JP2011019438A - Plant cultivation equipment - Google Patents

Plant cultivation equipment Download PDF

Info

Publication number
JP2011019438A
JP2011019438A JP2009166429A JP2009166429A JP2011019438A JP 2011019438 A JP2011019438 A JP 2011019438A JP 2009166429 A JP2009166429 A JP 2009166429A JP 2009166429 A JP2009166429 A JP 2009166429A JP 2011019438 A JP2011019438 A JP 2011019438A
Authority
JP
Japan
Prior art keywords
cultivation
plant
temperature
planted
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009166429A
Other languages
Japanese (ja)
Other versions
JP5407056B2 (en
JP2011019438A5 (en
Inventor
Hiroshige Nishina
弘重 仁科
Seiichi Arima
誠一 有馬
Kenji Hado
堅治 羽藤
Kotaro Takayama
弘太郎 高山
Yuzuru Miyoshi
譲 三好
Kazuhiro Yoshida
和弘 吉田
Jiro Nakada
次郎 中田
Yuzo Ono
雄三 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Ehime University NUC
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Ehime University NUC
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Ehime University NUC, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP2009166429A priority Critical patent/JP5407056B2/en
Publication of JP2011019438A publication Critical patent/JP2011019438A/en
Publication of JP2011019438A5 publication Critical patent/JP2011019438A5/ja
Application granted granted Critical
Publication of JP5407056B2 publication Critical patent/JP5407056B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Abstract

<P>PROBLEM TO BE SOLVED: To provide plant cultivation equipment enabling careful and detailed management of growth of planted strains with simple treatment and at lowest cost, and compensation of difference in local growth conditions such as the amount of solar radiation and ventilation in a cultivation house so as to make reliable growth control, in plant cultivation using training/pulling members. <P>SOLUTION: The plant cultivation equipment includes a cultivation bed (5) for growing/cultivating plant strains (K) planted, and training/pulling members (13) pulling the plant strains (K) planted in the cultivation bed (5) from above to support them at a preset height. In the equipment, a plurality of plant strains (K) supported by the training/pulling members (13) are disposed on the cultivation bed (5) in lines, and a thermal action part (52) acting cooling/warming heat to a portion at a prescribed height along the lines, and a shading curtain (34) partitioning and covering the outside of the thermal action part (52) are set up. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、植物株を植付ける栽培床にその上部吊り支持部材を備える植物栽培設備に関するものである。   The present invention relates to a plant cultivation facility provided with an upper suspension support member on a cultivation floor for planting a plant strain.

植物の栽培に関し、植付け株の栽培床に冷熱を供給する冷水管を配設した例(特許文献1)や、その熱源効率を上げるために、植付け株をカバーするカーテンを設けた例(特許文献2)がある。このような栽培床の冷却制御により、植付け株の生育をグループ別に管理して植物の収穫時期調節や地域条件対応の精度を上げることができる。   Regarding plant cultivation, an example in which a cold water pipe for supplying cold heat to the cultivation floor of the planting strain is arranged (Patent Document 1), and an example in which a curtain covering the planting plant is provided in order to increase the heat source efficiency (Patent Literature) 2). By controlling the cooling of the cultivation floor as described above, the growth of planted stocks can be managed for each group to improve the accuracy of plant harvest time adjustment and local conditions.

特開2002−272262号公報JP 2002-272262 A 特開平11−289869号公報JP-A-11-289869

しかしながら、上記冷却制御のみならず、寒冷期の暖房を含む幅広い温度制御に適用するためには、そのための暖房熱源と暖房用配管が必要となり、多大なコスト増を招くこととなる。また、誘引吊部材を用いるトマトのように上に高く延びる蔓状植物栽培においては、植付け株を覆う大きなカバーと温度管理のために大容量の熱源が必要となる上に、栽培ハウス内における日射量や通風等の局所的な育生条件差に伴う生育遅れや病害虫に対処するための煩雑な作業と多大なコスト負担が避けられないという問題があった。   However, in order to apply not only to the above cooling control but also to a wide range of temperature control including heating in the cold season, a heating heat source and heating piping for that purpose are required, resulting in a significant increase in cost. In addition, in the cultivation of a vine plant that extends upward like a tomato using an attractive suspension member, a large cover that covers the planted plant and a large-capacity heat source are required for temperature control, and solar radiation in the cultivation house is required. There was a problem that complicated work for dealing with growth delays and pests caused by local growth condition differences such as volume and ventilation and unavoidable cost burden.

解決しようとする問題点は、誘引吊部材を用いる植物栽培について、簡易な取扱いと最小限のコストで植付け株の生育のきめ細かな管理ができ、栽培ハウス内における日射量や通風等の局所的な育生条件差を補って確実な育生制御を可能とする植物栽培設備を提供することにある。   The problem to be solved is that for plant cultivation using an attracting suspension member, it is possible to finely manage the growth of planted strains with simple handling and minimal cost, and the local amount of solar radiation and ventilation in the cultivation house. An object of the present invention is to provide a plant cultivation facility that compensates for the difference in growth conditions and enables reliable growth control.

上記課題を解決するために、請求項1に係る発明は、植付けた植物株を育成するための栽培床と、この栽培床に植付けた植物株を上から吊って設定の高さに支持する誘引吊部材とからなる植物栽培設備において、上記栽培床には、誘引吊部材によって支持した複数の植物株を列状に配置し、この列方向に沿って所定の高さ部位に冷暖熱を作用する熱作用部と、この熱作用部の外側方をカバーする遮蔽カーテンとを設けたことを特徴とする。   In order to solve the above-mentioned problem, the invention according to claim 1 is directed to a cultivation floor for growing a plant strain that has been planted, and an attraction that supports the plant strain that has been planted on the cultivation floor from above, at a set height. In the plant cultivation facility composed of a suspension member, a plurality of plant strains supported by the attraction suspension member are arranged in a row on the cultivation floor, and cooling and heating are applied to a predetermined height portion along the row direction. A heat acting part and a shielding curtain covering the outside of the heat acting part are provided.

また、請求項2に係る発明は、植付けた植物株(K)を生育栽培するための栽培床(5)と、この栽培床(5)に植付けた植物株(K)を上から吊って設定の高さに支持する誘引吊部材(13)とからなる植物栽培設備において、上記植物株(K)の生長点となる所定の高さ位置に冷暖熱を作用する第一の熱作用部(52)と、この熱作用部(52)の側方を仕切ってカバーする遮蔽カーテン(34)と、同植物株(K)の根域となる部位に冷暖熱を作用する第二の熱作用部(52r)と、同植物株(K)の生育状態を検出するモニタリング部(51m,90,40,91)と、このモニタリング部(51m,90,40,91)の検出情報による植物株(K)の生育状態の診断結果に基づいて上記第一および第二の熱作用部(52,52r)を個別に温度管理する部位別温度制御部(51p)とを設けたことを特徴とする。   In addition, the invention according to claim 2 is set by suspending the plant strain (K) planted on the cultivation floor (5) and the plant strain (K) planted on the cultivation floor (5) from above. In a plant cultivation facility comprising an attracting suspension member (13) that supports the height of the first heat acting section (52) that acts on cooling and heating at a predetermined height position that is the growth point of the plant strain (K). ), A shielding curtain (34) that partitions and covers the side of the heat acting part (52), and a second heat acting part (which acts on the root region of the plant strain (K)) 52r), a monitoring unit (51m, 90, 40, 91) for detecting the growth state of the plant strain (K), and a plant strain (K) based on detection information of this monitoring unit (51m, 90, 40, 91) The first and second heat acting parts (52, 52r) Characterized in that the provided and different parts temperature controller (51 p) to temperature managed separately.

請求項1に係る発明は、栽培床に植付けた複数の植物株は、誘引吊部材によってそれぞれ設定高さ位置に支持されるとともに、局所的な熱作用部により植物株の所定高さ部位に冷暖熱が作用し、この熱作用は熱作用部の外側方をカバーする遮蔽カーテンの範囲内に限定される。したがって、熱作用部の位置に植物株の生長点が来るように誘引吊部材を設定して支持することにより、植物株の生育を効率よく制御することができ、複数の栽培床を互いに密接して配置した場合でも、隣接部相互の影響無しに個別の栽培制御が可能となることから、簡易な構成によって栽培ハウス内における日射量や通風等の部分的な育生条件差を補って病害虫の事前対処を含む確実な育生制御が可能となる。   In the invention according to claim 1, the plurality of plant strains planted on the cultivation floor are supported at the set height positions by the attracting suspension members, respectively, and are cooled and heated at a predetermined height portion of the plant strain by the local heat acting part. Heat acts, and this heat action is limited to the extent of the shielding curtain covering the outside of the heat acting part. Therefore, by setting and supporting the attracting suspension member so that the growth point of the plant strain comes to the position of the heat acting part, the growth of the plant strain can be controlled efficiently, and the plurality of cultivation beds are brought into close contact with each other. Even if it is arranged in a row, it is possible to control individual cultivation without the influence of adjacent parts, so a simple configuration compensates for partial growth conditions such as the amount of solar radiation and ventilation in the cultivation house in advance. Reliable nurturing control including coping is possible.

請求項2に係る発明は、上記部位別温度制御部により、植物の生体情報を計測して生育状態を診断し、植物株の生育状態に応じた第一と第二の熱作用部による部位別の温度管理による効率の良い生育栽培が可能となることから、本システムにより、園芸温室や太陽光利用型植物工場温室の生産性向上において緊急の課題である、夏期の高温障害や冬期の低温障害による収穫量の減少と、温度制御のためのエネルギーコストの増大を同時に解決し、従来の方法(温室全体を温度制御する)と比べて、石油消費量の50%程度削減と夏期および冬期の収穫量増大(約1割)を実現することができる。   According to a second aspect of the present invention, the site-specific temperature control unit measures biological information of the plant to diagnose the growth state, and the first and second thermal action units according to the growth state of the plant strain This system makes it possible to grow and grow efficiently by controlling the temperature of the plant. This system is an urgent issue in improving the productivity of horticultural greenhouses and solar-powered plant factory greenhouses. Reduces the amount of yield due to energy consumption and increases the energy cost for temperature control at the same time. Compared with the conventional method (temperature control of the whole greenhouse), the oil consumption is reduced by about 50% and the harvest in the summer and winter seasons. An increase in volume (about 10%) can be realized.

温室を西側から見た側面図Side view of the greenhouse from the west 温室を南側から見た側面図Side view of the greenhouse from the south 栽培ベッドを示す断面図Cross section showing the cultivation bed 誘引紐を使用して栽培する方法を判りやすく示す図The figure which shows the method of cultivating using an attraction string clearly 誘引紐ホルダを示す図Figure showing the drawstring holder 誘引ワイヤと誘引紐ホルダとの関係を示す図The figure which shows the relationship between an attracting wire and an attracting string holder 茎受具を示す図Diagram showing stem holder 従来の茎受具を示す図The figure which shows the conventional stem holder 養液供給経路を示す図Diagram showing nutrient solution supply path 遮光カーテン及び非開閉式カーテンを判りやすく示す温室の平面図A plan view of the greenhouse showing the blackout curtain and non-opening curtain 遮光カーテンを示す図Figure showing a blackout curtain 養液供給制御のフローチャートFlow chart of nutrient solution supply control 暖房装置を判りやすく示す温室の平面図Top view of the greenhouse showing the heating system 通路上配管を示す図Diagram showing piping on the passage 栽培システムの正面断面図Front sectional view of cultivation system 配管部の拡大図Enlarged view of the piping section システム展開図System deployment diagram 暖房構成の縦断側面図Vertical side view of heating configuration 正面断面図Front sectional view 要部斜視図Perspective view of main part システム展開図System deployment diagram 暖房の配管の部分縦断側面図Partial vertical side view of heating piping 水耕養液の給液システム展開図Hydroponic solution supply system development イチゴ用栽培ベッドの使用態様(a)(b)Usage mode of cultivation bed for strawberries (a) (b) 組立型栽培ベッドの断面図Cross section of assembly type cultivation bed

(基本構成)
この発明の実施の一形態を図面に基づき説明する。
図1及び図2は、植物栽培ハウスとしての温室1を示したものであり、この温室1は、東西南北の四方の側壁2及び天井3を透明のガラスで構成し、ガラス張りになっている。前記温室の南北方向の中央には作業者、作業台車あるいは防除機等が通過することができる通路4を設けており、この通路4は、路面がコンクリ−トで構成されたコンクリ−ト通路で、温室の東端から西端まで東西方向に長く構成されている。通路4の南北に、栽培ベッド5を配置した栽培区域を構成している。通路4の両端部には、温室1への出入口6が構成されている。
(Basic configuration)
An embodiment of the present invention will be described with reference to the drawings.
FIG.1 and FIG.2 shows the greenhouse 1 as a plant cultivation house, and this greenhouse 1 is comprised of the transparent side glass 2 and the ceiling 3 on the four sides of the east, west, south, and north, and is glazed. In the center of the greenhouse in the north-south direction, there is a passage 4 through which an operator, work cart or control machine can pass, and this passage 4 is a concrete passage whose road surface is composed of concrete. It is composed of a long east-west direction from the east end to the west end of the greenhouse. A cultivation area in which cultivation beds 5 are arranged is formed in the north and south of the passage 4. At both ends of the passage 4, entrances 6 to the greenhouse 1 are configured.

温室1内の上部の空間には、温室の南北方向に長く延びる支持具7が地面に並行に東西方向に複数本配置されている。一対の支持管8が支持具7の下に平行に配置され、複数の吊具9で支持具7に吊り下げられている。左右の耳部10aがそれぞれの支持管8に掛けられて容器10が地面から浮くように吊られている。容器10には、台形に曲げた受板11が底に入りロックウールで作った栽培ベッド5がその上に載っている。尚、1本の支持具7に対して通路4を挟んで南北に2個の栽培ベッド5が配置され、該栽培ベッド5は、南北の栽培区域においてそれぞれ南北方向に長く延びて東西方向に複数並列に配置された構成となっている。苗を移植したキューブ12が栽培ベッド5に左右2列に並んで載るようになっている。   In the upper space in the greenhouse 1, a plurality of supports 7 extending in the north-south direction of the greenhouse are arranged in the east-west direction parallel to the ground. A pair of support tubes 8 are arranged in parallel under the support 7 and are suspended from the support 7 by a plurality of suspensions 9. The left and right ears 10a are hung on the respective support tubes 8, and the container 10 is suspended so as to float from the ground. On the container 10, a cultivation bed 5 made of rock wool is placed on the receiving plate 11 bent into a trapezoid. In addition, two cultivation beds 5 are arranged on the north and south sides of the passage 4 with respect to one support tool 7, and each of the cultivation beds 5 extends in the north-south direction in the north-south cultivation area, and plural in the east-west direction. The configuration is arranged in parallel. Cubes 12 transplanted with seedlings are placed on the cultivation bed 5 side by side in two rows.

キューブ12から伸長する苗の茎kは、上方から吊り下げられた誘引紐13によって上方へ誘引される。誘引紐13は、誘引紐ホルダ14に糸巻状に巻き込まれており、該ホルダ14から引き出されるようになっている。誘引紐ホルダ14の上部には誘引フック14aを設けており、この誘引フック14aを温室1内の上部に栽培ベッド5のキューブ12の列に沿って南北方向に延びる誘引ワイヤ15にひっかけて誘引紐ホルダ14を吊る構成となっている。尚、誘引ワイヤ15は、栽培ベッド5のキューブ12の列の数に合わせて東西方向に複数並列に配置された構成となっている。図4に示すように、クリップ16により誘引紐13に作物の茎kを固定して栽培すると、茎kは誘引紐13をつたって上方へ伸長していく。そして、誘引ワイヤ15(誘引紐ホルダ14)の高さまで茎kが伸長すると、適宜、誘引紐ホルダ14から誘引紐13を繰り出しながら誘引紐ホルダ14を誘引ワイヤ15に沿って南北方向の一方側へ栽培ベッド5に沿ってずらし、茎kが上方へ伸長するスペ−スをとって栽培する。尚、必要に応じて、適宜作物の茎kをクリップ16により誘引紐に固定していく。   A seedling stem k extending from the cube 12 is attracted upward by an attracting string 13 suspended from above. The attraction string 13 is wound around the attraction string holder 14 in a pincushion shape, and is drawn out from the holder 14. An attracting hook 14a is provided at the upper part of the attracting string holder 14, and this attracting hook 14a is hooked on an attracting wire 15 extending in the north-south direction along the row of cubes 12 of the cultivation bed 5 at the upper part in the greenhouse 1. The holder 14 is suspended. In addition, the induction wire 15 becomes a structure arrange | positioned in parallel in the east-west direction according to the number of the rows of the cube 12 of the cultivation bed 5. As shown in FIG. 4, when the crop k is fixed to the attracting string 13 by the clip 16 and cultivated, the stem k extends along the attracting string 13 upward. Then, when the stem k extends to the height of the attracting wire 15 (the attracting cord holder 14), the attracting cord holder 14 is pulled out from the attracting cord holder 14 to the one side in the north-south direction along the attracting wire 15 as appropriate. It is shifted along the cultivation bed 5 and cultivated by taking a space where the stem k extends upward. In addition, the stem k of the crop is appropriately fixed to the attracting string by the clip 16 as necessary.

誘引ワイヤ15は、東西方向に延びる温室1内の複数のラチス17の上側で該ラチス17に支持される。従って、誘引紐ホルダ14の重みにより、誘引ワイヤ15は、ラチス17の間で下へ撓んだ状態となる。すると、誘引ワイヤ15の誘引フック14aが誘引ワイヤ15に沿って該誘引ワイヤ15の低位側へ移動しやすくなり、図6(a)に示すように各苗株の誘引紐ホルダ14が一箇所に集まるように移動し、誘引ワイヤ15の適正な位置に誘引紐ホルダ14を保持できなくなるおそれがある。ところが、前記誘引フック14aの誘引ワイヤ15への係止部には滑りにくい素材であるビニール材14bを接着剤で貼り付けており、誘引フック14aと誘引ワイヤ15との接触抵抗を大きくし、誘引フック14aが誘引ワイヤ15上で滑って移動するのを防止している。従って、各苗株の誘引紐ホルダ14を誘引ワイヤ15上で等間隔で適正な位置に配置でき、各苗株の茎部が互いに近づいて密集するようなことを防止でき、各苗株が互いに成育を阻害せずに十分な太陽光を得ることができ、作物を良好に成育することができる。尚、誘引フック14aの誘引ワイヤ15への係止部を、ゴム材にして滑りにくい素材としてもよい。また、誘引ワイヤ15を滑りにくい素材としてもよい。   The induction wire 15 is supported by the lattice 17 on the upper side of the plurality of lattices 17 in the greenhouse 1 extending in the east-west direction. Accordingly, the attracting wire 15 is bent downward between the lattices 17 due to the weight of the attracting string holder 14. Then, the attracting hook 14a of the attracting wire 15 is easily moved to the lower side of the attracting wire 15 along the attracting wire 15, and the attracting string holder 14 of each seedling is placed in one place as shown in FIG. 6 (a). The attracting string holder 14 may not be held at an appropriate position of the attracting wire 15 by moving so as to gather. However, a vinyl material 14b, which is a non-slip material, is attached to the engaging portion of the attracting hook 14a to the attracting wire 15 with an adhesive, and the contact resistance between the attracting hook 14a and the attracting wire 15 is increased to attract the attracting hook 14a. The hook 14a is prevented from sliding on the attracting wire 15. Accordingly, the attracting string holders 14 of the seedlings can be arranged at appropriate positions on the attracting wire 15 at equal intervals, and the stems of the seedlings can be prevented from coming close to each other and being densely packed. Sufficient sunlight can be obtained without inhibiting the growth, and the crop can be grown well. The engaging portion of the attracting hook 14a to the attracting wire 15 may be made of a rubber material that is difficult to slip. Moreover, it is good also considering the attracting wire 15 as a material which is hard to slip.

図4に示すように、誘引紐ホルダ14を誘引ワイヤ15に沿って移動させながら作物を栽培するので、茎kが長くなると茎kの下部がキューブ12より下に垂れ下がるおそれがある。そこで、栽培ベッド5の側方に所定間隔おきに茎受具18を設け、該茎受具18上に茎kを載せて茎kの下部が栽培ベッド5に沿って横方向に向くようにしている。この茎受具18は、中央部18aが低位となるように平板を折り曲げて構成され、容器10内にはめ込んだ後、上側に栽培ベッド5を載置して装着される。茎受具18の茎受け部分18bは、両端部に構成され栽培ベッド5の左右両側にそれぞれのキューブ12の列に対応して設けられている。尚、茎受具18の茎受け部分18bの外端には立ち上がり部18cを設け、この立ち上がり部18cにより茎受具18に載せた茎kが外方へ脱落しないようにしている。茎受具18は、図7に示すように、平板で構成されているので、前後方向(栽培ベッド5の方向)への回動が規制され、栽培ベッド5に対して茎受け部分18bを適正な位置に維持できる。従来の茎受具18は、図8に示すように、棒材で構成されているので、前後方向(栽培ベッド5の方向)へ無闇に回動するおそれがあり、栽培ベッド5に対する茎受け部分18bの位置が変化して適正に茎kを受けることができないおそれがある。   As shown in FIG. 4, since the crop is cultivated while the attracting string holder 14 is moved along the attracting wire 15, if the stem k becomes long, the lower portion of the stem k may hang down below the cube 12. Therefore, a stem holder 18 is provided on the side of the cultivation bed 5 at predetermined intervals, and the stem k is placed on the stem holder 18 so that the lower part of the stem k faces the lateral direction along the cultivation bed 5. Yes. The stem holder 18 is configured by bending a flat plate so that the central portion 18a is in a low position, and after being fitted into the container 10, the cultivation bed 5 is placed on the upper side and mounted. The stem receiving portions 18 b of the stem receiving tool 18 are configured at both ends, and are provided on the left and right sides of the cultivation bed 5 corresponding to the respective rows of the cubes 12. In addition, the rising part 18c is provided in the outer end of the stem receiving part 18b of the stem holder 18, and the stem k mounted on the stem holder 18 is prevented from falling off by this rising part 18c. As shown in FIG. 7, the stem holder 18 is configured by a flat plate, so that the rotation in the front-rear direction (the direction of the cultivation bed 5) is restricted, and the stem receiving portion 18 b is appropriately set with respect to the cultivation bed 5. Can be maintained in the correct position. As shown in FIG. 8, the conventional stem holder 18 is made of a bar material, and thus may rotate in the front-rear direction (the direction of the cultivation bed 5). There is a possibility that the position of 18b may change and the stem k cannot be received properly.

容器10の下部で栽培ベッド5の下方の左右幅方向中央には、栽培ベッド5に養液を供給するための給液パイプ19を栽培ベッド5に沿って南北方向に延設している。給液パイプ19の上方で栽培ベッド5の下方の位置には、栽培ベッド5からの排液(余剰の養液)を受けて回収する排液ガ−タ−20を給液パイプ19と同様に南北方向に延設している。尚、容器10、栽培ベッド5及び排液ガ−タ−20はその長手方向(南北方向)に若干傾斜しており、排液ガ−タ−20で受けた排液が該ガ−タ−20の一端へ回収されるようになっている。給液パイプ19からそれぞれのキューブ12へ養液を供給するそれぞれのドリップホ−ス21を設け、キューブ12に移植した苗に養液を供給して作物を栽培するようになっている。   A liquid supply pipe 19 for supplying nutrient solution to the cultivation bed 5 is extended in the north-south direction along the cultivation bed 5 at the center in the left-right width direction below the cultivation bed 5 below the container 10. A drainage garter 20 that receives and collects drainage liquid (excess nutrient solution) from the cultivation bed 5 above the feeding pipe 19 and below the cultivation bed 5 is the same as the feeding pipe 19. It extends from north to south. In addition, the container 10, the cultivation bed 5, and the drainage garter 20 are slightly inclined in the longitudinal direction (north-south direction), and the effluent received by the drainage garter 20 is the garter 20. It is to be collected at one end. Each drip hose 21 for supplying the nutrient solution from the fluid supply pipe 19 to each cube 12 is provided, and the nutrient solution is supplied to the seedlings transplanted to the cube 12 to grow the crop.

従って、給液パイプ19を栽培ベッド5及び排液ガ−タ−20の下方に配置しているので、栽培ベッド5あるいは排液ガ−タ−20により影になって給液パイプ19へ太陽光が照射しないので、栽培ベッド5へ供給する養液が高温になるのを防止できる。特に、夏季に養液が異常な高温となるのを防止でき、栽培床となる栽培ベッド5が異常な高温になって栽培に悪影響を及ぼすことを防止できる。また、給液パイプ19が栽培ベッド5の側方に配置されていないので、温室1内の栽培面積を小さくできると共に、給液パイプ19が作業者あるいは作業車等による栽培ベッド5の側方からの作業や栽培作物の成育等の邪魔にならない。従来は、吊り下げ式の栽培ベッドの上部側方や栽培ベッドを載せる容器の上側側部の耳部に給液パイプを設けていたので、太陽光が照射により給液パイプの温度が上昇しやすく、栽培ベッドへ供給する養液が高温になることがあった。尚、栽培ベッドの上部側方に給液パイプを設けた場合は、給液パイプが栽培ベッドの側方からの作業の邪魔になったり成育する栽培作物と干渉してその成育を阻害したりするおそれがある。   Therefore, since the liquid supply pipe 19 is disposed below the cultivation bed 5 and the drainage garter 20, the sunlight is shaded by the cultivation bed 5 or the drainage garter 20 to the liquid supply pipe 19. Therefore, the nutrient solution supplied to the cultivation bed 5 can be prevented from becoming high temperature. In particular, it is possible to prevent the nutrient solution from becoming an abnormally high temperature in summer, and to prevent the cultivation bed 5 serving as the cultivation floor from becoming an abnormally high temperature and adversely affecting cultivation. Moreover, since the liquid supply pipe 19 is not arrange | positioned to the side of the cultivation bed 5, while being able to reduce the cultivation area in the greenhouse 1, the liquid supply pipe 19 is from the side of the cultivation bed 5 by an operator or a working vehicle. It will not interfere with the work of the plant and the growth of cultivated crops. Conventionally, since the liquid supply pipe was provided on the upper side of the hanging type cultivation bed and the ear on the upper side of the container on which the cultivation bed is placed, the temperature of the liquid supply pipe is likely to rise due to the irradiation of sunlight. The nutrient solution supplied to the cultivation bed sometimes became hot. In addition, when a liquid supply pipe is provided on the upper side of the cultivation bed, the liquid supply pipe interferes with the work from the side of the cultivation bed or interferes with the cultivated crops and inhibits its growth. There is a fear.

図9に示すように、養液を貯留するAタンク22並びにBタンク23及び酸タンク24からポンプユニット25を介して給液パイプ19へ養液が供給される構成となっている。尚、肥料成分の異なる養液をAタンク22とBタンク23とに貯留し、Aタンク22及びBタンク23からの肥料成分の異なる養液の混合割合をポンプユニット25で調整し、所望の肥料成分の養液を得るようになっている。そして、ポンプユニット25から各栽培ベッド5の給液パイプ19へ養液が分流される構成であり、作物を栽培しない容器10あるいは栽培ベッド5がある場合に各給液パイプ19への給液を停止できる給液停止バルブ26をそれぞれ設け、該給液停止バルブ26により無駄に養液を供給することを防止できる。これらの構成を備えて、養液供給装置が構成される。   As shown in FIG. 9, the nutrient solution is supplied from the A tank 22 storing the nutrient solution, the B tank 23, and the acid tank 24 to the supply pipe 19 through the pump unit 25. In addition, the nutrient solution from which a fertilizer component differs is stored in A tank 22 and B tank 23, and the mixing ratio of the nutrient solution from which the fertilizer component from A tank 22 and B tank 23 differs is adjusted with the pump unit 25, and desired fertilizer It is designed to obtain nutrient solutions for ingredients. Then, the nutrient solution is diverted from the pump unit 25 to the liquid supply pipe 19 of each cultivation bed 5. When there is the container 10 or the cultivation bed 5 that does not cultivate crops, the liquid supply to each liquid supply pipe 19 is supplied. A liquid supply stop valve 26 that can be stopped is provided, and the supply of the nutrient solution can be prevented by the liquid supply stop valve 26. With these configurations, a nutrient solution supply apparatus is configured.

また、各排液ガ−タ−20で回収された排液が合流して排液回収タンク27ヘ貯留され、該排液回収タンク27から殺菌前タンク28を介して殺菌装置29へ供給され、該殺菌装置29により排液を殺菌する。殺菌装置29で殺菌された排液は、二次原水タンク30へ送られて原水に混合されて肥料濃度が調整され、ポンプユニット25へ供給して養液として再利用できる構成となっている。尚、原水を貯留する一次原水タンク31から前記二次原水タンク30へ原水を供給する構成となっている。これにより、二次原水タンク30で殺菌された排液と原水とを混合しながら肥料濃度が調整できるので、所望の肥料濃度に精度良く調整することができ、従来の排液再利用装置のように肥料濃度が高い養液(排液)をポンプユニット25を介して給液パイプ19ひいては栽培ベッド5へ供給してしまうことを防止でき、栽培する苗や作物に肥料焼けが生じるようなことを防止できる。尚、従来の排液再利用装置は、原水を貯留する一次原水タンク及び殺菌装置で殺菌された排液を貯留する殺菌後タンクから直接原水及び排液がポンプユニットへ供給される構成であったので、栽培過程や栽培状況等によって排液の肥料濃度がまちまちであるため、原水と排液との混合割合を調整してポンプユニットへ供給しようとしても排液の肥料濃度の変化が激しくて対応しきれず、再利用する養液の肥料濃度を所望の肥料濃度に精度良く調整することが困難であった。   In addition, the drainage liquid collected by each drainage garter 20 joins and is stored in the drainage recovery tank 27, and is supplied from the drainage recovery tank 27 to the sterilizer 29 via the pre-sterilization tank 28. The effluent is sterilized by the sterilizer 29. The effluent sterilized by the sterilizer 29 is sent to the secondary raw water tank 30 and mixed with the raw water to adjust the fertilizer concentration, and is supplied to the pump unit 25 so that it can be reused as a nutrient solution. The raw water is supplied from the primary raw water tank 31 that stores the raw water to the secondary raw water tank 30. As a result, the fertilizer concentration can be adjusted while mixing the effluent sterilized in the secondary raw water tank 30 and the raw water, so that it can be adjusted to the desired fertilizer concentration with high accuracy, as in the conventional wastewater recycling apparatus. In addition, it is possible to prevent a nutrient solution (drainage) having a high fertilizer concentration from being supplied to the liquid supply pipe 19 and thus to the cultivation bed 5 through the pump unit 25, so that the seedlings and crops to be cultivated are fertilized. Can be prevented. In addition, the conventional drainage reuse device has a configuration in which the raw water and drainage are directly supplied to the pump unit from the primary raw water tank that stores the raw water and the sterilized tank that stores the sterilized liquid sterilized by the sterilizer. Therefore, since the fertilizer concentration in the drainage varies depending on the cultivation process and cultivation conditions, etc., even if the mixing ratio of the raw water and the drainage is adjusted and supplied to the pump unit, the change in the fertilizer concentration in the drainage is severe. It was difficult to accurately adjust the fertilizer concentration of the nutrient solution to be reused to the desired fertilizer concentration.

ポンプユニット25において、二次原水タンク30から栽培ベッド5へ養液を供給するポンプ32を並列に2個設けている。通常は、前記2個のポンプ32のうち、一方を使用して養液を供給する。そして、使用しているポンプ32が故障したとき、該ポンプ32を停止してその吸入口及び吐出口のバルブ33を閉じ、他方のポンプ32の吸入口及び吐出口のバルブ33を開いて該他方のポンプ32を駆動し、養液供給を継続することができる。これにより、前記ポンプ32の故障で栽培する植物(作物)が枯れてしまうようなことがなく、良好な栽培を維持することができる。故障しているポンプ32の吸入口及び吐出口のバルブ33を閉じているので、他方のポンプ32により養液供給を継続しながら、故障しているポンプ32を修理したり良品のポンプと交換したりすることができる。従来は、単一のポンプにより養液を供給するようになっていたので、そのポンプが故障すると養液供給が行えなくなり、植物(作物)の栽培に悪影響を与えるおそれがある。   In the pump unit 25, two pumps 32 for supplying the nutrient solution from the secondary raw water tank 30 to the cultivation bed 5 are provided in parallel. Usually, one of the two pumps 32 is used to supply the nutrient solution. When the pump 32 being used fails, the pump 32 is stopped, the inlet and outlet valves 33 are closed, the inlet and outlet valves 33 of the other pump 32 are opened, and the other The pump 32 can be driven, and the nutrient solution supply can be continued. Thereby, the plant (crop) cultivated by the failure of the pump 32 is not withered, and good cultivation can be maintained. Since the inlet and outlet valves 33 of the faulty pump 32 are closed, the faulty pump 32 is repaired or replaced with a non-defective pump while the other pump 32 continues supplying nutrient solution. Can be. Conventionally, the nutrient solution is supplied by a single pump. If the pump fails, the nutrient solution cannot be supplied, which may adversely affect plant (crop) cultivation.

温室1の天井3部には、南北方向に複数の遮光カーテン34を所定間隔おきに設けている。この遮光カーテン34は、スプリング(図示せず)により該遮光カーテン34の南側に配置した巻取軸35に巻き取られて開くようになっている。温室1内の北端にはカーテン開閉モータ36を設けており、該モータ36の駆動によりカーテン開閉ワイヤ37を介して複数の遮光カーテン34を同時に巻取軸35から引き出す構成となっている。尚、この複数の遮光カーテン34により、温室1の天井部の全面を遮光することができる。カーテン開閉モータ36部には、該モータ36の回転位置により遮光カーテン34の開閉度(開閉量)を検出する遮光カーテン開閉センサ38を設けている。温室1内の側壁2部には、ある程度の光を遮るため開閉しない非開閉式カーテン39を装備している。   A plurality of light shielding curtains 34 are provided at predetermined intervals in the north-south direction on the ceiling 3 of the greenhouse 1. The light-shielding curtain 34 is wound and opened by a winding shaft 35 disposed on the south side of the light-shielding curtain 34 by a spring (not shown). A curtain opening / closing motor 36 is provided at the north end in the greenhouse 1, and a plurality of light-shielding curtains 34 are simultaneously pulled out from the winding shaft 35 through curtain opening / closing wires 37 by driving the motor 36. The plurality of light shielding curtains 34 can shield the entire ceiling of the greenhouse 1. The curtain opening / closing motor 36 is provided with a light-shielding curtain opening / closing sensor 38 that detects the degree of opening / closing (opening / closing amount) of the light-shielding curtain 34 based on the rotational position of the motor 36. The side wall 2 in the greenhouse 1 is equipped with a non-opening / closing curtain 39 that does not open and close to block a certain amount of light.

温室1外の南側には、日射量センサ40を設けている。この日射量センサ40により検出される日射量に基づいて、遮光カーテン開閉センサ38の検出により遮光カーテン34が所望の開閉度となるよう、カーテン開閉モータ36を駆動制御して遮光カーテン34の開閉度を変更して制御し、日射量が大きいときは遮光カーテン34を大きく閉じて遮光率を上げるようになっている。   A solar radiation amount sensor 40 is provided on the south side outside the greenhouse 1. Based on the amount of solar radiation detected by the solar radiation amount sensor 40, the curtain opening / closing motor 36 is driven to control the degree of opening / closing of the light shielding curtain 34 so that the light shielding curtain 34 has a desired degree of opening / closing by detection of the light shielding curtain opening / closing sensor 38. When the amount of solar radiation is large, the shading curtain 34 is largely closed to increase the shading rate.

図12に基づいて養液の供給制御について説明すると、日射量センサ40の検出により積算日射量を逐次演算し(ステップ1)、積算日射量が給液開始値に達するとポンプユニット25へ給液信号を出力して所定量の養液を供給するようになっている(ステップ2)。尚、ポンプユニット25へ給液信号が出力されると、積算日射量をクリアして0に戻す。また、前記給液開始値は、遮光カーテン開閉センサ38値より遮光カーテン34が完全に開いた状態(遮光率0)のときは予め設定した所定値となり(ステップ3)、遮光カーテン34が幾分でも閉じている状態のときは遮光カーテン開閉センサ38値に基づいて遮光カーテン34の開閉度に応じて前記予め設定した所定値から加算して補正し(ステップ4)、遮光カーテン34を閉じ量が大きいほど給液開始値を大きくして養液を供給回数が少なくなるようにしている。   The supply control of nutrient solution will be described with reference to FIG. 12. The integrated solar radiation amount is sequentially calculated by the detection of the solar radiation sensor 40 (step 1), and when the integrated solar radiation amount reaches the liquid supply start value, the liquid supply is supplied to the pump unit 25. A signal is output to supply a predetermined amount of nutrient solution (step 2). When the liquid supply signal is output to the pump unit 25, the accumulated solar radiation amount is cleared and returned to zero. The liquid supply start value is a predetermined value when the light-shielding curtain 34 is fully open (light-shielding rate 0) based on the value of the light-shielding curtain opening / closing sensor 38 (step 3). However, in the closed state, correction is performed by adding from the predetermined value according to the degree of opening / closing of the light-shielding curtain 34 based on the value of the light-shielding curtain opening / closing sensor 38 (step 4). The larger the value is, the larger the liquid supply start value is set so that the number of times of supplying nutrient solution is reduced.

以上により、この栽培施設の養液供給制御装置は、カーテン開閉モータ36により遮光カ−テン34の開閉度を変更して調節可能で、積算日射量が給液開始値に達すると所定量の養液を供給するという所定の制御パタ−ンに基づいて自動的に植物へ養液を供給すると共に、遮光カ−テン34の開閉度に基づいて養液供給の制御パタ−ンを補正して制御している。   As described above, the nutrient solution supply control device of this cultivation facility can be adjusted by changing the degree of opening / closing of the light shielding curtain 34 by the curtain opening / closing motor 36, and when the accumulated solar radiation amount reaches the liquid supply start value, a predetermined amount of nutrient is supplied. The nutrient solution is automatically supplied to the plant based on a predetermined control pattern of supplying the solution, and the control pattern of the nutrient solution supply is corrected and controlled based on the open / closed degree of the light shielding curtain 34. is doing.

従って、この栽培施設の養液供給制御装置は、所定の制御パタ−ンに基づいて自動的に植物へ養液を供給する。そして、遮光カ−テン34の開閉度が変更されて調節されると、遮光カ−テン34の開閉度に基づいて養液の供給制御が補正され、養液の供給量の適正化を図ることができる。よって、養液の供給の不適正により栽培する植物に生理障害が生じるのを防止して、植物を良好に栽培することができる。特に、トマトの栽培において、日射量の大きい4月〜6月に生理障害が生じるのを防止でき、良質の作物を栽培することができる。   Therefore, the nutrient solution supply control device of this cultivation facility automatically supplies the nutrient solution to the plant based on a predetermined control pattern. Then, when the opening / closing degree of the light shielding curtain 34 is changed and adjusted, the supply control of the nutrient solution is corrected based on the opening degree of the light shielding curtain 34 and the supply amount of the nutrient solution is optimized. Can do. Therefore, it can prevent that a physiological disorder arises in the plant cultivated by improper supply of nutrient solution, and can grow a plant satisfactorily. In particular, in the cultivation of tomatoes, physiological disorders can be prevented from occurring in April to June when the amount of solar radiation is large, and high quality crops can be cultivated.

尚、養液供給の制御パタ−ンを、所定時間に養液を供給するようにし、積算日射量に基づいて養液の供給量を制御するパタ−ンとしてもよい。このときは、遮光カ−テン34の開閉度に基づいて養液の供給量が補正される構成となる。   The nutrient solution supply control pattern may be a pattern in which the nutrient solution is supplied at a predetermined time and the supply amount of the nutrient solution is controlled based on the integrated amount of solar radiation. At this time, the supply amount of the nutrient solution is corrected based on the degree of opening and closing of the light shielding curtain 34.

尚、この養液供給制御においては、夜間には給液しないように1日のうちの給液可能時間帯を設定し、該給液可能時間帯にのみ養液を供給するようになっている。そして、給液可能時間帯を過ぎたとき(夕方等)、酸タンク24に貯留した酸を所定時間(5秒間)供給し、ドリップホ−ス21内を洗浄するようになっている。従来、夜間にドリップホ−ス21内に養液が貯留されたままになるのでドリップホ−ス21内に液肥が固結しやすく、ドリップホ−ス21に目詰まりが生じて翌日の養液供給を円滑に行えないことがあるが、ドリップホ−ス21内に酸を流して洗浄することにより、この不具合を解消できる。尚、前記酸は、重量濃度1%程度の硝酸等、植物の成育を阻害しない程度のものである。また、ドリップホ−ス21内に酸を流して洗浄した後に原水を流し、栽培ベッド5に酸が残らないようにして酸により植物の成育を阻害しないようにしてもよい。   In this nutrient solution supply control, the liquid supply possible time zone of the day is set so as not to supply at night, and the nutrient solution is supplied only during the liquid supply possible time zone. . When the time period during which the liquid can be supplied has passed (eg in the evening), the acid stored in the acid tank 24 is supplied for a predetermined time (5 seconds), and the inside of the drip hose 21 is washed. Conventionally, the nutrient solution remains stored in the drip hose 21 at night, so that the liquid fertilizer is easily consolidated in the drip hose 21, and the drip hose 21 is clogged to smoothly supply the nutrient solution the next day. However, this problem can be solved by washing the drip hose 21 with an acid flow. In addition, the said acid is a thing of the grade which does not inhibit plant growth, such as nitric acid of about 1% of weight concentration. Alternatively, the raw water may be flowed after washing the drip hose 21 with an acid so that the acid does not remain in the cultivation bed 5 so that the growth of the plant is not inhibited by the acid.

ところで、温室1には、冬期等の栽培のために暖房用の温水配管を備える暖房装置41を設けている。この暖房装置41は、ボイラー42からの温水を温室内の東端を介して南端及び北端へ供給する供給配管43と、該供給配管43に接続して各栽培ベッド5間で温水を往復させる支配管44と、該支配管44から温室1内の南端又は北端を介して東端に合流させて温水をボイラー42へ戻す戻配管45とを設けている。また、温室1内の東端の供給配管43から分岐して通路4上で温水を往復させる通路上配管46を2本設け、この通路上配管46からの戻り温水が前記戻配管45に合流する。この通路上配管46に供給配管43からの温水が直接供給されるので、コンクリ−ト通路4上も効率良く暖房することができ、温室内全体の温度むらを少なくして栽培を良好に行える。尚、通路上配管46を地面から2〜4mの高さに設けており、通路での移動に支障にならないようにしている。   By the way, the greenhouse 1 is provided with a heating device 41 provided with a hot water pipe for heating for cultivation in winter and the like. The heating device 41 includes a supply pipe 43 that supplies hot water from the boiler 42 to the south end and the north end via the east end of the greenhouse, and a control pipe that connects the supply pipe 43 to reciprocate the hot water between the cultivation beds 5. 44 and a return pipe 45 that joins the dominating pipe 44 to the east end through the south end or the north end in the greenhouse 1 and returns the hot water to the boiler 42. Further, two passage upper pipes 46 branching from the supply pipe 43 at the east end in the greenhouse 1 and reciprocating hot water on the passage 4 are provided, and the return hot water from the passage upper pipe 46 joins the return pipe 45. Since the hot water from the supply pipe 43 is directly supplied to the pipe on the passage 46, the concrete passage 4 can also be heated efficiently, and the temperature in the entire greenhouse can be reduced and cultivation can be performed satisfactorily. In addition, the piping 46 on the passage is provided at a height of 2 to 4 m from the ground so that movement in the passage is not hindered.

(部分冷暖房)
次に、部分冷暖房による植物の生育制御について説明する。
栽培ハウス1において、栽培床5に複数の植物株K…を列状に植え付け、その上部を上から吊る誘引吊部材13によって設定の高さに支持し、この植物株Kの列方向に沿って所定の高さ部位に冷暖熱を作用する後述の熱作用部52と、この熱作用部52の外側方をカバーする遮蔽カーテン34とを設けた植物栽培設備を構成し、熱作用部52の位置に植物株Kの生長点Gが来るように誘引吊部材13を設定して支持するように構成する。
(Partial air conditioning)
Next, plant growth control by partial cooling and heating will be described.
In the cultivation house 1, a plurality of plant strains K are planted in a row on the cultivation floor 5, supported at a set height by an attraction suspension member 13 that suspends the upper portion from above, and along the row direction of the plant strain K. A plant cultivation facility provided with a later-described heat acting part 52 that acts on the predetermined height portion for cooling and heating and a shielding curtain 34 that covers the outside of the heat acting part 52 is configured, and the position of the heat acting part 52 The attracting and suspending member 13 is set and supported so that the growth point G of the plant strain K comes.

このように構成することにより、栽培床5に植付けた複数の植物株K…は、誘引吊部材13…によってそれぞれ設定高さ位置に支持されるとともに、熱作用部52により植物株Kの所定高さ部位に冷暖熱が作用し、この熱作用は熱作用部52の外側方をカバーする遮蔽カーテン34の範囲内に限定される。したがって、熱作用部52の位置に植物株の生長点Gが来るように誘引吊部材13を設定して支持することにより、植物株Kの生育を効率よく制御することができ、複数の栽培床5…を互いに密接して配置した場合でも、隣接部相互の影響無しに個別の栽培制御が可能となることから、簡易な構成によって栽培ハウス内における日射量や通風等の部分的な育生条件差を補って病害虫の事前対処を含む確実な育生制御が可能となる。   By configuring in this way, the plurality of plant strains K ... planted on the cultivation floor 5 are supported at the set height positions by the attracting suspension members 13 ... and at a predetermined height of the plant strain K by the heat acting part 52. Cooling / heating heat acts on the part, and this heat action is limited to the range of the shielding curtain 34 that covers the outside of the heat acting part 52. Therefore, the growth of the plant strain K can be controlled efficiently by setting and supporting the attracting suspension member 13 so that the growth point G of the plant strain comes to the position of the heat acting part 52, and a plurality of cultivation beds Even if 5 ... are placed in close proximity to each other, individual cultivation control can be performed without the influence of adjacent parts, so the difference in partial growth conditions such as the amount of solar radiation and ventilation in the cultivation house with a simple configuration As a result, it is possible to perform reliable vegetative control including pre-treatment of pests.

具体的には、図15の栽培システムの正面断面図に示すように、二次暖房兼用型細霧冷房システム51を付設し、冬季は生長点暖房として使用(必要により根圏用配管52rによる根圏暖房を含む)し、夏期は生長点冷房として生長点Gのみを冷却(必要により根圏用配管52rによる根圏冷却を含む)するように、カメラ51m等を備えるモニタリング部51m,90,40,91によって自動診断と部位別温度管理する制御部51pを設けて構成する。   Specifically, as shown in the front sectional view of the cultivation system of FIG. 15, a secondary heating combined fine fog cooling system 51 is provided and used as a growth point heating in winter (if necessary, roots by a root zone pipe 52r). Monitoring units 51m, 90, 40 equipped with a camera 51m or the like so that only the growth point G is cooled as a growth point cooling in the summer (including root zone cooling by the root zone piping 52r if necessary). , 91 is provided with a control unit 51p for automatic diagnosis and temperature management for each part.

生長点付近の画像処理を行い、第1葉から第4葉までの葉間の伸長量と前回の生長点付近の茎径を計測し、茎径が一定範囲に保たれている場合は、伸長量により、基準範囲内なら部位別の設定温度を維持し、基準未満なら温度を下げ、また、茎径が基準値より太い場合は、設定温度を下げ、植物付近に好適温度を維持し効果的な植物部位のみの温度を制御する。また、養液の給液前と後の葉の投影面積を計測し、この投影面積比に基づいて給液前の葉の萎れが基準値より大きいと判断されるときは設定温度を下げ、給液前の葉の萎れが基準値より小さいと判断されるときは設定温度を上げるよう温度制御してもよい。   Perform image processing near the growth point, measure the amount of extension between the leaves from the first leaf to the fourth leaf and the stem diameter near the previous growth point, and if the stem diameter is kept within a certain range, extend Depending on the amount, the set temperature for each part is maintained if it is within the reference range, the temperature is lowered if it is less than the reference, and if the stem diameter is thicker than the reference value, the set temperature is lowered to maintain a suitable temperature in the vicinity of the plant. Control the temperature of only plant parts. Also, the projected area of the leaves before and after feeding the nutrient solution is measured, and if it is determined that the leaf wrinkle before feeding is larger than the reference value based on this projected area ratio, the set temperature is lowered to When it is determined that the leaf wrinkle before the liquid is smaller than the reference value, the temperature may be controlled to increase the set temperature.

また、モニタリング部51m,90,40,91には、生長点付近の温度(言い換えれば、遮蔽カーテン34でカバーされる範囲の温度)を測定する生長点温度センサ90と、日射量を測定する日射量センサ40と、生長点付近の湿度(言い換えれば、遮蔽カーテン34でカバーされる範囲の湿度)を測定する生長点湿度センサ91を設ける。   The monitoring units 51m, 90, 40, 91 include a growth point temperature sensor 90 that measures the temperature near the growth point (in other words, the temperature in the range covered by the shielding curtain 34), and the solar radiation that measures the amount of solar radiation. A quantity sensor 40 and a growth point humidity sensor 91 that measures humidity near the growth point (in other words, humidity in a range covered by the shielding curtain 34) are provided.

日中において、栽培植物の葉の葉温を摂氏(Y)度とし、生長点温度センサ90により測定される生長点付近の温度を摂氏(X1)度とし、日射量センサ40により測定される単位面積1平方メートル当たりの日射量を(X2)kWとし、生長点湿度センサ91の測定から得られる生長点付近の絶対湿度と生長点付近における飽和水蒸気量との差(飽差)を(X3)mmHgとすると、次の演算式が成り立つ。
(Y)=1.016(X1)+13.04(X2)−0.0355(X3)−3.2
In the daytime, the leaf temperature of the cultivated plant is in degrees Celsius (Y), the temperature near the growth point measured by the growth point temperature sensor 90 is in degrees Celsius (X1), and the unit is measured by the solar radiation sensor 40 The amount of solar radiation per square meter is (X2) kW, and the difference (saturation) between the absolute humidity near the growth point obtained from the measurement of the growth point humidity sensor 91 and the saturated water vapor amount near the growth point is (X3) mmHg Then, the following arithmetic expression holds.
(Y) = 1.016 (X1) +13.04 (X2) -0.0355 (X3) -3.2

尚、生長点付近における飽和水蒸気量は、生長点温度センサ90の測定する温度に基づいて演算される。生長点付近の絶対湿度は、生長点湿度センサ91が絶対湿度を測定するものであればよいが、生長点湿度センサ91が相対湿度を測定するものであっても、該相対湿度と生長点温度センサの測定する温度に基づいて得られるものである。   The saturated water vapor amount near the growth point is calculated based on the temperature measured by the growth point temperature sensor 90. The absolute humidity in the vicinity of the growth point only needs to be such that the growth point humidity sensor 91 measures the absolute humidity, but even if the growth point humidity sensor 91 measures the relative humidity, the relative humidity and the growth point temperature It is obtained based on the temperature measured by the sensor.

従って、生長点温度センサ90、日射量センサ40及び生長点湿度センサ91で得られる測定値を使用し、この演算式に基づいて葉温を求め、該葉温が予め設定した設定葉温よりも高い場合、後述するノズル52aから冷水を噴霧して生長点付近を冷却する。尚、この冷水の噴霧が葉に付着することにより、気化熱により葉温を低下させる作用が働く。具体例として、設定葉温を20度としたとき、演算される葉温が設定葉温よりも3度以上高いと(葉温が23度以上になると)、ノズル52aにより生長点付近を冷却するようにすればよい。   Therefore, using the measurement values obtained by the growth point temperature sensor 90, the solar radiation amount sensor 40, and the growth point humidity sensor 91, the leaf temperature is obtained based on this calculation formula, and the leaf temperature is higher than the preset leaf temperature. When it is high, cold water is sprayed from a nozzle 52a described later to cool the vicinity of the growth point. In addition, when this spray of cold water adheres to a leaf, the effect | action which lowers leaf temperature by the heat of vaporization works. As a specific example, when the set leaf temperature is 20 degrees, when the calculated leaf temperature is 3 degrees or more higher than the set leaf temperature (when the leaf temperature is 23 degrees or more), the vicinity of the growth point is cooled by the nozzle 52a. What should I do?

逆に、求められる葉温が予め設定した設定葉温よりも低い場合、後述するノズル52aから温水を噴霧して生長点付近を暖房する。具体例として、設定葉温を20度としたとき、演算される葉温が設定葉温よりも3度以上低いと(葉温が17度以下になると)、ノズル52aにより生長点付近を暖房するようにすればよい。
尚、夏場と冬場で、異なる設定葉温を各々設定してもよい。
On the contrary, when the calculated leaf temperature is lower than the preset leaf temperature, warm water is sprayed from a nozzle 52a described later to heat the vicinity of the growth point. As a specific example, when the set leaf temperature is 20 degrees, when the calculated leaf temperature is 3 degrees or more lower than the set leaf temperature (when the leaf temperature is 17 degrees or less), the vicinity of the growth point is heated by the nozzle 52a. What should I do?
Note that different set leaf temperatures may be set for summer and winter, respectively.

このように、部位別温度制御部により、植物の生体情報を計測して生育状態を診断し、植物株の生育状態に応じた第一と第二の熱作用部による部位別の温度管理による効率の良い生育栽培が可能となることから、本システムにより、園芸温室や太陽光利用型植物工場温室の生産性向上において緊急の課題である、夏期の高温障害や冬期の低温障害による収穫量の減少と、温度制御のためのエネルギーコストの増大を同時に解決し、従来の方法(温室全体を温度制御する)と比べて、石油消費量の50%程度削減と夏期および冬期の収穫量増大(約1割)を実現することができる。具体例として、生長点付近の温度を摂氏20度に制御するが、温室全体の温度(室温)を摂氏12度に制御することにより、暖房のエネルギーコストを抑えるようにすればよい。
従来は、温室全体を冷暖房し、温室全体の温度(室温)を制御していたので、エネルギーコストがかかっていた。
Thus, the temperature control unit for each part measures the biological information of the plant to diagnose the growth state, and the efficiency by the temperature management for each part by the first and second heat acting parts according to the growth state of the plant strain This system makes it possible to reduce the yield due to high temperature damage in summer and low temperature damage in winter, which is an urgent issue in improving the productivity of horticultural greenhouses and solar-powered plant factory greenhouses. In addition, the increase in energy costs for temperature control is solved at the same time. Compared with the conventional method (temperature control of the whole greenhouse), the oil consumption is reduced by about 50% and the yield in summer and winter is increased (about 1). Percent). As a specific example, the temperature near the growth point is controlled to 20 degrees Celsius, but the temperature of the entire greenhouse (room temperature) may be controlled to 12 degrees Celsius to reduce the energy cost of heating.
Conventionally, the entire greenhouse was cooled and heated, and the temperature (room temperature) of the entire greenhouse was controlled, which required energy costs.

一般に、植物栽培について、生長点暖房と細霧冷房システムは、ほぼ同じ配置とすることが可能であることから、個別設置のコストを要することなく冬季は暖房とし、夏期は冷却として生育に重要な冷暖房が可能で、生長点Gの冷却により栽培時期の延長による収量増収が可能となる。例えば、熱源をチラー51aにより構成し、また、熱作用部としての配管52には、図16の配管部の拡大図に示すように、噴霧方向Aと暖房時の噴霧不可方向Bについて方向設定可能なノズル52a,52aを設け、ボイラー51bによる温水暖房、動力噴霧機51cによる養液薬剤散布を含む細霧冷却を切替え可能に構成することができる。尚、ノズル52aを設けず、配管52に冷水又は温水を流すことにより冷暖房を行う構成としてもよい。   In general, for plant cultivation, the growth point heating and fine fog cooling system can be arranged in almost the same way. Heating and cooling is possible, and the yield can be increased by extending the cultivation period by cooling the growth point G. For example, the heat source is constituted by the chiller 51a, and the piping 52 as the heat acting portion can be set in the direction of spraying A and the spraying impossible direction B during heating as shown in the enlarged view of the piping portion of FIG. Nozzles 52a and 52a are provided, and it is possible to switch between fine water cooling including hot water heating by the boiler 51b and nourishing chemical spraying by the power sprayer 51c. In addition, it is good also as a structure which does not provide the nozzle 52a but cools and heats by flowing cold water or warm water through the piping 52.

また、根圏については、夏場と冬場で各々設定温度を設定し、該設定温度となるよう根圏用配管52rに冷水又は温水を流して温度制御すればよい。前記設定温度は、前述の求められる葉温に応じて、葉温が高いときに低く、葉温が低いときに高くなるよう、補正制御されるようにしてもよい。   As for the rhizosphere, the temperature may be controlled by setting a set temperature in summer and winter, respectively, and flowing cold water or hot water through the rhizosphere piping 52r so as to be the set temperature. The set temperature may be corrected and controlled so as to be low when the leaf temperature is high and high when the leaf temperature is low according to the above-described required leaf temperature.

また、図17のシステム展開図に示すように、生長点暖房・冷却の各ラインに電磁弁52v…を設けてライン制御可能に構成し、ライン毎に生育に合わせて生長点環境を制御する。このようなライン別の制御により、生育の均一性を保つことができ、収量の増加が可能となる。   Further, as shown in the system development diagram of FIG. 17, each of the growth point heating / cooling lines is provided with an electromagnetic valve 52v... So that the line can be controlled, and the growth point environment is controlled according to the growth of each line. Such line-by-line control can maintain the uniformity of growth and increase the yield.

二次暖房の配管54には、図22の部分縦断側面図に示すように、放熱保護用の筒状の断熱材による保護筒55を取付け、この保護筒55が自動的に移動可能に構成し、配管54に設けた磁気テープを利用してグループ化を行うことにより、生育に問題がないところを保護し、問題があるところを開放することにより、生育むらを解消することができる。   As shown in the partial longitudinal side view of FIG. 22, the secondary heating pipe 54 is provided with a protection cylinder 55 made of a cylindrical heat insulating material for heat radiation protection, and the protection cylinder 55 is configured to be automatically movable. By performing grouping using the magnetic tape provided in the pipe 54, it is possible to protect a place where there is no problem in growth, and to release the place where there is a problem, thereby eliminating uneven growth.

なお、遮蔽カーテン34については、生長点の付近に温水を流したパイプを吊し、そのパイプからの自然対流熱伝達によって生長点付近のみを暖房する方式では、そのパイプから放熱された熱は植物工場全体に拡散して生長点の暖房としては効率が良くないことから、植物株の上に水平に展張される保温フィルムを垂れ下げることで、暖房効率を大幅に向上することができる。   As for the shielding curtain 34, in a system in which a pipe in which hot water is flowed is hung near the growth point and only the vicinity of the growth point is heated by natural convection heat transfer from the pipe, the heat radiated from the pipe is planted. Since it is not efficient for heating at the growth point by spreading throughout the factory, the heating efficiency can be greatly improved by hanging a heat insulating film that is spread horizontally on the plant stock.

次に、二酸化炭素の施用については、二酸化炭素配管56をライン間に配置して二酸化炭素循環扇連動制御システムを設けるとともに、周辺空気と混合されて二酸化炭素濃度が十分でない可能性があるので、図21の要部配管系統図に示すように、ラインの両サイドも二酸化炭素配管56bにより同様に二酸化炭素を施用することで、目的のライン生育の遅れが解消されて生育の均一化が可能となる。   Next, for the application of carbon dioxide, the carbon dioxide pipe 56 is placed between the lines to provide a carbon dioxide circulation fan interlocking control system, and the carbon dioxide concentration may not be sufficient because it is mixed with the surrounding air. As shown in the main piping system diagram of FIG. 21, both sides of the line are similarly applied with carbon dioxide through the carbon dioxide pipe 56b, so that the delay in the target line growth is eliminated and the growth can be made uniform. Become.

(給液システム)
次に、水耕養液の給液システムについて説明する。
夏期においては養液配管内に滞留されている養液が日射や大気温度によって約40℃まで上昇し、この高温の養液を給液すると植物の根圏に悪影響を及ぼすという問題があり、その解決のために、水耕養液の給液システムは、図23のシステム展開図に示すように、給液用ポンプ61aによる養液装置から連通する養液の給液配管61について養液混合タンク62まで戻す還流管63を設置し、この還流管63に電磁弁64a、64bを設けるとともに、養液混合タンク62に循環用ポンプ65を設ける。
(Liquid supply system)
Next, a hydroponic liquid supply system will be described.
In summer, there is a problem that the nutrient solution retained in the nutrient solution pipe rises to about 40 ° C due to solar radiation and atmospheric temperature, and if this high temperature nutrient solution is supplied, it will adversely affect the root zone of the plant. In order to solve the problem, the hydroponic liquid supply system includes a nutrient solution mixing tank 61 for the nutrient solution supply pipe 61 communicating with the nutrient solution device by the supply pump 61a as shown in the system development view of FIG. A reflux pipe 63 returning to 62 is installed, electromagnetic valves 64 a and 64 b are provided in the reflux pipe 63, and a circulation pump 65 is provided in the nutrient solution mixing tank 62.

給液時は、両電磁弁64a、64bを閉止して給液用ポンプ61aにより給液し、次の給液までの間は、両電磁弁64a、64bを開放して循環用ポンプ65により養液循環を行う。この循環用ポンプ65による循環動作は、ドリップチューブ66のドリッパーより養液が出ない程度の能力で運転することにより、配管内の温度を一定(約20℃)に保ち、植物の根圏環境を改善することができる。具体的には、収穫終期の6,7月は収量増収および生活障害の回避、7〜9月は育苗時の高温ストレスによる不着米、生育遅れの回避が可能となる。なお、給液用ポンプ61aと循環用ポンプ65は1台のポンプをインバータにより循環時に低速運転することにより同様に構成することができる。   When supplying liquid, both electromagnetic valves 64a and 64b are closed and supplied by the supply pump 61a. Until the next supply, both electromagnetic valves 64a and 64b are opened and the circulation pump 65 is fed. Perform liquid circulation. The circulation operation by the circulation pump 65 is carried out with the ability not to get the nutrient solution from the dripper of the drip tube 66, so that the temperature in the pipe is kept constant (about 20 ° C), and the plant rhizosphere environment is maintained. Can be improved. Specifically, yield increases and avoidance of life problems can be avoided in June and July at the end of harvest, and non-sticky rice and growth delay due to high temperature stress can be avoided in July to September. The liquid supply pump 61a and the circulation pump 65 can be similarly configured by operating one pump at a low speed during circulation using an inverter.

(培地温度制御)
次に、イチゴ用栽培ベッド71は、図24の2つの使用態様(a)、(b)に示すように、、寒冷期は培地の中にホースを配置し、その中に温水を流して培地を暖める加温用ホース72aとし、また、温暖期は培地の上位置にホースを引き上げてその中に冷水を流してクラウン部を冷却する冷却ホース72bとして構成する。このように培地加温用とイチゴ株のクラウン部冷却用のホース72a,72bを兼用することにより、イニシャルコストを半減することができる。
(Medium temperature control)
Next, as shown in the two usage modes (a) and (b) of FIG. 24, the cultivation bed 71 for strawberries arranges a hose in the medium during the cold season, and flows warm water into the medium. The warming hose 72a is used as a heating hose 72a, and in the warm season, the hose is pulled up to a position above the medium, and cold water is allowed to flow therein to cool the crown portion. Thus, the initial cost can be halved by combining the hoses 72a and 72b for heating the culture medium and cooling the crown of the strawberry strain.

(組立型栽培ベッド)
次に、組立型栽培ベッドについて説明する。
従来構成の栽培ベッドは、発泡スチロール内に排水溝を一体形成したものであり、その排水用の水準精度を確保して据付施工するために多くの手間を強いられるという問題があったことから、この問題を解消するために、栽培ベッドを以下のように組立型に構成する。
(Assembly type cultivation bed)
Next, the assembly type cultivation bed will be described.
Since the cultivation bed of the conventional configuration has a drainage groove integrally formed in the polystyrene foam, there is a problem that a lot of labor is required to secure the level accuracy for the drainage and to install it. In order to solve the problem, the cultivation bed is configured as an assembly type as follows.

すなわち、組立型栽培ベッドは、図25の断面図に示すように、袋培地81を側柱82,82と挿し込み式の桁材83によって受け、この桁材83の下方に排水を受ける排水樋84を排水金具85によって支持する。この排水金具85は、チョウボルトナット85a、85aによって桁材83に対して高さ調節可能に連結して構成することにより、チョウボルトナット85a、85aの操作のみで排水樋84の傾斜調節が随時可能となるので、袋培地81の架設の水準精度を問わない簡易な据付施工が可能となる。   That is, as shown in the cross-sectional view of FIG. 25, the assembly type cultivation bed receives the bag culture medium 81 by the side pillars 82 and 82 and the insert-type girders 83 and receives the drainage below the girders 83. 84 is supported by a drainage fitting 85. The drainage fitting 85 is configured to be connected to the girder 83 by the butterfly bolt nuts 85a and 85a so that the height of the drainage metal fitting 85 can be adjusted. Therefore, simple installation work regardless of the level accuracy of the erection of the bag culture medium 81 becomes possible.

1 温室(栽培ハウス)
5 栽培ベッド(栽培床)
13 誘引紐(誘引吊部材)
19 給液パイプ
34 遮光カーテン(遮蔽カーテン)
40 日射量センサ
41 暖房装置
44 支配管
45 戻配管
46 通路上配管
51 二次暖房兼用型細霧冷房システム
52 配管(熱作用部)
52a ノズル
52r 熱作用部
54 配管
90 生長点温度センサ
91 生長点湿度センサ
G 生長点
K 植物株
1 Greenhouse (cultivation house)
5 cultivation bed (cultivation floor)
13 Attraction string (attraction member)
19 Supply pipe 34 Shading curtain (shielding curtain)
40 Solar radiation sensor 41 Heating device 44 Control pipe 45 Return pipe 46 Passage pipe 51 Secondary heating combined type fine fog cooling system 52 Pipe (heat acting part)
52a Nozzle 52r Heating section 54 Piping 90 Growth point temperature sensor 91 Growth point humidity sensor G Growth point K Plant strain

Claims (2)

植付けた植物株(K)を生育栽培するための栽培床(5)と、この栽培床(5)に植付けた植物株(K)を上から吊って設定の高さに支持する誘引吊部材(13)とからなる植物栽培設備において、
上記栽培床(5)には、誘引吊部材(13)によって支持した複数の植物株(K)を列状に配置し、この列方向に沿って所定の高さ部位に局所的に冷暖熱を作用する熱作用部(52)と、この熱作用部(52)の外側方を仕切ってカバーする遮蔽カーテン(34)とを設けたことを特徴とする植物栽培設備。
Cultivation floor (5) for growing and cultivating the plant strain (K) planted, and an attracting suspension member for supporting the plant strain (K) planted on the cultivation floor (5) from the top to support the set height ( 13) In plant cultivation equipment consisting of
In the cultivation floor (5), a plurality of plant strains (K) supported by the attracting suspension member (13) are arranged in a row, and locally heated and cooled at a predetermined height along the row direction. A plant cultivation facility comprising a heat acting part (52) that acts and a shielding curtain (34) that partitions and covers the outside of the heat acting part (52).
植付けた植物株(K)を生育栽培するための栽培床(5)と、この栽培床(5)に植付けた植物株(K)を上から吊って設定の高さに支持する誘引吊部材(13)とからなる植物栽培設備において、
上記植物株(K)の生長点となる所定の高さ位置に冷暖熱を作用する第一の熱作用部(52)と、この熱作用部(52)の側方を仕切ってカバーする遮蔽カーテン(34)と、同植物株(K)の根域となる部位に冷暖熱を作用する第二の熱作用部(52r)と、同植物株(K)の生育状態を検出するモニタリング部(51m,90,40,91)と、このモニタリング部(51m,90,40,91)の検出情報による植物株(K)の生育状態の診断結果に基づいて上記第一および第二の熱作用部(52,52r)を個別に温度管理する部位別温度制御部(51p)とを設けたことを特徴とする植物栽培設備。
Cultivation floor (5) for growing and cultivating the plant strain (K) planted, and an attracting suspension member for supporting the plant strain (K) planted on the cultivation floor (5) from the top to support the set height ( 13) In plant cultivation equipment consisting of
A first thermal action part (52) that acts on the heating and cooling of the plant strain (K) at a predetermined height position, and a shielding curtain that partitions and covers the side of the thermal action part (52) (34), a second heat acting part (52r) that acts on the root region of the plant strain (K), and a monitoring part (51m) that detects the growth state of the plant strain (K) , 90, 40, 91) and the first and second thermal action parts (based on the diagnosis result of the growth state of the plant strain (K) based on the detection information of the monitoring part (51m, 90, 40, 91) ( A plant cultivation facility characterized in that a temperature control unit for each part (51p) for individually managing the temperature of 52, 52r) is provided.
JP2009166429A 2009-07-15 2009-07-15 Plant cultivation equipment Expired - Fee Related JP5407056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009166429A JP5407056B2 (en) 2009-07-15 2009-07-15 Plant cultivation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009166429A JP5407056B2 (en) 2009-07-15 2009-07-15 Plant cultivation equipment

Publications (3)

Publication Number Publication Date
JP2011019438A true JP2011019438A (en) 2011-02-03
JP2011019438A5 JP2011019438A5 (en) 2012-08-30
JP5407056B2 JP5407056B2 (en) 2014-02-05

Family

ID=43630087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009166429A Expired - Fee Related JP5407056B2 (en) 2009-07-15 2009-07-15 Plant cultivation equipment

Country Status (1)

Country Link
JP (1) JP5407056B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012239454A (en) * 2011-05-24 2012-12-10 Panasonic Corp Luminaire for plant disease control
JP2013251230A (en) * 2012-06-04 2013-12-12 Yamato Kogyo Kk Lighting device and lighting system
JP2015065965A (en) * 2013-10-01 2015-04-13 井関農機株式会社 Cultivation device
KR20150057426A (en) * 2013-11-19 2015-05-28 한국전자통신연구원 Apparatus and method for measuring growth volume of plant
JP2016010374A (en) * 2014-06-30 2016-01-21 井関農機株式会社 Nutritious liquid supply apparatus
JP2017158598A (en) * 2017-06-27 2017-09-14 井関農機株式会社 Moving work vehicle
JP2017195895A (en) * 2017-06-27 2017-11-02 井関農機株式会社 Car moving in cultivation facility
JP2018068205A (en) * 2016-10-28 2018-05-10 井関農機株式会社 Plant cultivation apparatus
KR20180086832A (en) * 2017-01-24 2018-08-01 한국과학기술연구원 Image-based crop growth data measuring mobile app. and device therefor
JP2019017395A (en) * 2018-11-12 2019-02-07 井関農機株式会社 Cultivation facility
JP2019106965A (en) * 2017-12-20 2019-07-04 株式会社Ihi Management system and management method for plant cultivation facility
JP2019193584A (en) * 2018-05-01 2019-11-07 株式会社クボタ Luminous clip and plant culture system using the same
JP7392445B2 (en) 2019-12-16 2023-12-06 井関農機株式会社 plant cultivation equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6338184B2 (en) * 2014-09-04 2018-06-06 国立研究開発法人農業・食品産業技術総合研究機構 Environmental control system for plant cultivation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11289869A (en) * 1998-04-13 1999-10-26 Iseki & Co Ltd Cultivation equipment
JP2006325516A (en) * 2005-05-27 2006-12-07 Kansai Electric Power Co Inc:The Greenhouse system
WO2007058347A1 (en) * 2005-11-21 2007-05-24 National University Corporation Chiba University Method of promoting fruit setting and growth of cultivated plant and apparatus for promoting fruit setting and growth
JP2008125479A (en) * 2006-11-24 2008-06-05 Anix Plants Works Ltd Plant cultivation system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11289869A (en) * 1998-04-13 1999-10-26 Iseki & Co Ltd Cultivation equipment
JP2006325516A (en) * 2005-05-27 2006-12-07 Kansai Electric Power Co Inc:The Greenhouse system
WO2007058347A1 (en) * 2005-11-21 2007-05-24 National University Corporation Chiba University Method of promoting fruit setting and growth of cultivated plant and apparatus for promoting fruit setting and growth
JP2008125479A (en) * 2006-11-24 2008-06-05 Anix Plants Works Ltd Plant cultivation system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012239454A (en) * 2011-05-24 2012-12-10 Panasonic Corp Luminaire for plant disease control
JP2013251230A (en) * 2012-06-04 2013-12-12 Yamato Kogyo Kk Lighting device and lighting system
JP2015065965A (en) * 2013-10-01 2015-04-13 井関農機株式会社 Cultivation device
KR102071719B1 (en) 2013-11-19 2020-01-30 한국전자통신연구원 Apparatus and method for measuring growth volume of plant
KR20150057426A (en) * 2013-11-19 2015-05-28 한국전자통신연구원 Apparatus and method for measuring growth volume of plant
JP2016010374A (en) * 2014-06-30 2016-01-21 井関農機株式会社 Nutritious liquid supply apparatus
JP2018068205A (en) * 2016-10-28 2018-05-10 井関農機株式会社 Plant cultivation apparatus
KR20180086832A (en) * 2017-01-24 2018-08-01 한국과학기술연구원 Image-based crop growth data measuring mobile app. and device therefor
KR102114384B1 (en) * 2017-01-24 2020-05-25 한국과학기술연구원 Image-based crop growth data measuring mobile app. and device therefor
JP2017195895A (en) * 2017-06-27 2017-11-02 井関農機株式会社 Car moving in cultivation facility
JP2017158598A (en) * 2017-06-27 2017-09-14 井関農機株式会社 Moving work vehicle
JP2019106965A (en) * 2017-12-20 2019-07-04 株式会社Ihi Management system and management method for plant cultivation facility
JP7014996B2 (en) 2017-12-20 2022-02-02 株式会社Ihi Management system and management method for plant cultivation facilities
JP2019193584A (en) * 2018-05-01 2019-11-07 株式会社クボタ Luminous clip and plant culture system using the same
JP7030608B2 (en) 2018-05-01 2022-03-07 株式会社クボタ Phosphorescent clip and plant cultivation system using phosphorescent clip
JP2019017395A (en) * 2018-11-12 2019-02-07 井関農機株式会社 Cultivation facility
JP7392445B2 (en) 2019-12-16 2023-12-06 井関農機株式会社 plant cultivation equipment

Also Published As

Publication number Publication date
JP5407056B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
JP5407056B2 (en) Plant cultivation equipment
US9591814B2 (en) Light-weight modular adjustable vertical hydroponic growing system and method
JP6256821B2 (en) Agricultural house
KR101424058B1 (en) Industrial hydroponic system for ginseng
KR20160003218A (en) Tubular greening units
US11596109B2 (en) High density plant growth systems and methods
JP5603669B2 (en) Temperature control method for plant cultivation, temperature control device for plant cultivation, unit for plant cultivation, and plant for plant cultivation
JP2007306895A (en) Hydroponic culture apparatus for vegetable
JP2011019438A5 (en)
Kubota et al. Greenhouse tomato production
JP3679053B2 (en) Vertical hydroponic cultivation equipment
JP2012170349A (en) Temperature controlling sheet, temperature controlling method for plant cultivation, temperature control device for plant cultivation, plant cultivation unit, and plant cultivation plant
KR200327215Y1 (en) The multi stage cultivation equipment for crops
JP2011172522A (en) Greenhouse shading device
KR20190007947A (en) Apparatus for providing year round cultivation of hydroponic crops
KR20140064617A (en) System for water culture having blind equipment
KR20140064011A (en) Apparatus for water culture
JP2014023433A (en) Vegetable cultivation apparatus, vegetable cultivation method, and vegetable cultivation rack
JP2007061014A (en) Greenhouse device with dehumidification function
JP2010119311A (en) Method for cultivating rose
KR20180054239A (en) Smart-farm system for Sprout ginseng
JP4052054B2 (en) Nutrient solution supply control device for cultivation facilities
JPH01235525A (en) Hydroponics and growing bed and growing pot to be used therein
JP7059558B2 (en) Tree growth method and tree growth system
JP2010220486A (en) Local area insulating enclosure for plant cultivation apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120713

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131011

R150 Certificate of patent or registration of utility model

Ref document number: 5407056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees