JP2011017875A - Observation device - Google Patents

Observation device Download PDF

Info

Publication number
JP2011017875A
JP2011017875A JP2009162259A JP2009162259A JP2011017875A JP 2011017875 A JP2011017875 A JP 2011017875A JP 2009162259 A JP2009162259 A JP 2009162259A JP 2009162259 A JP2009162259 A JP 2009162259A JP 2011017875 A JP2011017875 A JP 2011017875A
Authority
JP
Japan
Prior art keywords
sample
objective lens
light source
illumination
observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009162259A
Other languages
Japanese (ja)
Other versions
JP5415850B2 (en
JP2011017875A5 (en
Inventor
Yosuke Tani
洋輔 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2009162259A priority Critical patent/JP5415850B2/en
Publication of JP2011017875A publication Critical patent/JP2011017875A/en
Publication of JP2011017875A5 publication Critical patent/JP2011017875A5/ja
Application granted granted Critical
Publication of JP5415850B2 publication Critical patent/JP5415850B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an observation device capable of selecting either epi-illumination or side-illumination, or both of them, and easily selecting an observation method suitable for a sample.SOLUTION: The observation device includes: an epi-illumination light source 11 for conducting epi-illumination to a sample 2; an objective lens 4 for condensing and radiating illumination light emitted by the epi-illumination light source 11, on the sample 2 on a sample placing table 3; a polarizing beam splitter 13, disposed between the epi-illumination light source 11 and the objective lens 4; a side-illumination light source 14, disposed annularly with an optical axis L of the objective lens 4 which is a central axis for conducting side-illumination to the sample 2 on the sample placing table 3; an observation adaptor 15, disposed between the sample 2 and the side-illumination light source 14 that transmits linearly polarized light in a specific direction of the illumination light emitted by the side-illumination light source 14; an imaging lens 16 for condensing observation light and imaging an observation image; and an imaging part 17 for imaging the observation image formed by the imaging lens 16.

Description

本発明は、金属鉱物、電子部品や半導体ウエハなどの試料に対して光を照射し、試料からの反射光を対物レンズを介して撮像素子に結像することにより試料を観察する、観察装置に関するものである。   The present invention relates to an observation apparatus that observes a sample by irradiating the sample such as a metal mineral, an electronic component, or a semiconductor wafer with light, and forming an image of reflected light from the sample on an image pickup device via an objective lens. Is.

従来から、顕微鏡等の観察装置は、医学や生物学の分野における細胞等の観察をはじめとして、工業分野において半導体ウエハや磁気ヘッドの検査、金属組織等の品質管理、新素材の研究開発等、種々の用途に利用されている。近年では、観察像の画面記録用にCCD等の撮像素子を備えた観察装置が多く使用されている。   Conventionally, observation devices such as microscopes have been used in the field of medicine and biology, including the observation of cells, etc., in the industrial field, inspection of semiconductor wafers and magnetic heads, quality control of metal structures, research and development of new materials, etc. It is used for various purposes. In recent years, many observation apparatuses equipped with an image sensor such as a CCD are used for screen recording of an observation image.

ところで、従来から使用されている観察装置では、撮像素子のダイナミックレンズが狭いため、試料の一部または全部の表面が、例えば鏡面に近い等の要因により反射率が高い場合は、画像の一部分のみまたは全部が極めて明るく観察されるハレーションが発生し、試料の観察が困難となる。このハレーションの発生を防止するため、従来より様々な観察方法を用いた観察装置が知られている。たとえば、試料に対する照明として落射照明を採用し、偏光板を介して試料から反射される反射光の光量を低減して撮像素子に受光させることによって、反射率が高い試料に対してハレーションを防止しつつ、試料の光沢や組織等を観察する観察装置が知られている(特許文献1参照)。   By the way, in the observation apparatus used conventionally, since the dynamic lens of the image sensor is narrow, when the reflectance is high due to factors such as a part of or the entire surface of the sample being close to a mirror surface, only a part of the image is obtained. Alternatively, halation is observed in which all are observed very brightly, making it difficult to observe the sample. In order to prevent the occurrence of halation, observation apparatuses using various observation methods have been known. For example, epi-illumination is used as illumination for the sample, and the amount of reflected light reflected from the sample through the polarizing plate is reduced and received by the image sensor to prevent halation from occurring on the sample with high reflectivity. On the other hand, an observation apparatus for observing the gloss and structure of a sample is known (see Patent Document 1).

また、偏光子を介して試料の側方から照明を行う側射照明を採用し、この偏光子を介して試料から反射される反射光の光量を低減して撮像素子に結像させることによってハレーションの発生を防止しつつ、試料の凹凸を観察する観察装置が知られている(特許文献2参照)。   In addition, by adopting side-illumination that illuminates from the side of the sample via a polarizer, the amount of reflected light reflected from the sample via this polarizer is reduced and imaged on the image sensor, thereby causing halation. An observation apparatus for observing the unevenness of a sample while preventing the occurrence of this is known (see Patent Document 2).

また、試料の反射率と観察内容とに対応して落射照明または側射照明のいずれか一方または両方を適宜選択して試料を観察する観察装置が知られている(特許文献3参照)。   There is also known an observation apparatus that observes a sample by appropriately selecting either one or both of epi-illumination and side-illumination according to the reflectance of the sample and the observation content (see Patent Document 3).

特開昭59−231402号公報JP 59-231402 A 特開平11−308496号公報JP-A-11-308496 特開平5−281475号公報Japanese Patent Laid-Open No. 5-281475

しかしながら、上述した特許文献1では、常にハレーションを防止していることになるため、反射率が低い試料を観察する場合、撮像素子に結像される観察像の光量が不足し、試料の凹凸を識別することが困難になるという問題点があった。   However, in Patent Document 1 described above, since halation is always prevented, when observing a sample with low reflectance, the amount of light of the observation image formed on the image sensor is insufficient, and the unevenness of the sample is reduced. There was a problem that it was difficult to identify.

また、上述した特許文献2は、ハレーションを常に防止しているため、反射率が低い試料の場合、撮像素子に結像する像の光量が不足することから観察画像が暗くなり、試料の光沢や組織などを識別することが困難になるという問題点があった。   Further, since Patent Document 2 described above always prevents halation, in the case of a sample having a low reflectance, the observation image becomes dark because the light amount of the image formed on the image sensor is insufficient, and the gloss of the sample is reduced. There was a problem that it was difficult to identify the organization.

一方、上述した特許文献3では、試料の反射率と観察内容とに対応して落射照明または側射照明のいずれか一方または両方を選択して試料の凹凸や光沢などを観察することができる。しかし、撮像した画像の一部分でハレーションが発生した場合、このハレーションによって画像の一部分のみ極めて明るく観察され、結果的に試料の全体観察が困難になるという問題点があった。   On the other hand, in Patent Document 3 described above, unevenness or gloss of a sample can be observed by selecting either one or both of epi-illumination and side-illumination corresponding to the reflectance of the sample and the observation content. However, when halation occurs in a part of the captured image, only a part of the image is observed very brightly due to the halation, and as a result, it is difficult to observe the entire sample.

本発明は、上記に鑑みてなされたものであって、落斜照明または側射照明のいずれか一方または両方の照明を選択可能であるとともに、試料に適した観察方法を容易に選択することができる観察装置を提供することを目的とする。   The present invention has been made in view of the above, and it is possible to select either one or both of falling-down illumination and side illumination, and to easily select an observation method suitable for the sample. An object of the present invention is to provide an observation device that can be used.

上述した課題を解決し、目的を達成するために、本発明の観察装置は、試料が載置される試料載置台と、前記試料に対して落射照明を行う落射光源と、前記落射光源が発する照明光を前記試料載置台上の前記試料に集光して照射する対物レンズと、前記落射光源と前記対物レンズとの間の光軸上に配置され、入射する光の偏光成分に応じて反射または透過させる偏光ビームスプリッタと、前記対物レンズの光軸を中心軸に円環状に設けられ、前記試料載置台上の前記試料に側射照明を行う側射光源と、前記試料と前記側射光源との間に配置され、前記側射光源が発する照明光のうち特定方向の直線偏光を透過する偏光板と、前記試料が反射する反射光のうち前記対物レンズを介して前記偏光ビームスプリッタを透過する観察光を集光して観察像を結像する結像レンズと、前記結像レンズによって結像された観察像を撮像する撮像手段と、を備えたことを特徴とする。   In order to solve the above-described problems and achieve the object, an observation apparatus according to the present invention includes a sample mounting table on which a sample is mounted, an epi-illumination light source that performs epi-illumination on the sample, and the epi-illumination light source. An objective lens that collects and irradiates the illumination light onto the sample on the sample mounting table and an optical axis between the incident light source and the objective lens, and reflects according to the polarization component of the incident light Alternatively, a polarizing beam splitter that transmits light, a lateral light source that is provided in an annular shape with the optical axis of the objective lens as a central axis, and that laterally illuminates the sample on the sample mounting table; and the sample and the lateral light source And a polarizing plate that transmits linearly polarized light in a specific direction out of the illumination light emitted by the side light source, and the polarizing beam splitter that passes through the objective lens among the reflected light that is reflected by the sample. Observation light collected An imaging lens for forming an, characterized by comprising a imaging means for imaging an observation image formed by the imaging lens.

また、本発明の観察装置は、試料が載置される試料載置台と、前記試料に対して落射照明を行う落射光源と、前記落射光源が発する照明光を前記試料載置台上の前記試料に集光して照射する対物レンズと、前記落射光源と前記対物レンズとの間の光軸上に配置され、入射する光の偏光成分に応じて反射または透過させる偏光ビームスプリッタと、前記対物レンズの光軸を中心軸に円環状に設けられ、前記試料載置台上の前記試料に側射照明を行う側射光源と、前記対物レンズと前記試料との間の光軸上に配置された4分の1波長板と、前記試料が反射する反射光のうち前記波長板および前記対物レンズを介して前記偏光ビームスプリッタを透過する観察光を集光して観察像を結像する結像レンズと、前記結像レンズによって結像された観察像を撮像する撮像手段と、を備えたことを特徴とする。   Further, the observation apparatus of the present invention provides a sample mounting table on which a sample is mounted, an epi-illumination light source for performing epi-illumination on the sample, and illumination light emitted from the epi-illumination light source on the sample on the sample mounting table. An objective lens that collects and irradiates; a polarizing beam splitter that is disposed on the optical axis between the incident light source and the objective lens and that reflects or transmits light according to a polarization component of incident light; and A circular light source having an optical axis as a central axis, and a side light source that performs side light illumination on the sample on the sample mounting table, and a quadrant disposed on the optical axis between the objective lens and the sample. An imaging lens for condensing observation light transmitted through the polarizing beam splitter via the wavelength plate and the objective lens among reflected light reflected by the sample; Observation image formed by the imaging lens Characterized by comprising a imaging means for imaging.

また、本発明の観察装置は、試料が載置される試料載置台と、前記試料に対して落射照明を行う落射光源と、前記落射光源が発する照明光を前記試料載置台上の前記試料に集光して照射する対物レンズと、前記落射光源と前記対物レンズとの間の光軸上に配置され、入射する光の偏光成分に応じて反射または透過させる偏光ビームスプリッタと、前記対物レンズの光軸を中心軸に円環状に設けられ、前記試料載置台上の前記試料に側射照明を行う側射光源と、前記試料と前記側射光源との間に配置され、前記側射光源が発する照明光のうち特定方向の直線偏光を透過する偏光板と、前記対物レンズと前記試料との光軸上に配置された4分の1波長板と、前記試料が反射する反射光のうち前記波長板および前記対物レンズを介して前記偏光ビームスプリッタを透過する観察光を集光して観察像を結像する結像レンズと、前記結像レンズによって結像された観察像を撮像する撮像手段と、を備えたことを特徴とする。   Further, the observation apparatus of the present invention provides a sample mounting table on which a sample is mounted, an epi-illumination light source for performing epi-illumination on the sample, and illumination light emitted from the epi-illumination light source on the sample on the sample mounting table. An objective lens that collects and irradiates; a polarizing beam splitter that is disposed on the optical axis between the incident light source and the objective lens and that reflects or transmits light according to a polarization component of incident light; and A circular light source having an optical axis as a central axis, a side light source for performing side light illumination on the sample on the sample mounting table, and a side light source disposed between the sample and the side light source; A polarizing plate that transmits linearly polarized light in a specific direction among the emitted illumination light, a quarter-wave plate disposed on the optical axis of the objective lens and the sample, and the reflected light reflected by the sample The polarizing beam is passed through the wave plate and the objective lens. An imaging lens for forming an observation image by condensing the observation light transmitted through the splitter, characterized by comprising a imaging means for imaging an observation image formed by the imaging lens.

また、この発明にかかる観察装置は、上記の発明において、前記偏光板および前記波長板は、前記対物レンズの光軸を中心軸として回転可能であることを特徴とする。   In the observation device according to the present invention as set forth in the invention described above, the polarizing plate and the wave plate are rotatable about the optical axis of the objective lens.

また、この発明にかかる観察装置は、上記の発明において、前記偏光板は、偏光方向を示す指標を側面に標記していることを特徴とする。   Moreover, the observation apparatus according to the present invention is characterized in that, in the above invention, the polarizing plate has an indicator indicating a polarization direction on the side surface.

また、この発明にかかる観察装置は、上記の発明において、前記波長板は、少なくとも高速軸の直交方向または高速軸から45度方向を示す指標を側面に標記していることを特徴とする。   The observation device according to the present invention is characterized in that, in the above-mentioned invention, the wave plate is marked on the side surface with an index indicating at least a direction orthogonal to the high speed axis or a direction of 45 degrees from the high speed axis.

また、この発明にかかる観察装置は、上記の発明において、前記対物レンズは、前記偏光ビームスプリッタの反射振動方向を示す指標を側面に標記していることを特徴とする。   In the observation device according to the present invention as set forth in the invention described above, the objective lens has an index indicating a reflection vibration direction of the polarizing beam splitter on a side surface.

本発明にかかる観察装置は、落射照明または側射照明のいずれか一方または両方の照明を選択可能であるとともに、偏光ビームスプリッタが試料で正反射し、ハレーションとして観察される光を除去することによって、観察像におけるハレーションの発生を防止することができ、試料に適した観察方法を容易に選択することができるという効果を奏する。   The observation apparatus according to the present invention can select either one or both of the epi-illumination and the side-illumination, and the polarization beam splitter regularly reflects the sample to remove the light observed as halation. Thus, it is possible to prevent the occurrence of halation in the observation image, and to easily select an observation method suitable for the sample.

図1は、この発明の実施の形態1にかかる観察装置の構成を示す模式図である。FIG. 1 is a schematic diagram showing a configuration of an observation apparatus according to Embodiment 1 of the present invention. 図2は、A−A線断面図である。FIG. 2 is a cross-sectional view taken along line AA. 図3は、観察アダプタを示す平面図である。FIG. 3 is a plan view showing the observation adapter. 図4は、観察アダプタを示す平面図である。FIG. 4 is a plan view showing the observation adapter. 図5は、この発明の実施の形態2にかかる観察装置の概略構成を示す図である。FIG. 5 is a diagram showing a schematic configuration of an observation apparatus according to the second embodiment of the present invention. 図6は、対物レンズの構成を示す斜視図である。FIG. 6 is a perspective view showing the configuration of the objective lens.

以下、図面を参照して、この発明にかかる観察装置の実施の形態を詳細に説明する。なお、この実施の形態によって発明は限定されるものではない。また、図面の記載において、同一の部分には同一の符号を付している。   Embodiments of an observation apparatus according to the present invention will be described below in detail with reference to the drawings. The invention is not limited to the embodiments. In the description of the drawings, the same parts are denoted by the same reference numerals.

(実施の形態1)
図1は、この発明の実施の形態1における観察装置の構成を示す模式図であり、図2は、図1のA−A線断面図であり、図3は、観察アダプタを示す平面図である。図1に示すように、観察装置1は、試料2が載置される試料載置台3と、試料2の上部に対向配置された対物レンズ4と、対物レンズ4を介して試料2に落射照明を行う落射照明光学系5と、試料2に側射照明を行う側射照明光学系6と、試料2から反射され対物レンズ4を経た観察光を観察する観察光学系7と、を備える。
(Embodiment 1)
1 is a schematic diagram showing a configuration of an observation apparatus according to Embodiment 1 of the present invention, FIG. 2 is a cross-sectional view taken along line AA in FIG. 1, and FIG. 3 is a plan view showing an observation adapter. is there. As shown in FIG. 1, the observation apparatus 1 includes a sample mounting table 3 on which a sample 2 is mounted, an objective lens 4 that is disposed on the upper side of the sample 2, and an epi-illumination on the sample 2 via the objective lens 4. An epi-illumination optical system 5 that performs side illumination on the sample 2, and an observation optical system 7 that observes the observation light reflected from the sample 2 and passing through the objective lens 4.

落射照明光学系5は、落射光源11、照明レンズ12および偏光ビームスプリッタ13を有する。落射光源11は、観察光学系7によって試料2の観察像を形成するための照明光を発し、たとえば、LED照明によって実現される。照明レンズ12は、落射光源11が発する照明光を所定の位置に集光する。偏光ビームスプリッタ13は、入射する光の偏光成分に応じて反射または透過させる。具体的には、偏光ビームスプリッタ13は、透過振動方法と同一方向の光のみ透過し、透過振動方向と直交する方向の光を反射する。   The epi-illumination optical system 5 includes an epi-illumination light source 11, an illumination lens 12, and a polarization beam splitter 13. The epi-illumination light source 11 emits illumination light for forming an observation image of the sample 2 by the observation optical system 7, and is realized by, for example, LED illumination. The illumination lens 12 condenses the illumination light emitted from the incident light source 11 at a predetermined position. The polarization beam splitter 13 reflects or transmits light depending on the polarization component of incident light. Specifically, the polarization beam splitter 13 transmits only light in the same direction as the transmission vibration method, and reflects light in a direction orthogonal to the transmission vibration direction.

側射照明光学系6は、側射光源14および観察アダプタ15を有する。側射光源14は、図2に示すように、対物レンズ4の光軸Lを中心軸に円環状に複数配置される。側射光源14は、試料2に対して斜め方向から照明光を発し、たとえば、LED照明によって実現される。観察アダプタ15は、図3に示すように、対物レンズ4の光軸Lを中心軸に円環状に形成され、偏光板15aによって実現される。観察アダプタ15は、試料2と側射光源14との間に配置される。偏光板15aは、側射光源14が発する照明光のうち特定方向の直線偏光の光のみ透過する。偏光板15aは、偏光板15aの振動方向が偏光ビームスプリッタ13の透過振動方向に対して略直交する方向となるように配置される。なお、側射光源14は、試料2の種類等に対応して部分点灯を行ってもよい。   The side illumination optical system 6 has a side light source 14 and an observation adapter 15. As shown in FIG. 2, a plurality of side light sources 14 are arranged in an annular shape with the optical axis L of the objective lens 4 as the central axis. The side light source 14 emits illumination light from an oblique direction with respect to the sample 2 and is realized by, for example, LED illumination. As shown in FIG. 3, the observation adapter 15 is formed in an annular shape with the optical axis L of the objective lens 4 as the central axis, and is realized by a polarizing plate 15a. The observation adapter 15 is disposed between the sample 2 and the side light source 14. The polarizing plate 15a transmits only linearly polarized light in a specific direction out of the illumination light emitted from the side light source 14. The polarizing plate 15 a is disposed so that the vibration direction of the polarizing plate 15 a is substantially perpendicular to the transmission vibration direction of the polarizing beam splitter 13. The side light source 14 may perform partial lighting corresponding to the type of the sample 2 or the like.

観察光学系7は、対物レンズ4、結像レンズ16および撮像部17を有する。対物レンズ4は、試料2が反射した光を偏光ビームスプリッタ13に照射する。結像レンズ16は、試料2が反射した反射光のうち対物レンズ4を経て偏光ビームスプリッタ13を透過する偏光方向の観察光を集光して試料2の観察像を結像する。撮像部17は、CCDカメラなどによって実現され、結像レンズ16によって結像された試料2の観察像を撮像する。   The observation optical system 7 includes an objective lens 4, an imaging lens 16, and an imaging unit 17. The objective lens 4 irradiates the polarization beam splitter 13 with the light reflected by the sample 2. The imaging lens 16 focuses the observation light in the polarization direction that passes through the objective lens 4 and passes through the polarization beam splitter 13 out of the reflected light reflected by the sample 2 to form an observation image of the sample 2. The imaging unit 17 is realized by a CCD camera or the like, and captures an observation image of the sample 2 imaged by the imaging lens 16.

ここで、図1を参照して、観察装置1を用いて試料2を落射照明によって観察する場合について説明する。まず、落射光源11が発した照明光は、照明レンズ12を経て偏光ビームスプリッタ13によって反射され、対物レンズ4を経て試料2に照明する。この場合、偏光ビームスプリッタ13は、特定方向の直線偏光の光のみ対物レンズ4側の光軸L上に反射するため、試料2は直線偏光で照明が行われる。その後、試料2の表面が鏡面部分、たとえば、反射率が高い金属部分に照射された照明光の場合、試料2の表面で正反射する。このため、試料2の表面で正反射した光は、直線偏光を維持した状態で再び対物レンズ4を経て偏光ビームスプリッタ13に入射する。偏光ビームスプリッタ13に入射した光は、偏光ビームスプリッタ13の透過振動方向と直交するため、偏光ビームスプリッタ13を透過できずに反射し、撮像部17に入射しない。   Here, with reference to FIG. 1, the case where the sample 2 is observed by epi-illumination using the observation apparatus 1 is demonstrated. First, the illumination light emitted from the incident light source 11 is reflected by the polarization beam splitter 13 through the illumination lens 12 and illuminates the sample 2 through the objective lens 4. In this case, since the polarization beam splitter 13 reflects only linearly polarized light in a specific direction onto the optical axis L on the objective lens 4 side, the sample 2 is illuminated with linearly polarized light. Thereafter, when the surface of the sample 2 is illumination light applied to a mirror surface portion, for example, a metal portion having a high reflectance, the surface of the sample 2 is regularly reflected. For this reason, the light regularly reflected on the surface of the sample 2 enters the polarization beam splitter 13 again through the objective lens 4 while maintaining linearly polarized light. Since the light incident on the polarization beam splitter 13 is orthogonal to the transmission vibration direction of the polarization beam splitter 13, the light cannot be transmitted through the polarization beam splitter 13 and is reflected and does not enter the imaging unit 17.

これに対して、試料2の表面が粗面部分、たとえば、反射率が低い樹脂部分に照射された照明光の場合、試料2の表面で拡散反射する。このため、拡散反射した光は、偏光方向が保存されず様々な偏光が混在した状態となり、対物レンズ4を経て偏光ビームスプリッタ13の透過振動方向と同一方向の光のみ偏光ビームスプリッタ13を透過する。透過した光は、結像レンズ16を経て撮像部17に入射して観察される。   On the other hand, when the surface of the sample 2 is illumination light irradiated on a rough surface portion, for example, a resin portion having a low reflectance, the surface of the sample 2 is diffusely reflected. Therefore, the diffusely reflected light is in a state in which the polarization direction is not preserved and various polarizations are mixed, and only the light in the same direction as the transmission vibration direction of the polarization beam splitter 13 passes through the polarization beam splitter 13 through the objective lens 4. . The transmitted light enters the imaging unit 17 through the imaging lens 16 and is observed.

つぎに、観察装置1を用いて試料2を側射照明によって観察する場合について説明する。まず、側射光源14が発した照明光のうち特定方向の直線偏光の光のみ偏光板15aを透過し、試料2に照明する。この場合、偏光板15aの振動方向は、偏光ビームスプリッタ13の透過方向と直交した方向に設定されている。このため、試料2の表面で正反射した光は、直線偏光を維持した状態で再び対物レンズ4を経て偏光ビームスプリッタ13に入射する。偏光ビームスプリッタ13に入射した光は、偏光ビームスプリッタ13の透過振動方向と直交するため、偏光ビームスプリッタ13を透過できずに反射し、撮像部17に入射しない。   Next, a case where the sample 2 is observed by side illumination using the observation apparatus 1 will be described. First, only the linearly polarized light in a specific direction among the illumination light emitted from the side light source 14 is transmitted through the polarizing plate 15 a and illuminates the sample 2. In this case, the vibration direction of the polarizing plate 15 a is set to a direction orthogonal to the transmission direction of the polarizing beam splitter 13. For this reason, the light regularly reflected on the surface of the sample 2 enters the polarization beam splitter 13 again through the objective lens 4 while maintaining linearly polarized light. Since the light incident on the polarization beam splitter 13 is orthogonal to the transmission vibration direction of the polarization beam splitter 13, the light cannot be transmitted through the polarization beam splitter 13 and is reflected and does not enter the imaging unit 17.

これに対して、試料2の表面で拡散反射した光は、直線偏光の偏光方向が保存されず様々な偏光が混在した状態となり、対物レンズ4を経て偏光ビームスプリッタ13の透過振動方向と同一方向の成分の光のみ偏光ビームスプリッタ13を透過する。透過した光は、結像レンズ16を経て撮像部17に入射して観察される。   On the other hand, the light diffusely reflected on the surface of the sample 2 is in a state in which the polarization direction of linearly polarized light is not preserved and various polarizations are mixed, and the same direction as the transmission vibration direction of the polarization beam splitter 13 through the objective lens 4. Only the light of the component is transmitted through the polarization beam splitter 13. The transmitted light enters the imaging unit 17 through the imaging lens 16 and is observed.

すなわち、この実施の形態1では、落射照明および側射照明において、偏光ビームスプリッタ13が、試料2で正反射してハレーションとして観察される光を除去することによって、撮像部17が撮像する観察像にハレーションが生じることを防止することができる。   That is, in the first embodiment, in the incident illumination and the side illumination, the polarization beam splitter 13 removes the light that is regularly reflected by the sample 2 and observed as halation, so that the observation image captured by the imaging unit 17 is captured. It is possible to prevent halation from occurring.

ところで、観察アダプタ15は、対物レンズ4から着脱可能であり、図4に示す観察アダプタ18に交換できる。観察アダプタ18は、図4に示すように、波長板18aを有する。波長板18aは、対物レンズ4の形状に対応して円盤状に形成され、複数の保持部18bによって保持されている。波長板18aは、4分の1波長板によって実現され、側射光源14と試料2との間の光軸上に配置される。観察アダプタ18は、対物レンズ4に装着される際に波長板18aの高速軸の方向が偏光ビームスプリッタ13の反射振動方向に対して45度となるように配置される。   By the way, the observation adapter 15 is detachable from the objective lens 4 and can be replaced with the observation adapter 18 shown in FIG. As shown in FIG. 4, the observation adapter 18 has a wave plate 18a. The wave plate 18a is formed in a disc shape corresponding to the shape of the objective lens 4, and is held by a plurality of holding portions 18b. The wave plate 18 a is realized by a quarter wave plate and is disposed on the optical axis between the side light source 14 and the sample 2. The observation adapter 18 is arranged so that the direction of the high-speed axis of the wave plate 18 a is 45 degrees with respect to the reflection vibration direction of the polarization beam splitter 13 when attached to the objective lens 4.

ここで、観察装置1において観察アダプタ18を用いて試料2を落射照明によって観察する場合について説明する。まず、落射光源11が発した照明光は、照明レンズ12を経て偏光ビームスプリッタ13によって反射され、対物レンズ4および波長板18aを経て試料2に照射する。この場合、偏光ビームスプリッタ13は、特定方向の直線偏光の光のみ対物レンズ4側の光軸L上に反射するため、波長板18aには直線偏光の光が入射する。波長板18aは、波長板18aの高速軸が偏光ビームスプリッタ13の反射振動方向に対して45度方向に配置されているため、波長板18aに入射した直線偏光の光を円偏光に変換して透過させる。その後、試料2の表面で正反射した光は、円偏光を維持する。この円偏光を維持した光は、波長板18aに再び入射し、波長板18aによって偏光ビームスプリッタ13の透過振動方向と同一方向の直線偏光に変換される。この直線偏光となった光は、対物レンズ4を経て偏光ビームスプリッタ13に入射し、偏光ビームスプリッタ13の透過振動方向と同一方向のため、偏光ビームスプリッタ13を透過する。透過した光は、結像レンズ16を経て撮像部17に入射して観察される。   Here, the case where the sample 2 is observed by epi-illumination using the observation adapter 18 in the observation apparatus 1 will be described. First, the illumination light emitted from the epi-illumination light source 11 is reflected by the polarization beam splitter 13 through the illumination lens 12, and irradiates the sample 2 through the objective lens 4 and the wave plate 18a. In this case, since the polarization beam splitter 13 reflects only linearly polarized light in a specific direction onto the optical axis L on the objective lens 4 side, linearly polarized light is incident on the wavelength plate 18a. The wave plate 18a converts the linearly polarized light incident on the wave plate 18a into circularly polarized light because the fast axis of the wave plate 18a is arranged at 45 degrees with respect to the reflection vibration direction of the polarization beam splitter 13. Make it transparent. Thereafter, the light regularly reflected on the surface of the sample 2 maintains circular polarization. The light that maintains the circularly polarized light is incident again on the wave plate 18a, and is converted into linearly polarized light in the same direction as the transmission vibration direction of the polarizing beam splitter 13 by the wave plate 18a. The linearly polarized light enters the polarization beam splitter 13 through the objective lens 4 and passes through the polarization beam splitter 13 because it is in the same direction as the transmission vibration direction of the polarization beam splitter 13. The transmitted light enters the imaging unit 17 through the imaging lens 16 and is observed.

これに対して、試料2の表面で拡散反射した光は、偏光方向が保存されず様々な偏光が混在した状態で波長板18aに入射するため、波長板18aを透過後も様々な偏光が混在し、対物レンズ30を経て偏光ビームスプリッタ13の透過振動方向と同一方向の偏光のみ偏光ビームスプリッタ13を透過する。透過した光は、結像レンズ16を経て撮像部17に入射して観察される。   On the other hand, since the light diffusely reflected on the surface of the sample 2 is incident on the wave plate 18a in a state where the polarization direction is not preserved and various polarizations are mixed, various polarizations are mixed even after passing through the wave plate 18a. Then, only the polarized light in the same direction as the transmission vibration direction of the polarization beam splitter 13 passes through the polarization beam splitter 13 through the objective lens 30. The transmitted light enters the imaging unit 17 through the imaging lens 16 and is observed.

つぎに、観察装置1において観察アダプタ18を用いて試料2を側射照明によって観察する場合について説明する。まず、側射光源14が発した照明光は、無偏光の状態で試料2を照射する。試料2の表面で正反射または拡散反射した光は、様々な偏光が混在した状態で波長板18aに入射するため、波長板18aを透過後も様々な偏光が混在し、偏光ビームスプリッタ13の透過振動方向と同一方向の偏光のみ偏光ビームスプリッタ13を透過する。透過した光は、結像レンズ16を経て撮像部17に入射して観察される。   Next, the case where the sample 2 is observed by side illumination using the observation adapter 18 in the observation apparatus 1 will be described. First, the illumination light emitted from the side light source 14 irradiates the sample 2 in a non-polarized state. The light that has been specularly reflected or diffusely reflected on the surface of the sample 2 is incident on the wave plate 18a in a state in which various polarized lights are mixed. Therefore, after the light passes through the wave plate 18a, various polarized lights are mixed and transmitted through the polarizing beam splitter 13. Only polarized light in the same direction as the vibration direction is transmitted through the polarization beam splitter 13. The transmitted light enters the imaging unit 17 through the imaging lens 16 and is observed.

この実施の形態1によれば、波長板18aを有する観察アダプタ18を装着することにより、落射照明および側射照明の両方で無偏光の状態で照明が可能であるとともに、試料2の表面で正反射または拡散反射する両方の光を観察することができる。   According to the first embodiment, by attaching the observation adapter 18 having the wave plate 18a, it is possible to illuminate both in the epi-illumination and the side-illumination in a non-polarized state, and in the positive direction on the surface of the sample 2. Both reflected or diffusely reflected light can be observed.

(実施の形態2)
つぎに、この発明の実施の形態2について説明する。実施の形態1では、観察アダプタを交換することによって、落射照明および側射照明に対してハレーション低減観察または通常観察の切り替えを行っていたが、この実施の形態2では、対物レンズを介して偏光板と波長板とを装着し、それぞれを回転することによって試料2の観察方法の切り替えを行う。
(Embodiment 2)
Next, a second embodiment of the present invention will be described. In the first embodiment, the halation reduction observation or the normal observation is switched with respect to the epi-illumination and the side-illumination by exchanging the observation adapter. However, in the second embodiment, the polarization is changed via the objective lens. The observation method of the sample 2 is switched by attaching a plate and a wave plate and rotating each of them.

図5は、この発明の実施の形態2における観察装置の構成を示す模式図であり、図6は、対物レンズの斜視図である。図5に示すように、観察装置100は、上記実施の形態1の対物レンズ4に替えて、対物レンズ30を備える。なお、図5において、上記実施の形態1で説明した観察装置1と同じ構成を有する部位については、同一の符号を付している。   FIG. 5 is a schematic diagram showing a configuration of an observation apparatus according to Embodiment 2 of the present invention, and FIG. 6 is a perspective view of an objective lens. As shown in FIG. 5, the observation apparatus 100 includes an objective lens 30 instead of the objective lens 4 of the first embodiment. In FIG. 5, parts having the same configuration as the observation apparatus 1 described in the first embodiment are given the same reference numerals.

対物レンズ30は、図5および図6に示すように、偏光板40および波長板50を有する。対物レンズ30の側面には、偏光ビームスプリッタ13の反射振動方向を示す指標30aが標記されている。   As shown in FIGS. 5 and 6, the objective lens 30 includes a polarizing plate 40 and a wave plate 50. On the side surface of the objective lens 30, an index 30a indicating the reflection vibration direction of the polarization beam splitter 13 is marked.

偏光板40は、円環状に形成され、対物レンズ30の光軸Lを中心軸に回動可能に設けられる。偏光板40は、側射光源14が発する照明光のうち特定方向の直線偏光の光のみ透過する。偏光板40の側面には、指標40aが標記されている。指標40aは、偏光板40の偏光方向を示す。   The polarizing plate 40 is formed in an annular shape and is provided so as to be rotatable about the optical axis L of the objective lens 30 as a central axis. The polarizing plate 40 transmits only linearly polarized light in a specific direction out of the illumination light emitted from the side light source 14. An indicator 40 a is marked on the side surface of the polarizing plate 40. The index 40 a indicates the polarization direction of the polarizing plate 40.

波長板50は、4分の1波長板によって実現され、円盤状に形成される。波長板50は、対物レンズ30の光軸L上を中心軸に回動可能に設けられる。波長板50の側面には指標50aおよび指標50bが標記されている。指標50aは、波長板50の高速軸と直交する方向を示す。指標50bは、波長板50の高速軸から45度方向を示す。なお、指標50aおよび指標50bは、確認しやすいように色や形を異ならせて標記してもよい。   The wave plate 50 is realized by a quarter wave plate and is formed in a disk shape. The wave plate 50 is provided so as to be rotatable about the optical axis L of the objective lens 30 as a central axis. On the side surface of the wave plate 50, an index 50a and an index 50b are marked. The index 50 a indicates a direction orthogonal to the high speed axis of the wave plate 50. The index 50b indicates a 45-degree direction from the high-speed axis of the wave plate 50. The index 50a and the index 50b may be marked with different colors and shapes so that they can be easily confirmed.

ここで、図5を参照して、観察装置100を用いてハレーションを低減しつつ、試料2を落射照明によって観察する場合について説明する。まず、波長板50を回転させて、指標50aを対物レンズ30の指標30aに一致させる。落射光源11が発した照明光は、照明レンズ12を経て偏光ビームスプリッタ13によって反射され、対物レンズ30および波長板50を経て試料2に照射する。この場合、偏光ビームスプリッタ13は、特定方向の直線偏光の光のみを対物レンズ30側の光軸L上に反射するため、波長板50には直線偏光の光が入射する。波長板50は、偏光ビームスプリッタ13に反射された直線偏光の光の振動方向と、波長板50の高速軸と直交する方向とが一致しているため、偏光ビームスプリッタ13によって反射された直線偏光の振動方向を維持した状態で光を透過する。その後、試料2の表面で正反射した光は、直線偏光を維持する。この直線偏光を維持した光は、波長板50に再び入射して直線偏光を維持した状態で対物レンズ30を経て偏光ビームスプリッタ13に入射する。偏光ビームスプリッタ13に入射した光は、偏光ビームスプリッタ13の透過振動方向と直交する方向のため、偏光ビームスプリッタ13を透過できずに反射し、撮像部17に入射しない。   Here, with reference to FIG. 5, the case where the sample 2 is observed by epi-illumination while reducing halation using the observation apparatus 100 will be described. First, the wave plate 50 is rotated so that the index 50 a coincides with the index 30 a of the objective lens 30. The illumination light emitted from the epi-illumination light source 11 is reflected by the polarization beam splitter 13 through the illumination lens 12 and irradiates the sample 2 through the objective lens 30 and the wave plate 50. In this case, since the polarization beam splitter 13 reflects only linearly polarized light in a specific direction onto the optical axis L on the objective lens 30 side, linearly polarized light is incident on the wavelength plate 50. In the wave plate 50, the vibration direction of the linearly polarized light reflected by the polarizing beam splitter 13 coincides with the direction orthogonal to the high-speed axis of the wave plate 50, and therefore the linearly polarized light reflected by the polarizing beam splitter 13. The light is transmitted while maintaining the vibration direction. Thereafter, the light regularly reflected on the surface of the sample 2 maintains linearly polarized light. The light that maintains the linearly polarized light is incident again on the wave plate 50 and enters the polarization beam splitter 13 through the objective lens 30 while maintaining the linearly polarized light. Since the light incident on the polarization beam splitter 13 is in a direction orthogonal to the transmission vibration direction of the polarization beam splitter 13, the light cannot be transmitted through the polarization beam splitter 13 and is reflected and does not enter the imaging unit 17.

これに対して、試料2の表面で拡散反射した光は、直線偏光の偏光方向が保存されず様々な偏光が混在した状態で波長板50に再び入射するため、様々な偏光が混在した状態で波長板50を透過する。透過した光は、様々な偏光が混在した状態で対物レンズ30を経て偏光ビームスプリッタ13に入射するため、偏光ビームスプリッタ13の透過振動方向と同一方向の偏光のみ偏光ビームスプリッタ13を透過する。透過した光は、結像レンズ16を経て撮像部17に入射して観察される。   On the other hand, the light diffusely reflected by the surface of the sample 2 is incident on the wave plate 50 again in a state where the polarization direction of the linearly polarized light is not preserved and mixed with various polarizations. It passes through the wave plate 50. Since the transmitted light enters the polarization beam splitter 13 through the objective lens 30 in a state where various polarizations are mixed, only the polarization in the same direction as the transmission vibration direction of the polarization beam splitter 13 is transmitted through the polarization beam splitter 13. The transmitted light enters the imaging unit 17 through the imaging lens 16 and is observed.

つぎに、観察装置100を用いて試料2を落射照明によって通常観察する場合について説明する。まず、波長板50を回転させて、指標50bを対物レンズ30の指標30aに一致させる。この場合、上記した実施の形態1の観察アダプタ18を対物レンズ30に装着した状態になり、試料2に対して照明する照明光を直線偏光でなく、円偏光で行う。すなわち、試料2の表面で正反射および拡散反射した光は、偏光方向が保存されず様々な偏光が混在した状態で波長板50に再び入射するため、波長板50を透過後も様々な偏光が混在し、偏光ビームスプリッタ13の透過振動方向と同一方向の偏光のみ偏光ビームスプリッタ13を透過する。透過した光は、結像レンズ16を経て撮像部17に入射して観察される。   Next, a case where the sample 2 is normally observed by epi-illumination using the observation apparatus 100 will be described. First, the wave plate 50 is rotated so that the index 50 b coincides with the index 30 a of the objective lens 30. In this case, the observation adapter 18 according to the first embodiment is attached to the objective lens 30, and the illumination light for illuminating the sample 2 is not circularly polarized light but circularly polarized light. In other words, the light that has been specularly reflected and diffusely reflected on the surface of the sample 2 is incident on the waveplate 50 again in a state where the polarization direction is not preserved and various polarizations are mixed. Only polarized light in the same direction as the transmission vibration direction of the polarization beam splitter 13 is transmitted through the polarization beam splitter 13. The transmitted light enters the imaging unit 17 through the imaging lens 16 and is observed.

また、観察装置100を用いて試料2を落射照明によって観察する場合、波長板50の指標50aと指標50bとの間に対物レンズ30の指標30aがあるように波長板50を回転操作することによって、ハレーション低減観察と通常観察との中間で試料2を観察することができる。具体的には、ハレーション低減観察で行う場合、試料からの拡散反射の光のみ観察するため、通常観察で行う場合に比べて、撮像部17に取り込まれる光量が少なくなり、観察像が暗くなる。このため、操作者は、波長板50を回転操作し、指標30aに対して指標50aと指標50bとの位置関係を調整することによって、試料2に対応したハレーション低減効果と明るさのバランスとを調整することができる。   When the sample 2 is observed by epi-illumination using the observation apparatus 100, the wavelength plate 50 is rotated so that the index 30a of the objective lens 30 is between the index 50a and the index 50b of the wavelength plate 50. The sample 2 can be observed between the halation reduction observation and the normal observation. Specifically, when observation is performed with halation reduction, only the diffusely reflected light from the sample is observed, so that the amount of light taken into the imaging unit 17 is reduced and the observation image becomes darker than when performing normal observation. For this reason, the operator rotates the wave plate 50 and adjusts the positional relationship between the index 50a and the index 50b with respect to the index 30a, thereby obtaining a halation reduction effect corresponding to the sample 2 and a brightness balance. Can be adjusted.

つぎに、観察装置100においてハレーションを低減しつつ、試料2を側射照明によって観察する場合について説明する。まず、操作者は、偏光板40と波長板50とを回転操作し、波長板50の指標50aを対物レンズ30の指標30aと偏光板40の指標40aとのちょうど中心となる位置に配置する。側射光源14が発した照明光は、偏光板40および波長板50を透過し、試料2に照射される。この場合、偏光板40は、偏光板40の特定方向の直線偏光の光のみ透過する。波長板50は、偏光板40を透過した直線偏光の光の振動方向と、波長板50の高速軸と直交する方向とが一致するため、偏光状態を維持した状態で光を透過する。その後、試料2の表面で正反射した光は波長板50、偏光板40を経て偏光ビームスプリッタ13に到達する。この正反射光は、偏光ビームスプリッタ13の透過振動方向と直交する方向に振動する光であるため、偏光ビームスプリッタを透過できずに反射し、撮像部17に入射しない。   Next, a case where the observation apparatus 100 observes the sample 2 by side illumination while reducing halation will be described. First, the operator rotates the polarizing plate 40 and the wave plate 50, and arranges the index 50a of the wave plate 50 at a position that is exactly the center between the index 30a of the objective lens 30 and the index 40a of the polarizing plate 40. Illumination light emitted from the side light source 14 passes through the polarizing plate 40 and the wave plate 50 and is irradiated onto the sample 2. In this case, the polarizing plate 40 transmits only linearly polarized light in a specific direction of the polarizing plate 40. The wave plate 50 transmits light while maintaining the polarization state because the vibration direction of the linearly polarized light transmitted through the polarizing plate 40 coincides with the direction orthogonal to the high-speed axis of the wave plate 50. Thereafter, the light regularly reflected on the surface of the sample 2 reaches the polarizing beam splitter 13 through the wave plate 50 and the polarizing plate 40. Since the regular reflection light is light that vibrates in a direction orthogonal to the transmission vibration direction of the polarization beam splitter 13, the regular reflection light is not transmitted through the polarization beam splitter but reflected and does not enter the imaging unit 17.

これに対して、試料2の表面で拡散反射した光は、直線偏光の偏光方向が保存されず様々な偏光を混在した状態で波長板50に再び入射し、波長板50を透過後も様々な偏光を混在した状態で偏光板40および対物レンズ30を経て偏光ビームスプリッタ13に入射する。偏光ビームスプリッタ13に入射した光は、偏光ビームスプリッタ13の透過振動方向と同一方向の偏光のみ偏光ビームスプリッタ13を透過する。透過した光は、結像レンズ16を経て撮像部17に入射して観察される。   On the other hand, the light diffusely reflected on the surface of the sample 2 is incident again on the wave plate 50 in a state where the polarization direction of the linearly polarized light is not preserved and mixed with various polarized light, and after the light is transmitted through the wave plate 50 The polarized light enters the polarizing beam splitter 13 through the polarizing plate 40 and the objective lens 30 in a mixed state. The light incident on the polarization beam splitter 13 passes through the polarization beam splitter 13 only in the same direction as the transmission vibration direction of the polarization beam splitter 13. The transmitted light enters the imaging unit 17 through the imaging lens 16 and is observed.

また、対物レンズ30の指標30a、偏光板40の指標40aおよび波長板50の指標50aの位置関係を容易に認識できるように、対物レンズ30の側面には、指標40aからの角度を示した角度目盛り30bが標記されている。具体的には、指標50aの角度位置を角度目盛り30bから読み取り、たとえば、角度目盛りが5度であった場合、指標40aを10度の角度目盛りと一致するように偏光板40を回転操作することによって、ハレーション低減観察を行うことができる。なお、角度目盛り30bの範囲は、偏光板40が90度周期で効果が変化し、波長板50が45度周期で効果が変化するため、90度分の目盛りが標記されていればよい。   Further, the side surface of the objective lens 30 is an angle indicating an angle from the index 40a so that the positional relationship between the index 30a of the objective lens 30, the index 40a of the polarizing plate 40, and the index 50a of the wave plate 50 can be easily recognized. The scale 30b is marked. Specifically, the angle position of the index 50a is read from the angle scale 30b. For example, when the angle scale is 5 degrees, the polarizing plate 40 is rotated so that the index 40a coincides with the 10-degree angle scale. Thus, it is possible to perform halation reduction observation. In addition, the range of the angle scale 30b only needs to be marked with a scale of 90 degrees because the effect of the polarizing plate 40 changes with a period of 90 degrees and the effect of the wave plate 50 changes with a period of 45 degrees.

つぎに、観察装置100を用いて試料2を側射照明によって通常観察する場合について説明する。まず、操作者は、偏光板40と波長板50とを回転操作し、偏光板40の指標40aと波長板50の指標50bとを一致させる。側射光源14が発した照明光は、偏光板40および波長板50を透過し、試料2を照射する。この場合、偏光板40は、偏光板40の特定方向の直線偏光の光のみ透過する。波長板50は、偏光板40の偏光方向と、波長板50の高速軸とが45度異なるように配置されているため、直線偏光の光を円偏光に変換して透過させる。試料2の表面で正反射した光は、円偏光を維持した状態で波長板50に再び入射し、直線偏光に変換されて波長板50を透過して偏光板40を経て偏光ビームスプリッタ13に入射する。偏光ビームスプリッタ13に入射した光は、偏光ビームスプリッタ13の透過振動方向と同一方向の偏光のみ偏光ビームスプリッタ13を透過する。透過した光は、結像レンズ16を経て撮像部17に入射して観察される。   Next, a case where the sample 2 is normally observed by side illumination using the observation apparatus 100 will be described. First, the operator rotates the polarizing plate 40 and the wave plate 50 so that the index 40 a of the polarizing plate 40 and the index 50 b of the wave plate 50 coincide. The illumination light emitted from the side light source 14 passes through the polarizing plate 40 and the wave plate 50 and irradiates the sample 2. In this case, the polarizing plate 40 transmits only linearly polarized light in a specific direction of the polarizing plate 40. Since the wave plate 50 is arranged so that the polarization direction of the polarizing plate 40 and the high-speed axis of the wave plate 50 are different by 45 degrees, it converts linearly polarized light into circularly polarized light and transmits it. The light specularly reflected on the surface of the sample 2 enters the wave plate 50 again while maintaining circular polarization, is converted into linearly polarized light, passes through the wave plate 50, and enters the polarizing beam splitter 13 through the polarizing plate 40. To do. The light incident on the polarizing beam splitter 13 passes through the polarizing beam splitter 13 only in the same direction as the transmission vibration direction of the polarizing beam splitter 13. The transmitted light enters the imaging unit 17 through the imaging lens 16 and is observed.

これに対して、試料2の表面で拡散反射した光は、偏光方向が保存されず様々な偏光を混在した状態で波長板50に再び入射し、波長板50を透過後も様々な偏光を混在した状態で偏光板40および対物レンズ30を経て偏光ビームスプリッタ13に入射する。偏光ビームスプリッタ13に入射した光は、偏光ビームスプリッタの透過振動方向と同一方向の偏光のみ偏光ビームスプリッタ13を透過する。透過した光は、結像レンズ16を経て撮像部17に入射して観察される。   On the other hand, the light diffusely reflected on the surface of the sample 2 is incident again on the wave plate 50 in a state where the polarization direction is not preserved and mixed with various polarized light, and mixed with various polarized light after passing through the wave plate 50. In this state, the light enters the polarizing beam splitter 13 through the polarizing plate 40 and the objective lens 30. The light incident on the polarization beam splitter 13 passes through the polarization beam splitter 13 only in the same direction as the transmission vibration direction of the polarization beam splitter. The transmitted light enters the imaging unit 17 through the imaging lens 16 and is observed.

また、観察装置100を用いて側射照明を行う場合、落射照明と同様に、偏光板40および波長板50の位置関係を調整することによって、ハレーション低減効果を調整することができる。   Moreover, when performing side illumination using the observation apparatus 100, the halation reduction effect can be adjusted by adjusting the positional relationship between the polarizing plate 40 and the wave plate 50, as in the case of epi-illumination.

この実施の形態2では、偏光板40および波長板50を対物レンズ30の光軸Lを中心軸に回転することによって、落射照明および側射照明におけるハレーションの低減または光量の調整を同時に行うことができ、試料2に対応した観察方法を容易に選択することができる。また、対物レンズ30、偏光板40および波長板50それぞれの側面には、指標が標記されているため、観察状態を容易に確認することができる。   In the second embodiment, by rotating the polarizing plate 40 and the wave plate 50 about the optical axis L of the objective lens 30 as a central axis, it is possible to simultaneously reduce the halation or adjust the light quantity in the epi-illumination and the side-illumination. The observation method corresponding to the sample 2 can be easily selected. In addition, since the indices are marked on the side surfaces of the objective lens 30, the polarizing plate 40, and the wave plate 50, the observation state can be easily confirmed.

また、上述した実施の形態2では、偏光板40の指標40aと波長板50の指標50bとを一致させ、側射照明が円偏光の状態で照明を行う場合、偏光板40と波長板50とを同時に回転操作することによって、側射照明の照明条件を維持した状態で試料2を落射照明で観察する際にハレーションの低減を調整することができる。   In Embodiment 2 described above, when the index 40a of the polarizing plate 40 and the index 50b of the wave plate 50 are made to coincide with each other and the side illumination is illuminated in a circularly polarized state, the polarizing plate 40, the wave plate 50, By simultaneously rotating the, the reduction in halation can be adjusted when observing the sample 2 with epi-illumination while maintaining the illumination conditions of side-illumination.

また、上述した実施の形態1,2では、落射照明と側射照明とを同時に行う場合を説明したが、試料2に対応させて落斜照明または側射照明のいずれか一方または両方の照明の選択を行ってもよい。   Further, in the first and second embodiments described above, the case where the epi-illumination and the side-illumination are performed at the same time has been described. You may make a selection.

1,100 観察装置
2 試料
4,30 対物レンズ
11 落射光源
13 偏光ビームスプリッタ
14 側射光源
15a,40 偏光板
16 結像レンズ
17 撮像部
18a,50 波長板
30a,40a,50a,50b 指標
L 光軸
DESCRIPTION OF SYMBOLS 1,100 Observation apparatus 2 Sample 4,30 Objective lens 11 Epi-illumination light source 13 Polarization beam splitter 14 Side light source 15a, 40 Polarizing plate 16 Imaging lens 17 Imaging part 18a, 50 Wave plate 30a, 40a, 50a, 50b Index L Light axis

Claims (7)

試料が載置される試料載置台と、
前記試料に対して落射照明を行う落射光源と、
前記落射光源が発する照明光を前記試料載置台上の前記試料に集光して照射する対物レンズと、
前記落射光源と前記対物レンズとの間の光軸上に配置され、入射する光の偏光成分に応じて反射または透過させる偏光ビームスプリッタと、
前記対物レンズの光軸を中心軸に円環状に設けられ、前記試料載置台上の前記試料に側射照明を行う側射光源と、
前記試料と前記側射光源との間に配置され、前記側射光源が発する照明光のうち特定方向の直線偏光を透過する偏光板と、
前記試料が反射する反射光のうち前記対物レンズを介して前記偏光ビームスプリッタを透過する観察光を集光して観察像を結像する結像レンズと、
前記結像レンズによって結像された観察像を撮像する撮像手段と、
を備えたことを特徴とする観察装置。
A sample mounting table on which the sample is mounted;
An epi-illumination light source for performing epi-illumination on the sample;
An objective lens that condenses and irradiates the illumination light emitted from the incident light source onto the sample on the sample mounting table;
A polarization beam splitter that is disposed on the optical axis between the incident light source and the objective lens, and reflects or transmits light according to a polarization component of incident light;
A lateral light source that is provided in an annular shape with the optical axis of the objective lens as a central axis, and that laterally illuminates the sample on the sample mounting table;
A polarizing plate that is disposed between the sample and the side light source and transmits linearly polarized light in a specific direction among the illumination light emitted from the side light source,
An imaging lens that focuses observation light transmitted through the polarizing beam splitter through the objective lens among reflected light reflected by the sample, and forms an observation image;
Imaging means for capturing an observation image formed by the imaging lens;
An observation apparatus comprising:
試料が載置される試料載置台と、
前記試料に対して落射照明を行う落射光源と、
前記落射光源が発する照明光を前記試料載置台上の前記試料に集光して照射する対物レンズと、
前記落射光源と前記対物レンズとの間の光軸上に配置され、入射する光の偏光成分に応じて反射または透過させる偏光ビームスプリッタと、
前記対物レンズの光軸を中心軸に円環状に設けられ、前記試料載置台上の前記試料に側射照明を行う側射光源と、
前記対物レンズと前記試料との間の光軸上に配置された4分の1波長板と、
前記試料が反射する反射光のうち前記波長板および前記対物レンズを介して前記偏光ビームスプリッタを透過する観察光を集光して観察像を結像する結像レンズと、
前記結像レンズによって結像された観察像を撮像する撮像手段と、
を備えたことを特徴とする観察装置。
A sample mounting table on which the sample is mounted;
An epi-illumination light source for performing epi-illumination on the sample;
An objective lens that condenses and irradiates the illumination light emitted from the incident light source onto the sample on the sample mounting table;
A polarization beam splitter that is disposed on the optical axis between the incident light source and the objective lens, and reflects or transmits light according to a polarization component of incident light;
A lateral light source that is provided in an annular shape with the optical axis of the objective lens as a central axis, and that laterally illuminates the sample on the sample mounting table;
A quarter wave plate disposed on the optical axis between the objective lens and the sample;
An imaging lens that focuses observation light transmitted through the polarizing beam splitter through the wave plate and the objective lens among reflected light reflected by the sample, and forms an observation image;
Imaging means for capturing an observation image formed by the imaging lens;
An observation apparatus comprising:
試料が載置される試料載置台と、
前記試料に対して落射照明を行う落射光源と、
前記落射光源が発する照明光を前記試料載置台上の前記試料に集光して照射する対物レンズと、
前記落射光源と前記対物レンズとの間の光軸上に配置され、入射する光の偏光成分に応じて反射または透過させる偏光ビームスプリッタと、
前記対物レンズの光軸を中心軸に円環状に設けられ、前記試料載置台上の前記試料に側射照明を行う側射光源と、
前記試料と前記側射光源との間に配置され、前記側射光源が発する照明光のうち特定方向の直線偏光を透過する偏光板と、
前記対物レンズと前記試料との光軸上に配置された4分の1波長板と、
前記試料が反射する反射光のうち前記波長板および前記対物レンズを介して前記偏光ビームスプリッタを透過する観察光を集光して観察像を結像する結像レンズと、
前記結像レンズによって結像された観察像を撮像する撮像手段と、
を備えたことを特徴とする観察装置。
A sample mounting table on which the sample is mounted;
An epi-illumination light source for performing epi-illumination on the sample;
An objective lens that condenses and irradiates the illumination light emitted from the incident light source onto the sample on the sample mounting table;
A polarization beam splitter that is disposed on the optical axis between the incident light source and the objective lens, and reflects or transmits light according to a polarization component of incident light;
A lateral light source that is provided in an annular shape with the optical axis of the objective lens as a central axis, and that laterally illuminates the sample on the sample mounting table;
A polarizing plate that is disposed between the sample and the side light source and transmits linearly polarized light in a specific direction among the illumination light emitted from the side light source,
A quarter-wave plate disposed on the optical axis of the objective lens and the sample;
An imaging lens that focuses observation light transmitted through the polarizing beam splitter through the wave plate and the objective lens among reflected light reflected by the sample, and forms an observation image;
Imaging means for capturing an observation image formed by the imaging lens;
An observation apparatus comprising:
前記偏光板および前記波長板は、前記対物レンズの光軸を中心軸として回転可能であることを特徴とする請求項3に記載の観察装置。   The observation apparatus according to claim 3, wherein the polarizing plate and the wave plate are rotatable about the optical axis of the objective lens as a central axis. 前記偏光板は、偏光方向を示す指標を側面に標記していることを特徴とする請求項3または請求項4に記載の観察装置。   The observation apparatus according to claim 3 or 4, wherein the polarizing plate has an indicator indicating a polarization direction on a side surface. 前記波長板は、少なくとも高速軸の直交方向または高速軸から45度方向を示す指標を側面に標記していることを特徴とする請求項3〜5のいずれか一つに記載の観察装置。   The observation apparatus according to claim 3, wherein the wave plate has an index indicating at least a direction orthogonal to the high-speed axis or a 45-degree direction from the high-speed axis on a side surface. 前記対物レンズは、前記偏光ビームスプリッタの反射振動方向を示す指標を側面に標記していることを特徴とする請求項3〜6のいずれか一つに記載の観察装置。   The observation apparatus according to claim 3, wherein the objective lens has an index indicating a reflection vibration direction of the polarizing beam splitter on a side surface.
JP2009162259A 2009-07-08 2009-07-08 Observation device Expired - Fee Related JP5415850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009162259A JP5415850B2 (en) 2009-07-08 2009-07-08 Observation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009162259A JP5415850B2 (en) 2009-07-08 2009-07-08 Observation device

Publications (3)

Publication Number Publication Date
JP2011017875A true JP2011017875A (en) 2011-01-27
JP2011017875A5 JP2011017875A5 (en) 2012-07-05
JP5415850B2 JP5415850B2 (en) 2014-02-12

Family

ID=43595715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009162259A Expired - Fee Related JP5415850B2 (en) 2009-07-08 2009-07-08 Observation device

Country Status (1)

Country Link
JP (1) JP5415850B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013161073A (en) * 2012-02-09 2013-08-19 Topcon Corp Wavelength selection optical element, microscope using the wavelength selection optical element, and digital camera using the wavelength selection optical element
JP2014126607A (en) * 2012-12-25 2014-07-07 Olympus Corp Microscope
CN105807413A (en) * 2016-05-18 2016-07-27 麦克奥迪实业集团有限公司 Epi-illumination metallographic microscope based on light modulation technology
CN113383270A (en) * 2019-03-29 2021-09-10 卡西欧计算机株式会社 Illumination device and imaging device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04161917A (en) * 1990-10-24 1992-06-05 Olympus Optical Co Ltd Variable-power type optical device
JPH04348314A (en) * 1991-02-05 1992-12-03 Olympus Optical Co Ltd Magnification variable optical device
JPH05296841A (en) * 1992-04-24 1993-11-12 Satoshi Kawada Polarization measuring apparatus and polarization microscope using the same
JPH06229910A (en) * 1992-12-29 1994-08-19 New Oji Paper Co Ltd Measuring method for retardation
JPH10333057A (en) * 1997-04-03 1998-12-18 Moritex Corp Ccd microscope
JP2001154103A (en) * 1999-11-30 2001-06-08 Mitsutoyo Corp Illuminator for optical instrument
JP2002267932A (en) * 2001-03-12 2002-09-18 Olympus Optical Co Ltd Differential interference microscope
JP2004144764A (en) * 1998-09-18 2004-05-20 Hitachi Ltd Method and apparatus for inspecting defects
JP2007163553A (en) * 2005-12-09 2007-06-28 Tokyo Seimitsu Co Ltd Microscope, objective lens unit for microscope, and adaptor for objective lens
JP2008017396A (en) * 2006-07-10 2008-01-24 Moritex Corp Observation apparatus with polarized light illumination
WO2008062651A1 (en) * 2006-11-22 2008-05-29 Nikon Corporation Image measuring device
JP2008233608A (en) * 2007-03-22 2008-10-02 Olympus Corp Microscope apparatus

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04161917A (en) * 1990-10-24 1992-06-05 Olympus Optical Co Ltd Variable-power type optical device
JPH04348314A (en) * 1991-02-05 1992-12-03 Olympus Optical Co Ltd Magnification variable optical device
JPH05296841A (en) * 1992-04-24 1993-11-12 Satoshi Kawada Polarization measuring apparatus and polarization microscope using the same
JPH06229910A (en) * 1992-12-29 1994-08-19 New Oji Paper Co Ltd Measuring method for retardation
JPH10333057A (en) * 1997-04-03 1998-12-18 Moritex Corp Ccd microscope
JP2004144764A (en) * 1998-09-18 2004-05-20 Hitachi Ltd Method and apparatus for inspecting defects
JP2001154103A (en) * 1999-11-30 2001-06-08 Mitsutoyo Corp Illuminator for optical instrument
JP2002267932A (en) * 2001-03-12 2002-09-18 Olympus Optical Co Ltd Differential interference microscope
JP2007163553A (en) * 2005-12-09 2007-06-28 Tokyo Seimitsu Co Ltd Microscope, objective lens unit for microscope, and adaptor for objective lens
JP2008017396A (en) * 2006-07-10 2008-01-24 Moritex Corp Observation apparatus with polarized light illumination
WO2008062651A1 (en) * 2006-11-22 2008-05-29 Nikon Corporation Image measuring device
JP2008233608A (en) * 2007-03-22 2008-10-02 Olympus Corp Microscope apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013161073A (en) * 2012-02-09 2013-08-19 Topcon Corp Wavelength selection optical element, microscope using the wavelength selection optical element, and digital camera using the wavelength selection optical element
JP2014126607A (en) * 2012-12-25 2014-07-07 Olympus Corp Microscope
CN105807413A (en) * 2016-05-18 2016-07-27 麦克奥迪实业集团有限公司 Epi-illumination metallographic microscope based on light modulation technology
CN105807413B (en) * 2016-05-18 2018-11-02 麦克奥迪实业集团有限公司 It is a kind of to fall radioglold phase microscope based on light modulation techniques
CN113383270A (en) * 2019-03-29 2021-09-10 卡西欧计算机株式会社 Illumination device and imaging device
CN113383270B (en) * 2019-03-29 2022-11-08 卡西欧计算机株式会社 Illumination device and imaging device

Also Published As

Publication number Publication date
JP5415850B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
CN111272773B (en) Rapid ultrahigh-resolution detection system for surface defects of semiconductor wafer
JP4625716B2 (en) Defect inspection apparatus and defect inspection method
JP5639169B2 (en) Dark field inspection system and method for configuring dark field inspection system
JP3610837B2 (en) Sample surface observation method and apparatus, defect inspection method and apparatus
WO2002023248A1 (en) Confocal point microscope and height measuring method using this
US20110141463A1 (en) Defect inspection method, and defect inspection device
US20060072106A1 (en) Image viewing method for microstructures and defect inspection system using it
JP5415850B2 (en) Observation device
TWI498548B (en) Pattern inspection apparatus
JP3762952B2 (en) Optical apparatus and image measuring apparatus and inspection apparatus using the same
JP2008249386A (en) Defect inspection device and defect inspection method
JP5012810B2 (en) Image measuring instrument
JP4901090B2 (en) Defect inspection method and defect detection apparatus
JP5035904B2 (en) Film thickness distribution measuring device
JP2009282112A (en) Confocal microscope
JP6085795B2 (en) Product inspection system, product inspection method and product inspection device
JP2008058248A (en) Diffracted light detector and inspection system
JP3965325B2 (en) Microstructure observation method and defect inspection apparatus
JP2012083125A (en) End face inspection device
JP2006105780A5 (en)
JP2014240766A (en) Surface inspection method and device
JP6903449B2 (en) Defect inspection equipment and defect inspection method
JP2012168303A (en) Microscope device
JP5287891B2 (en) Defect inspection method
JP2011017875A5 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131114

R151 Written notification of patent or utility model registration

Ref document number: 5415850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees