JP2011020175A - Laser beam machining method for cylindrical body and laser beam machining device for cylindrical body - Google Patents

Laser beam machining method for cylindrical body and laser beam machining device for cylindrical body Download PDF

Info

Publication number
JP2011020175A
JP2011020175A JP2009186092A JP2009186092A JP2011020175A JP 2011020175 A JP2011020175 A JP 2011020175A JP 2009186092 A JP2009186092 A JP 2009186092A JP 2009186092 A JP2009186092 A JP 2009186092A JP 2011020175 A JP2011020175 A JP 2011020175A
Authority
JP
Japan
Prior art keywords
cylindrical body
laser
laser processing
trajectory
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009186092A
Other languages
Japanese (ja)
Inventor
Susumu Terakawa
進 寺川
Kunio Murakami
邦雄 村上
Masamichi Akazawa
正道 赤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA TECH KK
Hamamatsu University School of Medicine NUC
Original Assignee
MA TECH KK
Hamamatsu University School of Medicine NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MA TECH KK, Hamamatsu University School of Medicine NUC filed Critical MA TECH KK
Priority to JP2009186092A priority Critical patent/JP2011020175A/en
Publication of JP2011020175A publication Critical patent/JP2011020175A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • B29C65/1661Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined scanning repeatedly, e.g. quasi-simultaneous laser welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1687Laser beams making use of light guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5221Joining tubular articles for forming coaxial connections, i.e. the tubular articles to be joined forming a zero angle relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/65General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool
    • B29C66/652General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool moving the welding tool around the fixed article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/934Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/939Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1674Laser beams characterised by the way of heating the interface making use of laser diodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/934Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed
    • B29C66/93441Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed the speed being non-constant over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/934Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed
    • B29C66/93451Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed by controlling or regulating the rotational speed, i.e. the speed of revolution

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser beam machining method and a laser beam machining device where a laser light emitted to a conical reflection face is reflectively emitted to the outer circumferential face, the inner circumferential face and the part around the edge face of a cylindrical material arranged at the central position, and is further circulated in a high speed scan, and the respective faces are subjected to deformation working, surface treatment, heat treatment and welding. <P>SOLUTION: A laser light L derived from a laser oscillator 50 is circularly emitted to a recessed conical reflection tube 90 at a circular trace S1 by a galvano mechanism 30a so as to be focused on the conical central part 91, and the outer circumferential face P0 of the cylindrical body inserted into the central hole 91 of the conical reflection tube is subjected to emission working. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、例えば、樹脂材や金属材からなる小径管から大径筒状材等の筒状体において、この外周面や内周面・端面周囲を変形加工・表面処理・熱処理もしくは溶着させる筒状体のレーザ加工方法とレーザ加工装置に係わり、特に、円錐状の反射面に照射されるレーザ光線の集光ビームを中心位置に配置する小径管の外周面や大径筒状材の内周面に反射照射させるとともに高速スキャンで周回させて外周面や内周面・端面周囲を変形加工・表面処理・熱処理もしくは溶着させるレーザ加工方法とレーザ加工装置に関するものである。  The present invention, for example, in a cylindrical body such as a small-diameter tube made of a resin material or a metal material to a large-diameter cylindrical material, the outer peripheral surface, the inner peripheral surface, and the periphery of the end surface are deformed, surface-treated, heat-treated or welded. In particular, the present invention relates to a laser processing method and a laser processing apparatus, and in particular, an outer peripheral surface of a small-diameter tube or an inner periphery of a large-diameter cylindrical member that places a condensing beam of a laser beam irradiated on a conical reflecting surface at a central position. The present invention relates to a laser processing method and a laser processing apparatus that irradiates a surface with reflection and circulates by high-speed scanning to deform, surface-treat, heat-treat or weld the outer peripheral surface, inner peripheral surface, and end surface.

近年、樹脂材や金属材からなる管や筒状材等の筒状体において、この外周面を変形加工・表面処理・熱処理させる筒状体のレーザ加工装置が提供されている。その方式は、レーザ発振器から導き出されたレーザ光線を光学レンズ系によりリング状に偏光させるとともに凹状の円錐反射筒に照射反射させて円錐中心部に集束させ、上記円錐反射筒の中心孔に挿通させた筒状体の外周面を一括照射方式で照射加工(変形加工・表面処理・熱処理・溶着等)してラジアル溶着するものが提供されている。  In recent years, there has been provided a laser processing apparatus for a cylindrical body that deforms, surface-treats, and heat-treats the outer peripheral surface of a cylindrical body such as a tube or a cylindrical material made of a resin material or a metal material. In this method, a laser beam derived from a laser oscillator is polarized in a ring shape by an optical lens system, reflected and irradiated on a concave conical reflecting tube, converged at the center of the cone, and inserted into the central hole of the conical reflecting tube. In addition, there is provided a method for performing radial welding on the outer peripheral surface of a cylindrical body by a batch irradiation method (deformation processing, surface treatment, heat treatment, welding, etc.).

更に、円錐反射筒を使用しない一括照射方式には、単一のレーザ光を複数のレーザ光に分岐させるために、凹凸段差形状を有する回折型光学部品(回折レンズ)を備え、当該凹凸段差形状を所定の形状とすることで、単一のレーザ光を例えばリング状のレーザ光とする。従って、被加工物の溶着部位がリング状である場合でも、当該リング状レーザ光は集光レンズを介して被加工物の溶着部位に照射することにより、一括溶着させるものである。具体的に記述すれば、レーザ光を出力するレーザ発振器と、レーザ光をリング状にする光学手段とを備えており、リング状のレーザ光により被加工物の加工を行うものである。このとき光学手段は、レーザ発振器から出力されたレーザ光を拡大し所定径の平行なレーザ光に調整するエクスパンダ及びコリメータと、所定径の平行なレーザ光をリング状の平行光とする一対の光学素子とを有し、エクスパンダ及びコリメータ間の距離及び/又は光学素子間の距離を制御することにより、被加工物表面におけるリング状のレーザ光の内径及び/又は外径を制御するレーザ加工装置である(例えば、特許文献1参照。)。  Further, the collective irradiation method that does not use a conical reflecting cylinder includes a diffractive optical component (diffraction lens) having a concavo-convex step shape to split a single laser beam into a plurality of laser beams, and the concavo-convex step shape. Is made into a predetermined shape, so that a single laser beam is, for example, a ring-shaped laser beam. Therefore, even when the welded portion of the workpiece is ring-shaped, the ring-shaped laser light is applied to the welded portion of the workpiece through the condensing lens to be welded together. More specifically, a laser oscillator that outputs laser light and an optical means for making the laser light into a ring shape are provided, and a workpiece is processed with the ring-shaped laser light. At this time, the optical means expands the laser beam output from the laser oscillator and adjusts it to a parallel laser beam with a predetermined diameter, and a pair of parallel laser beams with a predetermined diameter as ring-shaped parallel light. Laser processing for controlling the inner diameter and / or outer diameter of the ring-shaped laser beam on the surface of the workpiece by controlling the distance between the expander and the collimator and / or the distance between the optical elements. Device (see, for example, Patent Document 1).

他方、スキャン方式には、構成が簡素であり制御も容易なレーザビームによる樹脂溶着装置を得るべく、平行レーザビームを出力する高品質レーザビーム発生装置と、出力されるレーザビームを加工物に向けて照射するXY2軸の回転ミラーユニットと、回転軸を備えた加工物支持治具とで樹脂溶着装置を構成されるものがある(例えば、特許文献2参照。)。  On the other hand, in order to obtain a resin welding apparatus using a laser beam that is simple in configuration and easy to control, the scanning method has a high-quality laser beam generator that outputs a parallel laser beam, and the output laser beam is directed to a workpiece. In some cases, a resin welding apparatus is constituted by an XY biaxial rotating mirror unit that irradiates and a workpiece support jig provided with the rotating shaft (for example, see Patent Document 2).

特開2005−028428号公報  Japanese Patent Laying-Open No. 2005-028428 特開2005−254618号公報  JP 2005-254618 A

上記円錐反射筒を使用しない一括照射方式では、管や筒状材等の三次元筒状体の外周や内周が処理できない。また、光学レンズ系によりリング状に偏光するとともに円錐反射筒を使用した一括照射方式では、リング状レーザ光線の広い半径調節が不可能であるから、高価な光学レンズ系の交換を必須とするほか、外径寸法の異なる三次元筒状体の外周面や内周面の加工処理ができない。  In the collective irradiation method that does not use the conical reflecting cylinder, the outer periphery and inner periphery of a three-dimensional cylindrical body such as a tube or a cylindrical material cannot be processed. In addition, it is impossible to adjust the wide radius of the ring-shaped laser beam with the batch irradiation method that uses the optical lens system to polarize in a ring shape and uses a conical reflector, so it is necessary to replace an expensive optical lens system. The outer peripheral surface and inner peripheral surface of a three-dimensional cylindrical body having different outer diameter dimensions cannot be processed.

更に、上記スキャン方式(特開2005−254618号公報)では、平行レーザビームを出力する高品質レーザビーム発生装置を使用したことにより、出力されるレーザビームを加工物に向けて照射するための偏光手段(光走査手段)に、簡単なXY2軸の回転ミラーユニットを使用できるから、装置構造が簡単でありながら、管や筒状等の三次元曲面形状の溶着が不可能である。更に、スキャン方式の最大の問題点は、一つのレーザダイオードからのレーザ光線を溶着面の一点に向けて照射しつつスキャニングさせるから、表面積の広い面溶着を行う時に、同時に面全体を溶着状態とすることが難しい。これが為に、レーザ光線が移動軌跡上を一回目の移動時、照射されて溶解した樹脂は急速に凝固するから、一回目の移動軌跡近くを通過する二回目のレーザ光線のスキャン時には、再び凝固状態から溶融することがない。しかし、溶融後に凝固した樹脂部を再び溶融すると、樹脂材は材質劣化をおこしてしまう。従って、樹脂成型品の溶着部にヒケや反りが発生し、高精度な面溶着が保証されないと云う問題点がある。上記第一のスキャン方式には、これを解決する技術的手段が記述されていない。  Further, in the above scanning method (Japanese Patent Laid-Open No. 2005-254618), polarization for irradiating the workpiece with the output laser beam by using a high-quality laser beam generator that outputs a parallel laser beam. Since a simple XY biaxial rotating mirror unit can be used as the means (optical scanning means), it is impossible to weld a three-dimensional curved surface shape such as a tube or a cylinder while the apparatus structure is simple. Furthermore, the biggest problem with the scanning method is that scanning is performed while irradiating a laser beam from one laser diode toward one point on the welding surface. Therefore, when performing surface welding with a large surface area, the entire surface is simultaneously welded. Difficult to do. For this reason, when the laser beam moves on the movement trajectory for the first time, the irradiated and melted resin rapidly solidifies, so that it solidifies again when scanning the second laser beam that passes near the first trajectory. It does not melt from the state. However, if the resin part solidified after melting is melted again, the resin material will deteriorate. Therefore, there is a problem in that sink marks and warpage occur in the welded portion of the resin molded product, and high-precision surface welding cannot be guaranteed. The first scanning method does not describe technical means for solving this.

本発明は、上記円錐反射筒を使用するもの使用しない一括照射方式やスキャン方式における各問題点に鑑みてなされたものである。その目的は、円錐状の反射面に照射されるレーザ光線の集光ビームを中心位置に配置する小径管の外周面や大径筒状材の内周面に反射照射させるとともに高速スキャンで周回させて外周面や内周面・端面周囲を変形加工・表面処理・熱処理もしくは溶着させるレーザ加工方法とレーザ加工装置を提供するものである。  The present invention has been made in view of each problem in the batch irradiation method and the scanning method that do not use the above-described conical reflector. Its purpose is to reflect and irradiate the concentric reflection surface of the laser beam on the outer peripheral surface of the small-diameter tube or the inner peripheral surface of the large-diameter tubular material located at the center position, and rotate it at high speed. The present invention provides a laser processing method and a laser processing apparatus for deforming, surface-treating, heat-treating or welding the outer peripheral surface, inner peripheral surface, and end surface periphery.

上記目的を達成するべく本発明の請求項1の筒状体のレーザ加工方法は、レーザ発振器から導き出されたレーザ光線をガルバノ機構により円周軌跡で凹状の円錐反射筒に周回照射させて円錐中心部に集光ビームとして集束させ、上記円錐反射筒の中心孔に挿通させた筒状体の外周面を照射加工することを特徴とする。  In order to achieve the above object, a laser processing method for a cylindrical body according to claim 1 of the present invention is such that a laser beam derived from a laser oscillator is circulated to a concave conical reflecting cylinder around a circular locus by a galvano mechanism. It is characterized in that the outer peripheral surface of the cylindrical body that is focused as a focused beam on the part and inserted through the center hole of the conical reflecting cylinder is irradiated.

本発明の請求項2の筒状体のレーザ加工方法は、請求項1記載の筒状体のレーザ加工方法において、上記筒状体には、軸心方向の内側への圧縮力を付与しつつ、上記筒状体の一部外周面を加熱変形させることを特徴とする。  The laser processing method for a cylindrical body according to claim 2 of the present invention is the laser processing method for a cylindrical body according to claim 1, wherein a compressive force inward in the axial direction is applied to the cylindrical body. The partial outer peripheral surface of the cylindrical body is heated and deformed.

本発明の請求項3の筒状体のレーザ加工方法は、請求項1記載の筒状体のレーザ加工方法において、上記筒状体には、軸心方向の外側への引張力を付与しつつ、上記筒状体の一部外周面を加熱変形させることを特徴とする。  The cylindrical body laser processing method according to claim 3 of the present invention is the cylindrical body laser processing method according to claim 1, wherein the cylindrical body is given a tensile force outward in the axial direction. The partial outer peripheral surface of the cylindrical body is heated and deformed.

本発明の請求項4の筒状体のレーザ加工方法は、請求項1記載の筒状体のレーザ加工方法において、上記筒状体には、軸心方向の外側への引張力を付与し、且つ軸心方向へ移動させ、上記筒状体の移動長の外周面を加熱変形させることを特徴とする。  The laser processing method for a cylindrical body according to claim 4 of the present invention is the laser processing method for a cylindrical body according to claim 1, wherein the cylindrical body is given a tensile force outward in the axial direction. And it is moved to an axial direction, The outer peripheral surface of the movement length of the said cylindrical body is heat-deformed.

本発明の請求項5の筒状体のレーザ加工方法は、請求項1記載の筒状体のレーザ加工方法において、上記筒状体には、軸心方向の外側への引張力を付与し、且つ軸心方向へ集光ビームを移動させるとともにレーザ発振器からの出力を加減制御させ、上記筒状体の移動長の各位置の外周径を連続的に加熱変位させることを特徴とする。  The cylindrical body laser processing method according to claim 5 of the present invention is the cylindrical body laser processing method according to claim 1, wherein the cylindrical body is given a tensile force outward in the axial direction. In addition, the condensed beam is moved in the axial direction and the output from the laser oscillator is controlled to be increased or decreased to continuously heat and displace the outer diameter at each position of the moving length of the cylindrical body.

請求項6の筒状体のレーザ加工方法は、レーザ発振器から導き出されたレーザ光線をガルバノ機構により円周軌跡で凹状の円錐反射筒に周回照射させて円錐中心部に集光ビームとして集束させ、上記円錐反射筒の中心孔に挿通させた筒状体は光透過性材の外管と光吸収性材の内管との嵌合からなりこの内管の外周面上をスキャンされる集光ビームを第一軌跡上で溶融状態とした溶融部が凝固する前に上記第一軌跡に接近重合させた第二軌跡上を通過時に、上記集光ビームで再度第一軌跡上の樹脂を再加熱して溶融状態を維持させ、続く上記第二軌跡に接近重合させた第三軌跡上を通過時に、上記集光ビームで再度第二軌跡上の樹脂を再加熱して溶融状態を維持させる接近重合を繰り返す重合条件で次第に広い溶融面積を生成させつつ、溶着全面を集光ビームの高速スキャンにより溶融状態にて溶着することを特徴とする。  In the laser processing method for a cylindrical body according to claim 6, a laser beam derived from a laser oscillator is circulated to a concave conical reflecting cylinder with a circular locus by a galvano mechanism to be focused as a focused beam at the center of the cone, The cylindrical body inserted through the central hole of the conical reflecting cylinder is formed by fitting the outer tube of the light transmitting material and the inner tube of the light absorbing material, and the condensed beam is scanned on the outer peripheral surface of the inner tube. The resin on the first trajectory is reheated again by the condensed beam when passing through the second trajectory that has been polymerized close to the first trajectory before the molten portion solidified on the first trajectory solidifies. The molten state is maintained, and when passing through the third trajectory that has been polymerized close to the second trajectory, the proximity polymerization is performed to maintain the molten state by reheating the resin on the second trajectory again with the focused beam. Welding all while producing a wider melting area under repeated polymerization conditions The characterized by welding at the molten state by high-speed scanning of the focused beam.

請求項7の筒状体のレーザ加工方法は、レーザ発振器から導き出されたレーザ光線をガルバノ機構により円周軌跡で逆凹状の円錐プリズム筒の内面に周回照射させて外径方向に集光ビームとして放射させ、上記円錐プリズム筒の外周に配置させた筒状体の内周面を照射加工することを特徴とする。  According to a seventh aspect of the present invention, there is provided a laser processing method for a cylindrical body in which a laser beam derived from a laser oscillator is circulated to the inner surface of a reverse concave conical prism cylinder by a galvano mechanism as a condensed beam in an outer diameter direction. Radiation is performed, and the inner peripheral surface of the cylindrical body disposed on the outer periphery of the conical prism cylinder is irradiated and processed.

請求項8の筒状体のレーザ加工方法は、請求項7記載の筒状体のレーザ加工方法において、上記筒状体には、軸心方向の内側への圧縮力を付与しつつ、上記筒状体の一部内周面を加熱変形させることを特徴とする。  The laser processing method for a cylindrical body according to claim 8 is the laser processing method for a cylindrical body according to claim 7, wherein the cylindrical body is applied with a compressive force inward in the axial direction, while the cylindrical body is subjected to the laser processing method. It is characterized in that a part of the inner peripheral surface of the shaped body is heated and deformed.

請求項9記載の筒状体のレーザ加工方法は、請求項7記載の筒状体のレーザ加工方法において、上記筒状体には、軸心方向の外側への引張力を付与しつつ、上記筒状体の一部内周面を加熱変形させることを特徴とする。  The laser processing method for a cylindrical body according to claim 9 is the laser processing method for a cylindrical body according to claim 7, wherein the cylindrical body is provided with a tensile force outward in the axial direction. A partial inner peripheral surface of the cylindrical body is heated and deformed.

請求項10の筒状体のレーザ加工方法は、請求項7記載の筒状体のレーザ加工方法において、上記筒状体には、軸心方向の外側への引張力を付与し、且つ軸心方向へ移動させ、上記筒状体の移動長の内周面を加熱変形させることを特徴とする。  A laser processing method for a cylindrical body according to a tenth aspect is the laser processing method for a cylindrical body according to the seventh aspect, wherein a tensile force is applied to the cylindrical body outward in the axial direction, and the axial center is provided. It moves to the direction and heat-deforms the internal peripheral surface of the movement length of the said cylindrical body, It is characterized by the above-mentioned.

請求項11の筒状体のレーザ加工方法は、請求項7記載の筒状体のレーザ加工方法において、上記筒状体には、軸心方向の外側への引張力を付与し、且つ軸心方向へ移動させるとともにレーザ発振器からの出力を加減制御させ、上記筒状体の移動長の各位置の内周径を連続的に加熱変位させることを特徴とする。  The laser processing method for a cylindrical body according to claim 11 is the laser processing method for a cylindrical body according to claim 7, wherein the cylindrical body is given a tensile force outward in the axial direction, and the axial center. And the output from the laser oscillator is controlled to be adjusted, and the inner peripheral diameter of each position of the moving length of the cylindrical body is continuously heated and displaced.

請求項12の筒状体のレーザ加工方法は、レーザ発振器から導き出されたレーザ光線をガルバノ機構により円周軌跡で逆凹状の円錐プリズム筒に周回照射させて円錐外径方向に放射させ、上記円錐反射筒の外周に挿通させた筒状体は光透過性材の内管と光吸収性材の外管との嵌合からなりこの内管の内周面上をスキャンされる集光ビームを第一軌跡上で溶融状態とした溶融部が凝固する前に上記第一軌跡に接近重合させた第二軌跡上を通過時に、上記集光ビームで再度第一軌跡上の樹脂を再加熱して溶融状態を維持させ、続く上記第二軌跡に接近重合させた第三軌跡上を通過時に、上記集光ビームで再度第二軌跡上の樹脂を再加熱して溶融状態を維持させる接近重合を繰り返す重合条件で次第に広い溶融面積を生成させつつ、溶着全面を集光ビームの高速スキャンにより溶融状態にて溶着することを特徴とする。  According to a laser processing method for a cylindrical body according to a twelfth aspect of the present invention, a laser beam derived from a laser oscillator is circulated to a reverse concave conical prism cylinder by a galvano mechanism and radiated in a conical outer diameter direction. The cylindrical body inserted through the outer periphery of the reflecting cylinder is formed by fitting the inner tube of the light transmissive material and the outer tube of the light absorbing material, and the condensed beam scanned on the inner peripheral surface of the inner tube is the first. When the molten part that has been melted on one locus passes through the second locus that has been polymerized close to the first locus before solidifying, the resin on the first locus is reheated again by the condensed beam and melted. Polymerization that repeats proximity polymerization that maintains the molten state and maintains the molten state by reheating the resin on the second locus again with the focused beam when passing over the third locus that has been polymerized close to the second locus. Concentrates the entire surface of the weld while creating a wider melting area under certain conditions Fast scanning over beam, characterized in that welded in a molten state.

請求項13の筒状体のレーザ加工方法は、請求項6または12記載の筒状体のレーザ加工方法において、上記集光ビームの高速スキャンの移動速度を100mm/sec〜3000mm/secとしたことを特徴とする。  The cylindrical body laser processing method according to claim 13 is the cylindrical body laser processing method according to claim 6 or 12, wherein the moving speed of the high-speed scanning of the focused beam is set to 100 mm / sec to 3000 mm / sec. It is characterized by.

請求項14の筒状体のレーザ加工方法は、請求項6または12記載の筒状体のレーザ加工方法において、上記集光ビームは、この光線幅を0.5mm〜2.0mmとし、この光線幅の接線から約半分幅までを接近重合させる重合条件としたことを特徴とする。  The cylindrical body laser processing method according to claim 14 is the cylindrical body laser processing method according to claim 6 or 12, wherein the focused beam has a light beam width of 0.5 mm to 2.0 mm. It is characterized in that the polymerization conditions are such that close polymerization from the tangent of the width to about half the width occurs.

請求項15の筒状体のレーザ加工装置は、レーザ光線を出力するレーザ発振器と、上記レーザ発振器からのレーザ光線を平行光線とする光学レンズ系と、上記平行光線を集光ビームとして所定の半径で旋回させるガルバノ機構と、上記ガルバノ機構による集光ビームの旋回軌跡と旋回速度とを制御する照射制御手段と、上記ガルバノ機構からの集光ビームを旋回中心に集束する凹状の円錐反射筒と、上記円錐反射筒の中心孔に挿通させた筒状体と、上記筒状体を把持する保持具と、を具備したことを特徴とする。  The cylindrical body laser processing apparatus according to claim 15 includes a laser oscillator that outputs a laser beam, an optical lens system that uses the laser beam from the laser oscillator as a parallel beam, and a predetermined radius using the parallel beam as a condensed beam. A galvano mechanism that is swiveled, an irradiation control means that controls the swiveling trajectory and swivel speed of the focused beam by the galvano mechanism, a concave conical reflector that focuses the focused beam from the galvano mechanism around the turning center, A cylindrical body inserted through the central hole of the conical reflecting cylinder and a holder for gripping the cylindrical body are provided.

請求項16の筒状体のレーザ加工装置は、レーザ光線を出力するレーザ発振器と、上記レーザ発振器からのレーザ光線を平行光線とする光学レンズ系と、上記平行光線を集光ビームとして所定の半径で旋回させるガルバノ機構と、上記ガルバノ機構による集光ビームの旋回軌跡と旋回速度とを制御する照射制御手段と、上記ガルバノ機構からの集光ビームを旋回外径方向に集束する逆凹状の円錐プリズム筒と、上記円錐プリズム筒の外周に配置させた筒状体を、上記筒状体を把持する保持具と、を具備したことを特徴とする。  The cylindrical body laser processing apparatus according to claim 16 includes a laser oscillator that outputs a laser beam, an optical lens system that uses the laser beam from the laser oscillator as a parallel beam, and a predetermined radius using the parallel beam as a condensed beam. A galvano mechanism that is rotated by the galvanometer, an irradiation control means that controls the turning trajectory and speed of the condensed beam by the galvano mechanism, and an inverted concave conical prism that focuses the condensed beam from the galvano mechanism in the direction of the turning outer diameter. A cylinder and a cylindrical body arranged on the outer periphery of the conical prism cylinder are provided with a holder for gripping the cylindrical body.

請求項17の筒状体のレーザ加工装置は、請求項15または請求項16記載の筒状体のレーザ加工装置において、上記集光ビームの出力は、レーザ発振器の出力調節又は高速スキャンの移動速度の加減速制御により可変とすることを特徴とする。  The cylindrical body laser processing apparatus according to claim 17 is the cylindrical body laser processing apparatus according to claim 15 or 16, wherein the output of the focused beam is an output adjustment of a laser oscillator or a moving speed of high-speed scanning. It is variable by the acceleration / deceleration control.

本発明の請求項1〜6記載の筒状体のレーザ加工方法の作用は、筒状体における細管等の各種加工(管径の絞り・極小絞りや拡大・接合・表面処理・焼き入れ等々)が行える。
また、溶着面上を移動速度100mm/sec〜3000mm/secで高速スキャンするとともに、光線幅を0.5mm〜2.0mmとし、その光線幅の約半分幅までを第一軌跡に対して第二軌跡を通過重合させたから、第一軌跡上を通過したレーザ光線で溶融状態から凝固する前に上記第一軌跡に重合して第二軌跡上を通過時に、上記レーザ光線で再度第一軌跡上の樹脂を再加熱して溶融状態を維持させられる。これで、細管間の溶着・溶接が高速面溶着で行える。
The effects of the laser processing method for a cylindrical body according to claims 1 to 6 of the present invention include various processing of a thin tube or the like in the cylindrical body (tube diameter drawing / minimum drawing, expansion / bonding / surface treatment / quenching, etc.) Can be done.
The welding surface is scanned at a high speed at a moving speed of 100 mm / sec to 3000 mm / sec, and the light beam width is set to 0.5 mm to 2.0 mm. Since the trajectory is polymerized through the trajectory, the laser beam passes on the first trajectory, and is superposed on the first trajectory before solidifying from the molten state by the laser beam passing on the first trajectory. The resin can be reheated to maintain the molten state. Thus, welding and welding between thin tubes can be performed by high-speed surface welding.

本発明の請求項7〜14記載の筒状体のレーザ加工方法によれば、筒状体における大径管の各種加工(管径の絞り・極小絞りや拡大・接合・表面処理・焼き入れ等々)が行える。
また、溶着面上を移動速度100mm/sec〜3000mm/secで高速スキャンするとともに、光線幅を0.5mm〜2.0mmとし、その光線幅の約半分幅までを第一軌跡に対して第二軌跡を通過重合させたから、第一軌跡上を通過したレーザ光線で溶融状態から凝固する前に上記第一軌跡に重合して第二軌跡上を通過時に、上記レーザ光線で再度第一軌跡上の樹脂を再加熱して溶融状態を維持させられる。これで、大径管間の溶着・溶接が高速面溶着で行える。
According to the laser processing method for a cylindrical body according to claims 7 to 14 of the present invention, various types of processing of a large-diameter tube in the cylindrical body (such as tube diameter drawing / minimum drawing and expansion / bonding / surface treatment / quenching, etc.) ) Can be performed.
The welding surface is scanned at a high speed at a moving speed of 100 mm / sec to 3000 mm / sec, and the light beam width is set to 0.5 mm to 2.0 mm. Since the trajectory is polymerized through the trajectory, the laser beam passes on the first trajectory, and is superposed on the first trajectory before solidifying from the molten state by the laser beam passing on the first trajectory. The resin can be reheated to maintain the molten state. Thus, welding and welding between large diameter pipes can be performed by high-speed surface welding.

本発明の請求項15〜17記載の筒状体のレーザ加工装置によれば、請求項1〜14記載の筒状体のレーザ加工方法が具体的に行える。  According to the laser processing apparatus for a cylindrical body according to claims 15 to 17 of the present invention, the laser processing method for a cylindrical body according to claims 1 to 14 can be specifically performed.

本発明の請求項1〜6記載の筒状体のレーザ加工方法は、筒状体における細管等の各種加工(管径の絞り・極小絞りや拡大・接合・表面処理・焼き入れ等々)が効率良く・高精度に実施できる。  In the laser processing method for a cylindrical body according to claims 1 to 6 of the present invention, various types of processing of a thin tube or the like in the cylindrical body (such as tube diameter drawing / minimum drawing or expansion / bonding / surface treatment / quenching) are efficient. It can be implemented with good accuracy.

本発明の請求項7〜14記載の筒状体のレーザ加工方法は、筒状体における大径管等の各種加工(管径の絞り・極小絞りや拡大・接合・表面処理・焼き入れ等々)が効率良く・高精度に実施できる。  The cylindrical laser processing method according to claims 7 to 14 of the present invention includes various types of processing of a large-diameter pipe and the like in the cylindrical body (pipe diameter drawing / minimum drawing and expansion / bonding / surface treatment / quenching, etc.). Can be implemented efficiently and with high accuracy.

本発明の請求項15〜17記載の筒状体のレーザ加工装置は、請求項1〜14記載の筒状体のレーザ加工方法が具体的に実行できる。  The cylindrical body laser processing apparatus according to claims 15 to 17 of the present invention can specifically execute the cylindrical body laser processing method according to claims 1 to 14.

本発明の第1の実施の形態を示し、筒状体のレーザ加工装置の斜視図である。  1 is a perspective view of a cylindrical laser processing apparatus according to a first embodiment of the present invention. 本発明の第1の実施の形態を示し、筒状体のレーザ加工装置の正断面図である。  BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front sectional view of a cylindrical laser processing apparatus according to a first embodiment of the present invention. 本発明の第1の実施の形態を示し、加工部の拡大斜視図と部分図である。  The 1st Embodiment of this invention is shown and it is an expansion perspective view and partial view of a process part. 本発明の第1の実施の形態を示し、異なる細管同士の接合溶着の斜視図である。  It is a perspective view of joining welding of different thin tubes which shows a 1st embodiment of the present invention. 本発明の第1の実施の形態を示し、圧縮と引っ張りによる加熱処理の断面図である。  It is sectional drawing of the heat processing by the compression and tension which shows the 1st Embodiment of this invention. 本発明の第1の実施の形態を示し、細管の絞り加工の断面作用図である。  FIG. 2 is a cross-sectional action diagram of drawing processing of a thin tube, showing the first embodiment of the present invention. 本発明の第2の実施の形態を示し、太管加工用のレーザ加工装置の正断面図である。  FIG. 6 is a front sectional view of a laser processing apparatus for processing a thick pipe, showing a second embodiment of the present invention. 本発明の第2の実施の形態を示し、プリズムによるレーザ光線の作用断面図である。  FIG. 5 is a sectional view showing the action of a laser beam by a prism according to a second embodiment of the present invention. 本発明の第2の実施の形態を示し、プリズムによるレーザ光線の作用平面図である。  FIG. 7 is a plan view showing the action of a laser beam by a prism according to the second embodiment of the present invention.

以下、図1乃至図9を参照して本発明の各実施の形態を順次に説明する。  Hereinafter, embodiments of the present invention will be described sequentially with reference to FIGS. 1 to 9.

本発明の第1の実施の形態となる筒状体のレーザ加工装置100は、例えば、図1と図2に示すように、三軸直交ロボット10に装備されている。ベース40の上面には、これに装備され送りモータMXで駆動する移動ユニットDXと、これに装備された移動テーブル42と、移動テーブル42上に筒状体のワークとなる細管POを配置する保持冶具ユニット43を備え、この細管POが各種目的別に加熱処理される。上記保持冶具ユニット43の詳細構成は、後記することとし、レーザ加工装置100の全体構成から説明する。  The cylindrical body laser processing apparatus 100 according to the first embodiment of the present invention is mounted on a three-axis orthogonal robot 10 as shown in FIGS. 1 and 2, for example. On the upper surface of the base 40, a moving unit DX mounted on the base 40 and driven by a feed motor MX, a moving table 42 mounted on the moving unit DX, and a thin tube PO serving as a cylindrical work on the moving table 42 are disposed. A jig unit 43 is provided, and this narrow tube PO is heated for various purposes. The detailed configuration of the holding jig unit 43 will be described later, and will be described from the overall configuration of the laser processing apparatus 100.

上記レーザ加工装置100は、ベース40の片側にコラム46が直立されている。上記コラム46の頂部から移動テーブル42の上方に横梁47が水平姿勢で配置されている。上記横梁47は、移動テーブル42の移動方向とは直交する方向に向けられていて、この上面には送りモータMYで駆動する移動ユニットDYと、これに搭載された移動体48が移動制御されるように装備されている。上記移動体48には、上下方向に移動する送りモータMZで駆動する移動ユニットDZを備えている。上記移動ユニットDZの移動体49には、垂直な上下姿勢に向けたレーザヘッドLHとCCDカメラ5とが装備されている。上記レーザヘッドLHは、加工用のレーザ発振器50と教示用のレーザ電源LKとにファイバーで繋がれている。また、三軸直交ロボット10とCCDカメラ5とは、ティーチングボックスTBとディスプレィ7とを備えるロボット制御盤200に繋がれていて、ティーチング及びプレイバック運転他が行われる。上記ロボット制御盤200内には、照射制御手段80を備え、各々が有機的に接続されて機能する。尚、上記筒状体のレーザ加工装置100は、三軸直交ロボット10に替えて、多関節ロボット(図示なし)を使用した筒状体のレーザ加工装置100としても良い。  In the laser processing apparatus 100, a column 46 is upright on one side of the base 40. A horizontal beam 47 is arranged in a horizontal posture from the top of the column 46 above the moving table 42. The horizontal beam 47 is directed in a direction perpendicular to the moving direction of the moving table 42, and a movement unit DY driven by a feed motor MY and a moving body 48 mounted on the moving unit DY are controlled on the upper surface. Equipped as The moving body 48 includes a moving unit DZ that is driven by a feed motor MZ that moves in the vertical direction. The moving body 49 of the moving unit DZ is equipped with a laser head LH and a CCD camera 5 oriented in a vertical vertical position. The laser head LH is connected to a laser oscillator 50 for processing and a laser power source LK for teaching with a fiber. Further, the three-axis orthogonal robot 10 and the CCD camera 5 are connected to a robot control panel 200 including a teaching box TB and a display 7, and teaching and playback operations are performed. The robot control panel 200 is provided with irradiation control means 80, each of which is organically connected and functions. The cylindrical laser processing apparatus 100 may be a cylindrical laser processing apparatus 100 using an articulated robot (not shown) instead of the three-axis orthogonal robot 10.

続いて、レーザヘッドLHの内部構成を説明する。レーザ加工装置100は、レーザ光線Lを出力するレーザ発振器50と、上記レーザ発振器からのレーザ光線Lを平行光線L1とした後に上記平行光線を集光ビームLOとする光学レンズ系60と、上記平行光線L1を反射鏡22で反射させて集光ビームLOとし、細管POの外周に配置した円錐反射筒90の反射面90Aにより中心に向けて偏向させ細管POの任意位置に照射させるガルバノ機構30と、上記ガルバノ機構の反射鏡22を方向制御することで集光ビームLOの周回軌跡(スキャン)S1及びこの周回半径r(r1,r2)の調節と周回速度(スキャン速度)SSとを制御する照射制御手段80と、を具備している。上記光学レンズ系60は、レーザ発振器50からのレーザ光線Lを平行光線(ビーム径:φ16.8mm前後)L1とする平行光線レンズ系、具体的には、球面収差を少なくするアクロマティックレンズ21をはじめとする各種平行光線レンズと、反射鏡22と、上記平行光線L1を集光ビームLOとするメニスカスレンズ23又はエフシターレンズ等他の集光レンズ系と、を具備している。上記ガルバノ機構30の反射鏡22は、XYサーボモータSM1,SM2で360度方向に角度制御される。尚、別途、高速スキャン速度の適正範囲のテストを行ったところ、高速スキャン速度の適正範囲は、100mm/sec〜3000mm/secが最適値であることを確認した。また、集光ビームLOの出力は、レーザ発振器50の出力調節又は照射制御手段80による高速スキャンS1の移動速度SSの加減速制御により可変制御される。  Next, the internal configuration of the laser head LH will be described. The laser processing apparatus 100 includes a laser oscillator 50 that outputs a laser beam L, an optical lens system 60 that converts the laser beam L from the laser oscillator into a parallel beam L1, and then converts the parallel beam into a focused beam LO, and the parallel. A galvano mechanism 30 that reflects the light beam L1 by the reflecting mirror 22 into a condensed beam LO, deflects the light beam L1 toward the center by the reflecting surface 90A of the conical reflecting tube 90 disposed on the outer periphery of the thin tube PO, and irradiates an arbitrary position of the thin tube PO; Irradiation by controlling the direction of the reflecting mirror 22 of the galvano mechanism to control the circular locus (scan) S1 of the condensed beam LO and the circular radius r (r1, r2) and the circular velocity (scan speed) SS And control means 80. The optical lens system 60 includes a parallel light lens system in which the laser beam L from the laser oscillator 50 is a parallel beam (beam diameter: around φ16.8 mm) L1, specifically, an achromatic lens 21 that reduces spherical aberration. It includes various parallel light lenses such as a reflecting mirror 22 and other condensing lens systems such as a meniscus lens 23 or an efciator lens that uses the parallel light L1 as a condensing beam LO. The angle of the reflecting mirror 22 of the galvano mechanism 30 is controlled in the direction of 360 degrees by XY servo motors SM1 and SM2. In addition, when an appropriate range of the high-speed scanning speed was separately tested, it was confirmed that the optimal range of the high-speed scanning speed was an optimum value of 100 mm / sec to 3000 mm / sec. The output of the focused beam LO is variably controlled by adjusting the output of the laser oscillator 50 or by controlling the acceleration / deceleration of the moving speed SS of the high-speed scan S1 by the irradiation control means 80.

上記レーザ加工装置100の移動テーブル42上に配置した保持冶具ユニット43の詳細構成を説明する。先ず、上記集光ビームLOを細管POの中心に向けて偏向させる凹状の円錐反射筒90がレーザヘッドLHの真下に配置されている。この円錐反射筒90の中心孔91内に備えるホルダH1に細管POの下端部が垂直姿勢に保持される。石英ガラス製の透明円筒92は、上記円錐反射筒90を覆いその上部92Aに減速回転モータM1が下向きに備え、この移動軸の下端にホルダH2を備えている。上記両ホルダH1,H2間で保持された細管POに対して減速回転モータM1の正転で引っ張り力Fを付与し、逆転で圧縮力−Fを付与する関係をなしている。上記保持冶具ユニット43は、レーザヘッドLHの真下に配置され、これから照射される集光ビームLOが描く周回軌跡(スキャン)S1の中心位置に合わせられる。また、ガルバノ機構30で外周方向に制御される集光ビームLOの半径r1〜r3が円錐反射筒90の反射面90Aへの照射位置の制御により中心位置に垂立する細管POへの照射位置が上下に連続して微調節される。  A detailed configuration of the holding jig unit 43 disposed on the moving table 42 of the laser processing apparatus 100 will be described. First, a concave conical reflecting cylinder 90 that deflects the focused beam LO toward the center of the narrow tube PO is disposed directly below the laser head LH. The lower end portion of the narrow tube PO is held in a vertical posture by the holder H1 provided in the center hole 91 of the conical reflector tube 90. A transparent cylinder 92 made of quartz glass covers the conical reflection cylinder 90, and a reduction rotation motor M1 is provided downward on the upper part 92A, and a holder H2 is provided on the lower end of the moving shaft. The narrow tube PO held between the holders H1 and H2 has a relationship in which a pulling force F is applied by forward rotation of the reduction rotation motor M1 and a compression force -F is applied by reverse rotation. The holding jig unit 43 is disposed directly below the laser head LH, and is aligned with the center position of a circular trajectory (scan) S1 drawn by the condensed beam LO irradiated from now on. Further, the irradiation position on the narrow tube PO where the radii r1 to r3 of the condensed beam LO controlled in the outer peripheral direction by the galvano mechanism 30 suspends at the central position by controlling the irradiation position on the reflecting surface 90A of the conical reflecting tube 90 is determined. Finely adjusted continuously up and down.

しかして、図2の(イ)及び図5に示すように、細管POを両端から引張りながら外周加熱することで加熱部を絞る絞り加工される。また、図2の(ロ)及び図5では、圧縮しながら外周加熱することで加熱部を膨出する膨出加工される。また、図2の(ハ)及び図5では、細管POの外周面を加熱処理することで加熱処理の一つの焼入れ加工が行われる。また、図2の(二)及び図4に示すように、光吸収性材からなる細管(内管)P1と光透過性材からなる細管(外管)P2において、光透過性材の細管P2に光吸収性材の細管P1を挿入した状態で凹状の円錐反射筒90の中心部のホルダH1に把時して垂直に立てる。ここで、ガルバノ機構30で外周方向に制御される集光ビームLOの半径r1〜r3が円錐反射筒90の反射面90Aへの照射位置の制御により中心位置に垂立する細管POへ照射される。この時、照射制御手段80により、その照射位置が上下に連続して微調節される。その照射軌跡は、集光ビームLOの周回軌跡(スキャン)S1及びこの周回半径rの調節と周回速度(スキャン速度)SSとを制御して行われる。  Thus, as shown in FIGS. 2A and 2B, drawing is performed to squeeze the heating portion by heating the outer circumference while pulling the thin tube PO from both ends. Moreover, in (B) and FIG. 5 of FIG. 2, the bulge process which bulges a heating part by carrying out outer periphery heating while compressing is carried out. In FIG. 2C and FIG. 5, one quenching process of the heat treatment is performed by heat-treating the outer peripheral surface of the thin tube PO. Further, as shown in FIGS. 2 (2) and 4, a thin tube (inner tube) P1 made of a light absorbing material and a thin tube (outer tube) P2 made of a light transmissive material, a thin tube P2 made of a light transmissive material. In the state where the thin tube P1 of the light-absorbing material is inserted into the holder H1 at the center of the concave conical reflector 90, it is held vertically. Here, the radii r1 to r3 of the condensed beam LO controlled in the outer peripheral direction by the galvano mechanism 30 are irradiated to the narrow tube PO that is suspended at the center position by controlling the irradiation position on the reflecting surface 90A of the conical reflecting tube 90. . At this time, the irradiation control means 80 finely adjusts the irradiation position continuously in the vertical direction. The irradiation trajectory is performed by controlling the circular trajectory (scan) S1 of the condensed beam LO, the adjustment of the circular radius r, and the circular velocity (scan speed) SS.

上記細管P1,P2の溶着作用を図4により具体的に説明する。上記光透過性材の細管(外管)P2は、光吸収性材の細管(内管)P1の外周に嵌められる。上記光透過性材の細管P2の表面に向けて、集光ビームLOが円錐反射筒90の反射面90Aで反射されて照射される。上記集光ビームLOは、細管P2を通過して光吸収性材からなる細管P1の外周表面における第一軌跡K1上に焦点を合わせてスキャン照射されることで加熱され溶融状態となる。続いて、上記第一軌跡K1上で溶融状態から凝固する前に上記第一軌跡に集光ビームLOを接近重合させた第二軌跡K2上を通過させる。そして、再度上記第一軌跡上の樹脂板材を再加熱して溶融状態を維持させて広い溶融面積SOを生成させる。更に、順次に溶着全面を集光ビームLOの高速スキャンにより全面を溶融状態で高速面溶着させる。即ち、溶着面上をスキャンされる集光ビームLOを第一軌跡上で溶融状態とした溶融部が凝固する前に上記第一軌跡に接近重合させた第二軌跡上を通過時に、上記集光ビームLOで再度第一軌跡上の樹脂を再加熱して溶融状態を維持させ、続く上記第二軌跡に接近重合させた第三軌跡K3上を通過時に、上記レーザ光線で再度第二軌跡上の樹脂を再加熱して溶融状態を維持させる接近重合を繰り返す重合条件で次第に広い溶融面積を生成させつつ、溶着全面をレーザ光線の高速スキャンにより溶融状態として一括面溶着させられる。  The welding action of the thin tubes P1 and P2 will be specifically described with reference to FIG. The light-transmitting material thin tube (outer tube) P2 is fitted on the outer periphery of the light-absorbing material thin tube (inner tube) P1. The condensed beam LO is reflected by the reflecting surface 90 </ b> A of the conical reflecting tube 90 and irradiated toward the surface of the light transmitting material thin tube P <b> 2. The focused beam LO is heated and melted by being focused and scanned on the first locus K1 on the outer peripheral surface of the thin tube P1 made of a light absorbing material through the thin tube P2. Subsequently, before solidifying from the molten state on the first trajectory K1, the second trajectory K2 is passed through the first trajectory and the focused beam LO is caused to approach and polymerize. Then, the resin plate material on the first trajectory is reheated again to maintain the molten state, thereby generating a wide melting area SO. Further, the entire surface of the weld is sequentially welded at high speed in a molten state by high-speed scanning of the focused beam LO. That is, when the condensed light beam scanned on the welding surface is melted on the first trajectory, the condensed light beam passes through the second trajectory that is polymerized close to the first trajectory before solidifying. The resin on the first trajectory is reheated again by the beam LO to maintain the molten state, and when passing through the third trajectory K3 that is polymerized close to the second trajectory, the laser beam again travels on the second trajectory. While the resin is reheated to maintain the molten state, the entire surface of the weld is made into a molten surface by high-speed scanning with a laser beam and the entire surface is welded while gradually increasing the polymerization conditions under repeated polymerization conditions that maintain the molten state.

上記筒状体の加工方法において、上記集光ビームLOの高速スキャンの移動速度SSは、各種試験した結果、板厚に対するレーザ出力30W〜50W、高速スキャン速度100mm/sec〜3000mm/secが最適であることを確立させた。また、上記レーザ光線Lの光線幅を0.5mm〜2.0mmとし、その光線幅の接線から約半分幅までを第一軌跡(移動軌跡)K1に対して第二軌跡(移動軌跡)K2を通過重合させるが望ましいことを数多い試験結果から確立した。以下、第三軌跡(移動軌跡)K3も同様である。  In the above-described cylindrical body processing method, as a result of various tests, the moving speed SS for the high-speed scanning of the focused beam LO is optimally a laser output of 30 W to 50 W and a high-speed scanning speed of 100 mm / sec to 3000 mm / sec. Established that there is. Further, the beam width of the laser beam L is set to 0.5 mm to 2.0 mm, and a second locus (movement locus) K2 is set with respect to the first locus (movement locus) K1 from the tangent to the light beam width. It was established from a number of test results that it is desirable to polymerize through. The same applies to the third locus (movement locus) K3.

最後に、図6に示すように、樹脂製の細管P3に対して、オリフィス状の絞部P4を成形加工するには、細管P3の両端を引張り制御するとともに、ガルバノ機構30と照射制御手段80とにより、その照射位置(a)(b)(c)(d)(e)が連続して微調節される。その集光ビームLOの周回軌跡(スキャン)S1及びこの周回半径rの調節と周回速度(スキャン速度)SSとを制御して行われる。この作用時に、上記集光ビームの出力は、レーザ発振器の出力調節又は高速スキャンの移動速度の加減速制御により可変制御される。集光ビームの出力調節は、集光ビームの細管P3への照射位置により可変調節される。即ち、照射位置(a)(b)(c)への移動と共に出力を大きくし、照射位置(d)(e)への移動と共に出力を絞る。これで、細管P3への照射位置(a)(b)(c)(d)(e)の範囲内が熱可撓性の柔軟な状態となり、減速回転モータM1の正転による引張力Fが細管P3に働いていることから、所定長Xに引き伸ばされるとともにオリフィス状の絞部P4に加熱加工される。上記細管P3にオリフィス状の絞部P4を加工した物品例には、医療用の人工血管や各種液体供給用のオリフィス管として採用される。  Finally, as shown in FIG. 6, in order to mold the orifice-shaped throttle portion P4 with respect to the resin-made thin tube P3, both ends of the thin tube P3 are pulled and controlled, and the galvano mechanism 30 and the irradiation control means 80 are used. Thus, the irradiation positions (a), (b), (c), (d), and (e) are continuously finely adjusted. This is performed by controlling the circular locus (scan) S1 of the condensed beam LO, the adjustment of the circular radius r, and the circular velocity (scan velocity) SS. During this operation, the output of the focused beam is variably controlled by adjusting the output of the laser oscillator or by controlling the acceleration / deceleration of the moving speed of high-speed scanning. The output adjustment of the focused beam is variably adjusted according to the irradiation position of the focused beam on the narrow tube P3. That is, the output is increased with the movement to the irradiation positions (a), (b), and (c), and the output is reduced with the movement to the irradiation positions (d) and (e). As a result, the range of the irradiation positions (a), (b), (c), (d), and (e) on the narrow tube P3 becomes a heat-flexible soft state, and the tensile force F due to the normal rotation of the reduction rotation motor M1 is reduced. Since it works on the narrow tube P3, it is stretched to a predetermined length X and is heated to an orifice-like throttle part P4. Examples of articles obtained by processing the orifice-like restricting portion P4 in the thin tube P3 are employed as medical artificial blood vessels or orifice tubes for supplying various liquids.

上記第1の実施の態様となる筒状体のレーザ加工方法とその装置100によると、下記の効果が奏せられる。先ず、筒状体のレーザ加工方法は、筒状体における細管等の各種加工(管径の絞り・極小絞りや拡大・接合・表面処理・焼き入れ等々)が効率良く・高精度に実施できる。また、筒状体のレーザ加工装置は、上記筒状体における細管等の各種加工(管径の絞り・極小絞りや拡大・接合・表面処理・焼き入れ等々)を効率良く・高精度に実施する装置が提供できる。また、筒状体のレーザ加工装置は、上記筒状体における細管等の各種加工(管径の絞り・極小絞りや拡大・接合・表面処理・焼き入れ等々)を行うレーザ加工方法を効率良く・高精度に実施する装置が提供できる。  According to the cylindrical laser processing method and apparatus 100 according to the first embodiment, the following effects can be obtained. First, the laser processing method of a cylindrical body can efficiently and highly accurately carry out various types of processing (such as tube diameter drawing / minimum drawing, enlargement / bonding / surface treatment / quenching, etc.) of a thin tube in the cylindrical body. In addition, the cylindrical laser processing apparatus efficiently and highly accurately performs various types of processing (such as tube diameter drawing / minimum drawing, enlargement / joining / surface treatment / quenching, etc.) on the tubular body. A device can be provided. In addition, the cylindrical laser processing apparatus efficiently uses a laser processing method for performing various types of processing (such as tube diameter drawing / minimum drawing, enlargement / bonding / surface treatment / quenching, etc.) of the thin tube in the cylindrical body. An apparatus that performs with high accuracy can be provided.

続いて、図7〜図9において、第2の実施の形態となる筒状体のレーザ加工装置210は、太管P5を加工するための保持冶具ユニット45と、この内部に逆凹状のプリズム筒95とを備えたものである。先ず、保持冶具ユニット45は、テーブル42上の球状ホルダH3と、これに外周を保持された太管P5の上端部を冠着し、外周適所に配置したシリンダCの昇降ロッドRの上昇又は下降により、太管P5を引っ張り又は圧縮させられる。上記太管P5内には、逆凹状のプリズム筒95が水平姿勢に配置されており、上方のレーザヘッドLHのからガルバノ機構30で下方へ照射する集光ビームLOをプリズム筒95の上面に照射されると、プリズム内の傾斜する反射面95Aで外径方向へ放射状に反射される。その反射光が外周に配置する太管P5の内周面P6に照射されるとともに、集光ビームLOの周回軌跡(スキャン)S1及びこの周回半径rの調節で、内周面P6への照射位置が上下に微調節される。その他の構成は、第1の実施の形態となる筒状体のレーザ加工装置100と同一に付き、同一符号を付して説明を省略する。  Subsequently, in FIGS. 7 to 9, the cylindrical laser processing apparatus 210 according to the second embodiment includes a holding jig unit 45 for processing the thick tube P <b> 5, and a prism tube having a reverse concave shape therein. 95. First, the holding jig unit 45 attaches the spherical holder H3 on the table 42 and the upper end portion of the thick pipe P5 holding the outer periphery thereof, and raises or lowers the lifting rod R of the cylinder C disposed at a suitable position on the outer periphery. Thus, the thick tube P5 is pulled or compressed. In the thick tube P5, an inverted concave prism cylinder 95 is disposed in a horizontal position, and the upper surface of the prism cylinder 95 is irradiated with a focused beam LO that is irradiated downward from the upper laser head LH by the galvano mechanism 30. Then, the light is reflected radially in the outer diameter direction by the inclined reflecting surface 95A in the prism. The reflected light is applied to the inner peripheral surface P6 of the thick tube P5 arranged on the outer periphery, and the irradiation position to the inner peripheral surface P6 is adjusted by adjusting the circular locus (scan) S1 of the condensed beam LO and the circular radius r. Is finely adjusted up and down. Other configurations are the same as those of the cylindrical body laser processing apparatus 100 according to the first embodiment, and are denoted by the same reference numerals and description thereof is omitted.

具体的には、図8と図9に示すように、上記筒状体のレーザ加工装置210によると、太管P5の内周面P6において、その照射位置がr1〜r2の範囲内で調整される。しかして、上記筒状体のレーザ加工装置210により、太管P5の内周面P6が加熱処理されるから、上記第1の実施の形態となる筒状体のレーザ加工装置100と同様な各種加工が行える。具体的には、(イ)絞り加工及びオリフィス加工。(ロ)加熱変形の膨出加工。(ハ)加熱処理による焼入れ。(二)二重管の溶着等々の加工が行われる。その実施方法は、上記図4に示す細管P1,P2の溶着作用と同様に行われる。即ち、レーザ加工装置210において、レーザ発振器50から導き出されたレーザ光線Lをガルバノ機構30により円周軌跡S1で逆凹状の円錐プリズム筒95に周回照射させて円錐外径方向に集光ビームLOを放射させる。図示しないが、上記円錐反射筒95の外周に挿通させた筒状体は光吸収性材の外管と光透過性材の内管との嵌合からなり、この外管の内周面上をスキャンされる集光ビームを第一軌跡上で溶融状態とした溶融部が凝固する前に上記第一軌跡に接近重合させた第二軌跡上を通過時に、上記集光ビームで再度第一軌跡上の樹脂を再加熱して溶融状態を維持させ、続く上記第二軌跡に接近重合させた第三軌跡上を通過時に、上記集光ビームで再度第二軌跡上の樹脂を再加熱して溶融状態を維持させる接近重合を繰り返す重合条件で次第に広い溶融面積を生成させつつ、溶着全面を集光ビームの高速スキャンにより溶融状態にて溶着される。勿論、上記加工以外の加熱処理も拡大的に実施可能である。  Specifically, as shown in FIGS. 8 and 9, according to the cylindrical laser processing apparatus 210, the irradiation position on the inner peripheral surface P6 of the thick tube P5 is adjusted within the range of r1 to r2. The The cylindrical body laser processing apparatus 210 heats the inner peripheral surface P6 of the thick pipe P5. Therefore, the same various types as the cylindrical body laser processing apparatus 100 according to the first embodiment are performed. Can be processed. Specifically, (a) drawing and orifice processing. (B) Swelling deformation of heating deformation. (C) Quenching by heat treatment. (2) Processing such as welding of double pipes is performed. The implementation method is the same as the welding action of the thin tubes P1 and P2 shown in FIG. That is, in the laser processing apparatus 210, the laser beam L derived from the laser oscillator 50 is radiated to the reverse concave conical prism cylinder 95 around the circular locus S1 by the galvano mechanism 30, and the condensed beam LO is emitted in the cone outer diameter direction. Let it radiate. Although not shown, the cylindrical body inserted into the outer periphery of the conical reflecting cylinder 95 is formed by fitting the outer tube of the light absorbing material and the inner tube of the light transmissive material, and on the inner peripheral surface of the outer tube. When the condensed beam to be scanned is melted on the first trajectory, it passes again on the first trajectory again when passing through the second trajectory that is polymerized close to the first trajectory before the melted portion solidifies. The resin on the second locus is maintained in a molten state by reheating, and when passing through the third locus that has been polymerized close to the second locus, the resin on the second locus is reheated again by the condensed beam to be in a molten state. The entire welding surface is welded in a molten state by high-speed scanning with a focused beam, while a gradually wide melting area is generated under the polymerization conditions in which the proximity polymerization is repeated so as to maintain the same. Of course, heat treatment other than the above-described processing can be performed in an expanded manner.

上記第1の実施の態様となる筒状体のレーザ加工方法とその装置100によると、下記の効果が奏せられる。先ず、筒状体のレーザ加工方法は、筒状体における大径管等の各種加工(管径の絞り・極小絞りや拡大・接合・表面処理・焼き入れ等々)が効率良く・高精度に実施できる。また、筒状体のレーザ加工装置は、上記筒状体における大径管等の各種加工(管径の絞り・極小絞りや拡大・接合・表面処理・焼き入れ等々)を行うレーザ加工方法を効率良く・高精度に実施する装置が提供できる。  According to the cylindrical laser processing method and apparatus 100 according to the first embodiment, the following effects can be obtained. First, the cylindrical body laser processing method efficiently and accurately performs various types of processing of large-diameter pipes etc. in the cylindrical body (tube diameter drawing / minimum drawing and expansion / bonding / surface treatment / quenching, etc.). it can. In addition, the laser processing apparatus for a cylindrical body efficiently uses a laser processing method for performing various types of processing (such as tube diameter drawing / minimum drawing, enlargement / bonding / surface treatment / quenching, etc.) on the cylindrical body. A device that performs well and with high accuracy can be provided.

尚、本発明の筒状体のレーザ加工方法とその装置100,210は、上記各実施の形態における構成に限定されず、その発明の要旨内での各部の詳細な設計変更が自由にできる。  In addition, the cylindrical body laser processing method and the apparatuses 100 and 210 of the present invention are not limited to the configuration in each of the above-described embodiments, and detailed design changes of each part can be freely made within the gist of the present invention.

本発明は、その対象物を細管や太管の実施例で説明したものであるが、様々な加工部材となる筒状体への適用が可能である。  In the present invention, the object is described in the examples of the thin tube and the thick tube, but the present invention can be applied to a cylindrical body as various processed members.

10 三軸直交ロボット
21 アクロマティックレンズ他
22 反射鏡
23 メニスカスレンズ他
30 ガルバノ機構
40 ベース
42 移動テーブル
43 保持冶具ユニット
45 保持冶具ユニット
48 移動体
50 レーザ発振器
60 光学レンズ系
80 照射制御手段
90 円錐反射筒
90A 反射面
91 中心孔
92 透明円筒
92A 上部
95 プリズム筒
95A 反射面
100 筒状体のレーザ加工装置
200 ロボット制御盤
210 筒状体のレーザ加工装置
C シリンダ
DX 移動ユニット
DY 移動ユニット
DZ 移動ユニット
F 引張力
−F 圧縮力
L レーザ光線
L1 平行光線
L2 光線幅
L3 重合幅
LO 集光ビーム
LH レーザヘッド
H1〜H3 ホルダ
MX,MY,MZ 送りモータ
K1 第一軌跡(移動軌跡)
K2 第二軌跡(移動軌跡)
K3 第三軌跡(移動軌跡)
PO 細管
P1 細管(内管)
P2 細管(外管)
P5 太管
P6 内周面
M1 減速回転モータ
S1 周回軌跡(スキャン)
SM1,SM2 XYサーボモータ
SO 溶着面積
SP 折り返し軌跡(矩形軌跡)
SS 移動速度
r(r1,r2) 周回半径
R 昇降ロッド
DESCRIPTION OF SYMBOLS 10 Triaxial orthogonal robot 21 Achromatic lens etc. 22 Reflective mirror 23 Meniscus lens etc. 30 Galvano mechanism 40 Base 42 Moving table 43 Holding jig unit 45 Holding jig unit 48 Moving body 50 Laser oscillator 60 Optical lens system 80 Irradiation control means 90 Conical reflection Cylinder 90A Reflecting surface 91 Center hole 92 Transparent cylinder 92A Upper part 95 Prism cylinder 95A Reflecting surface 100 Cylindrical laser processing device 200 Robot control panel 210 Cylindrical laser processing device C Cylinder DX moving unit DY moving unit DZ moving unit F Tensile force -F Compressive force L Laser beam L1 Parallel beam L2 Beam width L3 Overlapping width LO Condensing beam LH Laser head H1 to H3 Holder MX, MY, MZ Feed motor K1 First track (moving track)
K2 Second trajectory (movement trajectory)
K3 3rd trajectory (movement trajectory)
PO narrow tube P1 narrow tube (inner tube)
P2 narrow tube (outer tube)
P5 Thick tube P6 Inner peripheral surface M1 Reduced rotation motor S1 Circulation trajectory (scan)
SM1, SM2 XY servo motor SO welding area SP return trajectory (rectangular trajectory)
SS moving speed r (r1, r2) orbit radius R lifting rod

Claims (17)

レーザ発振器から導き出されたレーザ光線をガルバノ機構により円周軌跡で凹状の円錐反射筒に周回照射させて円錐中心部に集光ビームとして集束させ、上記円錐反射筒の中心孔に挿通させた筒状体の外周面を照射加工することを特徴とする筒状体のレーザ加工方法。  A cylindrical shape in which a laser beam derived from a laser oscillator is circularly irradiated by a galvano mechanism to a concave conical reflecting cylinder with a circular locus, focused as a condensed beam at the center of the cone, and inserted into the central hole of the conical reflecting cylinder A laser processing method for a cylindrical body, wherein the outer peripheral surface of the body is irradiated. 上記筒状体には、軸心方向の内側への圧縮力を付与しつつ、上記筒状体の一部外周面を加熱変形させることを特徴とする請求項1記載の筒状体のレーザ加工方法。  2. The laser processing of a cylindrical body according to claim 1, wherein the cylindrical body is subjected to heat deformation on a part of the outer peripheral surface of the cylindrical body while applying a compressive force inward in the axial direction. Method. 上記筒状体には、軸心方向の外側への引張力を付与しつつ、上記筒状体の一部外周面を加熱変形させることを特徴とする請求項1記載の筒状体のレーザ加工方法。  2. The laser processing of a cylindrical body according to claim 1, wherein a part of the outer peripheral surface of the cylindrical body is heated and deformed while applying a tensile force to the cylindrical body toward the outside in the axial direction. Method. 上記筒状体には、軸心方向の外側への引張力を付与し、且つ軸心方向へ集光ビームを移動させ、上記筒状体の移動長の外周面を加熱変形させることを特徴とする請求項1記載の筒状体のレーザ加工方法。  The cylindrical body is provided with a tensile force to the outside in the axial direction, the focused beam is moved in the axial direction, and the outer peripheral surface of the moving length of the cylindrical body is heated and deformed. A laser processing method for a cylindrical body according to claim 1. 上記筒状体には、軸心方向の外側への引張力を付与し、且つ軸心方向へ集光ビームを移動させるとともにレーザ発振器からの出力を加減制御させ、上記筒状体の移動長の各位置の外周径を連続的に加熱変位させることを特徴とする請求項1記載の筒状体のレーザ加工方法。  The cylindrical body is given a tensile force outward in the axial direction, and the focused beam is moved in the axial direction and the output from the laser oscillator is controlled to adjust the movement length of the cylindrical body. 2. The cylindrical laser processing method according to claim 1, wherein the outer peripheral diameter of each position is continuously heated and displaced. レーザ発振器から導き出されたレーザ光線をガルバノ機構により円周軌跡で凹状の円錐反射筒に周回照射させて円錐中心部に集光ビームとして集束させ、上記円錐反射筒の中心孔に挿通させた筒状体は光透過性材の外管と光吸収性材の内管との嵌合からなりこの内管の外周面上をスキャンされる集光ビームを第一軌跡上で溶融状態とした溶融部が凝固する前に上記第一軌跡に接近重合させた第二軌跡上を通過時に、上記集光ビームで再度第一軌跡上の樹脂を再加熱して溶融状態を維持させ、続く上記第二軌跡に接近重合させた第三軌跡上を通過時に、上記集光ビームで再度第二軌跡上の樹脂を再加熱して溶融状態を維持させる接近重合を繰り返す重合条件で次第に広い溶融面積を生成させつつ、溶着全面を集光ビームの高速スキャンにより溶融状態にて溶着することを特徴とする筒状体のレーザ加工方法。  A cylindrical shape in which a laser beam derived from a laser oscillator is circularly irradiated by a galvano mechanism to a concave conical reflecting cylinder with a circular locus, focused as a condensed beam at the center of the cone, and inserted into the central hole of the conical reflecting cylinder The body consists of a fitting between the outer tube of the light-transmitting material and the inner tube of the light-absorbing material, and there is a melted portion in which the focused beam scanned on the outer peripheral surface of the inner tube is in a molten state on the first locus. When passing over the second trajectory that has been polymerized close to the first trajectory before solidifying, the resin on the first trajectory is reheated again with the focused beam to maintain the molten state, and the second trajectory continues to the second trajectory. While passing over the third track that has been close-polymerized, while gradually generating close-melting area under the polymerization conditions that repeat the close polymerization to maintain the molten state by reheating the resin on the second track again with the focused beam, The entire weld surface is welded by high-speed scanning with a focused beam. Laser processing method of the tubular body, characterized in that the welding in the state. レーザ発振器から導き出されたレーザ光線をガルバノ機構により円周軌跡で逆凹状の円錐プリズム筒の内面に周回照射させて外径方向に集光ビームとして放射させ、上記円錐プリズム筒の外周に配置させた筒状体の内周面を照射加工することを特徴とする筒状体のレーザ加工方法。  A laser beam derived from a laser oscillator is radiated around the inner surface of a conical prism tube having a concave shape with a circular locus by a galvano mechanism and emitted as a condensed beam in the outer diameter direction, and is arranged on the outer periphery of the conical prism tube. A laser processing method for a cylindrical body, wherein the inner peripheral surface of the cylindrical body is irradiated and processed. 上記筒状体には、軸心方向の内側への圧縮力を付与しつつ、上記筒状体の一部内周面を加熱変形させることを特徴とする請求項7記載の筒状体のレーザ加工方法。  8. The laser processing of the cylindrical body according to claim 7, wherein a part of the inner peripheral surface of the cylindrical body is heated and deformed while applying a compressive force inward in the axial direction to the cylindrical body. Method. 上記筒状体には、軸心方向の外側への引張力を付与しつつ、上記筒状体の一部内周面を加熱変形させることを特徴とする請求項7記載の筒状体のレーザ加工方法。  8. The laser processing of a cylindrical body according to claim 7, wherein a part of the inner peripheral surface of the cylindrical body is heated and deformed while applying a tensile force to the cylindrical body toward the outside in the axial direction. Method. 上記筒状体には、軸心方向の外側への引張力を付与し、且つ軸心方向へ集光ビームを移動させ、上記筒状体の移動長の内周面を加熱変形させることを特徴とする請求項7記載の筒状体のレーザ加工方法。  The cylindrical body is given a tensile force outward in the axial direction, and the focused beam is moved in the axial direction, and the inner peripheral surface of the moving length of the cylindrical body is heated and deformed. A laser processing method for a cylindrical body according to claim 7. 上記筒状体には、軸心方向の外側への引張力を付与し、且つ軸心方向へ集光ビームを移動させるとともにレーザ発振器からの出力を加減制御させ、上記筒状体の移動長の各位置の内周径を連続的に加熱変位させることを特徴とする請求項7記載の筒状体のレーザ加工方法。  The cylindrical body is given a tensile force outward in the axial direction, and the focused beam is moved in the axial direction and the output from the laser oscillator is controlled to adjust the movement length of the cylindrical body. 8. The laser processing method for a cylindrical body according to claim 7, wherein the inner peripheral diameter of each position is continuously heated and displaced. レーザ発振器から導き出されたレーザ光線をガルバノ機構により円周軌跡で逆凹状の円錐プリズム筒に周回照射させて円錐外径方向に集光ビームとして放射させ、上記円錐反射筒の外周に挿通させた挿通させた筒状体は光透過性材の外管と光吸収性材の内管との嵌合からなりこの外管の内周面上をスキャンされる集光ビームを第一軌跡上で溶融状態とした溶融部が凝固する前に上記第一軌跡に接近重合させた第二軌跡上を通過時に、上記集光ビームで再度第一軌跡上の樹脂を再加熱して溶融状態を維持させ、続く上記第二軌跡に接近重合させた第三軌跡上を通過時に、上記集光ビームで再度第二軌跡上の樹脂を再加熱して溶融状態を維持させる接近重合を繰り返す重合条件で次第に広い溶融面積を生成させつつ、溶着全面を集光ビームの高速スキャンにより溶融状態にて溶着することを特徴とする筒状体のレーザ加工方法。  A laser beam derived from a laser oscillator is circulated to a reverse concave conical prism cylinder by a galvano mechanism and radiated as a condensed beam in a conical outer diameter direction, and inserted into the outer periphery of the conical reflector cylinder. The cylindrical body made by fitting the outer tube of the light-transmitting material and the inner tube of the light-absorbing material is a molten state on the first trajectory that scans the inner peripheral surface of the outer tube. When passing through the second trajectory that has been polymerized close to the first trajectory before the melted portion solidifies, the resin on the first trajectory is reheated again with the focused beam to maintain the molten state, and continues. When passing over the third trajectory that has been polymerized close to the second trajectory, the melting area is gradually increased under the polymerization conditions in which the polymer on the second trajectory is reheated again with the focused beam to repeat the close polymerization to maintain the molten state. High-speed focused beam on the entire weld surface while generating Laser processing method of the tubular body, characterized in that the welding in the molten state by the can. 上記集光ビームの高速スキャンの移動速度を100mm/sec〜3000mm/secとしたことを特徴とする請求項6または12記載の筒状体のレーザ加工方法。  13. The cylindrical laser processing method according to claim 6, wherein a moving speed of the focused beam in a high-speed scan is set to 100 mm / sec to 3000 mm / sec. 上記集光ビームは、この光線幅を0.5mm〜2.0mmとし、この光線幅の接線から約半分幅までを接近重合させる重合条件としたことを特徴とする請求項6または12記載の筒状体のレーザ加工方法。  The cylinder according to claim 6 or 12, wherein the focused beam has a light beam width of 0.5 mm to 2.0 mm, and has a polymerization condition that allows close polymerization from a tangent to the light beam width to about half the width. Laser processing method for a body. レーザ光線を出力するレーザ発振器と、上記レーザ発振器からのレーザ光線を平行光線とする光学レンズ系と、上記平行光線を集光ビームとして所定の半径で旋回させるガルバノ機構と、上記ガルバノ機構による集光ビームの旋回軌跡と旋回速度とを制御する照射制御手段と、上記ガルバノ機構からの集光ビームを旋回中心に集束する凹状の円錐反射筒と、上記円錐反射筒の中心孔に挿通させた筒状体と、上記筒状体を把持する保持具と、を具備したことを特徴とする筒状体のレーザ加工装置。  A laser oscillator that outputs a laser beam, an optical lens system that uses the laser beam from the laser oscillator as a parallel beam, a galvano mechanism that rotates the parallel beam as a focused beam at a predetermined radius, and a light beam collected by the galvano mechanism Irradiation control means for controlling the turning trajectory and turning speed of the beam, a concave conical reflecting tube for condensing the focused beam from the galvano mechanism at the turning center, and a cylindrical shape inserted through the center hole of the conical reflecting tube A cylindrical body laser processing apparatus comprising: a body; and a holder for gripping the tubular body. レーザ光線を出力するレーザ発振器と、上記レーザ発振器からのレーザ光線を平行光線とする光学レンズ系と、上記平行光線を集光ビームとして所定の半径で旋回させるガルバノ機構と、上記ガルバノ機構による集光ビームの旋回軌跡と旋回速度とを制御する照射制御手段と、上記ガルバノ機構からの集光ビームを旋回外径方向に集束する逆凹状の円錐プリズム筒と、上記円錐プリズム筒の外周に配置させた筒状体と、上記筒状体を把持する保持具と、を具備したことを特徴とする筒状体のレーザ加工装置。  A laser oscillator that outputs a laser beam, an optical lens system that uses the laser beam from the laser oscillator as a parallel beam, a galvano mechanism that rotates the parallel beam as a focused beam at a predetermined radius, and a light beam collected by the galvano mechanism An irradiation control means for controlling the turning trajectory and the turning speed of the beam, an inverted concave conical prism tube for converging the condensed beam from the galvano mechanism in the turning outer diameter direction, and an outer periphery of the conical prism tube. A cylindrical body laser processing apparatus comprising: a cylindrical body; and a holder for gripping the cylindrical body. 上記集光ビームの出力は、レーザ発振器の出力調節又は高速スキャンの移動速度の加減速制御により可変とすることを特徴とする請求項15または請求項16記載の筒状体のレーザ加工装置。  17. The cylindrical laser beam machining apparatus according to claim 15, wherein the output of the focused beam is variable by adjusting the output of a laser oscillator or by controlling acceleration / deceleration of a moving speed of a high-speed scan.
JP2009186092A 2009-07-17 2009-07-17 Laser beam machining method for cylindrical body and laser beam machining device for cylindrical body Pending JP2011020175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009186092A JP2011020175A (en) 2009-07-17 2009-07-17 Laser beam machining method for cylindrical body and laser beam machining device for cylindrical body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009186092A JP2011020175A (en) 2009-07-17 2009-07-17 Laser beam machining method for cylindrical body and laser beam machining device for cylindrical body

Publications (1)

Publication Number Publication Date
JP2011020175A true JP2011020175A (en) 2011-02-03

Family

ID=43630686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009186092A Pending JP2011020175A (en) 2009-07-17 2009-07-17 Laser beam machining method for cylindrical body and laser beam machining device for cylindrical body

Country Status (1)

Country Link
JP (1) JP2011020175A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146190A1 (en) * 2012-03-29 2013-10-03 東洋製罐グループホールディングス株式会社 Method for sealing container and lid using laser welding
US20140035279A1 (en) * 2012-08-03 2014-02-06 Lincoln Global, Inc. Methods and systems of joining pipes
CN108883498A (en) * 2016-02-24 2018-11-23 詹诺普蒂克自动化技术有限公司 Device for laser transmission welding circular weld
US10464168B2 (en) 2014-01-24 2019-11-05 Lincoln Global, Inc. Method and system for additive manufacturing using high energy source and hot-wire
JP2020180316A (en) * 2019-04-24 2020-11-05 公立大学法人 滋賀県立大学 Laser processing apparatus and laser processing method
US11027362B2 (en) 2017-12-19 2021-06-08 Lincoln Global, Inc. Systems and methods providing location feedback for additive manufacturing
WO2021210103A1 (en) * 2020-04-15 2021-10-21 株式会社ニコン Processing apparatus
WO2021245861A1 (en) * 2020-06-04 2021-12-09 株式会社ニコン Processing apparatus
WO2022156970A1 (en) * 2021-01-21 2022-07-28 LPKF WeldingQuipment GmbH Process and apparatus for laser welding two thermoplastic components

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9550596B2 (en) 2012-03-29 2017-01-24 Toyo Seikan Group Holdings, Ltd. Method of sealing containers and lids by melt adhesion by laser
WO2013146190A1 (en) * 2012-03-29 2013-10-03 東洋製罐グループホールディングス株式会社 Method for sealing container and lid using laser welding
US20140035279A1 (en) * 2012-08-03 2014-02-06 Lincoln Global, Inc. Methods and systems of joining pipes
US9683682B2 (en) * 2012-08-03 2017-06-20 Lincoln Global, Inc. Methods and systems of joining pipes
US10464168B2 (en) 2014-01-24 2019-11-05 Lincoln Global, Inc. Method and system for additive manufacturing using high energy source and hot-wire
CN108883498B (en) * 2016-02-24 2021-07-23 詹诺普蒂克自动化技术有限公司 Device for laser transmission welding of circumferential weld
US11052485B2 (en) 2016-02-24 2021-07-06 Jenoptik Automatisierungstechnik Gmbh Annular laser transmission seam welding device
CN108883498A (en) * 2016-02-24 2018-11-23 詹诺普蒂克自动化技术有限公司 Device for laser transmission welding circular weld
US11027362B2 (en) 2017-12-19 2021-06-08 Lincoln Global, Inc. Systems and methods providing location feedback for additive manufacturing
JP2020180316A (en) * 2019-04-24 2020-11-05 公立大学法人 滋賀県立大学 Laser processing apparatus and laser processing method
WO2021210103A1 (en) * 2020-04-15 2021-10-21 株式会社ニコン Processing apparatus
WO2021245861A1 (en) * 2020-06-04 2021-12-09 株式会社ニコン Processing apparatus
EP4163047A4 (en) * 2020-06-04 2024-03-13 Nikon Corp Processing apparatus
WO2022156970A1 (en) * 2021-01-21 2022-07-28 LPKF WeldingQuipment GmbH Process and apparatus for laser welding two thermoplastic components

Similar Documents

Publication Publication Date Title
JP2011020175A (en) Laser beam machining method for cylindrical body and laser beam machining device for cylindrical body
US8404994B2 (en) Laser beam welding device and method
WO2022022067A1 (en) Laser processing device capable of controlling light beam incident angle, and laser processing method
CN105798455B (en) Laser-processing system and method
JP5364039B2 (en) Manufacturing method of resin molded products
JP2005001216A (en) Method and apparatus for laser welding of resin members and laser welded member
JP2002301585A (en) System and method for remote laser welding
KR20150126603A (en) Coordination of beam angle and workpiece movement for taper control
Acherjee State-of-art review of laser irradiation strategies applied to laser transmission welding of polymers
US20050224471A1 (en) Methods and apparatus for delivering laser energy for joining parts
US20100065536A1 (en) Micro Laser Assisted Machining
KR101607226B1 (en) system and method for cutting using laser
CN112475638B (en) Laser micropore machining system and method based on axicon lens
WO2015161081A1 (en) Laser device for performing an annular circumferential welding on a workpiece using optical reflectors
JP2010105376A (en) Method and device for resin welding by laser beam
JP2012240216A (en) Three-dimensional modeling apparatus, modeled object, and method for manufacturing modeled object
JP2010184490A (en) Resin melt welding method by laser beam and resin melt welding apparatus by laser beam
KR100976864B1 (en) Method of processing hydrophobic surface using laser ablation and solid body having hydrophobic surface of dual scaled structure
US20190118305A1 (en) Laser 3d processing system
CN113634925B (en) Laser rotary cutting processing system and method
JP5436937B2 (en) Manufacturing method of resin molded products
CN213318327U (en) Laser processing device with controllable light beam incident angle
JP2010046674A (en) Laser welding method, laser welding device, and welding material
JP5579532B2 (en) Manufacturing method of resin molded products
JP2014037141A (en) Laser deposition apparatus of resin molding