eight positions (total number of column members: 16) were set up at a short interval of 20 mm in the direction so that seven molded bodies could be held respectively.

<比較例6>
先ず図7及び図8に示すような保持具7を作製した。この保持具7は、酸化アルミニウム製の敷板7aと、この敷板7a上に縦方向に220mmの長い間隔をあけかつ横方向に40mmの短い間隔をあけて長方形の各角部に立設された酸化アルミニウム製の4本の柱部材7bと、これらの柱部材7bに掛け渡された酸化アルミニウム製の4本の架設部材7cとを備える。4本の架設部材7cのうち2本は、4本の柱部材7bのうち長い間隔をあけた2本に、鉛直方向に間隔をあけかつ水平方向に延びるように掛け渡した。残りの2本の架設部材7cは、残りの2本の柱部材7bに、鉛直方向に間隔をあけかつ水平方向に延びるように掛け渡した。このとき4本の架設部材7cを4本の柱部材7bの短い間隔の内側に位置するように掛け渡し、架設部材7cの水平方向の間隔は20mmであった。また柱部材7bの横断面は一辺10mmの正方形であり、架設部材7cの横断面は直径10mmの円であった。次に実施例1の成形体11と同一材質かつ同一形状の成形体11(縦180mm、横250mm、厚さ15mm)を7枚作製した。更にこれらの成形体11の横方向の側面(横250mm×厚さ15mmの面)を敷板7aに接触させた状態、即ち成形体11を敷板7a上に横長に立てた状態で、成形体11を4本の架設部材7cの間に遊挿した。このとき架設部材7cの水平方向の間隔(20mm)が成形体11の厚さ(15mm)より僅かに広く形成されているため、成形体11の一方の主面をこの面に対向する2本の架設部材7cに線接触させた。この状態で成形体11を保持具7とともに焼成炉に入れ、大気雰囲気中で1300℃に5時間保持して焼結体を7枚作製した。これらの焼結体を比較例6とした。なお、図7及び図8では、保持具7により1枚の成形体11を保持しているが、実際には敷板上に縦方向に220mmの長い間隔をあけた2本の柱部材を、横方向に40mmの短い間隔をあけて8箇所(柱部材の総本数:16本)にそれぞれ立設し、架設部材を4本ずつ柱部材の短い間隔の内側に位置するように掛け渡して(架設部材の総本数:28本)、7枚の成形体をそれぞれ保持できるようにした。
<Comparative Example 6>
First, a holder 7 as shown in FIGS. 7 and 8 was produced. The holder 7 is made of an aluminum oxide floor plate 7a, and an oxidation plate provided on each corner of the rectangle with a long space of 220mm in the vertical direction and a short space of 40mm in the horizontal direction on the floor plate 7a. There are provided four column members 7b made of aluminum and four erection members 7c made of aluminum oxide spanned over these column members 7b. Two of the four erected members 7c were spanned across two of the four column members 7b spaced apart so as to be spaced apart in the vertical direction and extended in the horizontal direction. The remaining two erection members 7c were stretched over the remaining two column members 7b so as to be spaced apart in the vertical direction and extended in the horizontal direction. At this time, the four erection members 7c were spanned so as to be located inside the short interval of the four column members 7b, and the horizontal interval between the erection members 7c was 20 mm. The cross section of the column member 7b was a square having a side of 10 mm, and the cross section of the erection member 7c was a circle having a diameter of 10 mm. Next, seven molded bodies 11 (length 180 mm, width 250 mm, thickness 15 mm) of the same material and shape as the molded body 11 of Example 1 were produced. Further, in a state where the lateral side surfaces (surfaces of 250 mm wide × 15 mm thick) of these molded bodies 11 are in contact with the floor plate 7 a, that is, in a state where the molded body 11 is set up horizontally on the floor board 7 a, It was loosely inserted between the four construction members 7c. At this time, since the horizontal interval (20 mm) of the erection member 7 c is formed slightly wider than the thickness (15 mm) of the molded body 11, two main surfaces of the molded body 11 are opposed to this surface. Line contact was made with the erection member 7c. In this state, the molded body 11 was placed in a firing furnace together with the holder 7 and held at 1300 ° C. for 5 hours in an air atmosphere to prepare seven sintered bodies. These sintered bodies were referred to as Comparative Example 6. 7 and 8, one molded body 11 is held by the holder 7, but in reality, two column members having a long interval of 220 mm in the vertical direction are placed on the floor plate in the horizontal direction. Standing at 8 locations (total number of column members: 16) with a short interval of 40 mm in the direction, and spanning the four construction members so as to be located inside the short spacing of the pillar members (construction The total number of members: 28) and 7 molded bodies can be held respectively.

<比較試験1及び評価>
実施例1〜5と比較例7及び8の焼結体の割れ、反り、密度及び色ムラをそれぞれ測定した。焼結体の割れ及び色ムラは目視により測定した。また焼結体の反りは、焼結体の最大面における厚さ方向の最大反り量を焼結体の厚さで割った後に100倍した値(%)とした。更に焼結体の密度は体積法により測定した。これらの結果を表1に示す。なお、表1における焼結体の反りは焼結体毎の最大値の中で最も大きかった値とした。また、表1における焼結体の密度は各焼結体の値の平均(算術平均)値とした。
<Comparative test 1 and evaluation>
The cracks, warpage, density, and color unevenness of the sintered bodies of Examples 1 to 5 and Comparative Examples 7 and 8 were measured. The cracks and color unevenness of the sintered body were measured visually. The warpage of the sintered body was a value (%) obtained by dividing the maximum amount of warpage in the thickness direction of the maximum surface of the sintered body by the thickness of the sintered body and then multiplying by 100. Further, the density of the sintered body was measured by a volume method. These results are shown in Table 1. In addition, the curvature of the sintered compact in Table 1 was taken as the largest value among the maximum values for every sintered compact. Moreover, the density of the sintered compact in Table 1 was made into the average (arithmetic mean) value of the value of each sintered compact.

Figure 2011020893
表1から明らかなように、比較例1〜3の焼結体には割れが発生したのに対し、実施例1及び比較例4〜6の焼結体には割れは発生しなかった。また、比較例1〜6の焼結体では反りが4〜20%と大きかったのに対し、実施例1の焼結体では反りが0.8%と小さかった。また、比較例1〜6の焼結体では密度が92.0〜98.0%と小さかったのに対し、実施例1の焼結体では密度が98.4%と大きかった。更に比較例1〜3の焼結体では接触面に色ムラが発生したのに対し、実施例1及び比較例4〜6の焼結体では、色ムラが発生しなかった。
Figure 2011020893
As apparent from Table 1, cracks occurred in the sintered bodies of Comparative Examples 1 to 3, whereas no cracks occurred in the sintered bodies of Example 1 and Comparative Examples 4 to 6. Further, in the sintered bodies of Comparative Examples 1 to 6, the warp was as large as 4 to 20%, whereas in the sintered body of Example 1, the warp was as small as 0.8%. Moreover, in the sintered bodies of Comparative Examples 1 to 6, the density was as small as 92.0 to 98.0%, whereas in the sintered body of Example 1, the density was as large as 98.4%. Furthermore, while the sintered bodies of Comparative Examples 1 to 3 were uneven in color on the contact surface, the sintered bodies of Example 1 and Comparative Examples 4 to 6 were not uneven in color.

<実施例2>
起立部の成形体を受ける面の水平面に対する角度θを70度に設定したこと以外は、実施例1と同様にして焼結体を5枚作製した。これらの焼結体を実施例2とした。
<実施例3>
起立部の成形体を受ける面の水平面に対する角度θを90度に設定したこと以外は、実施例1と同様にして焼結体を5枚作製した。これらの焼結体を実施例3とした。
<実施例4>
起立部の成形体を受ける面の水平面に対する角度θを85度(好ましい角度の下限値)に設定したこと以外は、実施例1と同様にして焼結体を5枚作製した。これらの焼結体を実施例4とした。
<実施例5>
起立部の成形体を受ける面の水平面に対する角度θを75度(好ましい角度の上限値)に設定したこと以外は、実施例1と同様にして焼結体を5枚作製した。これらの焼結体を実施例5とした。
<Example 2>
Five sintered bodies were produced in the same manner as in Example 1 except that the angle θ with respect to the horizontal plane of the surface receiving the molded body of the upright portion was set to 70 degrees. These sintered bodies were referred to as Example 2.
<Example 3>
Five sintered bodies were produced in the same manner as in Example 1 except that the angle θ with respect to the horizontal plane of the surface receiving the molded body of the standing portion was set to 90 degrees. These sintered bodies were referred to as Example 3.
<Example 4>
Five sintered bodies were produced in the same manner as in Example 1 except that the angle θ with respect to the horizontal plane of the surface receiving the molded body of the standing portion was set to 85 degrees (preferred lower limit value of the angle). These sintered bodies were referred to as Example 4.
<Example 5>
Five sintered bodies were produced in the same manner as in Example 1 except that the angle θ with respect to the horizontal plane of the surface receiving the molded body of the standing portion was set to 75 degrees (preferred upper limit value of the angle). These sintered bodies were referred to as Example 5.

<比較例7>
起立部の成形体を受ける面の水平面に対する角度θを65度(下限値を僅かに下回る角度)に設定したこと以外は、実施例1と同様にして焼結体を5枚作製した。これらの焼結体を比較例7とした。
<比較例8>
起立部の成形体を受ける面の水平面に対する角度θを91度(上限値を僅かに上回る角度)に設定したこと以外は、実施例1と同様にして焼結体を5枚作製した。これらの焼結体を比較例8とした。
<Comparative Example 7>
Five sintered bodies were produced in the same manner as in Example 1 except that the angle θ with respect to the horizontal plane of the surface receiving the molded body of the standing portion was set to 65 degrees (an angle slightly lower than the lower limit value). These sintered bodies were referred to as Comparative Example 7.
<Comparative Example 8>
Five sintered bodies were produced in the same manner as in Example 1 except that the angle θ with respect to the horizontal plane of the surface receiving the molded body of the standing portion was set to 91 degrees (an angle slightly exceeding the upper limit value). These sintered bodies were referred to as Comparative Example 8.

<比較試験2及び評価>
実施例1〜5と比較例7及び8の焼成時における成形体の安定性と、これらの焼結体の割れ、反り、密度及び色ムラをそれぞれ測定した。上記成形体の安定性は、成形体を受ける面を水平面に対して傾けたときに、倒れ始める角度で評価した。実施例及び比較例で設定した角度を基準にして何度傾けたかを表2に示した。角度が大きいほど焼成時のプロセスにおける振動や焼結時の収縮移動による倒れの限界が高いことを意味する。傾斜速度は1度/10秒とした。また焼結体の割れ、反り、密度及び色ムラは比較試験1と同様にして測定した。その結果を表2に示す。
<Comparative test 2 and evaluation>
The stability of the molded bodies during firing in Examples 1 to 5 and Comparative Examples 7 and 8, and cracks, warpage, density, and color unevenness of these sintered bodies were measured. The stability of the molded body was evaluated based on an angle at which the molded body started to fall when the surface receiving the molded body was tilted with respect to a horizontal plane. Table 2 shows how many times the angle is set based on the angles set in the examples and comparative examples. The larger the angle, the higher the limit of collapse due to vibration during the firing process and shrinkage movement during sintering. The tilt speed was 1 degree / 10 seconds. Further, cracks, warpage, density and color unevenness of the sintered body were measured in the same manner as in Comparative Test 1. The results are shown in Table 2.

Figure 2011020893
表2から明らかなように、比較例8の焼結体には割れが発生したのに対し、実施例1〜5の焼結体には割れは発生しなかった。また比較例7の焼結体では反りが12%と大きかったのに対し、実施例1〜5の焼結体では反りが0.6〜2.2%と小さかった。また比較例7の焼結体では密度が97.0%と小さかったのに対し、実施例1〜5の焼結体では密度が98.4〜99.0%と大きかった。更に比較例7の焼結体では敷板との接触面に色ムラが発生したのに対し、実施例1〜5の焼結体では色ムラが発生しなかった。
Figure 2011020893
As apparent from Table 2, cracks occurred in the sintered body of Comparative Example 8, whereas no cracks occurred in the sintered bodies of Examples 1 to 5. The warpage of the sintered body of Comparative Example 7 was as large as 12%, whereas the warpage of the sintered bodies of Examples 1 to 5 was as small as 0.6 to 2.2%. The density of the sintered body of Comparative Example 7 was as small as 97.0%, whereas the density of the sintered bodies of Examples 1 to 5 was as large as 98.4 to 99.0%. Furthermore, in the sintered body of Comparative Example 7, color unevenness occurred on the contact surface with the base plate, whereas in the sintered bodies of Examples 1 to 5, no color unevenness occurred.

<実施例6>
切欠き部の開口上端の間隔Hを、成形体の最下部の突出した頂点を含む鉛直面と交差する対角線の長さの5%(下限値)に設定したこと以外は、実施例1と同様にして焼結体を5枚作製した。これらの焼結体を実施例6とした。
<実施例7>
切欠き部の開口上端の間隔Hを、成形体の最下部の突出した頂点を含む鉛直面と交差する対角線の長さの60%(上限値)に設定したこと以外は、実施例1と同様にして焼結体を5枚作製した。これらの焼結体を実施例7とした。
<実施例8>
切欠き部の開口上端の間隔Hを、成形体の最下部の突出した頂点を含む鉛直面と交差する対角線の長さの10%(好ましい範囲の下限値)に設定したこと以外は、実施例1と同様にして焼結体を5枚作製した。これらの焼結体を実施例8とした。
<実施例9>
切欠き部の開口上端の間隔Hを、成形体の最下部の突出した頂点を含む鉛直面と交差する対角線の長さの30%(好ましい範囲の上限値)に設定したこと以外は、実施例1と同様にして焼結体を5枚作製した。これらの焼結体を実施例9とした。
<Example 6>
Similar to Example 1, except that the interval H between the upper ends of the openings of the notches is set to 5% (lower limit) of the length of the diagonal line intersecting the vertical plane including the projecting vertex at the bottom of the molded body. Thus, five sintered bodies were produced. These sintered bodies were referred to as Example 6.
<Example 7>
Similar to Example 1, except that the interval H between the upper ends of the openings of the notches is set to 60% (upper limit) of the length of the diagonal line intersecting the vertical plane including the projecting vertex at the bottom of the molded body. Thus, five sintered bodies were produced. These sintered bodies were referred to as Example 7.
<Example 8>
Example, except that the interval H between the upper ends of the openings of the notches was set to 10% (the lower limit value of the preferred range) of the length of the diagonal line intersecting the vertical plane including the projecting vertex at the bottom of the molded body In the same manner as in Example 1, five sintered bodies were produced. These sintered bodies were referred to as Example 8.
<Example 9>
Example, except that the interval H at the upper end of the opening of the notch is set to 30% (the upper limit value of the preferred range) of the diagonal line intersecting the vertical plane including the projecting vertex at the bottom of the molded body In the same manner as in Example 1, five sintered bodies were produced. These sintered bodies were referred to as Example 9.

<比較例9>
切欠き部の開口上端の間隔Hを、成形体の最下部の突出した頂点を含む鉛直面と交差する対角線の長さの3%(下限値を僅かに下回る角度)に設定したこと以外は、実施例1と同様にして焼結体を5枚作製した。これらの焼結体を比較例9とした。
<比較例10>
切欠き部の開口上端の間隔Hを、成形体の最下部の突出した頂点を含む鉛直面と交差する対角線の長さの70%(上限値を僅かに上回る角度)に設定したこと以外は、実施例1と同様にして焼結体を5枚作製した。これらの焼結体を比較例10とした。
<Comparative Example 9>
Except that the interval H between the upper ends of the openings of the notches is set to 3% of the length of the diagonal line intersecting the vertical plane including the projecting vertex at the bottom of the molded body (an angle slightly lower than the lower limit value), Five sintered bodies were produced in the same manner as in Example 1. These sintered bodies were referred to as Comparative Example 9.
<Comparative Example 10>
Except that the interval H between the upper ends of the openings of the notches is set to 70% of the length of the diagonal line intersecting the vertical plane including the projecting vertex at the bottom of the molded body (an angle slightly exceeding the upper limit), Five sintered bodies were produced in the same manner as in Example 1. These sintered bodies were referred to as Comparative Example 10.

<比較試験3及び評価>
実施例1、6〜9と比較例9及び10の焼成時における成形体の安定性と、これらの焼結体の割れ、反り、密度及び色ムラをそれぞれ測定した。上記成形体の安定性は、成形体を受ける面を水平面に対して傾けたときに、倒れ始める角度で評価した。実施例及び比較例で設定した角度を基準にして何度傾けたかを表2に示した。角度が大きいほど焼成時のプロセスにおける振動や焼結時の収縮移動による倒れの限界が高いことを意味する。傾斜速度は1度/10秒とした。また焼結体の割れ、反り、密度及び色ムラは比較試験1と同様にして測定した。その結果を表3に示す。
<Comparative test 3 and evaluation>
The stability of the molded bodies during firing in Examples 1, 6 to 9 and Comparative Examples 9 and 10, and cracks, warpage, density, and color unevenness of these sintered bodies were measured. The stability of the molded body was evaluated based on an angle at which the molded body started to fall when the surface receiving the molded body was tilted with respect to a horizontal plane. Table 2 shows how many times the angle is set based on the angles set in the examples and comparative examples. The larger the angle, the higher the limit of collapse due to vibration during the firing process and shrinkage movement during sintering. The tilt speed was 1 degree / 10 seconds. Further, cracks, warpage, density and color unevenness of the sintered body were measured in the same manner as in Comparative Test 1. The results are shown in Table 3.

Figure 2011020893
表3から明らかなように、比較例9の焼結体には切欠き部にクラックが発生したのに対し、実施例1及び6〜9の焼結体には割れは発生しなかった。また比較例10の焼結体では密度が97.6%と小さかったのに対し、実施例1及び6〜9の焼結体では密度が98.2〜98.6%と大きかった。
Figure 2011020893
As is clear from Table 3, cracks occurred in the notches in the sintered body of Comparative Example 9, whereas no cracks occurred in the sintered bodies of Examples 1 and 6-9. The density of the sintered body of Comparative Example 10 was as small as 97.6%, whereas the density of the sintered bodies of Examples 1 and 6 to 9 was as large as 98.2 to 98.6%.

11 成形体
12,52 保持具
13,53 ホルダ部材
14,54 サポート部材
11 Molded body 12,52 Holder 13,53 Holder member 14,54 Support member

Claims (6)

板状の成形体を焼成炉内で焼成して板状の焼結体を製造する方法において、
前記成形体が多角形板状に形成され、
前記成形体のいずれかの突出した頂点が鉛直方向下向きになるように前記成形体を保持具により立てて保持した状態で焼成する
ことを特徴とする成形体の焼成方法。
In a method for producing a plate-like sintered body by firing a plate-like molded body in a firing furnace,
The molded body is formed in a polygonal plate shape,
Firing the molded body in a state where the molded body is held upright and held by a holder so that any protruding vertex of the molded body is vertically downward.
多角形板状の成形体の最下部の突出した頂点を保持具のホルダ部材が受け、前記成形体の一対の主面のうち一方の主面を前記保持具のサポート部材が受ける請求項1記載の成形体の焼成方法。   2. The holder member of the holder receives the projecting vertex of the lowermost part of the polygonal plate-shaped molded body, and the support member of the holder receives one main surface of the pair of main surfaces of the molded body. A method for firing the green body. サポート部材の成形体を受ける面の水平面に対する角度θが70〜90度である請求項2記載の成形体の焼成方法。   The method according to claim 2, wherein an angle θ of a surface of the support member that receives the molded body with respect to a horizontal plane is 70 to 90 degrees. 多角形板状の成形体の焼成時に、前記成形体のいずれかの突出した頂点が鉛直方向下向きになるように前記成形体を立てた状態に保持する成形体の焼成用保持具。   A holder for firing a molded body that holds the molded body in an upright state so that any protruding vertex of the molded body faces downward in the vertical direction during firing of the polygonal plate-shaped molded body. 保持具が、多角形板状の成形体の最下部の突出した頂点を受けるホルダ部材と、前記成形体の一対の主面のうち一方の主面を受けるサポート部材とを備えた請求項4記載の成形体の焼成用保持具。   The holder is provided with a holder member that receives the projecting vertex of the lowermost portion of the polygonal plate-shaped molded body, and a support member that receives one main surface of the pair of main surfaces of the molded body. A holder for firing the green body. サポート部材の成形体を受ける面の水平面に対する角度θが70〜90度である請求項5記載の成形体の焼成用保持具。   6. The holder for firing a molded body according to claim 5, wherein an angle [theta] of the surface of the support member that receives the molded body with respect to a horizontal plane is 70 to 90 degrees.
JP2009167459A 2009-07-16 2009-07-16 Method for firing molded body and holder for firing the molded body Expired - Fee Related JP5212291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009167459A JP5212291B2 (en) 2009-07-16 2009-07-16 Method for firing molded body and holder for firing the molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009167459A JP5212291B2 (en) 2009-07-16 2009-07-16 Method for firing molded body and holder for firing the molded body

Publications (2)

Publication Number Publication Date
JP2011020893A true JP2011020893A (en) 2011-02-03
JP5212291B2 JP5212291B2 (en) 2013-06-19

Family

ID=43631294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009167459A Expired - Fee Related JP5212291B2 (en) 2009-07-16 2009-07-16 Method for firing molded body and holder for firing the molded body

Country Status (1)

Country Link
JP (1) JP5212291B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646798U (en) * 1979-08-31 1981-04-25
JPS58190081A (en) * 1982-04-30 1983-11-05 Toshiba Corp Sintering method for piezoelectric element
JPS62246871A (en) * 1986-04-18 1987-10-28 ナショナル住宅産業株式会社 Burning method
JPH10114566A (en) * 1996-10-04 1998-05-06 Ngk Insulators Ltd Obliquely supporting base

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646798U (en) * 1979-08-31 1981-04-25
JPS58190081A (en) * 1982-04-30 1983-11-05 Toshiba Corp Sintering method for piezoelectric element
JPS62246871A (en) * 1986-04-18 1987-10-28 ナショナル住宅産業株式会社 Burning method
JPH10114566A (en) * 1996-10-04 1998-05-06 Ngk Insulators Ltd Obliquely supporting base

Also Published As

Publication number Publication date
JP5212291B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
CN103097845B (en) Rack for firing
JP6891991B2 (en) Manufacturing method of silicon nitride sintered substrate
KR101568219B1 (en) Tablet for vapor deposition
JP5212291B2 (en) Method for firing molded body and holder for firing the molded body
JP2024015261A (en) Method for manufacturing sintered silicon nitride substrate
TWI686366B (en) Positioner for firing ceramic products and method for manufacturing ceramic plate-shaped body
KR101355119B1 (en) Ceramic setter of plate type
JP2016151043A (en) Production method of target material made of ceramic, and cylindrical sputtering target
JP5979082B2 (en) Vapor deposition tablet and manufacturing method thereof
JP2012158507A (en) Setter for firing electronic component
JP2010235378A (en) Method for sintering compact and holding tool for holding compact during sintering
JP6168518B2 (en) Crucible for metal deposition
JP2016147778A (en) Method for producing inorganic powder sintered compact
JP2001122668A (en) Method for manufacturing ceramic sintered compact
JP6179026B2 (en) Low thermal expansion ceramics and method for producing the same
JP6314231B2 (en) Glossite ceramics, kiln tool using the same, and method for producing globite ceramics
JP2002226278A (en) Method for manufacturing ceramic sintered compact
JPH059076A (en) Production of aluminum nitride substrate
JP4554531B2 (en) Manufacturing method of ceramic sintered body
JP2022091255A (en) Setter
JP6842293B2 (en) Manufacturing method of cylindrical ceramic sintered body
JP2001262248A (en) Zn-Sb SERIES MATERIAL, ITS PRODUCING METHOD AND METHOD FOR SUPPRESSING CRACK IN Zn-Sb SERIES MATERIAL
JP5199091B2 (en) SiC sintered body and manufacturing method thereof
JP2004060964A (en) Baking setter and its manufacturing method
JP2011094882A (en) Support tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130211

R150 Certificate of patent or registration of utility model

Ref document number: 5212291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees