JP2011018593A - Plasma ignition device - Google Patents

Plasma ignition device Download PDF

Info

Publication number
JP2011018593A
JP2011018593A JP2009163353A JP2009163353A JP2011018593A JP 2011018593 A JP2011018593 A JP 2011018593A JP 2009163353 A JP2009163353 A JP 2009163353A JP 2009163353 A JP2009163353 A JP 2009163353A JP 2011018593 A JP2011018593 A JP 2011018593A
Authority
JP
Japan
Prior art keywords
plasma
ground electrode
space
discharge
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009163353A
Other languages
Japanese (ja)
Inventor
Yuji Kaji
勇司 梶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009163353A priority Critical patent/JP2011018593A/en
Publication of JP2011018593A publication Critical patent/JP2011018593A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a plasma ignition device that has an excellent durability and can perform stable ignition.SOLUTION: The plasma ignition device 1 brings a gas in a discharge space 140 into a high-temperature and high-voltage plasma state and injects the gas in the plasma state into a combustion chamber 400 to cause ignition. An ignition plug 10 comprises a center electrode 11, an insulator 12 that has a nearly cylindrical shape covering the center electrode 11 and has, on the inside, a discharge space forming section 120 zoning the discharge space 140, a nearly cylindrical housing 13 covering the outer periphery of the insulator 12, a grounding electrode 130 that has a nearly annular shape connected to the housing 13 and has zoned, on the inside, a plasma forming space 141 inside the grounding electrode which communicates with the discharge space 140, and a plasma gas injection/separation means 150 that covers a whole or part of the leading end side of the space 141 inside the grounding electrode. The plasma gas injection/separation means 150 has at least two plasma injection holes 151 making communication between the discharge space 140 and the combustion chamber 400, and changing the injection direction of a whole or part of a plasma gas.

Description

本発明は燃焼機関の点火に用いられるプラズマ点火装置に関するものである。   The present invention relates to a plasma ignition device used for ignition of a combustion engine.

近年、自動車エンジン等の燃焼機関においては、燃焼排気中に含まれる、窒素酸化物、二酸化炭素等の環境負荷物質の更なる低減を図るため、更なる燃費の向上、希薄燃焼化が望まれている。
機関の燃焼効率の向上と環境負荷の低減とを同時に実現可能な機関として、機関燃焼室内に高温・高圧のプラズマ状態にした気体を噴射して、従来の火花放電による点火プラグでは火炎伝播できないような希薄な混合気を効率的に燃焼させるプラズマ点火装置が注目されている(特許文献1等参照)。
In recent years, in combustion engines such as automobile engines, in order to further reduce environmentally hazardous substances such as nitrogen oxides and carbon dioxide contained in combustion exhaust gas, further improvement in fuel consumption and lean combustion are desired. Yes.
As an engine that can improve the combustion efficiency of the engine and reduce the environmental load at the same time, a gas in a high-temperature and high-pressure plasma state is injected into the combustion chamber of the engine so that flames cannot be propagated by a conventional spark discharge spark plug. 2. Description of the Related Art A plasma ignition device that efficiently burns a lean air-fuel mixture has attracted attention (see Patent Document 1).

プラズマ点火装置は、短い時間に極めて高いエネルギを混合気に付与するので、着火性に優れている反面、高エネルギ火炎の噴射に要する消費電力が大きい上に、電極の消耗が激しいという問題があり、自動車エンジン等の周期的に燃焼サイクルが繰り返される燃焼機関では実用化に至っていない。   The plasma ignition device gives extremely high energy to the air-fuel mixture in a short time, so it has excellent ignitability, but also has the problem of high power consumption and high electrode consumption. However, it has not been put to practical use in a combustion engine such as an automobile engine in which a combustion cycle is repeated periodically.

このような課題に対して、特許文献2には、一つ以上のオリフィスにより外部と連通したキャビティを区画するセラミックスよりなるハウジングと、該キャビティに突出して配置された中心電極と、該キャビティに突出して配置された接地電極と、を有することを特徴とする内燃機関用点火装置が開示されており、プラズマを発生させる放電空間を熱伝導性の低いセラミックスよりなるハウジングで区画することによって、キャビティ内に発生したプラズマのエネルギがハウジングを介して外部に流出するのを抑制して点火に要するエネルギの低減を図っている。   In order to solve such a problem, Patent Document 2 discloses a housing made of ceramics that defines a cavity communicating with the outside by one or more orifices, a center electrode that projects from the cavity, and projects from the cavity. An ignition device for an internal combustion engine, characterized in that the discharge space for generating plasma is partitioned by a housing made of ceramics having low thermal conductivity, thereby disposing the interior of the cavity. The energy required for ignition is reduced by suppressing the plasma energy generated at the outside from flowing out through the housing.

ところが、特許文献2にあるような従来の点火装置では、キャビティを区画する絶縁性のセラミックスの内側に突出するように中心電極と接地電極とが配設されているので、中心電極と接地電極との間に高電圧を印加したときの放電は気中放電が支配的となり、絶縁体の表面を這うように形成される沿面放電に比べて放電空間内の絶縁を破壊するために必要な電圧が高くなる虞があることが判明した。
また、接地電極がキャビティ内に突出するように形成されているため、電極の消耗位置が集中し早期に電極の消耗を引き起こす虞もある。
However, in the conventional ignition device as disclosed in Patent Document 2, since the center electrode and the ground electrode are disposed so as to protrude inside the insulating ceramics defining the cavity, The discharge when a high voltage is applied during this period is dominated by air discharge, and the voltage required to break the insulation in the discharge space is higher than the creeping discharge formed so as to crawl the surface of the insulator. It turns out that there is a risk of high.
In addition, since the ground electrode is formed so as to protrude into the cavity, there is a possibility that the consumption position of the electrode is concentrated and the electrode is consumed at an early stage.

そこで、本願発明は、かかる実情に鑑み、耐久性に優れ、安定した着火を実現可能なプラズマ点火装置の提供を目的とする。   Therefore, in view of such circumstances, the present invention aims to provide a plasma ignition device that is excellent in durability and can realize stable ignition.

請求項1の発明では、内燃機関に装着される点火プラグと、該点火プラグに高エネルギを供給する高エネルギ電源とを具備し、該高エネルギ電源から高電圧の印加と大電流の供給とによって上記点火プラグ内部に形成された放電空間内の気体を高温・高圧のプラズマガスとして上記内燃機関の燃焼室内に噴射して点火を行うプラズマ点火装置において、上記点火プラグは、略長軸状の中心電極と、該中心電極の周囲を覆いつつ上記中心電極の先端から上記燃焼室側に向かって伸びる略筒状の絶縁体と、該絶縁体の外周を覆う略筒状のハウジングと、該ハウジングの先端側に延設して略環状に形成した接地電極とからなり、上記絶縁体の内側に上記中心電極の先端面と上記絶縁体の内周壁とによって区画した空間に上記中心電極の先端面と上記接地電極の内周縁とを対向せしめて放電空間となし、上記接地電極の内側に上記放電空間に連通する接地電極内空間部を区画し、上記接地電極内空間部の一部又は全部を覆うプラズマガス噴射分離手段を設け、該プラズマガス噴射分離手段は、上記放電空間と上記燃焼室とを連通し、上記プラズマガスの一部又は全ての噴出方向を変える少なくとも2つ以上のプラズマ噴射孔を具備する(請求項1)。   According to the first aspect of the present invention, there is provided a spark plug attached to the internal combustion engine, and a high energy power source for supplying high energy to the spark plug, and by applying a high voltage and supplying a large current from the high energy power source. In the plasma ignition device that performs ignition by injecting the gas in the discharge space formed inside the ignition plug as a high-temperature and high-pressure plasma gas into the combustion chamber of the internal combustion engine, the ignition plug has a substantially long axis center. An electrode, a substantially cylindrical insulator extending from the tip of the center electrode toward the combustion chamber while covering the periphery of the center electrode, a substantially cylindrical housing covering the outer periphery of the insulator, A ground electrode extending in the front end side and formed in a substantially annular shape, and the front end surface of the center electrode in a space defined by the front end surface of the center electrode and the inner peripheral wall of the insulator inside the insulator the above A plasma is formed by facing the inner peripheral edge of the ground electrode to form a discharge space, defining a space in the ground electrode that communicates with the discharge space inside the ground electrode, and covering a part or all of the space in the ground electrode Gas injection / separation means is provided, and the plasma gas injection / separation means includes at least two or more plasma injection holes that communicate between the discharge space and the combustion chamber and change part or all of the injection direction of the plasma gas. (Claim 1).

本発明のプラズマ点火装置を用いれば、上記工エネルギ電源から上記中心電極と上記接地電極との間に高電圧が印加されたときに、上記放電空間形成部の下端面と上記接地電極の内周縁上端との境界に電界集中が起こるため、上記中心電極の下端面と上記接地電極との間に発生するトリガ放電は、上記放電空間形成部の内周壁表面を這うように発生する沿面放電が支配となり、上記中心電極と上記プラズマ噴射孔の内周端縁との間で上記放電空間を貫通するような気中放電が起こる虞がない。気中放電に比べて低い放電電圧で放電可能な沿面放電を維持することによって要求電圧の上昇を抑制することができる。   According to the plasma ignition device of the present invention, when a high voltage is applied between the center electrode and the ground electrode from the energy source, the lower end surface of the discharge space forming portion and the inner periphery of the ground electrode Since electric field concentration occurs at the boundary with the upper end, the trigger discharge that occurs between the lower end surface of the center electrode and the ground electrode is dominated by the creeping discharge that occurs over the inner peripheral wall surface of the discharge space forming portion. Thus, there is no possibility that air discharge that penetrates the discharge space occurs between the center electrode and the inner peripheral edge of the plasma injection hole. An increase in the required voltage can be suppressed by maintaining a creeping discharge that can be discharged at a lower discharge voltage than in the air discharge.

加えて、上記プラズマガス噴射分離手段を金属で形成した場合でも、上記接地電極内空間部が形成されているので、中心電極と上記プラズマガス噴射分離手段との間で放電が起こる虞がなく、上記プラズマガス噴射分離手段に穿設された上記プラズマ噴射孔が放電により消耗することがない。したがって、長期の使用に渡り上記プラズマ噴射孔の形状を維持し、プラズマの噴射方向を一定の状態に保つことができる。   In addition, even when the plasma gas injection / separation means is made of metal, the ground electrode internal space is formed, so there is no risk of discharge between the center electrode and the plasma gas injection / separation means. The plasma injection holes formed in the plasma gas injection separation means are not consumed by discharge. Therefore, the shape of the plasma injection hole can be maintained over a long period of use, and the plasma injection direction can be kept constant.

さらに、高エネルギ電源から高電圧の印加に引き続いて大電流が上記点火プラグに印加され、上記放電空間内に放出されると、上記放電空間及び上記接地電極内空間部内の気体が高温・高圧のプラズマ状態となり、これが、上記プラズマガス噴射分離手段の上記プラズマ噴射孔を通過する際に、プラズマガス噴射が複数に分離されて、上記燃焼室内に噴射される。
このため、燃焼室内に存在する混合気に濃度分布が生じていても、従来のプラズマガスの噴出口が単孔のプラズマ点火装置のようにプラズマガスが一塊で噴射される場合に比べ、燃焼室内の混合気との接触機会が増えるので着火性が向上する。
Further, when a large current is applied to the spark plug following the application of a high voltage from a high energy power source and discharged into the discharge space, the gas in the discharge space and the space in the ground electrode has a high temperature and a high pressure. When the plasma state enters the plasma injection hole of the plasma gas injection separation means, the plasma gas injection is separated into a plurality of parts and injected into the combustion chamber.
For this reason, even if a concentration distribution is generated in the air-fuel mixture existing in the combustion chamber, compared with the case where the plasma gas is ejected in one lump as in the case of a plasma igniter having a single-hole plasma gas outlet, Since the chance of contact with the air-fuel mixture increases, the ignitability improves.

第2の発明では、上記接地電極の内周縁上端から上記プラズマガス噴射分離手段までの上記接地電極内空間部の長さを0.5mm以上の範囲に設定する(請求項2)。   In the second invention, the length of the space in the ground electrode from the upper end of the inner edge of the ground electrode to the plasma gas jet separation means is set in a range of 0.5 mm or more.

本発明者等の鋭意試験により、上記接地電極内空間部の長さを0.5m以上に形成することにより、上記中心電極と上記プラズマガス噴射分離手段との間で放電が起こらなくなり、確実に上記プラズマ噴孔の消耗を抑制できることが判明した。   As a result of the inventors' diligent tests, by forming the length of the space portion in the ground electrode to be 0.5 m or more, no discharge occurs between the center electrode and the plasma gas jet separation means, and it is ensured. It has been found that consumption of the plasma nozzle can be suppressed.

第3の発明では、上記接地電極の内周縁上端から上記プラズマガス噴射分離手段までの上記接地電極内空間部の長さを3.5mm以下の範囲に設定する(請求項3)。   In the third invention, the length of the space in the ground electrode from the upper end of the inner periphery of the ground electrode to the plasma gas jet separation means is set in a range of 3.5 mm or less.

本発明者等の鋭意試験により、上記接地電極内空間部の長さを3.5m以下に形成することにより、確実に上記プラズマ噴孔の消耗を抑制しつつ、上記放電空間内に発生したプラズマガスが上記プラズマ噴射孔から噴出するまでの圧力低下を起こすことなく、良好な着火性を維持するのに必要な上記燃焼室内への十分な飛び出し距離を確保する貫徹力が維持できることが判明した。   Plasma generated in the discharge space while reliably suppressing consumption of the plasma nozzle hole by forming the length of the space portion in the ground electrode to 3.5 m or less by intensive studies by the present inventors. It has been found that a penetration force that secures a sufficient jumping distance into the combustion chamber necessary for maintaining good ignitability can be maintained without causing a pressure drop until the gas is ejected from the plasma injection hole.

第4の発明では、上記プラズマガス噴射分離手段は、上記接地電極内空間部側に向かって突出し、上記プラズマ噴射孔の穿設方向に沿うように先端先細りに形成した尖突部を具備する(請求項4)。   In a fourth aspect of the invention, the plasma gas injection / separation means includes a pointed protrusion that protrudes toward the space inside the ground electrode and has a tip that is tapered so as to follow the direction in which the plasma injection hole is formed ( Claim 4).

上記放電空間及び上記接地電極内空間部に発生したプラズマガスが上記尖突部によって整流され、上記プラズマガス噴射分離手段を通過する際の抵抗が少なくなるので、上記プラズマガスの噴射速度の低下が抑制され、更なる着火性の向上が期待できる。   Since the plasma gas generated in the discharge space and the space in the ground electrode is rectified by the pointed portion and the resistance when passing through the plasma gas injection separation means is reduced, the plasma gas injection speed is reduced. It is suppressed, and further improvement in ignitability can be expected.

第5の発明では、上記接地電極の内周縁上端から上記尖突部の先端までの距離を0.5mm以上の範囲に設定する(請求項5)。   In the fifth invention, the distance from the upper end of the inner peripheral edge of the ground electrode to the tip of the pointed portion is set to a range of 0.5 mm or more.

一般に、電極の角部では電界集中が起こり易くなり、上記接地電極と電気的に接続している上記プラズマガス噴射分離手段に上記尖突部を形成すると、該尖突部への電界集中により上記中心電極との間で放電が起こり易くなる虞がある。
しかし、本発明のように、上記接地電極の内周縁上端から上記尖突部の先端までの距離を0.5mm以上に設定することにより、上記中心電極の先端から上記尖突部の先端までの絶縁耐圧が上記中心電極の先端から上記接地電極内周縁上端までの絶縁耐圧に比べて充分に高くなり、このような電界集中の影響を排除し、確実に上記中心電極と上記接地電極内周縁上端との間で放電し、上記中心電極と上記尖突部との間の放電を避けることができる。
In general, electric field concentration is likely to occur at the corners of the electrode, and when the pointed protrusion is formed in the plasma gas injection / separation means electrically connected to the ground electrode, electric field concentration on the pointed protrusion causes the above-described concentration of the electric field. There is a possibility that electric discharge is likely to occur between the central electrode.
However, as in the present invention, by setting the distance from the upper end of the inner peripheral edge of the ground electrode to the tip of the pointed portion to be 0.5 mm or more, the distance from the tip of the center electrode to the tip of the pointed portion is set. The withstand voltage is sufficiently higher than the withstand voltage from the tip of the center electrode to the top edge of the inner periphery of the ground electrode, eliminating the influence of such electric field concentration, and reliably And discharge between the center electrode and the pointed portion can be avoided.

(a)は、本発明の第1の実施形態におけるプラズマ点火装置の全体構成を示す断面図、(b)はその下面図。(A) is sectional drawing which shows the whole structure of the plasma ignition apparatus in the 1st Embodiment of this invention, (b) is the bottom view. 本発明の第1の実施形態におけるプラズマ点火装置に利用可能な高エネルギ電源の例を示す等価回路図。The equivalent circuit diagram which shows the example of the high energy power supply which can be utilized for the plasma ignition apparatus in the 1st Embodiment of this invention. (a)は、本発明の第1の実施形態におけるプラズマ点火装置の要部断面図、(b)は、プラズマ噴射時の状態を示す模式図。(A) is principal part sectional drawing of the plasma ignition apparatus in the 1st Embodiment of this invention, (b) is a schematic diagram which shows the state at the time of plasma injection. 電極消耗時における本発明の効果を示す要部断面図。The principal part sectional view which shows the effect of the present invention at the time of electrode consumption. (a)は、本発明の実施例として示す分離部消耗放電抑制空間長さを0.5mm以上に形成した場合の要部断面図、(b)は、比較例として示す分離部消耗放電抑制空間長さを0.5mmより短く形成した場合の要部断面図。(A) is principal part sectional drawing at the time of forming the separation part consumption discharge suppression space length shown as an Example of this invention in 0.5 mm or more, (b) is the separation part consumption discharge suppression space shown as a comparative example. The principal part sectional drawing at the time of forming length shorter than 0.5 mm. 比較例と共に本発明の効果を示し、(a)は、分離部消耗放電抑制空間長さに対する分離部への放電確率を示す特性図、(b)は、分離部消耗放電抑制空間長さに対する失火限界空燃比を示す特性図。The effect of this invention is shown with a comparative example, (a) is a characteristic diagram which shows the discharge probability to the separation part with respect to the separation part consumption discharge suppression space length, (b) is the misfire with respect to the separation part consumption discharge suppression space length. The characteristic view which shows a limit air fuel ratio. 本発明の第1の実施形態におけるプラズマ点火装置の変形例を(a)から(d)に示す下面図。The bottom view which shows the modification of the plasma ignition apparatus in the 1st Embodiment of this invention from (a) to (d). (a)は、本発明の第2の実施形態におけるプラズマ点火装置の要部断面図、(b)は、その下面図。(A) is principal part sectional drawing of the plasma ignition apparatus in the 2nd Embodiment of this invention, (b) is the bottom view. (a)は、本発明の第3の実施形態におけるプラズマ点火装置の要部断面図、(b)は、その下面図。(A) is principal part sectional drawing of the plasma ignition apparatus in the 3rd Embodiment of this invention, (b) is the bottom view. (a)は、本発明の第4の実施形態におけるプラズマ点火装置の要部断面図、(b)は、その下面図。(A) is principal part sectional drawing of the plasma ignition apparatus in the 4th Embodiment of this invention, (b) is the bottom view. (a)は、本発明の第5の実施形態におけるプラズマ点火装置の要部断面図、(b)は、その下面図。(A) is principal part sectional drawing of the plasma ignition apparatus in the 5th Embodiment of this invention, (b) is the bottom view. 本発明の第6の実施形態におけるプラズマ点火装置の要部を示し、(a)は、一部切り欠き斜視図、(b)は、その下面図。The principal part of the plasma ignition apparatus in the 6th Embodiment of this invention is shown, (a) is a partially cutaway perspective view, (b) is the bottom view.

図1を参照して、本発明の第1の実施形態におけるプラズマ点火装置1の概要について説明する。なお、以下の説明において、図の上方を基端側、下方を先端側と称す。
プラズマ点火装置1は、内燃機関40に装着されるプラズマ点火プラグ10とプラズマ点火プラグ10に高エネルギを印加する高エネルギ電源20と高エネルギ電源20を内燃機関40の運転状況に応じて駆動する電子制御装置(ECU)30とによって構成されている。
With reference to FIG. 1, the outline | summary of the plasma ignition apparatus 1 in the 1st Embodiment of this invention is demonstrated. In the following description, the upper side of the figure is referred to as the proximal end side, and the lower side is referred to as the distal end side.
The plasma ignition device 1 includes a plasma ignition plug 10 attached to the internal combustion engine 40, a high energy power source 20 that applies high energy to the plasma ignition plug 10, and an electron that drives the high energy power source 20 according to the operating state of the internal combustion engine 40. And a control device (ECU) 30.

プラズマ点火プラグ10は、点火プラグ内部に放電空間140を有し、放電空間140の先端側の一部又は全部を覆い放電空間140内に発生したプラズマの一部又は全ての噴出方向を変えて燃焼室内に噴射するプラズマガス噴射分離手段150を有している。
プラズマ点火プラグ10は、略長軸状に形成された中心電極11と、中心電極11の周囲を覆いつつ中心電極11の先端から燃焼室400側に向かって伸びる略筒状に形成され内側に放電空間140の区画された絶縁体12と、絶縁体12の外周を覆う略筒状のハウジング13と、ハウジング13の先端側に延設して略環状に形成され、内側に放電空間140に連通する接地電極内空間部141の区画された接地電極130とによって構成され、接地電極130の開口部131には、本発明の要部であるプラズマガス噴射分離手段150が設けられ、プラズマガス噴射分離手段150には、放電空間140と内燃機関40の燃焼室400とを連通する少なくとも2以上のプラズマ噴射孔151が穿設されている。なお、接地電極130の内周縁上端からプラズマガス噴射分離手段150までの距離、即ち、接地電極空間部141の長さAは、0.5mm以上とするのが望ましい。また、接地電極空間部141の長さAは、噴出ガスの噴出力を考慮し3.5mm以下とするのが望ましい。
The plasma spark plug 10 has a discharge space 140 inside the spark plug, covers a part or all of the front end side of the discharge space 140, and burns by changing the ejection direction of part or all of the plasma generated in the discharge space 140. Plasma gas injection / separation means 150 for injecting into the room is provided.
The plasma spark plug 10 is formed in a substantially cylindrical shape extending from the tip of the center electrode 11 toward the combustion chamber 400 while covering the periphery of the center electrode 11 and the center electrode 11 formed in a substantially long axis shape, and discharges inwardly. The insulator 12 in which the space 140 is partitioned, the substantially cylindrical housing 13 that covers the outer periphery of the insulator 12, is formed in a substantially annular shape extending to the distal end side of the housing 13, and communicates with the discharge space 140 inside. A plasma gas injection / separation means 150, which is a main part of the present invention, is provided in the opening 131 of the ground electrode 130. The plasma gas injection / separation means 150 is provided in the opening 131 of the ground electrode 130. 150 is provided with at least two or more plasma injection holes 151 communicating with the discharge space 140 and the combustion chamber 400 of the internal combustion engine 40. It is desirable that the distance from the upper end of the inner peripheral edge of the ground electrode 130 to the plasma gas jet separating means 150, that is, the length A of the ground electrode space 141 is 0.5 mm or more. The length A of the ground electrode space 141 is preferably 3.5 mm or less in consideration of the jet power of the jet gas.

中心電極11は、導電性金属材料によって形成され、先端側には、イリジウム、イリジウム合金、タングステン、タングステン合金等の耐熱性金属材料によって形成された中心電極放電部110が形成され、中心電極放電部110の基端側には銅、鉄鋼材料等の高熱電導性の金属材料からなる中心電極中軸部111が形成され、さらに、その基端側には高エネルギ電源20に接続される端子部112が形成されている。   The center electrode 11 is formed of a conductive metal material, and a center electrode discharge portion 110 formed of a heat-resistant metal material such as iridium, iridium alloy, tungsten, or tungsten alloy is formed on the tip side. A central electrode middle shaft portion 111 made of a highly heat conductive metal material such as copper or steel material is formed on the base end side of 110, and a terminal portion 112 connected to the high energy power source 20 is further formed on the base end side. Is formed.

絶縁体12は、耐熱性、機械的強度、高温における絶縁耐力、熱伝導性等に優れた高純度のアルミナ等によって略筒状に形成されている。
絶縁体12の先端側は、中心電極放電部110の下方に伸びるように略筒状に延設された放電空間形成部120が形成され、放電空間形成部120の内側には、中心電極11の中心電極放電部110の先端面と絶縁体120の内周壁とによって区画した空間に中心電極放電部110の先端面と接地電極130の内周縁とが対向した放電空間140が区画されている。
絶縁体12の中腹には、絶縁体係止部121が形成されている。
ハウジング13から露出する絶縁体12の基端側には、コルゲート状の絶縁体頭部122が形成されている。
The insulator 12 is formed in a substantially cylindrical shape from high-purity alumina or the like excellent in heat resistance, mechanical strength, high-temperature dielectric strength, thermal conductivity, and the like.
A discharge space forming portion 120 extending in a substantially cylindrical shape so as to extend below the center electrode discharge portion 110 is formed on the distal end side of the insulator 12, and inside the discharge space forming portion 120, A discharge space 140 in which the front end surface of the center electrode discharge unit 110 and the inner peripheral edge of the ground electrode 130 face each other is defined in a space defined by the front end surface of the center electrode discharge unit 110 and the inner peripheral wall of the insulator 120.
An insulator locking portion 121 is formed in the middle of the insulator 12.
A corrugated insulator head 122 is formed on the base end side of the insulator 12 exposed from the housing 13.

ハウジング13は、鉄鋼材料等の金属材料によって略筒状に形成されている。ハウジング13の先端側には、放電空間形成部120の外周を覆うように筒状に伸びる側面電極132が延設されている。側面電極132の外周には、内燃機関40のシリンダヘッド41に固定するためのネジ部133が形成されている。ハウジング13の外周には、ネジ部133を締めつけるための六角部135が形成されている。ハウジング13の基端側には、加締め部136が形成され、所定の封止部材を介してハウジング13の内側に絶縁体係止部121を加締め固定している。   The housing 13 is formed in a substantially cylindrical shape from a metal material such as a steel material. A side electrode 132 extending in a cylindrical shape is provided on the front end side of the housing 13 so as to cover the outer periphery of the discharge space forming portion 120. A screw part 133 for fixing to the cylinder head 41 of the internal combustion engine 40 is formed on the outer periphery of the side electrode 132. A hexagonal portion 135 for fastening the screw portion 133 is formed on the outer periphery of the housing 13. A caulking portion 136 is formed on the proximal end side of the housing 13, and the insulator locking portion 121 is caulked and fixed inside the housing 13 via a predetermined sealing member.

側面電極132の先端側に延設して、放電空間形成部120の底面を覆いつつ、放電空間140に連通する接地電極内空間部141を区画するように略環状の接地電極13が形成されている。接地電極130の開口部131は、本発明の要部であるプラズマガス噴射分離手段150によって覆われ、プラズマガス噴射分離手段150には、少なくとも2以上のプラズマ噴射孔151が穿設されている。本実施形態においては、プラズマ噴射孔151は、先端側に向かって外側方向に広がるようにプラズマ点火プラグ10の中心軸に対して斜めに穿設されている。
なお、プラズマガス噴射分離手段150は、図1に示すように、別体で形成したものを接地電極130の下端に貼り合わせても良いし、接地電極130を有底筒状に形成し、プラズマ噴射孔151を穿設することによって、接地電極130とプラズマガス噴射分離手段150とを一体的に形成してもよい。
さらに、プラズマガス噴射分離手段150を例えばアルミナ等の絶縁体で形成し、接地電極130の下端面に保持固定する構成としても良い。
A substantially ring-shaped ground electrode 13 is formed so as to extend to the front end side of the side electrode 132 and cover the bottom surface of the discharge space forming portion 120 and partition the ground electrode inner space portion 141 communicating with the discharge space 140. Yes. The opening 131 of the ground electrode 130 is covered with a plasma gas injection / separation means 150, which is a main part of the present invention, and the plasma gas injection / separation means 150 is provided with at least two or more plasma injection holes 151. In the present embodiment, the plasma injection hole 151 is formed obliquely with respect to the central axis of the plasma ignition plug 10 so as to expand outwardly toward the tip side.
As shown in FIG. 1, the plasma gas injection / separation means 150 may be formed separately and bonded to the lower end of the ground electrode 130, or the ground electrode 130 is formed in a bottomed cylindrical shape, The ground electrode 130 and the plasma gas injection / separation means 150 may be integrally formed by forming the injection hole 151.
Further, the plasma gas injection / separation means 150 may be formed of an insulator such as alumina and held and fixed to the lower end surface of the ground electrode 130.

図2を参照して本発明のプラズマ点火装置1に用いられる高エネルギ電源20の典型例について説明する。なお、本発明において、高エネルギ電源20は、本実施形態に限定するものではなく、プラズマ点火プラグ10に高電圧の印加と大電流の供給とを行うことができれば、公知のプラズマ点火装置に用いられる高エネルギ電源を適宜し得るものである。
高エネルギ電源20は、バッテリ等の電源21と、DC―DCコンバータ等を含む電源21の電圧を調整する電圧調整手段22と、電源21から供給された電圧を昇圧する点火コイル23と、ECU30からの点火信号にしたがって点火コイル23を開閉駆動するスイッチング素子を含むイグナイタ24と、コンデンサ27の高電圧をブロックするダイオード25と、点火ノイズを吸収するノイズ吸収抵抗26と、電圧調整手段22から印加された電荷を蓄えてプラズマ電流として放出するコンデンサ等のエネルギ蓄積手段27と、コイル23からの高電圧をブロックするダイオード28と、によって構成されている。
電源21の電圧が、ECU30からの点火信号によってイグナイタ24が開閉されると、点火コイル23に高電圧が発生し、プラズマ点火プラグ10に印加され、放電空間140内の絶縁耐圧を超えると、中心電極放電部110と接地電極130との間にアーク放電が発生し、これをトリガとして、エネルギ蓄積手段27に蓄えられた電気エネルギが大電流としてプラズマ点火プラグ10に流れ、放電空間140内に放出され、放電空間140内の気体が高温・高圧のプラズマ状態となって、内燃機関40の燃焼室400内に噴射され、燃焼室400内の混合気が点火される。
A typical example of the high energy power supply 20 used in the plasma ignition device 1 of the present invention will be described with reference to FIG. In the present invention, the high energy power source 20 is not limited to the present embodiment, and can be used in a known plasma ignition device as long as it can apply a high voltage and a large current to the plasma ignition plug 10. The high energy power source to be used can be appropriately selected.
The high energy power source 20 includes a power source 21 such as a battery, a voltage adjusting unit 22 that adjusts a voltage of the power source 21 including a DC-DC converter, an ignition coil 23 that boosts a voltage supplied from the power source 21, and an ECU 30. Applied to the igniter 24 including a switching element for opening and closing the ignition coil 23 according to the ignition signal, a diode 25 for blocking the high voltage of the capacitor 27, a noise absorbing resistor 26 for absorbing ignition noise, and the voltage adjusting means 22. Energy storage means 27 such as a capacitor for storing the generated electric charge and releasing it as a plasma current, and a diode 28 for blocking a high voltage from the coil 23.
When the voltage of the power source 21 is opened and closed by the ignition signal from the ECU 30, a high voltage is generated in the ignition coil 23 and applied to the plasma spark plug 10, and exceeds the insulation withstand voltage in the discharge space 140. An arc discharge is generated between the electrode discharge unit 110 and the ground electrode 130, and using this as a trigger, the electric energy stored in the energy storage unit 27 flows as a large current to the plasma spark plug 10 and is released into the discharge space 140. Then, the gas in the discharge space 140 becomes a high-temperature and high-pressure plasma state and is injected into the combustion chamber 400 of the internal combustion engine 40, and the air-fuel mixture in the combustion chamber 400 is ignited.

図3(a)を参照して、本実施形態におけるプラズマ点火プラグ10の具体的な形状について説明する。
本実施形態において、中心電極放電部110の先端から、接地電極130の内周縁上端までの距離L(mm)、接地電極130の内周縁上端からプラズマガス噴射分離手段150までの接地電極内空間部141の長さA(mm)、中心電極放電部110の直径φD(mm)、プラズマ噴射孔151の中心軸に対する角度θ(度)としたとき、本実施形態においては、φD=1.5mm、L=2.0mm、A=0.8mm、θ=45度に設定してある。プラズマ噴射孔151の中心軸に対する角度θは、本発明の効果を発揮する上で特に限定を要するものではないと推察されるが、20度から70度の範囲で設定可能である。なお、接地電極内空間部141の長さAは後述する本発明者等の鋭意試験により、0.5mm以上3.5mm以下に設定するのが望ましいことが判明した。
With reference to Fig.3 (a), the specific shape of the plasma ignition plug 10 in this embodiment is demonstrated.
In the present embodiment, the distance L (mm) from the tip of the center electrode discharge unit 110 to the upper end of the inner periphery of the ground electrode 130, and the inner space of the ground electrode from the upper end of the inner periphery of the ground electrode 130 to the plasma gas jet separation means 150 When the length A (mm) of 141, the diameter φD (mm) of the center electrode discharge part 110, and the angle θ (degrees) with respect to the central axis of the plasma injection hole 151, in this embodiment, φD = 1.5 mm, L = 2.0 mm, A = 0.8 mm, and θ = 45 degrees are set. The angle θ with respect to the central axis of the plasma injection hole 151 is presumed not to be particularly limited in order to exert the effect of the present invention, but can be set in the range of 20 to 70 degrees. It has been found that the length A of the space portion 141 in the ground electrode is preferably set to 0.5 mm or more and 3.5 mm or less by the inventors' earnest test described later.

このような構成とした、本発明のプラズマ点火装置1を用いれば、図3(b)に示すように、中心電極11と接地電極130との間に高電圧が印加されると、放電空間形成部120の下端面と接地電極130の内周端縁との境界に電界集中が起こるため、中心電極放電部110と接地電極130との間に発生するトリガ放電TRGは、放電空間形成部120の内周壁表面を這うように発生する沿面放電が支配となり、中心電極放電部110とプラズマ噴射孔151の内周端縁との間で放電空間140を貫通するような気中放電が起こる虞がない。   When the plasma ignition device 1 of the present invention having such a configuration is used, when a high voltage is applied between the center electrode 11 and the ground electrode 130 as shown in FIG. Since electric field concentration occurs at the boundary between the lower end surface of the portion 120 and the inner peripheral edge of the ground electrode 130, the trigger discharge TRG generated between the center electrode discharge portion 110 and the ground electrode 130 is generated in the discharge space forming portion 120. The creeping discharge generated so as to crawl the inner peripheral wall surface becomes dominant, and there is no possibility that air discharge that penetrates the discharge space 140 between the center electrode discharge portion 110 and the inner peripheral edge of the plasma injection hole 151 occurs. .

加えて、プラズマガス噴射分離手段150を金属で形成した場合でも、接地電極内空間部141が0.5mm以上の深さで形成されているので、中心電極放電部110とプラズマガス噴射分離手段150との間で放電が起こる虞がないので、プラズマガス噴射分離手段150に穿設されたプラズマ噴射孔151が放電により消耗することがなく、長期の使用に渡りプラズマの噴射方向を一定の状態に保つことができる。   In addition, even when the plasma gas injection / separation means 150 is formed of a metal, the center electrode discharge part 110 and the plasma gas injection / separation means 150 are formed because the ground electrode inner space 141 is formed with a depth of 0.5 mm or more. There is no risk of discharge occurring between them, so that the plasma injection holes 151 formed in the plasma gas injection / separation means 150 are not consumed by discharge, and the plasma injection direction is kept constant over a long period of use. Can keep.

トリガ放電TRGに続いてエネルギ蓄積手段27に蓄えられた電気エネルギが大電流としてプラズマ点火プラグ10に流れ、放電空間140内に放出されると、放電空間140及び接地電極内空間部141内の気体が高温・高圧のプラズマ状態となり、これが、プラズマガス噴射分離手段150のプラズマ噴射孔151を通過する際に、複数に分離されたプラズマガス噴射PLGとなって、燃焼室400内に噴射される。
このため、燃焼室400内に存在する混合気に濃度分布が生じていても、従来のプラズマ点火装置のようにプラズマ状態となった気体が一塊で噴射される場合に比べ、燃焼室400内の混合気との接触機会が増えるので、着火性が向上する。
When the electrical energy stored in the energy storage means 27 following the trigger discharge TRG flows to the plasma spark plug 10 as a large current and is released into the discharge space 140, the gas in the discharge space 140 and the ground electrode internal space 141 is discharged. Becomes a plasma state of high temperature and high pressure, and when this passes through the plasma injection holes 151 of the plasma gas injection separation means 150, it becomes plasma gas injection PLG separated into a plurality of parts and injected into the combustion chamber 400.
For this reason, even if a concentration distribution is generated in the air-fuel mixture existing in the combustion chamber 400, the gas in the combustion chamber 400 is in comparison with the case where the gas in the plasma state is injected in a lump as in the conventional plasma ignition device. Since the chance of contact with the air-fuel mixture increases, the ignitability improves.

さらに、燃焼室400内にタンブル渦等の強い筒内気流が発生している場合でも、高温・高圧のプラズマ状態となった気体が複数に分離されて噴射されるので、筒内気流によって吹き消される確率が下がり、より安定した着火を実現可能となる。また、複数のプラズマ噴射によって発生した火炎核が相互に燃焼成長を促進し、より大きな火炎へと広がるため、燃焼速度の高い着火を実現可能となる。
また、噴射された燃料がプラズマ点火プラグ10の先端に付着し、デポジットを形成し易い状態であっても、複数のプラズマ噴射孔151が穿設されているため、デポジットによって孔詰まりを起こす確率も低減される。
Further, even when a strong in-cylinder airflow such as a tumble vortex is generated in the combustion chamber 400, the gas in a high-temperature / high-pressure plasma state is separated and injected, so that it is blown out by the in-cylinder airflow. The probability of being reduced, and more stable ignition can be realized. In addition, flame nuclei generated by a plurality of plasma injections mutually promote combustion growth and spread to a larger flame, so that ignition with a high combustion rate can be realized.
Further, even if the injected fuel adheres to the tip of the plasma spark plug 10 and easily forms a deposit, since the plurality of plasma injection holes 151 are formed, there is a probability that the deposit will cause clogging. Reduced.

図4に示すように、接地電極130と放電空間形成部120との境界で放電による接地電極の消耗が起こり得るが、接地電極130の内周縁全体に渡って放電位置が変わることによって放電電圧の上昇を招くことなく長期の使用が可能となる。
また、長期の使用によって接地電極130と放電空間形成部120との境界では接地電極の消耗が避けられないが、プラズマガス発生空間(放電空間140及び接地電極内空間部141)の容積に比べて、放電空間140の長さLを短くできるので、その分放電電圧を低くすることが可能となり、耐久性の向上を図ることができる。
As shown in FIG. 4, the ground electrode may be consumed due to the discharge at the boundary between the ground electrode 130 and the discharge space forming unit 120, but the discharge voltage is changed by changing the discharge position over the entire inner periphery of the ground electrode 130. Long-term use is possible without causing a rise.
In addition, although the ground electrode is inevitably consumed at the boundary between the ground electrode 130 and the discharge space forming unit 120 due to long-term use, the volume of the plasma gas generation space (the discharge space 140 and the ground electrode internal space 141) is larger than the volume. Since the length L of the discharge space 140 can be shortened, the discharge voltage can be lowered correspondingly, and the durability can be improved.

本発明の実施例として、図5(a)に示すように、プラズマ点火プラグ10では接地電極内空間部141の長さAを0.5mm以上に設定し、比較例として図5(b)に示すように、プラズマ点火プラグ10zでは、接地電極内空間部141zの長さAを0.5mm以下に設定してある。
本発明の実施例においては、図5(a)に示すように、中心電極放電部110の先端と接地電極130の内周縁上端との間で、絶縁体120の内周壁表面を這うように沿面放電TRG(SF)が発生するが、図5(b)に示すように、比較例10zにおいては、プラズマガス噴射分離手段150zまでの距離が短いので、中心電極放電部110zの表面とプラズマガス噴射分離手段150zの最短距離で気中放電TRG(AR)が発生する虞がある。このため、比較例においては、放電によりプラズマガス噴射分離手段150が消耗する虞があり、また、沿面放電よりも気中放電TRG(AR)が支配的になり、要求電圧の上昇を招く虞もある。
As an example of the present invention, as shown in FIG. 5A, in the plasma spark plug 10, the length A of the ground electrode inner space 141 is set to 0.5 mm or more, and as a comparative example, the length A in FIG. As shown, in the plasma ignition plug 10z, the length A of the ground electrode inner space 141z is set to 0.5 mm or less.
In the embodiment of the present invention, as shown in FIG. 5A, the surface of the inner peripheral wall of the insulator 120 is sandwiched between the tip of the center electrode discharge part 110 and the upper end of the inner peripheral edge of the ground electrode 130. Although the discharge TRG (SF) is generated, as shown in FIG. 5B, in the comparative example 10z, the distance to the plasma gas injection separation means 150z is short, so the surface of the center electrode discharge part 110z and the plasma gas injection There is a possibility that the air discharge TRG ( AR ) may occur at the shortest distance of the separation means 150z. For this reason, in the comparative example, the plasma gas injection / separation means 150 may be consumed by the discharge, and the air discharge TRG ( AR ) is dominant over the creeping discharge, which may increase the required voltage. is there.

図6(a)に示すように、本発明者等の鋭意試験により、比較例においては、中心電極放電部110zとプラズマガス噴射分離手段150zとの間に放電する確率が20%〜60%と高く、実施例のように接地電極内空間部141の長さAを0.5mm以上に設定することにより、確実に中心電極放電部110とプラズマガス噴射分離手段150との間の放電が抑制することができることが判明した。
また、図6(b)に示すように、本発明者等の行った着火性評価試験により、A≧3.5mmとするのが望ましいことが判明した。これは、Aが3.5mmより大きいと、プラズマ点火プラグ10の先端から燃焼室400内に噴射されるプラズマガスの噴出力が弱まり着火性が低下するためと考えられる。
なお、本試験では、排気容量1800cc、回転数1600rpm、回転トルク30Nmの条件における失火限界空燃比A/Fの比較を行った。
As shown in FIG. 6 (a), according to the present inventors' earnest test, in the comparative example, the probability of discharge between the center electrode discharge part 110z and the plasma gas injection separation means 150z is 20% to 60%. It is high, and by setting the length A of the ground electrode internal space 141 to 0.5 mm or more as in the embodiment, the discharge between the center electrode discharge part 110 and the plasma gas injection separating means 150 is reliably suppressed. It turns out that you can.
Further, as shown in FIG. 6 (b), it was found from the ignitability evaluation test conducted by the present inventors that A ≧ 3.5 mm is desirable. This is considered to be because if A is larger than 3.5 mm, the plasma gas injection power injected from the tip of the plasma ignition plug 10 into the combustion chamber 400 is weakened and the ignitability is lowered.
In this test, the misfire limit air-fuel ratio A / F was compared under the conditions of an exhaust capacity of 1800 cc, a rotational speed of 1600 rpm, and a rotational torque of 30 Nm.

上記実施形態では、プラズマ噴射孔151を2個穿設した例を示したが、図7(a)から(d)に示すように、プラズマ点火プラグ10の中心軸から等距離の位置に穿設するプラズマ噴射孔150の数を3個から6個まで、使用する内燃機関の燃焼特性に応じて、適宜変更することができる。このとき、上述したように、プラズマ噴射孔の内径φdをプラズマ噴射孔150の数nに応じて、適宜変更することもできる。   In the above embodiment, an example in which two plasma injection holes 151 are drilled has been shown. However, as shown in FIGS. 7A to 7D, drilling is performed at a position equidistant from the central axis of the plasma spark plug 10. The number of plasma injection holes 150 to be changed can be appropriately changed from 3 to 6 according to the combustion characteristics of the internal combustion engine to be used. At this time, as described above, the inner diameter φd of the plasma injection holes can be appropriately changed according to the number n of the plasma injection holes 150.

本発明の第2の実施形態におけるプラズマ点火装置1eは、上記実施形態と同様の構成を基本とし、プラズマ点火プラグ10eの形状を図8に示すように、接地電極130eの基端側の開口径は、放電空間140と同一に形成し、先端側から開口径を階段状に拡径して設けると共に、この開口部をプラズマガス噴射分離手段150eによって覆いつつ、プラズマ噴射孔151eをプラグの中心軸に対して平行に形成した点が相違する。
このように形成することによって、上記実施形態と同様の効果に加え、プラズマガス噴射分離手段150eから高温・高圧のプラズマガスが噴射されるときに、噴流に乱れが発生し、燃焼室400内の混合気との撹拌状態が良好となり、さらに、着火性の向上が図れるものと期待できる。
The plasma ignition device 1e according to the second embodiment of the present invention basically has the same configuration as that of the above embodiment, and the shape of the plasma ignition plug 10e is as shown in FIG. Is formed in the same manner as the discharge space 140, and the opening diameter is increased stepwise from the tip side, and the opening is covered with the plasma gas injection separating means 150e, and the plasma injection hole 151e is connected to the central axis of the plug. However, it is different in that it is formed in parallel.
By forming in this way, in addition to the same effects as in the above embodiment, when high-temperature and high-pressure plasma gas is injected from the plasma gas injection separation means 150e, the jet flow is disturbed, and the combustion chamber 400 It can be expected that the state of agitation with the air-fuel mixture becomes good and that the ignitability can be improved.

本発明の第3の実施形態におけるプラズマ点火装置1fは、上記実施形態と同様の構成を基本とし、プラズマ点火プラグ10fの形状を図9に示すように、接地電極開口部131fを三本矢状に形成したプラズマガス噴射分離手段150fによって部分的に覆うことによって、プラズマ噴射孔151fを形成している点が相違する。このような形状としても、上記第1の実施形態と同様の効果が期待できる。   The plasma ignition device 1f according to the third embodiment of the present invention basically has the same configuration as that of the above embodiment, and the shape of the plasma ignition plug 10f is shown in FIG. The plasma gas injection hole 151f is formed by partially covering with the plasma gas injection separation means 150f formed in the above. Even in such a shape, the same effect as in the first embodiment can be expected.

本発明の第4の実施形態におけるプラズマ点火装置1gは、上記実施形態と同様の構成を基本とし、プラズマ点火プラグ10gの形状を図10に示すように、接地電極開口部131gを架橋するように形成したプラズマガス噴射分離手段150gによって部分的に覆うことによって、プラズマ噴射孔151gを形成している点が相違する。このような形状としても、上記第1の実施形態と同様の効果が期待できる。   A plasma ignition device 1g according to the fourth embodiment of the present invention basically has the same configuration as that of the above embodiment, and the shape of the plasma ignition plug 10g is bridged to the ground electrode opening 131g as shown in FIG. It is different in that the plasma injection hole 151g is formed by partially covering with the formed plasma gas injection separation means 150g. Even in such a shape, the same effect as in the first embodiment can be expected.

本発明の第5の実施形態におけるプラズマ点火装置1hは、上記実施形態と同様の構成を基本とし、プラズマ点火プラグ10hの形状を図11に示すように、接地電極開口部131hを有底筒状に形成し、底部を先端側に向かって円錐台形状に突出させ一体的にプラズマガス噴射分離手段150hを形成し、プラズマ噴射孔151hを穿設して、接地電極10hとプラズマガス噴射分離手段150hとを一体的に形成している点が相違する。このような形状としても、上記第1の実施形態と同様の効果が期待できる。   A plasma ignition device 1h according to the fifth embodiment of the present invention basically has the same configuration as that of the above embodiment, and the shape of the plasma ignition plug 10h is as shown in FIG. The plasma gas injection / separation means 150h is integrally formed by projecting the bottom portion into a truncated cone shape toward the tip side, and the plasma injection hole 151h is formed, and the ground electrode 10h and the plasma gas injection separation means 150h are formed. Are different from each other. Even in such a shape, the same effect as in the first embodiment can be expected.

本発明の第6の実施形態におけるプラズマ点火装置1iでは、上記実施形態と同様の構成を基本とし、プラズマ点火プラグ10iの形状を図12(a)、(b)に示すように形成した点が相違する。
本実施形態においては、中心電極放電部110iを略角柱状に形成し、放電空間140i及び接地電極内空間部141iを矩形に区画し、プラズマ噴射孔151iを断面矩形に穿設し、尖突部152iをプラズマ噴射孔151iの穿設方向に沿うような斜面を有し、接地電極空間部141i側に向かって先端先細りとなる三角柱状に形成してある。
このような形状とすることにより、放電空間140i及び接地電極内空間部141i内に発生した高温高圧のプラズマガスが、プラズマ噴射孔151iから噴出する際に、尖突部152iの斜面によって整流され、プラズマガス噴射分離手段150iを通過する際の抵抗をさらに小さくし、着火性を向上できると期待される。
なお、本実施形態においては、放電空間140iを矩形に区画形成した例を示したが、尖突部152iをプラズマ噴射孔151iの穿設方向に沿うような斜面に形成することが重要であり、矩形にすることにより、尖突部152iの整流効果がより大きくなると推察されるが、放電空間140iの形状を矩形に限定するものではなく、上記実施形態と同様に、略円柱状に区画形成した場合にも、尖突部152iの斜面を利用してプラズマガス噴射分離手段150iを通過する際の抵抗をさらに小さくし、着火性を向上できると期待される。
The plasma ignition device 1i according to the sixth embodiment of the present invention basically has the same configuration as that of the above embodiment, and the shape of the plasma ignition plug 10i is formed as shown in FIGS. 12 (a) and 12 (b). Is different.
In the present embodiment, the center electrode discharge part 110i is formed in a substantially prismatic shape, the discharge space 140i and the ground electrode inner space part 141i are partitioned into rectangles, the plasma injection holes 151i are formed in a rectangular cross section, and the pointed parts 152i has an inclined surface along the direction in which the plasma injection hole 151i is formed, and is formed in a triangular prism shape that tapers toward the ground electrode space 141i.
By adopting such a shape, when the high-temperature and high-pressure plasma gas generated in the discharge space 140i and the ground electrode internal space 141i is ejected from the plasma injection hole 151i, it is rectified by the inclined surface of the pointed portion 152i. It is expected that the resistance when passing through the plasma gas jet separation means 150i can be further reduced and the ignitability can be improved.
In the present embodiment, an example in which the discharge space 140i is partitioned into rectangles has been shown. However, it is important to form the pointed portion 152i on an inclined surface along the direction in which the plasma injection hole 151i is formed, It is presumed that the rectifying effect of the pointed portion 152i becomes larger by making it rectangular, but the shape of the discharge space 140i is not limited to a rectangle, and it is partitioned and formed in a substantially cylindrical shape as in the above embodiment. Even in this case, it is expected that the resistance when passing through the plasma gas jet separation means 150i using the inclined surface of the pointed portion 152i can be further reduced, and the ignitability can be improved.

1 プラズマ点火装置
10 点火プラグ
11 中心電極
110 中心電極放電部
12 絶縁体
120 放電空間形成部
13 ハウジング
130 接地電極
131 接地電極開口部
140 放電空間
141 接地電極内空間部
150 プラズマガス噴射分離手段
151 プラズマ噴射孔
20 高エネルギ電源
30 電子制御装置(ECU)
40 内燃機関
400 燃焼室
DESCRIPTION OF SYMBOLS 1 Plasma ignition apparatus 10 Spark plug 11 Center electrode 110 Center electrode discharge part 12 Insulator 120 Discharge space formation part 13 Housing 130 Ground electrode 131 Ground electrode opening part 140 Discharge space 141 Ground electrode inner space part 150 Plasma gas injection separation means 151 Plasma Injection hole 20 High energy power supply 30 Electronic control unit (ECU)
40 Internal combustion engine 400 Combustion chamber

特開2006−294257号公報JP 2006-294257 A 特開2006−244867号公報JP 2006-244867 A

Claims (5)

内燃機関に装着される点火プラグと、該点火プラグに高エネルギを供給する高エネルギ電源とを具備し、該高エネルギ電源から高電圧の印加と大電流の供給とによって上記点火プラグ内部に形成された放電空間内の気体を高温・高圧のプラズマガスとして上記内燃機関の燃焼室内に噴射して点火を行うプラズマ点火装置において、
上記点火プラグは、略長軸状の中心電極と、該中心電極の周囲を覆いつつ上記中心電極の先端から上記燃焼室側に向かって伸びる略筒状の絶縁体と、該絶縁体の外周を覆う略筒状のハウジングと、該ハウジングの先端側に延設して略環状に形成した接地電極とからなり、
上記絶縁体の内側に上記中心電極の先端面と上記絶縁体の内周壁とによって区画した空間に上記中心電極の先端面と上記接地電極の内周縁とを対向せしめて放電空間となし、
上記接地電極の内側に上記放電空間に連通する接地電極内空間部を区画し、
上記接地電極内空間部の一部又は全部を覆うプラズマガス噴射分離手段を設け、
該プラズマガス噴射分離手段は、上記放電空間と上記燃焼室とを連通し、上記プラズマガスの一部又は全ての噴出方向を変える少なくとも2以上のプラズマ噴射孔を具備することを特徴とするプラズマ点火装置。
An ignition plug mounted on the internal combustion engine and a high energy power source for supplying high energy to the ignition plug are formed inside the ignition plug by application of a high voltage and supply of a large current from the high energy power source. In a plasma ignition device that performs ignition by injecting the gas in the discharge space as a high-temperature, high-pressure plasma gas into the combustion chamber of the internal combustion engine,
The spark plug includes a substantially long axis center electrode, a substantially cylindrical insulator covering the periphery of the center electrode and extending from the tip of the center electrode toward the combustion chamber, and an outer periphery of the insulator. A substantially cylindrical housing that covers the ground electrode, and a ground electrode that extends substantially toward the distal end of the housing and is formed in a substantially annular shape.
A space defined by the front end surface of the center electrode and the inner peripheral wall of the insulator inside the insulator is formed as a discharge space by making the front end surface of the center electrode and the inner peripheral edge of the ground electrode face each other.
A space in the ground electrode that communicates with the discharge space is defined inside the ground electrode,
A plasma gas jet separating means for covering a part or all of the space in the ground electrode is provided;
The plasma gas injection / separating means comprises at least two or more plasma injection holes that communicate the discharge space and the combustion chamber and change the injection direction of a part or all of the plasma gas. apparatus.
上記接地電極の内周縁上端から上記プラズマガス噴射分離手段までの上記接地電極内空間部の長さを0.5mm以上の範囲に設定したことを特徴とする請求項1に記載のプラズマ点火装置。   2. The plasma ignition device according to claim 1, wherein the length of the space portion in the ground electrode from the upper end of the inner peripheral edge of the ground electrode to the plasma gas jet separation means is set to a range of 0.5 mm or more. 上記接地電極の内周縁上端から上記プラズマガス噴射分離手段までの上記接地電極内空間部の長さを3.5mm以下の範囲に設定したことを特徴とする1又は2に記載のプラズマ点火装置。   3. The plasma ignition device according to 1 or 2, wherein the length of the space portion in the ground electrode from the upper end of the inner peripheral edge of the ground electrode to the plasma gas jet separation means is set in a range of 3.5 mm or less. 上記プラズマガス噴射分離手段は、上記接地電極内空間部側に向かって突出し、上記プラズマ噴射孔の穿設方向に沿うように先端先細りに形成した尖突部を具備することを特徴とする請求項1ないし3のいずれかに記載のプラズマ点火装置。   The plasma gas jet separation means includes a pointed protrusion that protrudes toward the inner space portion side of the ground electrode and has a tip tapered so as to follow a direction in which the plasma injection hole is formed. The plasma ignition device according to any one of 1 to 3. 上記接地電極の内周縁上端から上記尖突部の先端までの距離を0.5mm以上の範囲に設定することを特徴とする請求項4に記載のプラズマ点火装置。   5. The plasma ignition device according to claim 4, wherein the distance from the upper end of the inner peripheral edge of the ground electrode to the tip of the pointed portion is set to a range of 0.5 mm or more.
JP2009163353A 2009-07-10 2009-07-10 Plasma ignition device Pending JP2011018593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009163353A JP2011018593A (en) 2009-07-10 2009-07-10 Plasma ignition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009163353A JP2011018593A (en) 2009-07-10 2009-07-10 Plasma ignition device

Publications (1)

Publication Number Publication Date
JP2011018593A true JP2011018593A (en) 2011-01-27

Family

ID=43596217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009163353A Pending JP2011018593A (en) 2009-07-10 2009-07-10 Plasma ignition device

Country Status (1)

Country Link
JP (1) JP2011018593A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104879780A (en) * 2014-02-28 2015-09-02 北京大学 Multichannel plasma area igniting burner
CN112761820A (en) * 2021-01-15 2021-05-07 北京动力机械研究所 Plasma igniter for ramjet engine
JP7447656B2 (en) 2020-04-16 2024-03-12 株式会社デンソー Spark plug

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551830U (en) * 1978-09-30 1980-04-05
JP2007287665A (en) * 2006-03-22 2007-11-01 Ngk Spark Plug Co Ltd Plasma jet ignition plug, and ignition system thereof
JP2010118185A (en) * 2008-11-11 2010-05-27 Toyota Motor Corp Plasma igniting device of internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551830U (en) * 1978-09-30 1980-04-05
JP2007287665A (en) * 2006-03-22 2007-11-01 Ngk Spark Plug Co Ltd Plasma jet ignition plug, and ignition system thereof
JP2010118185A (en) * 2008-11-11 2010-05-27 Toyota Motor Corp Plasma igniting device of internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104879780A (en) * 2014-02-28 2015-09-02 北京大学 Multichannel plasma area igniting burner
CN104879780B (en) * 2014-02-28 2018-10-19 北京大学 A kind of multichannel heating region ignition burning device
JP7447656B2 (en) 2020-04-16 2024-03-12 株式会社デンソー Spark plug
CN112761820A (en) * 2021-01-15 2021-05-07 北京动力机械研究所 Plasma igniter for ramjet engine
CN112761820B (en) * 2021-01-15 2022-07-29 北京动力机械研究所 Plasma igniter for ramjet engine

Similar Documents

Publication Publication Date Title
JP4778301B2 (en) Plasma jet ignition plug and its ignition device
JP5691662B2 (en) Non-thermal equilibrium plasma ignition device
US9951743B2 (en) Plasma ignition device
JP2008177142A (en) Plasma type ignition device
JP5015910B2 (en) Ignition device
KR20100098494A (en) Plazma jet ignition plug ignition control
JP2007287666A (en) Plasma-jet spark plug and its ignition system
JP2009097500A (en) Plasma ignition device
JP2011018593A (en) Plasma ignition device
JP5477253B2 (en) Internal combustion engine ignition device
JP4582097B2 (en) Plasma ignition device
JP5355217B2 (en) Plasma ignition device
JP2010218768A (en) Plasma type ignition plug
JP4968203B2 (en) Plasma ignition device
JP2008186743A (en) Plasma type ignition device
JP2010003605A (en) Plasma ignition device
JP5210361B2 (en) Plasma jet ignition plug ignition device and ignition system
WO2013099672A1 (en) Ignition device, ignition method, and engine
JP2009041427A (en) Plasma ignition device
CN110391592B (en) Spark plug, engine, spark plug ignition method and engine ignition method
JP2010174691A (en) Method for controlling ignition of plasma-type igniter and plasma-type igniter using the method
CN217692091U (en) Spark plug, engine and car
JP5442064B2 (en) Ignition device
JP2010129367A (en) Plasma ignition device
JP5658647B2 (en) Ignition system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131203