JP2010184490A - Resin melt welding method by laser beam and resin melt welding apparatus by laser beam - Google Patents

Resin melt welding method by laser beam and resin melt welding apparatus by laser beam Download PDF

Info

Publication number
JP2010184490A
JP2010184490A JP2009052655A JP2009052655A JP2010184490A JP 2010184490 A JP2010184490 A JP 2010184490A JP 2009052655 A JP2009052655 A JP 2009052655A JP 2009052655 A JP2009052655 A JP 2009052655A JP 2010184490 A JP2010184490 A JP 2010184490A
Authority
JP
Japan
Prior art keywords
laser beam
resin
trajectory
welding
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009052655A
Other languages
Japanese (ja)
Inventor
Kunio Murakami
邦雄 村上
Masamichi Akazawa
正道 赤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA TECH KK
Original Assignee
MA TECH KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MA TECH KK filed Critical MA TECH KK
Priority to JP2009052655A priority Critical patent/JP2010184490A/en
Publication of JP2010184490A publication Critical patent/JP2010184490A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/863Robotised, e.g. mounted on a robot arm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • B29C65/1661Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined scanning repeatedly, e.g. quasi-simultaneous laser welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/431Joining the articles to themselves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/432Joining a relatively small portion of the surface of said articles for making tubular articles or closed loops, e.g. by joining several sheets ; for making hollow articles or hollow preforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/934Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/939Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1674Laser beams characterised by the way of heating the interface making use of laser diodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8253Testing the joint by the use of waves or particle radiation, e.g. visual examination, scanning electron microscopy, or X-rays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/22Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being in the form of recurring patterns
    • B29C66/223Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being in the form of recurring patterns being in the form of a triangle wave or of a sawtooth wave, e.g. zigzagged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/22Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being in the form of recurring patterns
    • B29C66/225Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being in the form of recurring patterns being castellated, e.g. in the form of a square wave or of a rectangular wave

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel resin melt welding method and a resin melt welding apparatus by laser beam by means of which a melt welding surface area is widened by high scanning operation of the laser beam to attain high quality surface melt welding with high speed melt welding. <P>SOLUTION: When the laser beam L to be scanned on the melt welding surface is passed on a second locus S2 approaching and overlapping on a first locus before a molten portion is cured from a molten state on the first locus S1, while the resin materials 1, 2 on the first locus are heated again by the laser beam L to keep the molten state to form the wide melt welding surface S0, the whole melt welding surface is sequentially scanned to form the melt welding state by the laser beam at high speed to be surface-welded in an optional shape. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば、樹脂材間を高速度で溶着させるスキャン溶着技術に係わり、特に、レーザ光線の高速スキャン操作により任意形状の面溶着を高品質のもとに高速溶着させる新規なレーザ光線による樹脂溶着方法とレーザ光線による樹脂溶着装置に関するものである。  The present invention relates to, for example, a scan welding technique in which resin materials are welded at a high speed, and in particular, by a novel laser beam that allows high-speed surface welding of an arbitrary shape by high-speed scanning operation of a laser beam. The present invention relates to a resin welding method and a resin welding apparatus using a laser beam.

近年、樹脂材間を溶着させる溶着技術には、レーザダイオードによるレーザ光線をエネルギー源とする樹脂溶着装置(レーザ溶着装置)が開発されている。その溶着方式には、多数個のレーザダイオードを溶着すべき溶着面に合わせて並べ、一括して面溶着する一括照射方式と、一つのレーザダイオードからのレーザ光線を溶着面の一点に向けて照射しつつスキャニングさせる一軸操作のスキャン方式とが実用化されている。  In recent years, a resin welding apparatus (laser welding apparatus) using a laser beam from a laser diode as an energy source has been developed as a welding technique for welding resin materials. For the welding method, a large number of laser diodes are arranged on the welding surface to be welded, and the batch irradiation method is used to perform surface welding at once, and the laser beam from one laser diode is irradiated to one point on the welding surface. However, a single-axis scanning method that allows scanning while being used has been put into practical use.

上記一括照射方式は、多数個のレーザダイオードを溶着すべき溶着面に合わせて並べて一括溶着させるものが古典的な方法である。最近は、単一のレーザ光を複数のレーザ光に分岐させる一括照射方式が開発されている。その構成は、YAGレーザの発振器等から発生するレーザ光が回折レンズのような回折型光学部品へ入射し、回折及び透過をするうちに複数本のビームに分光される。それぞれのビームは集光レンズ等によって不透明な吸収性の樹脂の面上の焦点に収束して同時に発熱する。その熱は透過性の樹脂にも伝わって、複数個の焦点付近の接合部が溶融し、樹脂間が溶着する。焦点は多数形成することができ、それらが同時に発熱するので、焦点をスキャンさせる技術のように被加工材料に変形を生じない。回路基板の一部から樹脂を除去するような作業にもこの方法を利用することができる。被加工材料は樹脂のほか金属等でもよいとするものである(例えば、特許文献1参照。)。  The above-mentioned batch irradiation method is a classic method in which a large number of laser diodes are aligned and welded together according to the welding surface to be welded. Recently, a collective irradiation method for splitting a single laser beam into a plurality of laser beams has been developed. The configuration is such that laser light generated from a YAG laser oscillator or the like enters a diffractive optical component such as a diffractive lens and is split into a plurality of beams while being diffracted and transmitted. Each beam converges on the focal point on the surface of the opaque absorbent resin by a condenser lens or the like and generates heat simultaneously. The heat is also transmitted to the permeable resin, and the joints near the plurality of focal points are melted, and the resin is welded. A large number of focal points can be formed, and since they generate heat at the same time, the work material is not deformed as in the technique of scanning the focal point. This method can also be used for operations such as removing the resin from a portion of the circuit board. The material to be processed may be a metal or the like in addition to a resin (for example, see Patent Document 1).

別の一括照射方式は、単一のレーザ光を複数のレーザ光に分岐させるために、凹凸段差形状を有する回折型光学部品(回折レンズ)を備え、当該凹凸段差形状を所定の形状とすることで、単一のレーザ光を例えばリング状のレーザ光とする。従って、被加工物の溶着部位がリング状である場合でも、当該リング状レーザ光は集光レンズを介して被加工物の溶着部位に照射することにより、一括溶着させるものである。具体的に記述すれば、レーザ光を出力するレーザ発振器と、レーザ光をリング状にする光学手段とを備えており、リング状のレーザ光により被加工物の加工を行うものである。このとき光学手段は、レーザ発振器から出力されたレーザ光を拡大し所定径の平行なレーザ光に調整するエクスパンダ及びコリメータと、所定径の平行なレーザ光をリング状の平行光とする一対の光学素子とを有し、エクスパンダ及びコリメータ間の距離及び/又は光学素子間の距離を制御することにより、被加工物表面におけるリング状のレーザ光の内径及び/又は外径を制御するレーザ加工装置である(例えば、特許文献2参照。)。  Another collective irradiation method includes a diffractive optical component (diffractive lens) having an uneven step shape to split a single laser beam into a plurality of laser beams, and the uneven step shape is set to a predetermined shape. Thus, the single laser beam is, for example, a ring-shaped laser beam. Therefore, even when the welded portion of the workpiece is ring-shaped, the ring-shaped laser light is applied to the welded portion of the workpiece through the condensing lens to be welded together. More specifically, a laser oscillator that outputs laser light and an optical means for making the laser light into a ring shape are provided, and a workpiece is processed with the ring-shaped laser light. At this time, the optical means expands the laser beam output from the laser oscillator and adjusts it to a parallel laser beam with a predetermined diameter, and a pair of parallel laser beams with a predetermined diameter as ring-shaped parallel light. Laser processing for controlling the inner diameter and / or outer diameter of the ring-shaped laser beam on the surface of the workpiece by controlling the distance between the expander and the collimator and / or the distance between the optical elements. Device (see, for example, Patent Document 2).

他方、スキャン方式には、構成が簡素であり制御も容易なレーザビームによる樹脂溶着装置を得るべく、平行レーザビームを出力する高品質レーザビーム発生装置と、出力されるレーザビームを加工物に向けて照射するXY2軸の回転ミラーユニットと、回転軸を備えた加工物支持治具とで樹脂溶着装置を構成されるものがある(例えば、特許文献3参照。)。  On the other hand, in order to obtain a resin welding apparatus using a laser beam that is simple in configuration and easy to control, the scanning method has a high-quality laser beam generator that outputs a parallel laser beam, and the output laser beam is directed to a workpiece. In some cases, a resin welding apparatus is constituted by an XY two-axis rotating mirror unit that irradiates and a workpiece support jig provided with the rotating shaft (for example, see Patent Document 3).

更に、別のスキャン方式には、樹脂部材間に隙間を有する樹脂部材を、過大な歪の発生が無く、製品設計自由度の比較的高く、かつ樹脂部材間の気密性の保たれた均一な溶着を可能にしたものがある。その構成は、樹脂溶着用レーザ光に対する透過性樹脂部材と該レーザ光を吸収して加熱される非透過性樹脂部材からなり、該透過性樹脂部材の表面の一部を凹部と成し、該非透過性樹脂部材の表面の一部を凸部と成し、ここで、凹部の容積はVであり、凸部は凹部への嵌合体積がvであって、凹部と嵌合時に0.1V≦v<Vにより与えられる空間を生じる形状であり、凹部と凸部を嵌合し、レーザ光を凹部側から凸部に照射して凸部を溶融し、ここで、凸部は溶融時の嵌合体積v+Δv≦1.2Vを満たし、凹部と凸部とをレーザ溶着するものがある(例えば、特許文献4参照。)。  In addition, another scanning method uses a resin member having a gap between the resin members so that excessive distortion does not occur, the degree of freedom in product design is relatively high, and the airtightness between the resin members is kept uniform. Some have made it possible to weld. The structure includes a transparent resin member for resin welding laser light and a non-transparent resin member that absorbs and heats the laser light, and a part of the surface of the transparent resin member is formed as a recess, A part of the surface of the transparent resin member is formed as a convex part, where the volume of the concave part is V, and the convex part has a fitting volume v to the concave part, and 0.1 V when fitted to the concave part. ≦ v <V is a shape that creates a space, and the concave portion and the convex portion are fitted, and the convex portion is melted by irradiating the convex portion with laser light from the concave portion side. There is one that satisfies the fitting volume v + Δv ≦ 1.2V and laser welds the concave portion and the convex portion (for example, see Patent Document 4).

特開2003−164985号公報  JP 2003-164985 A 特開2005−028428号公報  Japanese Patent Laying-Open No. 2005-028428 特開2005−254618号公報  JP 2005-254618 A 特開2005−007759号公報  JP-A-2005-007759

上記単一のレーザ光を複数のレーザ光に分岐させる一括照射方式は、レーザ光が複数本のビームに分光され、それぞれのビームは集光レンズ等によって不透明な吸収性の樹脂の面上の焦点に収束して同時に発熱するから、複数個の焦点付近の接合部が溶融し、樹脂間が溶着し、焦点をスキャンさせる技術のように被加工材料に変形を生じさせない。しかしながら、複数本のビームに分光された接合部(焦点)の溶着面形状は、一直線・リング円形・均等分散点・等々全て左右対称形に限定される。この為に、左右非対称形や任意形状を呈する溶着面形状の同時溶着は不可能であるばかりか、ビームの分光によりエネルギー密度が拡散して低く、薄板樹脂に限定されるし厚物の溶着には必然的に大出力のレーザ発振器が必要とする等の多くの問題点が存在する。更に、分岐技術はYAGやファイバーレーザが使われるがプロファイルがガウシアンのため溶着に適していない。たとえ、ディフォーカスしてもガウシアンになって尖った照射線になり焼けたり、溶着不足を起こすと云う問題点が存在する。  In the batch irradiation method in which the single laser beam is branched into a plurality of laser beams, the laser beam is split into a plurality of beams, and each beam is focused on the surface of an opaque absorbent resin by a condenser lens or the like. The joints near a plurality of focal points are melted, the joints between the resins are fused, and the work material is not deformed as in the technique of scanning the focal points. However, the shape of the welded surface of the joint (focal point) dispersed into a plurality of beams is limited to a symmetric shape such as a straight line, a ring circle, a uniform dispersion point, and so on. For this reason, it is not possible to weld a welded surface shape that exhibits an asymmetrical shape or an arbitrary shape at the same time, but the energy density is diffused and low due to beam spectroscopy. There are many problems such as the necessity of a high-power laser oscillator. Furthermore, YAG or fiber laser is used as the branching technique, but the profile is not suitable for welding because of the Gaussian profile. For example, there is a problem that even if defocused, it becomes Gaussian and becomes a pointed irradiation line and burns, or lack of welding.

また、上記第一のスキャン方式(特開2005−254618号公報)では、平行レーザビームを出力する高品質レーザビーム発生装置を使用したことにより、出力されるレーザビームを加工物に向けて照射するための偏光手段(光走査手段)に、簡単なXY2軸の回転ミラーユニットを使用できるから、装置構造が簡単でありながら、曲面形状の溶着が可能である。しかしながら、スキャン方式の最大の問題点は、一つのレーザダイオードからのレーザ光線を溶着面の一点に向けて照射しつつスキャニングさせるから、表面積の広い面溶着を行う時に、同時に面全体を溶着状態とすることが難しい。これが為に、レーザ光線が移動軌跡上を一回目の移動時、照射されて溶解した樹脂は急速に凝固するから、一回目の移動軌跡近くを通過する二回目のレーザ光線のスキャン時には、再び凝固状態から溶融することがない。しかし、溶融後に凝固した樹脂部を再び溶融すると、樹脂材は材質劣化をおこしてしまう。従って、樹脂成型品の溶着部にヒケや反りが発生し、高精度な面溶着が保証されないと云う問題点がある。上記第一のスキャン方式には、これを解決する技術的手段が記述されていない。  In the first scanning method (Japanese Patent Laid-Open No. 2005-254618), a high-quality laser beam generator that outputs a parallel laser beam is used, so that the output laser beam is emitted toward the workpiece. Since a simple XY biaxial rotating mirror unit can be used as the polarizing means (optical scanning means) for this purpose, it is possible to weld a curved surface shape while the apparatus structure is simple. However, the biggest problem with the scanning method is that scanning is performed while irradiating the laser beam from one laser diode toward one point on the welding surface, so when performing surface welding with a large surface area, the entire surface is simultaneously welded. Difficult to do. For this reason, when the laser beam moves on the movement trajectory for the first time, the irradiated and melted resin rapidly solidifies, so that it solidifies again when scanning the second laser beam that passes near the first trajectory. It does not melt from the state. However, if the resin part solidified after melting is melted again, the resin material will deteriorate. Therefore, there is a problem in that sink marks and warpage occur in the welded portion of the resin molded product, and high-precision surface welding cannot be guaranteed. The first scanning method does not describe technical means for solving this.

更に、上記スキャン方式における問題点として、図13に示すように、レーザ光線は、溶着面幅間Aを往復スキャンする第一軌跡Laから第二軌跡Lbへの折り返し点Pでの折り返し軌跡Lpが鋭角な三角軌跡となるから、均等に全面溶融されず、固化したままの樹脂板P0の未溶融箇所Mが残る。これにより、溶着面幅間Aは、全面溶着されず、樹脂成型品の溶着部に溶着不良による気密不良やヒケや反りが発生し、気密性の高い高精度な面溶着が保証されないと云う問題点がある。  Furthermore, as a problem in the above scanning method, as shown in FIG. 13, the laser beam has a folding locus Lp at a turning point P from the first locus La to the second locus Lb that reciprocally scans the welding surface width A. Since it becomes an acute triangular locus, the entire surface of the resin plate P0 that remains solid is not melted evenly and remains unmelted. As a result, the welding surface width A is not entirely welded, and there is a problem that airtight defects or sink marks or warpage due to poor welding occur in the welded part of the resin molded product, and high-precision surface welding with high airtightness cannot be guaranteed. There is a point.

更に、上記第二のスキャン方式(特開2005−007759号公報)では、隙間を有する樹脂部材間のレーザ溶着を均一に行い、機密性の良好な溶着成型品を得ることができる。しかしながら、上下二枚の樹脂板は、凹部と凸部とを嵌合することに限定された特定技術であるから、汎用性がないと云う問題点が存在する。  Furthermore, in the second scanning method (Japanese Patent Laid-Open No. 2005-007759), laser welding between resin members having a gap can be performed uniformly, and a welded molded article with good confidentiality can be obtained. However, since the two upper and lower resin plates are a specific technique limited to fitting the concave portion and the convex portion, there is a problem that they are not versatile.

本発明は、上記従来の一括照射方式やスキャン方式における各種の問題点に鑑みてなされたものである。その目的は、上記従来のスキャナ溶着における面溶着・マスク面溶着等の基本原理を覆す画期的で新規なスキャン溶着技術を提供する。具体的には、第一軌跡上で溶融状態とした溶融部が凝固する前に第二軌跡上を通過するレーザ光線で再度第一軌跡上の溶融部を再加熱して溶融状態を維持させて広い溶融面積を生成し、レーザ光線のスキャンにより任意形状の広い面溶着を高品質のもとに高速溶着させるスキャン溶着方法とその溶着装置を提供するものである。  The present invention has been made in view of various problems in the conventional batch irradiation method and scanning method. The object is to provide an innovative and novel scan welding technique that overturns the basic principles of surface welding and mask surface welding in the conventional scanner welding. Specifically, the molten part on the first locus is solidified again by a laser beam that passes on the second locus before the molten portion on the first locus is solidified before solidifying. The present invention provides a scan welding method and a welding apparatus for generating a wide melt area and performing high-speed welding of a wide surface weld of an arbitrary shape with high quality by scanning with a laser beam.

上記目的を達成するべく本発明の請求項1のレーザ光線による樹脂溶着方法は、溶着面上をスキャンされるレーザ光線を第一軌跡上で溶融状態とした溶融部が凝固する前に上記第一軌跡に接近重合させた第二軌跡上を通過時に、上記レーザ光線で再度第一軌跡上の樹脂を再加熱して溶融状態を維持させ、続く上記第二軌跡に接近重合させた第三軌跡上を通過時に、上記レーザ光線で再度第二軌跡上の樹脂を再加熱して溶融状態を維持させる接近重合を繰り返す重合条件で次第に広い溶融面積を生成させつつ、溶着全面をレーザ光線の高速スキャンにより溶融状態として任意形状に一括面溶着させることを特徴とする。  In order to achieve the above object, the resin welding method using a laser beam according to claim 1 of the present invention is characterized in that the laser beam scanned on the welding surface is melted on the first locus before the melted portion solidifies. When passing over the second trajectory that has been polymerized close to the trajectory, the resin on the first trajectory is reheated again with the laser beam to maintain the molten state, and then on the third trajectory that is polymerized close to the second trajectory. When passing through the laser beam, the resin on the second trajectory is reheated again with the laser beam, and a progressively large polymerization area is generated under repeated polymerization conditions to maintain the molten state. It is characterized in that the surfaces are welded together in an arbitrary shape as a molten state.

また、本発明の請求項2のレーザ光線による樹脂溶着方法は、請求項1記載のレーザ光線による樹脂溶着方法において、上記レーザ光線の重合条件は、溶着面幅間を往復スキャンする第一軌跡から第二軌跡への折り返し点での折り返し軌跡を、次の移動軌跡まで微動させる矩形軌跡としたことを特徴とする。  The resin welding method using a laser beam according to claim 2 of the present invention is the resin welding method using a laser beam according to claim 1, wherein the laser beam polymerization condition is determined from a first trajectory scanning between the welding surface widths. The return trajectory at the return point to the second trajectory is a rectangular trajectory that finely moves to the next movement trajectory.

また、本発明の請求項3のレーザ光線による樹脂溶着方法は、請求項1または2記載のレーザ光線による樹脂溶着方法において、上記レーザ光線の高速スキャンの移動速度を100mm/sec〜1500mm/secとしたことを特徴とする。  The resin welding method using a laser beam according to claim 3 of the present invention is the resin welding method using a laser beam according to claim 1 or 2, wherein the moving speed of the laser beam is 100 mm / sec to 1500 mm / sec. It is characterized by that.

また、本発明の請求項4によるレーザ光線による樹脂溶着方法は、請求項1または2記載のレーザ光線による樹脂溶着方法において、上記レーザ光線の光線幅を0.5mm〜1.5mmとし、その光線幅の接線から約半分幅までを第一軌跡に対して第二軌跡を通過重合させることを特徴とする。  The resin welding method using a laser beam according to claim 4 of the present invention is the resin welding method using a laser beam according to claim 1 or 2, wherein the beam width of the laser beam is 0.5 mm to 1.5 mm. The second trajectory is passed through the first trajectory from the tangential line of the width to about half the width.

また、本発明の請求項5によるレーザ光線による樹脂溶着装置は、レーザ光線を出力するレーザ発振器と、上記レーザ発振器からのレーザ光線を平行光線とした後に上記平行光線を被加工材に集光ビームとして照射する光学レンズ系と、上記平行光線を偏向させて被加工材の任意位置に集光ビームを照射させるガルバノ機構と、上記ガルバノ機構による集光ビームの移動軌跡と移動速度とを制御する照射制御手段と、を具備したことを特徴とする。  According to a fifth aspect of the present invention, there is provided a laser beam welding apparatus according to a fifth aspect of the present invention, a laser oscillator for outputting a laser beam, a collimated beam on a workpiece after the parallel beam is used as the laser beam from the laser oscillator. An optical lens system for irradiating, a galvano mechanism for deflecting the parallel light beam to irradiate a focused beam to an arbitrary position on the workpiece, and an irradiation for controlling the movement locus and moving speed of the focused beam by the galvano mechanism And a control means.

また、本発明の請求項6によるレーザ光線による樹脂溶着装置は、請求項5記載のレーザ光線による樹脂溶着装置において、上記集光ビームの照射側となる被加工材の表面にマスクベースを備えたことを特徴とする。  According to a sixth aspect of the present invention, there is provided a laser beam resin welding apparatus according to the fifth aspect, wherein the laser beam resin welding apparatus includes a mask base on a surface of a workpiece to be irradiated with the focused beam. It is characterized by that.

また、本発明の請求項7によるレーザ光線による樹脂溶着装置は、請求項5記載のレーザ光線による樹脂溶着装置において、上記被加工材を帯体状としたものにおいて、被加工材に長手方向への送り手段を装備したことを特徴とする。  A laser beam resin welding apparatus according to claim 7 of the present invention is the laser beam resin welding apparatus according to claim 5, wherein the workpiece is strip-shaped, and the workpiece is longitudinally arranged. Equipped with a feeding means.

また、本発明の請求項8によるレーザ光線による樹脂溶着装置は、請求項5または6または7のいずれか一つに記載のレーザ光線による樹脂溶着装置において、上記光学レンズ系は、レーザ光源からのレーザ光線を平行光線とするアクロマティックレンズ等の平行光線レンズ系と、反射鏡と、上記平行光線を集光ビームとするメニスカスレンズ又はエフシターレンズ等の集光レンズ系と、を具備したことを特徴とする。  A laser beam resin welding apparatus according to claim 8 of the present invention is the laser beam resin welding apparatus according to any one of claims 5, 6, or 7, wherein the optical lens system includes a laser light source. A parallel light lens system such as an achromatic lens that uses laser light as a parallel light beam, a reflecting mirror, and a condensing lens system such as a meniscus lens or an efciator lens that uses the parallel light as a condensed beam. Features.

また、本発明の請求項9によるレーザ光線による樹脂溶着装置は、請求項5または6または7のいずれか一つに記載のレーザ光線による樹脂溶着装置において、上記ガルバノ機構の反射鏡をXYサーボモータで角度制御することを特徴とする。  According to a ninth aspect of the present invention, there is provided a laser welding resin welding apparatus according to any one of the fifth, sixth and seventh aspects, wherein the galvano-mechanism reflector is an XY servomotor. It is characterized in that the angle is controlled by.

本発明の請求項1〜4記載のレーザ光線による樹脂溶着方法の作用は、溶着面上を移動速度100mm/sec〜1500mm/secで高速スキャンするとともに、光線幅を0.5mm〜1.5mmとし、その光線幅の約半分幅までを第一軌跡に対して第二軌跡を通過重合させたから、第一軌跡上を通過したレーザ光線で溶融状態から凝固する前に上記第一軌跡に重合して第二軌跡上を通過時に、上記レーザ光線で再度第一軌跡上の樹脂を再加熱して溶融状態を維持させられる。これで、広い溶融面積を生成させつつ、順次に溶着全面を溶融状態で任意形状に高速面溶着させられる。更に、レーザ光線の重合条件について、溶着面幅間を往復スキャンする折り返し点での折り返し軌跡を、次の移動軌跡まで微動させる矩形軌跡としたから、溶着面の全面が均等な完全面接着される。  The effects of the resin welding method using a laser beam according to claims 1 to 4 of the present invention are that the welding surface is scanned at a high speed at a moving speed of 100 mm / sec to 1500 mm / sec and the beam width is set to 0.5 mm to 1.5 mm. Since the second trajectory is passed through the first trajectory up to about half the width of the light beam, the laser beam passed on the first trajectory is superposed on the first trajectory before solidifying from the molten state. When passing on the second locus, the resin on the first locus is reheated again by the laser beam to maintain the molten state. Thus, the entire surface of the weld can be sequentially melted at a high speed surface in an arbitrary shape while generating a wide melt area. Furthermore, with regard to the laser beam polymerization conditions, since the folding locus at the folding point for reciprocating scanning between the welding surface widths is a rectangular locus that finely moves to the next movement locus, the entire surface of the welding surface is evenly and completely bonded. .

本発明の請求項5〜7記載のレーザ光線による樹脂溶着装置によれば、上記レーザ光線による樹脂溶着方法を効率良く高速度に実施させられる。また、マスク溶着も効率良く高速度に実施させられる。更に、被加工材が帯体状としたものにおいては、被加工材を送り手段により長手方向への送り制御により、長尺物のワーク溶着が連続して行われる。  According to the resin welding apparatus using a laser beam according to claims 5 to 7 of the present invention, the resin welding method using the laser beam can be efficiently performed at a high speed. Also, mask welding can be efficiently performed at a high speed. Furthermore, in the case where the workpiece is in the form of a strip, the workpiece is continuously welded to the workpiece by feeding control of the workpiece in the longitudinal direction by the feeding means.

本発明の請求項8による光学レンズ系と、請求項9によるガルバノ機構との作用は、レーザ発振器からのレーザ光線を平行光線とした後に上記平行光線を偏向させ且つ、被加工材となる例えば、二枚重ねの樹脂板に集光ビームとして照射させられるから、上記被加工材の任意位置に所定仕様の集光ビームを正確に照射させられる。  The action of the optical lens system according to claim 8 of the present invention and the galvano mechanism according to claim 9 is such that the parallel beam is deflected after the laser beam from the laser oscillator is converted into a parallel beam, and becomes a workpiece. Since the two stacked resin plates are irradiated as a focused beam, the focused beam having a predetermined specification can be accurately irradiated to an arbitrary position of the workpiece.

本発明の請求項1〜4のレーザ光線による樹脂溶着方法によると、溶着面上を移動速度100mm/sec〜1500mm/secで高速スキャンするとともに、光線幅を0.5mm〜1.5mmとし、その光線幅の約半分幅までを第一軌跡に対して第二軌跡を通過重合させたから、広い溶融面積を生成でき、且つ、順次に溶着全面を溶融状態で任意形状に高速面溶着できるから、樹脂材の材質劣化が無く、樹脂成型品の溶着部にヒケや反りも発生せず、高品質で高精度な面溶着が保証できる。更に、レーザ光線の重合条件について、溶着面幅間を往復スキャンする折り返し点での折り返し軌跡を、次の移動軌跡まで微動させる矩形軌跡により任意形状の広い面溶着でも均等に完全面接着できる。  According to the resin welding method using a laser beam according to claims 1 to 4 of the present invention, the welding surface is scanned at a high speed at a moving speed of 100 mm / sec to 1500 mm / sec, and the beam width is set to 0.5 mm to 1.5 mm. Since the second trajectory is passed through the first trajectory up to about half the width of the light beam, a wide melting area can be generated, and the entire surface of the weld can be sequentially melted into a desired shape at a high speed surface. There is no material deterioration of the material, no sink marks or warpage occurs in the welded part of the resin molded product, and high quality and high precision surface welding can be guaranteed. Further, with respect to the laser beam superposition conditions, even if the surface of the folding point where the reciprocating scanning is performed between the welding surface widths is a rectangular locus that finely moves to the next movement locus, even a wide surface welding of an arbitrary shape can be completely and evenly bonded.

また、本発明の請求項5〜9レーザ光線による樹脂溶着装置によると、レーザ光線による樹脂溶着方法を効率良く高速度に実施できる。上記光学レンズ系と上記ガルバノ機構によると、レーザ発振器からのレーザ光線を平行光線とした後に上記平行光線を偏向させ且つ、被加工材となる二枚重ねの樹脂板材の任意位置に所定仕様の集光ビームを正確に照射できる。また、マスク溶着も効率良く高速度に実施できる。更に、被加工材が帯体状としたものにおいては、被加工材を送り手段により長手方向へ送り制御でき、長尺物のワーク溶着が連続して面溶着できる。  According to the resin welding apparatus using a laser beam according to claims 5 to 9 of the present invention, the resin welding method using a laser beam can be carried out efficiently and at a high speed. According to the optical lens system and the galvano mechanism, the laser beam from the laser oscillator is converted into a parallel beam and then the parallel beam is deflected, and a focused beam having a predetermined specification is placed at an arbitrary position on a two-layered resin plate material to be processed. Can be irradiated accurately. Also, mask welding can be performed efficiently at high speed. Furthermore, in the case where the workpiece is in the form of a strip, the workpiece can be controlled to be fed in the longitudinal direction by the feeding means, and the workpiece welding of the long object can be continuously surface-welded.

本発明の第1の実施の形態を示し、レーザ光線による樹脂溶着方法の手順を示すブロック線図である。  It is a block diagram which shows the 1st Embodiment of this invention and shows the procedure of the resin welding method by a laser beam. 本発明の第1の実施の形態を示し、レーザ光線によるスキャン移動の軌跡図である。  FIG. 2 is a trajectory diagram of scan movement by a laser beam according to the first embodiment of this invention. 本発明の第1の実施の形態を示し、レーザ光線の第一軌跡と第二軌跡とそれ以下の通過重合の軌跡図である。  FIG. 2 is a trajectory diagram of the first and second trajectories of a laser beam and a lower passing polymerization according to the first embodiment of the present invention. 本発明の第1の実施の形態を示し、レーザ光線による樹脂溶着装置の概要図である。  BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic of the resin welding apparatus by the laser beam which shows the 1st Embodiment of this invention. 本発明の第1の実施の形態を示し、レーザ溶着ヘッドの概要図である。  1 is a schematic diagram of a laser welding head according to a first embodiment of the present invention. 本発明の第1の実施の形態を示し、溶着面接合部の写真図である。  FIG. 2 is a photograph of a welded surface joint portion, showing the first embodiment of the present invention. 本発明の第1の実施の形態を示し、溶着面接合部の写真図である。  FIG. 2 is a photograph of a welded surface joint portion, showing the first embodiment of the present invention. 本発明の第1の実施の形態を示し、溶着面接合部の写真図である。  FIG. 2 is a photograph of a welded surface joint portion, showing the first embodiment of the present invention. 本発明の第1の実施の形態を示し、溶着面接合部の写真図である。  FIG. 2 is a photograph of a welded surface joint portion, showing the first embodiment of the present invention. 本発明の第1の実施の形態を示し、溶着面接合部の写真図である。  FIG. 2 is a photograph of a welded surface joint portion, showing the first embodiment of the present invention. 本発明の第1の実施の形態を示し、溶着面接合部の写真図である。  FIG. 2 is a photograph of a welded surface joint portion, showing the first embodiment of the present invention. 本発明の第1の実施の形態を示し、溶着面接合部の写真図である。  FIG. 2 is a photograph of a welded surface joint portion, showing the first embodiment of the present invention. 従来例を示し、狭い溶着面幅におけるスキャン軌跡の作用図である。  It is an effect | action figure of the scanning locus | trajectory in the narrow welding surface width | variety which shows a prior art example.

以下、図1乃至図12を参照して本発明の各実施の形態を順次に説明する。  Hereinafter, embodiments of the present invention will be described sequentially with reference to FIGS. 1 to 12.

本発明の第1の実施の形態となるレーザ光線による樹脂溶着方法は、下記の主たる工程からなる。先ず、図1〜図3に示すように、「レーザ光線による樹脂溶着方法」は、「被加工材となる二枚重ねの樹脂板材1,2の溶着面1A上をスキャンするレーザ光線Lを第一軌跡上に照射させる」(A)。続いて、「上記第一軌跡S1上で溶融状態から凝固する前に上記第一軌跡にレーザ光線Lを接近重合させた第二軌跡S2上を通過させる」(B)。そして、「再度上記第一軌跡上の樹脂板材を再加熱して溶融状態を維持させて広い溶融面積SOを生成させる」(C)。更に、「順次に溶着全面をレーザ光線の高速スキャンにより溶融状態で任意形状に高速面溶着させる」(D)。
即ち、レーザ光線による樹脂溶着方法は、溶着面上をスキャンされるレーザ光線を第一軌跡上で溶融状態とした溶融部が凝固する前に上記第一軌跡に接近重合させた第二軌跡上を通過時に、上記レーザ光線で再度第一軌跡上の樹脂を再加熱して溶融状態を維持させ、続く上記第二軌跡に接近重合させた第三軌跡上を通過時に、上記レーザ光線で再度第二軌跡上の樹脂を再加熱して溶融状態を維持させる接近重合を繰り返す重合条件で次第に広い溶融面積を生成させつつ、溶着全面をレーザ光線の高速スキャンにより溶融状態として任意形状に一括面溶着させるものである。
The resin welding method using a laser beam according to the first embodiment of the present invention includes the following main steps. First, as shown in FIGS. 1 to 3, the “resin welding method using a laser beam” is a first locus of a laser beam L that scans the welding surface 1 </ b> A of the two-layered resin plate materials 1 and 2 to be processed. Irradiate upwards "(A). Subsequently, “pass the second trajectory S2 in which the laser beam L is polymerized close to the first trajectory before solidifying from the molten state on the first trajectory S1” (B). Then, “the resin plate material on the first trajectory is reheated again to maintain the molten state and generate a wide melting area SO” (C). Furthermore, “sequentially weld the entire welded surface in a melted state by high-speed scanning with a laser beam into an arbitrary shape” (D).
That is, the resin welding method using a laser beam is performed on the second locus obtained by polymerizing the laser beam scanned on the welding surface close to the first locus before solidification of the melted portion solidified on the first locus. At the time of passing, the resin on the first locus is reheated again by the laser beam to maintain the molten state, and when passing on the third locus that has been polymerized close to the second locus, the second laser beam is again applied by the laser beam. A process that repeatedly heats the resin on the trajectory to maintain the molten state and repeats the close polymerization to create a broad melting area, and the entire surface of the weld is melted by high-speed scanning of the laser beam to form an arbitrary shape in a lump. It is.

続いて、上記レーザ光線Lの接近重合を繰り返す重合条件の各種形態を説明する。先ず、図2(a)は、リング状の面溶着に対するレーザ光線Lの高速スキャンの円形軌跡を示す。また、図2(b)は、市松模様状の面溶着に対するレーザ光線Lの高速スキャンの矩形軌跡を示す。また、図2(c)は、自由曲面リング状の面溶着に対するレーザ光線Lの高速スキャンの矩形軌跡を示す。更に、詳細に説明すれば、図3(a)は、リング状の面溶着に対するレーザ光線(光線幅L2)Lの高速スキャンによる重合軌跡(重合幅L3)を示す。また、図3(b)は、市松模様状の面溶着に対するレーザ光線(光線幅L2)Lの高速スキャンによる重合軌跡(重合幅L3)を示す。また、図3(c)は、自由曲面リング状の面溶着に対するレーザ光線(光線幅L2)Lの高速スキャンによる重合軌跡(接線の重合)を示す。特に、図3(c)においては、レーザ光線の重合条件は、溶着面幅間を往復スキャンする第一軌跡(移動軌跡)S1から第二軌跡(移動軌跡)S2への折り返し点P,Pでの折り返し軌跡SPを、次の第二軌跡(移動軌跡)S2まで微動させる矩形軌跡としている。  Subsequently, various forms of polymerization conditions for repeating the close polymerization of the laser beam L will be described. First, FIG. 2A shows a circular trajectory of a high-speed scan of the laser beam L for ring-shaped surface welding. FIG. 2B shows a rectangular trajectory of the high-speed scan of the laser beam L for the checkered surface welding. FIG. 2C shows a rectangular trajectory of high-speed scanning of the laser beam L with respect to free-form surface ring-shaped surface welding. More specifically, FIG. 3A shows a superposition trajectory (overlap width L3) by high-speed scanning of a laser beam (ray width L2) L for ring-shaped surface welding. FIG. 3B shows a superposition trajectory (overlap width L3) by high-speed scanning of a laser beam (light ray width L2) L for checkered surface welding. FIG. 3C shows a superposition trajectory (tangential superposition) by high-speed scanning of a laser beam (ray width L2) L with respect to free-form surface ring-shaped surface welding. In particular, in FIG. 3C, the laser beam superposition conditions are the turn-back points P and P from the first trajectory (movement trajectory) S1 to the second trajectory (movement trajectory) S2 for reciprocating scanning between the welding surface widths. The return trajectory SP is a rectangular trajectory that finely moves to the next second trajectory (movement trajectory) S2.

上記レーザ光線Lによる樹脂溶着方法において、上記レーザ光線Lの高速スキャンの移動速度SSは、各種試験した結果、板厚に対するレーザ出力30W〜50W、高速スキャン速度100mm/sec〜1500mm/secが最適であることを確立させた。また、上記レーザ光線Lの光線幅L2を0.5mm〜1.5mmとし、その光線幅の接線から約半分幅までを第一軌跡(移動軌跡)S1に対して第二軌跡(移動軌跡)S2を通過重合(重合幅L3)させるが望ましいことを数多い試験結果から確立させた。  In the resin welding method using the laser beam L, as a result of various tests, the laser beam L has a laser scanning speed of 30 W to 50 W and a high scanning speed of 100 mm / sec to 1500 mm / sec. Established that there is. The light beam width L2 of the laser beam L is set to 0.5 mm to 1.5 mm, and the second locus (movement locus) S2 from the tangent to the light beam width to about half the width with respect to the first locus (movement locus) S1. It has been established from a number of test results that it is desirable to polymerize by polymerization (polymerization width L3).

上記レーザ光線による樹脂溶着装置100の外観構成を図4により説明する。その構成は、三軸直交ロボット10に装備されている。先ず、ベース40の上面には、これに装備され送りモータMXで駆動する移動ユニットDXと、これに装備された移動テーブル42と、移動テーブル42に搭載された冶具ユニット43と、この冶具ユニット43の上面に装備されたクランパー44,45で樹脂板1,2を二枚重ねした平面ワークを加圧把持する部材からなる。上記ベース40の片側には、コラム46が直立されている。上記コラム46の頂部から移動テーブル42の上方に横梁47が水平姿勢で配置されている。上記横梁47は、移動テーブル42の移動方向とは直交する方向に向けられていて、この上面には送りモータMYで駆動する移動ユニットDYと、これに搭載された移動体48が移動制御されるように装備されている。上記移動体48には、上下方向に移動する送りモータMZで駆動する移動ユニットDZを備えている。上記移動ユニットDZの移動体49には、垂直な上下姿勢に向けたレーザ溶着ヘッドLHとCCDカメラ5とが装備されている。上記レーザ溶着ヘッドLHは、加工用のレーザ発振器50と教示用のレーザ電源LKとにファイバーで繋がれている。また、三軸直交ロボット10とCCDカメラ5とは、ティーチングボックスTBとディスプレィ7とを備えるロボット制御盤200に繋がれていて、ティーチング及びプレイバック運転他が行われる。上記ロボット制御盤200内には、照射制御手段80を備え、各々が有機的に接続されて機能する。  The external structure of the resin welding apparatus 100 using the laser beam will be described with reference to FIG. The configuration is provided in the three-axis orthogonal robot 10. First, on the upper surface of the base 40, a moving unit DX mounted thereon and driven by a feed motor MX, a moving table 42 mounted thereon, a jig unit 43 mounted on the moving table 42, and the jig unit 43 It consists of the member which press-grips the planar workpiece | work which piled up the two resin plates 1 and 2 with the clampers 44 and 45 with which the upper surface was equipped. A column 46 stands upright on one side of the base 40. A horizontal beam 47 is arranged in a horizontal posture from the top of the column 46 above the moving table 42. The horizontal beam 47 is directed in a direction perpendicular to the moving direction of the moving table 42, and a movement unit DY driven by a feed motor MY and a moving body 48 mounted on the moving unit DY are controlled on the upper surface. Equipped as The moving body 48 includes a moving unit DZ that is driven by a feed motor MZ that moves in the vertical direction. The moving body 49 of the moving unit DZ is equipped with a laser welding head LH and a CCD camera 5 oriented in a vertical vertical position. The laser welding head LH is connected to a laser oscillator 50 for processing and a laser power source LK for teaching with a fiber. Further, the three-axis orthogonal robot 10 and the CCD camera 5 are connected to a robot control panel 200 including a teaching box TB and a display 7, and teaching and playback operations are performed. The robot control panel 200 is provided with irradiation control means 80, each of which is organically connected and functions.

尚、図4と図5に示す上記樹脂溶着装置100において、下記の機能追加が可能である。先ず、樹脂板1,2となる被加工材の表面にマスクベース(図示なし)を備えることもできる。また、三軸直交ロボット10に替えて、多関節ロボット(図示なし)を使用したレーザ光線による樹脂溶着装置100としても良い。更に、上記樹脂溶着装置100において、被加工材1,2を帯体状としたものにおいては、被加工材を送り手段により長手方向への送り制御させられる構成とすれば、長尺物のワーク溶着が連続して行われる。  In the resin welding apparatus 100 shown in FIGS. 4 and 5, the following functions can be added. First, a mask base (not shown) can be provided on the surface of the workpiece to be the resin plates 1 and 2. Further, instead of the three-axis orthogonal robot 10, a resin welding apparatus 100 using a laser beam using an articulated robot (not shown) may be used. Further, in the above-described resin welding apparatus 100, in the case where the workpieces 1 and 2 are in the form of strips, if the workpiece is controlled to be fed in the longitudinal direction by the feeding means, a long workpiece Welding is performed continuously.

上記樹脂溶着装置100は、三軸直交ロボット10にレーザ溶着ヘッドLHを備え、照射制御手段80を備えたロボット制御盤200によるティーチング及びプレイバック運転他が三軸直交の3軸制御で円滑に行える。これにより、特に、小物ワークの樹脂溶着作業が簡潔に実行される。また、その運転も単品加工から、多量生産時には未加工部品1,2を冶具ユニット43の上面に装備されたクランパー44,45への搬入と、加工後の小物ワーク1,2の完成品を搬出する手段を設ければ、連続多量生産に適した溶着システムとすることができる。更には、ガルバノストロークだけで加工するケースと、ロボット連動による大きなストローク移動ができる。即ち、一つの樹脂溶着の四角パターンがガルバノ機構30で溶着が終了したら、ロボット10がレーザ溶着ヘッドLHを自動的に新しい未加工ワークまで移動させ、位置決め後に、ガルバノ機構30が次の加工パターンによる樹脂溶着を実行させる運転方法が実行される。  In the resin welding apparatus 100, the three-axis orthogonal robot 10 includes the laser welding head LH, and teaching and playback operations and the like by the robot control panel 200 including the irradiation control means 80 can be smoothly performed by three-axis orthogonal three-axis control. . Thereby, especially the resin welding operation | work of a small workpiece is performed simply. Also, the operation is from single processing, and in the case of mass production, the unprocessed parts 1 and 2 are carried into the clampers 44 and 45 equipped on the upper surface of the jig unit 43 and the finished small workpieces 1 and 2 after processing are carried out. If the means to perform is provided, it can be set as the welding system suitable for continuous mass production. Furthermore, it is possible to move a large stroke by the case of machining with only a galvano stroke and a robot. That is, when welding of one square pattern of resin welding is completed by the galvano mechanism 30, the robot 10 automatically moves the laser welding head LH to a new unprocessed workpiece, and after positioning, the galvano mechanism 30 follows the next machining pattern. An operation method for executing resin welding is executed.

更に、図5によりレーザ溶着ヘッドLHの内部構成を説明する。樹脂溶着装置100は、レーザ光線Lを出力するレーザ発振器50と、上記レーザ発振器からのレーザ光線Lを平行光線L1とした後に上記平行光線を被加工材1,2に集光ビームLOとして照射する光学レンズ系60と、上記平行光線L1を反射させて被加工材1,2の任意位置に集光ビームLOを照射させるガルバノ機構30と、上記ガルバノ機構による集光ビームLOの移動軌跡S1と移動速度SSとを制御する照射制御手段80と、を具備している。上記光学レンズ系60は、レーザ発振器50からのレーザ光線Lを平行光線(ビーム径:φ16.8mm前後)L1とする平行光線レンズ系、具体的には、球面収差を少なくするアクロマティックレンズ21をはじめとする各種平行光線レンズと、反射鏡22と、上記平行光線L1を集光ビームLOとするメニスカスレンズ23又はエフシターレンズ等他の集光レンズ系と、を具備している。また、上記ガルバノ機構70の反射鏡22をXYサーボモータSM1,SM2で角度制御される。  Further, the internal configuration of the laser welding head LH will be described with reference to FIG. The resin welding apparatus 100 irradiates the workpieces 1 and 2 as a condensed beam LO after making the laser beam 50 from which the laser beam L is output and the laser beam L from the laser oscillator into the parallel beam L1. An optical lens system 60, a galvano mechanism 30 that reflects the parallel light beam L1 to irradiate the condensed beam LO to an arbitrary position of the workpieces 1 and 2, and a movement locus S1 and movement of the condensed beam LO by the galvano mechanism Irradiation control means 80 for controlling the speed SS. The optical lens system 60 includes a parallel light lens system in which the laser beam L from the laser oscillator 50 is a parallel beam (beam diameter: around φ16.8 mm) L1, specifically, an achromatic lens 21 that reduces spherical aberration. It includes various parallel light lenses such as a reflecting mirror 22 and other condensing lens systems such as a meniscus lens 23 or an efciator lens that uses the parallel light L1 as a condensing beam LO. The angle of the reflecting mirror 22 of the galvano mechanism 70 is controlled by XY servo motors SM1 and SM2.

続いて、上記レーザ光線による樹脂溶着装置100の作用を説明する。レーザ光線Lは、レーザ発振器50から出力される。上記レーザ発振器からのレーザ光線Lは、光学レンズ60系のアクロマティックレンズ21他により平行光線(ビーム径:φ16.8mmの)L1に処理される。更に、上記平行光線は、メニスカスレンズ23他により被加工材1,2に集光ビームLOとして照射すべく処理される。そして、ガルバノ機構30は、上記平行光線L1を反射鏡22で偏向させる。上記ガルバノ機構30の反射鏡22は、XYサーボモータSM1,SM2で角度制御される。更に、上記ガルバノ機構30を制御する照射制御手段80は、被加工材1,2の任意位置に集光ビームLOの移動軌跡S1と移動速度SSとを制御する。  Then, the effect | action of the resin welding apparatus 100 by the said laser beam is demonstrated. The laser beam L is output from the laser oscillator 50. The laser beam L from the laser oscillator is processed into a parallel beam (beam diameter: φ16.8 mm) L1 by the achromatic lens 21 of the optical lens 60 system and others. Further, the parallel rays are processed by the meniscus lens 23 and the like so as to irradiate the workpieces 1 and 2 as a condensed beam LO. Then, the galvano mechanism 30 deflects the parallel light beam L <b> 1 by the reflecting mirror 22. The angle of the reflecting mirror 22 of the galvano mechanism 30 is controlled by XY servo motors SM1 and SM2. Further, the irradiation control means 80 for controlling the galvano mechanism 30 controls the movement locus S1 and the movement speed SS of the focused beam LO at an arbitrary position of the workpieces 1 and 2.

また、ガルバノ機構30の作用は、レーザ発振器50からのレーザ光線Lを平行光線L1とした後に上記平行光線を偏向させ、且つ、被加工材となる例えば、二枚重ねの樹脂板1,2に集光ビームLOとして照射させられるから、上記被加工材1,2の任意位置に所定仕様の集光ビームを正確に照射させられる。  Further, the action of the galvano mechanism 30 is to convert the laser beam L from the laser oscillator 50 into the parallel beam L1 and then deflect the parallel beam and condense it on, for example, the two-layered resin plates 1 and 2 to be processed. Since it is irradiated as a beam LO, a focused beam of a predetermined specification can be accurately irradiated to an arbitrary position of the workpieces 1 and 2.

続いて、上記レーザ光線による樹脂溶着装置100において、各種ガルバノ溶着試験結果の写真を紹介する。
図6の写真は、溶着確認テストを示す。その内容は、PC材、t=3×3mm、レーザ光線:30W、200mm/sec、加工時間:0.87sec。
Subsequently, photographs of various galvano welding test results in the resin welding apparatus 100 using the laser beam will be introduced.
The photograph in FIG. 6 shows a welding confirmation test. The contents are PC material, t = 3 × 3 mm, laser beam: 30 W, 200 mm / sec, processing time: 0.87 sec.

図7の写真は、微細溶着確認を示す。その内容は、PC材、t=3×3mm、レーザ光線:30W、300mm/sec、加工時間:1.8sec。  The photograph in FIG. 7 shows microwelding confirmation. The contents are PC material, t = 3 × 3 mm, laser beam: 30 W, 300 mm / sec, processing time: 1.8 sec.

図8の写真は、マスクベースの作成を示す。その内容は、(1)溝幅 1.3mm (2)レーザ光線:30W、(3)送り 800mm/sec、(4)加工時間:0.5sec。(5)評価 0.1mm程度の隙間が発生。  The photograph in FIG. 8 shows the creation of a mask base. The contents are (1) groove width 1.3 mm (2) laser beam: 30 W, (3) feed 800 mm / sec, (4) processing time: 0.5 sec. (5) Evaluation A gap of about 0.1 mm is generated.

図9の写真は、マスクベースの作成を示す。その内容は、(1)溝幅 1.1mm (2)レーザ光線:30W、(3)送り 300mm/sec、(4)評価 良好 (5)加工時間:1.5sec。  The photograph in FIG. 9 shows the creation of a mask base. The contents are (1) groove width 1.1 mm (2) laser beam: 30 W, (3) feed 300 mm / sec, (4) evaluation good (5) processing time: 1.5 sec.

図10の写真は、マスクパターンによる試験を示す。その内容は、マスクパターンは40メッシュ(線径0.25mm)、PC材、t=3×3mm、レーザ光線:30W、送り 300mm/sec、評価 メッシュパターン出ず。  The photograph in FIG. 10 shows a test with a mask pattern. The mask pattern is 40 mesh (wire diameter 0.25 mm), PC material, t = 3 × 3 mm, laser beam: 30 W, feed 300 mm / sec, evaluation Mesh pattern does not appear.

図11の写真は、マスクパターンとなる20メッシュ試験を示す。その内容は、20メッシュ(線径0.25mm)、PC材、t=3×3mm、レーザ光線:50W、送り 800mm/sec、評価 ネットの角があいまい。光の追従不足。  The photograph of FIG. 11 shows a 20 mesh test that becomes a mask pattern. Its contents are 20 mesh (wire diameter 0.25 mm), PC material, t = 3 × 3 mm, laser beam: 50 W, feed 800 mm / sec, and the corner of the evaluation net is ambiguous. Insufficient tracking of light.

図12の写真は、マスクパターンとなる60メッシュ試験を示す。その内容は、60メッシュ(線径0.25mm)、PC材、t=0.5×3mm、レーザ光線:30W、送り 300mm/sec、評価は、ネットの隅まで光が届いている。t=3mmで屈折斑。中央とコーナーで差なし。照射角の影響なし。照射の影なし。良好な80ミクロン角のマスクパターンが得られた。図示の黒色の四角形模様がマスクパターンである。尚、高速スキャン速度は、200mm/sec〜800mm/secで行ったデータを示しているが、別途、高速スキャン速度の適正範囲のテストを行ったところ、高速スキャン速度の適正範囲は、100mm/sec〜1500mm/secであることを確認した。  The photograph of FIG. 12 shows a 60 mesh test to be a mask pattern. The content is 60 mesh (wire diameter 0.25 mm), PC material, t = 0.5 × 3 mm, laser beam: 30 W, feed 300 mm / sec, and evaluation reaches the corner of the net. Refraction spots at t = 3 mm. There is no difference between the center and corner. No effect of irradiation angle. No shadow of irradiation. A good 80 micron square mask pattern was obtained. The black square pattern shown in the figure is a mask pattern. In addition, although the high-speed scanning speed has shown the data performed at 200 mm / sec-800 mm / sec, when the test of the appropriate range of high-speed scanning speed was done separately, the appropriate range of high-speed scanning speed was 100 mm / sec. It was confirmed to be ˜1500 mm / sec.

上記実施の態様となるレーザ光線による樹脂溶着方法は、下記の効果が奏せられる。先ず、溶着面上を移動速度100mm/sec〜1500mm/secで高速スキャンするとともに、光線幅を0.5mm〜1.5mmとし、その光線幅の約半分幅までを第一軌跡に対して第二軌跡を通過重合させたから、広い溶融面積を生成でき、且つ、順次に溶着全面を溶融状態で任意形状に高速面溶着できるから、樹脂材の材質劣化が無く、樹脂成型品の溶着部にヒケや反りも発生せず、高品質で高精度な面溶着が保証できる。更に、レーザ光線の重合条件について、溶着面幅間を往復スキャンする折り返し点での折り返し軌跡を、次の移動軌跡まで微動させる矩形軌跡により任意形状の広い面溶着でも均等に完全面接着できる。  The resin welding method using the laser beam according to the above embodiment has the following effects. First, high-speed scanning is performed on the welding surface at a moving speed of 100 mm / sec to 1500 mm / sec, the light beam width is set to 0.5 mm to 1.5 mm, and the second half of the light beam width is set to the second trajectory. Since the polymerization is performed through the trajectory, a wide melting area can be generated, and the entire welding surface can be sequentially melted at a high speed surface in an arbitrary shape, so that there is no deterioration of the material of the resin material. No warpage occurs and high quality and high precision surface welding can be guaranteed. Further, with respect to the laser beam superposition conditions, even if the surface of the folding point where the reciprocating scanning is performed between the welding surface widths is a rectangular locus that finely moves to the next movement locus, even a wide surface welding of an arbitrary shape can be completely and evenly bonded.

また、上記実施の態様となるレーザ光線による樹脂溶着装置100によると、下記の効果が奏せられる。先ず、レーザ光線による樹脂溶着方法を効率良く高速度に実施できる。上記光学レンズ系と上記ガルバノ機構によると、レーザ発振器からのレーザ光線を平行光線とした後に上記平行光線を偏向させ且つ、被加工材となる二枚重ねの樹脂板材の任意位置に所定仕様の集光ビームを正確に照射できる。また、マスク溶着も効率良く高速度に実施できる。更に、被加工材が帯体状としたものにおいては、被加工材を送り手段により長手方向へ送り制御でき、長尺物のワーク溶着が連続して面溶着できる。  Moreover, according to the resin welding apparatus 100 using the laser beam according to the above embodiment, the following effects can be obtained. First, a resin welding method using a laser beam can be efficiently performed at a high speed. According to the optical lens system and the galvano mechanism, the laser beam from the laser oscillator is converted into a parallel beam and then the parallel beam is deflected, and a focused beam having a predetermined specification is placed at an arbitrary position on a two-layered resin plate material to be processed. Can be irradiated accurately. Also, mask welding can be performed efficiently at high speed. Furthermore, in the case where the workpiece is in the form of a strip, the workpiece can be controlled to be fed in the longitudinal direction by the feeding means, and the workpiece welding of the long object can be continuously surface-welded.

尚、本発明のレーザ光線による樹脂溶着方法とその装置100は、上記各実施の形態における構成に限定されず、その発明の要旨内での各部の詳細な設計変更が自由にできる。  The resin welding method using a laser beam and the apparatus 100 according to the present invention are not limited to the configurations in the above embodiments, and detailed design changes of each part can be freely made within the gist of the invention.

本発明は、その対象物を樹脂材の実施例で説明したものであるが、様々な加工部材の溶着としての適用が可能である。  In the present invention, the object is described in the example of the resin material, but it can be applied as welding of various processed members.

1,2 樹脂板材、被加工材
1A 溶着面
10 三軸直交ロボット
21 アクロマティックレンズ他
22 反射鏡
23 メニスカスレンズ他
30 ガルバノ機構
43 冶具ユニット
44,45 クランパー
50 レーザ発振器
60 光学レンズ系
80 照射制御手段
100 樹脂溶着装置
200 ロボット制御盤
DX 移動ユニット
DY 移動ユニット
DZ 移動ユニット
L レーザ光線
L1 平行光線
L2 光線幅
L3 重合幅
LO 集光ビーム
LH レーザ溶着ヘッド
MX,MY,MZ 送りモータ
P 折り返し点
S1 第一軌跡(移動軌跡)
S2 第二軌跡(移動軌跡)
SM1,SM2 XYサーボモータ
SO 溶着面積
SP 折り返し軌跡(矩形軌跡)
SS 移動速度
DESCRIPTION OF SYMBOLS 1, 2 Resin board | plate material, to-be-processed material 1A Welding surface 10 Triaxial orthogonal robot 21 Achromatic lens etc. 22 Reflective mirror 23 Meniscus lens etc. 30 Galvano mechanism 43 Jig unit 44, 45 Clamper 50 Laser oscillator 60 Optical lens system 80 Irradiation control means 100 resin welding apparatus 200 robot control panel DX moving unit DY moving unit DZ moving unit L laser beam L1 parallel beam L2 beam width L3 overlap width LO focused beam LH laser welding head MX, MY, MZ feed motor P folding point S1 first Trajectory (movement trajectory)
S2 Second trajectory (movement trajectory)
SM1, SM2 XY servo motor SO welding area SP Folding locus (rectangular locus)
SS movement speed

Claims (9)

溶着面上をスキャンされるレーザ光線を第一軌跡上で溶融状態とした溶融部が凝固する前に上記第一軌跡に接近重合させた第二軌跡上を通過時に、上記レーザ光線で再度第一軌跡上の樹脂を再加熱して溶融状態を維持させ、続く上記第二軌跡に接近重合させた第三軌跡上を通過時に、上記レーザ光線で再度第二軌跡上の樹脂を再加熱して溶融状態を維持させる接近重合を繰り返す重合条件で次第に広い溶融面積を生成させつつ、溶着全面をレーザ光線の高速スキャンにより溶融状態として任意形状に一括面溶着させることを特徴とするレーザ光線による樹脂溶着方法。  When the laser beam scanned on the welding surface passes through the second trajectory that has been polymerized close to the first trajectory before solidification of the melted portion that has melted on the first trajectory, the first laser beam is again applied. The resin on the trajectory is reheated to maintain the molten state, and when passing through the third trajectory that has been polymerized close to the second trajectory, the resin on the second trajectory is reheated and melted again with the laser beam. A resin welding method using a laser beam, characterized in that the entire surface of the welding is made into a molten state by a high-speed scanning of a laser beam to form a molten surface in an arbitrary shape while generating a gradually wide melting area under a polymerization condition that repeats proximity polymerization to maintain the state . 上記レーザ光線の重合条件は、溶着面幅間を往復スキャンする第一軌跡から第二軌跡への折り返し点での折り返し軌跡を、次の移動軌跡まで微動させる矩形軌跡としたことを特徴とする請求項1記載のレーザ光線による樹脂溶着方法。  The laser beam superimposing condition is characterized in that the return trajectory at the return point from the first trajectory to the second trajectory for reciprocating scanning between the welding surface widths is a rectangular trajectory that finely moves to the next movement trajectory. Item 2. A resin welding method using a laser beam according to Item 1. 上記レーザ光線の高速スキャンの移動速度を100mm/sec〜1500mm/secとしたことを特徴とする請求項1または2記載のレーザ光線による樹脂溶着方法。  3. The resin welding method using a laser beam according to claim 1, wherein a moving speed of the laser beam is set to 100 mm / sec to 1500 mm / sec. 上記レーザ光線の光線幅を0.5mm〜1.5mmとし、その光線幅の接線から約半分幅までを接近重合させる重合条件としたことを特徴とする請求項1または2記載のレーザ光線による樹脂溶着方法。  3. The resin by a laser beam according to claim 1, wherein the laser beam has a light beam width of 0.5 mm to 1.5 mm, and polymerization conditions are set so as to allow close polymerization from a tangent to the light beam width to about half the width. Welding method. レーザ光線を出力するレーザ発振器と、上記レーザ発振器からのレーザ光線を平行光線とした後に上記平行光線を被加工材に集光ビームとして照射する光学レンズ系と、上記平行光線を偏向させて被加工材の任意位置に集光ビームを照射させるガルバノ機構と、上記ガルバノ機構による集光ビームの移動軌跡と移動速度とを制御する照射制御手段と、を具備したことを特徴とするレーザ光線による樹脂溶着装置。  A laser oscillator that outputs a laser beam; an optical lens system that irradiates the workpiece with a parallel beam after the laser beam from the laser oscillator is converted into a parallel beam; A resin welding using a laser beam, comprising: a galvano mechanism for irradiating a focused beam to an arbitrary position of the material; and an irradiation control means for controlling a moving locus and a moving speed of the focused beam by the galvano mechanism. apparatus. 上記集光ビームの照射側となる被加工材の表面にマスクベースを配置したことを特徴とする請求項5記載のレーザ光線による樹脂溶着装置。  6. The resin welding apparatus using a laser beam according to claim 5, wherein a mask base is disposed on the surface of a workpiece to be irradiated with the focused beam. 上記被加工材を帯体状としたものにおいて、被加工材に長手方向への送り手段を装備したことを特徴とする請求項5記載のレーザ光線による樹脂溶着装置。  6. The resin welding apparatus using a laser beam according to claim 5, wherein the workpiece is provided with a feeding means in a longitudinal direction in the workpiece. 上記光学レンズ系は、レーザ光源からのレーザ光線を平行光線とするアクロマティックレンズ等の平行光線レンズ系と、反射鏡と、上記平行光線を集光ビームとするメニスカスレンズ又はエフシターレンズ等の集光レンズ系と、を具備したことを特徴とする請求項5または6または7のいずれか一つに記載のレーザ光線による樹脂溶着装置。  The optical lens system is a collection of a parallel light lens system such as an achromatic lens that uses a laser beam from a laser light source as a parallel beam, a reflecting mirror, and a meniscus lens or an efciator lens that uses the parallel light as a condensed beam. A resin welding apparatus using a laser beam according to any one of claims 5, 6 and 7, further comprising an optical lens system. 上記ガルバノ機構は、反射鏡をXYサーボモータで角度制御することを特徴とする請求項5または6または7のいずれか一つに記載のレーザ光線による樹脂溶着装置。  8. The resin welding apparatus using a laser beam according to claim 5, wherein the galvano mechanism controls the angle of the reflecting mirror with an XY servo motor.
JP2009052655A 2009-02-10 2009-02-10 Resin melt welding method by laser beam and resin melt welding apparatus by laser beam Pending JP2010184490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009052655A JP2010184490A (en) 2009-02-10 2009-02-10 Resin melt welding method by laser beam and resin melt welding apparatus by laser beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009052655A JP2010184490A (en) 2009-02-10 2009-02-10 Resin melt welding method by laser beam and resin melt welding apparatus by laser beam

Publications (1)

Publication Number Publication Date
JP2010184490A true JP2010184490A (en) 2010-08-26

Family

ID=42765425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009052655A Pending JP2010184490A (en) 2009-02-10 2009-02-10 Resin melt welding method by laser beam and resin melt welding apparatus by laser beam

Country Status (1)

Country Link
JP (1) JP2010184490A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011093134A (en) * 2009-10-28 2011-05-12 Stanley Electric Co Ltd Method for manufacturing resin molded article
JP2013203052A (en) * 2012-03-29 2013-10-07 Toyo Seikan Co Ltd Method for sealing container and lid by laser welding
CN106414037A (en) * 2014-06-03 2017-02-15 Lpkf激光电子股份公司 Method and device for welding two thermoplastic parts to be joined along a weld seam by means of a laser
CN107891223A (en) * 2017-11-24 2018-04-10 苏州市信德威激光科技有限公司 A kind of device and process using laser welding aluminum plastic film
CN107949178A (en) * 2017-11-24 2018-04-20 苏州市信德威激光科技有限公司 A kind of device and process using package sealing with laser film circuit board
WO2018215208A1 (en) * 2017-05-23 2018-11-29 ConsultEngineerIP AG Quasi-simultaneous laser welding process

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011093134A (en) * 2009-10-28 2011-05-12 Stanley Electric Co Ltd Method for manufacturing resin molded article
JP2013203052A (en) * 2012-03-29 2013-10-07 Toyo Seikan Co Ltd Method for sealing container and lid by laser welding
US9550596B2 (en) 2012-03-29 2017-01-24 Toyo Seikan Group Holdings, Ltd. Method of sealing containers and lids by melt adhesion by laser
KR101775768B1 (en) * 2012-03-29 2017-09-06 도요세이칸 그룹 홀딩스 가부시키가이샤 Method of sealing containers and lids by melt adhesion by laser
CN106414037A (en) * 2014-06-03 2017-02-15 Lpkf激光电子股份公司 Method and device for welding two thermoplastic parts to be joined along a weld seam by means of a laser
JP2017524558A (en) * 2014-06-03 2017-08-31 エル・ピー・ケー・エフ・レーザー・ウント・エレクトロニクス・アクチエンゲゼルシヤフト Laser welding method and apparatus along a welding seam of two joining members made of thermoplastic synthetic material
KR101906030B1 (en) 2014-06-03 2018-11-21 엘피케이에프 레이저 앤드 일렉트로닉스 악티엔게젤샤프트 Method and device for welding two thermoplastic parts to be joined along a weld seam by means of a laser
WO2018215208A1 (en) * 2017-05-23 2018-11-29 ConsultEngineerIP AG Quasi-simultaneous laser welding process
CN107891223A (en) * 2017-11-24 2018-04-10 苏州市信德威激光科技有限公司 A kind of device and process using laser welding aluminum plastic film
CN107949178A (en) * 2017-11-24 2018-04-20 苏州市信德威激光科技有限公司 A kind of device and process using package sealing with laser film circuit board
CN107949178B (en) * 2017-11-24 2023-05-12 苏州市信德威激光科技有限公司 Device and process method for sealing thin film circuit board by utilizing laser

Similar Documents

Publication Publication Date Title
US9314972B2 (en) Apparatus for additive layer manufacturing of an article
KR100348169B1 (en) Laser joining method and a device for joining different workpieces made of plastic or joining plastic to other materials
JP2010184490A (en) Resin melt welding method by laser beam and resin melt welding apparatus by laser beam
US8912465B2 (en) Laser engraving device
JP2019147369A (en) Addition production method of sheet base and system thereof
JP5364039B2 (en) Manufacturing method of resin molded products
KR20150126603A (en) Coordination of beam angle and workpiece movement for taper control
CN105798455B (en) Laser-processing system and method
JP2008155480A (en) Optical modeling apparatus and method thereof
JP2008162188A (en) Optical shaping apparatus
Acherjee State-of-art review of laser irradiation strategies applied to laser transmission welding of polymers
KR20010062329A (en) A method and a device for heating at least two elements by means of laser beams of high energy density
JP2011020175A (en) Laser beam machining method for cylindrical body and laser beam machining device for cylindrical body
JP2005329436A (en) Laser machining method
JP2010105376A (en) Method and device for resin welding by laser beam
JP2000317667A (en) Composite head for laser beam welding
JP3866732B2 (en) Laser bonding method for resin structures
JP5436937B2 (en) Manufacturing method of resin molded products
KR102129322B1 (en) 3d printing apparatus and method using laser
KR101401486B1 (en) Method for processing material with laser
JP2008162189A (en) Optical shaping apparatus
JP2005254618A (en) Resin welding apparatus
JP5669910B2 (en) Laser welding equipment for resin molded products
JP6385622B1 (en) Laser processing method and laser processing apparatus
CN216485792U (en) Flat-top light shaping laser scanning device based on plano-convex lens