JP2011013562A - Optical element and method for producing the same - Google Patents

Optical element and method for producing the same Download PDF

Info

Publication number
JP2011013562A
JP2011013562A JP2009159012A JP2009159012A JP2011013562A JP 2011013562 A JP2011013562 A JP 2011013562A JP 2009159012 A JP2009159012 A JP 2009159012A JP 2009159012 A JP2009159012 A JP 2009159012A JP 2011013562 A JP2011013562 A JP 2011013562A
Authority
JP
Japan
Prior art keywords
optical element
optical
normal direction
curved surface
respect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009159012A
Other languages
Japanese (ja)
Inventor
Takeshi Hidaka
猛 日▲高▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2009159012A priority Critical patent/JP2011013562A/en
Publication of JP2011013562A publication Critical patent/JP2011013562A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an optical element which has an optically functional surface, the normal direction of which forms a high angle with the optical axis direction of the optical element, and on the optically functional surface of which a biased distribution of the reflectances of the lights entering from various directions is alleviated.SOLUTION: In the optical element 1, a plurality of projecting parts 3a constituting a minute structure 3, which is formed in a region of a highly inclined part 2 whose normal direction 5 forms the high angle with the optical axis direction of the optical element, are formed so that a formed direction 4 of the projecting part 3a forms an inclined angle 6 with the normal direction 5 of a curved surface 1a (the optically functional surface) in a formed position of the projecting part 3a. As a result, the biased distribution of the reflectances in the highly inclined part 2 and other regions on the curved surface 1a is alleviated so that an excellent antireflection effect can be obtained in the whole region of the curved surface 1a of the optical element 1.

Description

本発明は、光学素子および光学素子の製造方法に関する。   The present invention relates to an optical element and a method for manufacturing the optical element.

たとえば、光学素子を用いて構成される光学系では、個々の光学素子の光学機能面における入射光の反射は、入射光量の損失や、反射光の予期し得ない散乱による光学性能の低下等の要因となり、好ましくない。   For example, in an optical system configured using optical elements, the reflection of incident light on the optical function surface of each optical element is caused by a loss of incident light quantity or a decrease in optical performance due to unexpected scattering of reflected light. It becomes a factor and is not preferable.

そこで、従来では、レンズ等の光学素子の表面に反射防止コーティングが行われていた。
そして、近年では、反射防止コーティングの代わりに、広い波長帯域および広範囲の入射角度で光の反射抑制が可能、広い波長帯域および広範囲の入射角度で光の反射抑制が可能、光学素子の様々な材料に適用可能、光学素子との一体化が可能、等の種々の利点を有する表面無反射構造が提案されている。
Therefore, conventionally, an antireflection coating has been applied to the surface of an optical element such as a lens.
In recent years, instead of antireflection coatings, it is possible to suppress light reflection over a wide wavelength band and a wide range of incident angles, and it is possible to suppress light reflection over a wide wavelength band and a wide range of incident angles. Various materials for optical elements A surface non-reflective structure having various advantages such as being applicable to the above and being capable of being integrated with an optical element has been proposed.

この表面無反射構造、すなわち反射防止構造は、光学素子の光学機能面に、入射光の波長以下の微細な凹凸を形成することによって実現されている。
たとえば、特許文献1(特開2005−316393号公報)、特許文献2(特開2006−171219号公報)および特許文献3(特開2006−053220号公報)においては、反射防止構造として、光学素子の曲面の法線方向に微細構造の凹または凸形状を形成する技術が開示されており、光線の入射角度が光軸方向に対して大きくなっても反射防止効果が得られるとしている。
This surface non-reflective structure, that is, the antireflection structure is realized by forming fine irregularities having a wavelength equal to or less than the wavelength of incident light on the optical function surface of the optical element.
For example, in Patent Document 1 (Japanese Patent Laid-Open No. 2005-316393), Patent Document 2 (Japanese Patent Laid-Open No. 2006-171219) and Patent Document 3 (Japanese Patent Laid-Open No. 2006-053220), an optical element is used as an antireflection structure. A technique for forming a concave or convex shape with a fine structure in the normal direction of the curved surface is disclosed, and it is said that an antireflection effect can be obtained even when the incident angle of the light beam is increased with respect to the optical axis direction.

しかしながら、上述の従来技術では以下の技術的課題が残されていた。
即ち、特許文献1、特許文献2および特許文献3のいずれの場合も、単に、光学素子の曲面の法線方向に微細構造の凹または凸形状を形成しているため、光軸方向から光が入射した場合でも、光学素子の光学機能面内での反射率の分布に偏りが発生し、光学機能面内の特定の部分における反射防止効果が低下する懸念がある。
However, the following technical problems remain in the above-described conventional technology.
That is, in any of Patent Document 1, Patent Document 2, and Patent Document 3, since a concave or convex shape with a fine structure is simply formed in the normal direction of the curved surface of the optical element, light is emitted from the optical axis direction. Even when the light is incident, there is a concern that the reflectance distribution in the optical functional surface of the optical element is biased, and the antireflection effect at a specific portion in the optical functional surface is lowered.

特に、その法線方向が光軸方向と大きな角度をなす光学機能面を有する光学素子において、光学機能面内での反射率の分布に偏りが発生する懸念が大きくなる。   In particular, in an optical element having an optical functional surface whose normal direction forms a large angle with the optical axis direction, there is a greater concern that the distribution of reflectance in the optical functional surface is biased.

特開2005−316393号公報JP 2005-316393 A 特開2006−171219号公報JP 2006-171219 A 特開2006−053220号公報JP 2006-053220 A

本発明の目的は、その法線方向が光軸方向と大きな角度をなす光学機能面を有する光学素子において、光学機能面における反射率の分布の偏りを軽減することが可能な技術を提供することにある。   An object of the present invention is to provide a technique capable of reducing the uneven distribution of reflectance on an optical function surface in an optical element having an optical function surface whose normal direction forms a large angle with the optical axis direction. It is in.

本発明の第1の観点は、可視光線の波長よりも短い周期で凹または凸の複数の微細構造体が形成された光学機能面を有する光学素子であって、
少なくとも一部の前記微細構造体が、前記光学機能面の法線方向に対して傾いて形成されている光学素子を提供する。
A first aspect of the present invention is an optical element having an optical functional surface on which a plurality of concave or convex microstructures are formed with a period shorter than the wavelength of visible light,
Provided is an optical element in which at least a part of the microstructure is formed to be inclined with respect to a normal direction of the optical function surface.

本発明の第2の観点は、可視光線の波長よりも短い周期で凹または凸の複数の微細構造体が形成された光学機能面を有する光学素子の製造方法であって、
少なくとも一部の前記微細構造体を、前記光学機能面の法線方向に対して傾けて形成する光学素子の製造方法を提供する。
A second aspect of the present invention is a method for manufacturing an optical element having an optical functional surface on which a plurality of concave or convex fine structures are formed with a period shorter than the wavelength of visible light,
Provided is a method for manufacturing an optical element, wherein at least a part of the microstructure is formed to be inclined with respect to a normal direction of the optical function surface.

本発明によれば、その法線方向が光軸方向と大きな角度をなす光学機能面を有する光学素子において、光学機能面における反射率の分布の偏りを軽減することが可能な技術を提供することができる。   According to the present invention, in an optical element having an optical function surface whose normal direction forms a large angle with the optical axis direction, a technique capable of reducing the uneven distribution of reflectance on the optical function surface is provided. Can do.

本発明の一実施の形態である光学素子の製造方法によって製造された光学素子の構成例を示す斜視図である。It is a perspective view which shows the structural example of the optical element manufactured by the manufacturing method of the optical element which is one embodiment of this invention. 本発明の一実施の形態である光学素子の光軸に沿った断面図である。It is sectional drawing along the optical axis of the optical element which is one embodiment of this invention. 図1に例示された高傾斜部のA部断面を拡大した断面図である。It is sectional drawing to which the A section cross section of the high inclination part illustrated by FIG. 1 was expanded. 本発明の他の実施の形態である光学素子における図1のA部断面を拡大した断面図である。It is sectional drawing which expanded the A section cross section of FIG. 1 in the optical element which is other embodiment of this invention.

本実施の形態の第1態様では、可視光線の波長よりも短い周期の凹または凸の複数の微細構造体が形成された、曲面(光学機能面)の法線方向が光軸に対して30°以上の角度をなす部分(高傾斜部)を有する光学素子において、高傾斜部においては、微細構造体が曲面の法線方向に対して傾いて形成されている光学素子を提供する。   In the first aspect of the present embodiment, the normal direction of the curved surface (optical functional surface) in which a plurality of concave or convex microstructures having a period shorter than the wavelength of visible light is formed is 30 with respect to the optical axis. In an optical element having a portion (high inclination portion) having an angle of more than 0 °, an optical element in which the fine structure is inclined with respect to the normal direction of the curved surface is provided in the high inclination portion.

この第1態様に係る光学素子においては、光学素子の光軸に対して曲面の法線方向が30°以上の角度をなす高傾斜部に微細構造体を形成する際に、形成方向を光学素子曲面の法線方向に一致させず、法線方向に対して傾けて形成されている。   In the optical element according to the first aspect, when the fine structure is formed in the highly inclined portion in which the normal direction of the curved surface forms an angle of 30 ° or more with respect to the optical axis of the optical element, the formation direction is set to the optical element. It is formed so as to be inclined with respect to the normal direction without matching the normal direction of the curved surface.

このように、光学素子の光軸に対して曲面の法線方向が30°以上の角度をなす高傾斜部においては、微細構造体を光学素子の曲面の法線方向に対して傾けて形成することにより、入射光に対して光学素子面内の反射率を均一に軽減することが可能な光学素子となる。   As described above, the fine structure is formed so as to be inclined with respect to the normal direction of the curved surface of the optical element in the high inclined portion in which the normal direction of the curved surface forms an angle of 30 ° or more with respect to the optical axis of the optical element. Thus, an optical element capable of uniformly reducing the reflectance within the optical element surface with respect to incident light is obtained.

特に半球形状のような、外周部での曲面の法線方向が光軸と大きな角度をなす光学素子において有効である。
第2態様では、第1態様に記載の光学素子において、前記微細構造体の法線方向に対する傾き角度が±5°以上である光学素子を提供する。
This is particularly effective in an optical element such as a hemispherical shape in which the normal direction of the curved surface at the outer peripheral portion forms a large angle with the optical axis.
According to a second aspect, there is provided the optical element according to the first aspect, wherein an inclination angle with respect to a normal direction of the fine structure is ± 5 ° or more.

この第2態様の光学素子においては、光学素子の光軸に対して曲面の法線方向が30°以上の角度をなす高傾斜部に微細構造体を形成する際に、形成方向を光学素子曲面の法線方向に一致させず、法線方向に対し5°以上傾けて形成されている。   In the optical element according to the second aspect, when the fine structure is formed in the highly inclined portion where the normal direction of the curved surface forms an angle of 30 ° or more with respect to the optical axis of the optical element, the forming direction is set to the curved surface of the optical element. It is formed so as to be inclined by 5 ° or more with respect to the normal direction.

このように、光学素子の光軸に対して曲面の法線方向が大きな角度をなす高傾斜部において、微細構造体を光学素子の法線方向に対して5°以上傾けて形成することにより、光学素子面内の反射率をより均一に低減させることが可能となる。   In this way, by forming the fine structure at an angle of 5 ° or more with respect to the normal direction of the optical element in the high inclination portion where the normal direction of the curved surface forms a large angle with respect to the optical axis of the optical element, It becomes possible to reduce the reflectance in the optical element plane more uniformly.

第3態様では、第1態様〜第2態様に記載の光学素子において、複数の前記微細構造体の法線方向に対する傾き角度および傾き方向がランダムに形成されている光学素子を提供する。   According to a third aspect, there is provided the optical element according to the first aspect to the second aspect, wherein an inclination angle and an inclination direction with respect to a normal direction of the plurality of fine structures are randomly formed.

この第3態様に係る光学素子においては、光学素子の光軸に対して曲面の法線方向が30°以上の角度をなす高傾斜部に微細構造体を形成する際に、複数の微細構造体のそれぞれを、光学素子の曲面の法線方向に対して傾き角度および傾き方向の少なくとも一方がランダムになるように形成されている。   In the optical element according to the third aspect, a plurality of fine structures are formed when the fine structures are formed in the high inclined portion in which the normal direction of the curved surface forms an angle of 30 ° or more with respect to the optical axis of the optical element. Each is formed such that at least one of the tilt angle and the tilt direction is random with respect to the normal direction of the curved surface of the optical element.

このように、光学素子の光軸に対して曲面の法線方向が大きな角度をなす高傾斜部において、複数の微細構造体のそれぞれを光学素子曲面の法線方向に対して傾き角度および傾き方向の少なくとも一方をランダムに形成することにより、光軸に対する入射光の方向によらず、光学素子面内の反射率をさらにより均一に低減させることが可能な光学素子となる。   In this way, in the highly inclined portion where the normal direction of the curved surface forms a large angle with respect to the optical axis of the optical element, each of the plurality of fine structures is inclined with respect to the normal direction of the optical element curved surface. By forming at least one of them randomly, an optical element capable of reducing the reflectance in the optical element plane even more uniformly regardless of the direction of incident light with respect to the optical axis is obtained.

第4態様では、第1態様〜第3態様に記載の光学素子を備えた光学系を提供する。
この第4態様に係る光学系においては、光学素子の光軸に対して曲面の法線方向が30°以上の角度をなす高傾斜部に微細構造体を形成する際に、形成方向を光学素子の曲面の法線方向に一致させず、法線方向に対して傾いて形成された光学素子を用いている。
In a 4th aspect, the optical system provided with the optical element as described in a 1st aspect-a 3rd aspect is provided.
In the optical system according to the fourth aspect, when the fine structure is formed in the highly inclined portion in which the normal direction of the curved surface forms an angle of 30 ° or more with respect to the optical axis of the optical element, the formation direction is set to the optical element. The optical element formed so as not to coincide with the normal direction of the curved surface is inclined with respect to the normal direction.

このように、光学素子の光軸に対して曲面の法線方向が30°以上の角度をなす高傾斜部において、微細構造体を光学素子の曲面の法線方向に対して傾けて形成することにより、光学素子の光軸に対して曲面の法線方向が大きな角度をなす部分を有する光学素子を用いた場合でも、光の入射に対して光学素子の曲面内の反射率を均一に軽減することが可能な光学系を作製することができる。   In this way, the fine structure is formed to be inclined with respect to the normal direction of the curved surface of the optical element in the high inclined portion where the normal direction of the curved surface forms an angle of 30 ° or more with respect to the optical axis of the optical element. Thus, even when an optical element having a portion in which the normal direction of the curved surface forms a large angle with respect to the optical axis of the optical element, the reflectance within the curved surface of the optical element is uniformly reduced with respect to the incidence of light. It is possible to manufacture an optical system that can be used.

上述の第1態様〜第3態様に係る光学素子によれば、光学素子の光軸に対して曲面の法線方向が30°以上の角度をなす高傾斜部において、微細構造体を光学素子曲面の法線方向に対して傾けて形成することにより、光学素子の光軸に対して曲面の法線方向が大きな角度をなす部分を有する光学素子を用いた場合でも、光の入射に対して光学素子の曲面内の反射率を均一に軽減でき、反射防止膜を形成することなく光学素子の曲面内での反射率が均一となる光学素子を作製することが可能となる。   According to the optical elements according to the first to third aspects described above, the microstructure is formed on the curved surface of the optical element in the highly inclined portion where the normal direction of the curved surface forms an angle of 30 ° or more with respect to the optical axis of the optical element. Even if an optical element having a portion in which the normal direction of the curved surface forms a large angle with respect to the optical axis of the optical element is used, it is optical with respect to the incidence of light. The reflectance within the curved surface of the element can be reduced uniformly, and an optical element with uniform reflectance within the curved surface of the optical element can be produced without forming an antireflection film.

以下、図面を参照しながら、本発明の実施の形態について詳細に説明する。
[実施の形態1]
本発明の実施の形態1について、図1、図2および図3を参照して説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[Embodiment 1]
Embodiment 1 of the present invention will be described with reference to FIG. 1, FIG. 2, and FIG.

(構成)
図1は、本発明の一実施の形態である光学素子の製造方法によって製造された光学素子の構成例を示す斜視図である。
(Constitution)
FIG. 1 is a perspective view showing a configuration example of an optical element manufactured by a method for manufacturing an optical element according to an embodiment of the present invention.

図1に例示されるように、本実施の形態の光学素子1は、光軸7上の一端に平坦面1bを光学機能面として有し、その反対側に凸の曲面1aを光学機能面として有する平凸レンズである。   As illustrated in FIG. 1, the optical element 1 of the present embodiment has a flat surface 1b as an optical functional surface at one end on the optical axis 7, and a convex curved surface 1a as an optical functional surface on the opposite side. A plano-convex lens.

一例として、この光学素子1における曲面1aの曲率半径Rは10mm、レンズ径Dは15mmとなっており、この曲面1aの全面に後述のような無数の凸部3aからなる微細構造体3が形成されている。なお、必要に応じて平坦面1bの側にも微細構造体3を設けてよい。   As an example, the curvature radius R of the curved surface 1a of this optical element 1 is 10 mm, and the lens diameter D is 15 mm. Has been. Note that the microstructure 3 may be provided on the flat surface 1b side as necessary.

本実施の形態の光学素子1の、光軸7に対して曲面1aの法線方向5のなす角度が30°以上となる範囲は、図1における高傾斜部2である。すなわち、本実施の形態の諸元を有する光学素子1の場合、この高傾斜部2は、曲面1aにおいて、径bが10mmの位置から径aが15mmの位置(この場合、レンズ径Dと等しい位置)までの範囲の領域である。   The range in which the angle formed by the normal direction 5 of the curved surface 1a with respect to the optical axis 7 of the optical element 1 of the present embodiment is 30 ° or more is the high slope portion 2 in FIG. That is, in the case of the optical element 1 having the specifications of the present embodiment, the highly inclined portion 2 is located on the curved surface 1a from a position where the diameter b is 10 mm to a position where the diameter a is 15 mm (in this case, equal to the lens diameter D). This is the area in the range up to (position).

図2は、本実施の形態の光学素子1の光軸7に沿った断面図である。
この図2において、角度βは径bの部位の曲面1aの法線方向5と光軸7との角度を示し、角度αは径aの部位の曲面1aの法線方向5と光軸7との角度を示している。
FIG. 2 is a cross-sectional view along the optical axis 7 of the optical element 1 of the present embodiment.
In FIG. 2, the angle β indicates the angle between the normal direction 5 of the curved surface 1 a of the portion with the diameter b and the optical axis 7, and the angle α indicates the normal direction 5 of the curved surface 1 a with the portion of the diameter a and the optical axis 7. Indicates the angle.

本実施の形態の光学素子1においては、一例として、角度βが30°、角度αが41°となっており、この角度αから角度βの範囲が光軸7に対して曲面1aの法線方向5への光の入射角度が30°以上となる範囲、すなわち高傾斜部2である。   In the optical element 1 of the present embodiment, as an example, the angle β is 30 ° and the angle α is 41 °, and the range from the angle α to the angle β is a normal line of the curved surface 1 a with respect to the optical axis 7. The range in which the incident angle of light in the direction 5 is 30 ° or more, that is, the high slope portion 2.

また、図3は、図1に例示された高傾斜部2のA部断面を拡大した断面図である。
本実施の形態の光学素子1の微細構造体3は、反射防止対象となる可視光線の波長以下の周期で形成された複数の凸部3aからなり、高傾斜部2の領域では、微細構造体3を構成するそれぞれの凸部3aの凸部形成方向4が光学素子曲面の法線方向5とは一致せずに傾けて形成されている。
FIG. 3 is an enlarged cross-sectional view of a section A of the high slope portion 2 illustrated in FIG.
The microstructure 3 of the optical element 1 according to the present embodiment is composed of a plurality of convex portions 3a formed with a period equal to or less than the wavelength of visible light to be antireflection, and in the region of the high slope portion 2, the microstructure The convex portion forming direction 4 of each convex portion 3a that constitutes 3 is tilted without being coincident with the normal direction 5 of the optical element curved surface.

なお、凸部形成方向4とは個々の凸部3aの凸部中心軸のことである。そして、一例として、高傾斜部2のそれぞれの凸部形成方向4と光学素子1の曲面1aの法線方向5の傾き角度6は5°以上となっており、傾き方向は面頂8の方向(面頂方向)となっている。   In addition, the convex part formation direction 4 is a convex part central axis of each convex part 3a. And as an example, the inclination angle 6 of each convex part formation direction 4 of the high inclination part 2 and the normal direction 5 of the curved surface 1a of the optical element 1 is 5 degrees or more, and the inclination direction is the direction of the surface apex 8. (Top direction).

なお、図3では、微細構造体3を構成するそれぞれの凸部3aは、曲面1aの輪郭に沿って同じ周期で形成された場合が例示されているが、反射防止効果が保たれる前記波長範囲内において凸部3aの形成周期はランダムであっても構わない。   In addition, in FIG. 3, although the case where each convex part 3a which comprises the fine structure 3 is formed with the same period along the outline of the curved surface 1a is illustrated, the said wavelength by which the antireflection effect is maintained. Within the range, the formation period of the convex portions 3a may be random.

また、特に図示しないが、高傾斜部2以外の曲面1aに形成されているそれぞれの凸部形成方向4は、光学素子1の曲面1aの法線方向5に対し5°以内の傾きで形成されている。   Further, although not particularly illustrated, each convex portion forming direction 4 formed on the curved surface 1 a other than the high inclined portion 2 is formed with an inclination of 5 ° or less with respect to the normal direction 5 of the curved surface 1 a of the optical element 1. ing.

(作用)
本実施の形態に係る光学素子1によれば光学素子1の光軸7に対して曲面1aの法線方向5が30°以上の角度をなす高傾斜部2において、微細構造体3を構成する複数の凸部3aが、光学素子1の曲面1aの法線方向5に対して傾いて形成されているため、光学素子1の曲面1a内の反射防止効果を、曲面1aの全体で均一にすることができる。
(Function)
According to the optical element 1 according to the present embodiment, the fine structure 3 is configured in the high inclined portion 2 in which the normal direction 5 of the curved surface 1a forms an angle of 30 ° or more with respect to the optical axis 7 of the optical element 1. Since the plurality of convex portions 3a are formed to be inclined with respect to the normal direction 5 of the curved surface 1a of the optical element 1, the antireflection effect in the curved surface 1a of the optical element 1 is made uniform over the entire curved surface 1a. be able to.

(効果)
これにより、曲率半径が小さい曲面1aを有する光学素子1においても高傾斜部2の曲面1aの全体から良好に均一な反射防止効果を得ることが可能となる。また、高傾斜部2以外の曲面1aにも微細構造体3の凸部3aが形成されているため、光学素子1の曲面1aの全面に入射される光の反射を均一に抑えることができる。
(effect)
Thereby, even in the optical element 1 having the curved surface 1a having a small curvature radius, it is possible to obtain a good and uniform antireflection effect from the entire curved surface 1a of the high inclined portion 2. Moreover, since the convex part 3a of the fine structure 3 is formed also on the curved surface 1a other than the high inclination part 2, the reflection of the light which injects into the whole surface of the curved surface 1a of the optical element 1 can be suppressed uniformly.

なお、光学系においては、特に入射側第一面などの光が入射する側に本実施の形態1の光学素子1を配置することにより、光学素子1の曲面1a内において反射率分布の偏り少ない反射防止効果を得ることができるため、良好な反射防止能を有する光学系を得ることが可能となる。   In the optical system, the optical element 1 of the first embodiment is arranged particularly on the incident side, such as the first surface on the incident side, so that the reflectance distribution is less biased in the curved surface 1a of the optical element 1. Since an antireflection effect can be obtained, an optical system having a good antireflection performance can be obtained.

[実施の形態2]
本発明の実施の形態2について、図1および図4を参照して説明する。
(構成)
本実施の形態2の光学素子21の曲率半径Rおよびレンズ径Dは実施の形態1と同じ仕様であり、高傾斜部2も、曲面1aの同じ範囲に形成されている。
[Embodiment 2]
A second embodiment of the present invention will be described with reference to FIG. 1 and FIG.
(Constitution)
The radius of curvature R and the lens diameter D of the optical element 21 of the second embodiment have the same specifications as those of the first embodiment, and the high slope portion 2 is also formed in the same range of the curved surface 1a.

図4は、本実施の形態2の光学素子21における図1の高傾斜部2のA部を拡大した断面図である。
図4に例示されるように、本実施の形態の光学素子21の場合、高傾斜部2の範囲内において微細構造体23を構成するそれぞれの凸部23aの光学素子の法線方向25に対する傾き角度26および凸部形成方向24は反射防止効果が保たれる範囲でランダムに異なっている。
FIG. 4 is an enlarged cross-sectional view of a portion A of the high slope portion 2 of FIG. 1 in the optical element 21 of the second embodiment.
As illustrated in FIG. 4, in the case of the optical element 21 of the present embodiment, the inclination of each convex portion 23 a constituting the microstructure 23 within the range of the high inclined portion 2 with respect to the normal direction 25 of the optical element. The angle 26 and the convex forming direction 24 are randomly different within a range in which the antireflection effect is maintained.

そして、高傾斜部2における凸部23aの傾き角度26は光学素子21の曲面1aの法線方向25に対し5°以上となっている。
なお、凸部形成方向24に関しては、面頂8に向かう方向(面頂方向)、平坦面1bに向かう方向(平面方向)、および光軸7の回りの周方向のどの方向でもよく、それぞれの方向を組み合わせた方向でも構わない。
The inclination angle 26 of the convex portion 23 a in the high inclination portion 2 is 5 ° or more with respect to the normal direction 25 of the curved surface 1 a of the optical element 21.
Note that the convex formation direction 24 may be any of the direction toward the surface apex 8 (surface apex direction), the direction toward the flat surface 1b (plane direction), and the circumferential direction around the optical axis 7. The direction may be a combination of directions.

なお、曲面1aにおいて高傾斜部2以外の領域に形成されている個々の凸部23aは、たとえば、光学素子21の曲面1aの法線方向25に対し5°以内の傾きで形成されている。   In addition, each convex part 23a formed in the area | regions other than the high inclination part 2 in the curved surface 1a is formed in the inclination within 5 degrees with respect to the normal line direction 25 of the curved surface 1a of the optical element 21, for example.

(作用)
本実施の形態2に係る光学素子21によれば、光学素子21の光軸7に対して曲面1aの法線方向25が30°以上の角度をなす高傾斜部2において、微細構造体23を構成するそれぞれの凸部23aが光学素子21の曲面1aの法線方向25に対して傾いて形成されているため、光学素子21の曲面1a内の反射防止効果を高いレベルで均一にすることができる。
(Function)
According to the optical element 21 according to the second embodiment, the fine structure 23 is formed in the highly inclined portion 2 where the normal direction 25 of the curved surface 1a forms an angle of 30 ° or more with respect to the optical axis 7 of the optical element 21. Since each convex part 23a which comprises is formed inclining with respect to the normal line direction 25 of the curved surface 1a of the optical element 21, the antireflection effect in the curved surface 1a of the optical element 21 can be made uniform at a high level. it can.

(効果)
これにより、たとえば、曲率半径Rが小さい曲面1aを有する光学素子21においても高傾斜部2の曲面1aの全体の反射防止効果を高いレベルで均一に得ることが可能となる。
(effect)
As a result, for example, even in the optical element 21 having the curved surface 1a having a small radius of curvature R, the entire antireflection effect of the curved surface 1a of the high inclined portion 2 can be obtained uniformly at a high level.

また、高傾斜部2以外の曲面1aにも微細構造体23が形成されているため、光学素子21の曲面1aの全面における光の反射を均一に抑えることができる。
なお、光学系においは、特に入射側第一面などの光が入射する側に本実施の形態2の光学素子21を配置することにより、光学素子21の曲面1a内において反射率分布の偏り少ない反射防止効果を得ることができるため、良好な反射防止能を有する光学系を得ることが可能となる。
In addition, since the fine structure 23 is formed on the curved surface 1a other than the high-inclined portion 2, light reflection on the entire surface of the curved surface 1a of the optical element 21 can be suppressed uniformly.
In the optical system, the optical element 21 according to the second embodiment is arranged particularly on the light incident side such as the first surface on the incident side, whereby the reflectance distribution is less uneven in the curved surface 1a of the optical element 21. Since the antireflection effect can be obtained, an optical system having a good antireflection ability can be obtained.

なお、実施の形態1および実施の形態2において微細構造体を凸形状としているが、微細構造体は凹形状でも構わない。
また、凸形状および凹形状は反射防止効果が保たれる範囲で、円錐などの錐体形状や釣鐘形状とすることもできる。
In the first and second embodiments, the fine structure has a convex shape, but the fine structure may have a concave shape.
Further, the convex shape and the concave shape can be made into a cone shape such as a cone or a bell shape as long as the antireflection effect is maintained.

さらに、凸部の中心軸を直線としているが、湾曲している等、直線でなくてもよい。
なお、上述の図3では、それぞれの凸部3aの傾き角度6および傾き方向(凸部形成方向4)は同様であり、傾き方向(凸部形成方向4)は面頂8に向かう方向(面頂方向)となっているが、図4に示すように、それぞれの凸部23aの曲面1aの法線方向25に対する傾き角度26および凸部形成方向24は反射防止効果が保たれる範囲で異なっても良い。凸部3aや凸部23aの形成方向に関しては、面頂8に向かう方向(面頂方向)、平坦面1bに向かう方向(平面方向)、光軸7の回りの周方向のどの方向でもよく、それぞれの方向を組み合わせた方向でも構わない。
Furthermore, although the central axis of the convex portion is a straight line, it may not be a straight line such as curved.
In FIG. 3 described above, the inclination angle 6 and the inclination direction (convex portion forming direction 4) of each convex portion 3a are the same, and the inclination direction (convex portion forming direction 4) is the direction (surface) toward the surface apex 8. However, as shown in FIG. 4, the inclination angle 26 of each convex portion 23a with respect to the normal direction 25 of the curved surface 1a and the convex formation direction 24 are different within the range in which the antireflection effect is maintained. May be. Regarding the forming direction of the convex portion 3a and the convex portion 23a, any direction of the direction toward the surface top 8 (surface top direction), the direction toward the flat surface 1b (plane direction), and the circumferential direction around the optical axis 7 may be used. A direction in which each direction is combined may be used.

ここで、上述の各実施の形態の光学素子の製造方法の一例について説明する。
上述の光学素子1および光学素子21のいずれでもほぼ同じであるため、光学素子1を例にとって説明する。
Here, an example of the manufacturing method of the optical element of each embodiment described above will be described.
Since both the optical element 1 and the optical element 21 described above are substantially the same, the optical element 1 will be described as an example.

反射防止機能を有する本実施の形態の光学素子1における微細構造体3の形成方法の一例について説明する。
本実施の形態の光学素子1においては、どのような方法を用いて曲面1aに微細構造体3を形成しても構わない。
An example of a method for forming the fine structure 3 in the optical element 1 of the present embodiment having an antireflection function will be described.
In the optical element 1 of the present embodiment, the microstructure 3 may be formed on the curved surface 1a using any method.

微細構造体3を形成する方法としては、たとえば、以下の方法を用いることができる。
たとえば、形成しようとする微細構造体3とは逆形状の形状を有する金型を用いて光学素子1を成形すると同時に光学素子1の曲面1aに微細構造体3を形成する方法を用いることができる。
As a method for forming the fine structure 3, for example, the following method can be used.
For example, it is possible to use a method of forming the microstructure 3 on the curved surface 1a of the optical element 1 at the same time that the optical element 1 is molded using a mold having a shape opposite to that of the microstructure 3 to be formed. .

また、光学素子1の曲面1aに硬化性材料を形成した後に、形成しようとする微細構造体3とは逆の凹凸形状を有する金型を用いて硬化性材料に凹凸形状を転写し、硬化性材料を硬化させる方法を用いることができる。   In addition, after forming the curable material on the curved surface 1a of the optical element 1, the concavo-convex shape is transferred to the curable material using a mold having the concavo-convex shape opposite to the microstructure 3 to be formed, and curable. A method of curing the material can be used.

また、光学素子1の曲面1aに直接的に電子線を照射して微細構造体3の凹凸形状を描画する方法を用いることができる。
これらの、どの方法を用いても構わない。
Moreover, the method of drawing the uneven | corrugated shape of the fine structure 3 by irradiating an electron beam directly to the curved surface 1a of the optical element 1 can be used.
Any of these methods may be used.

なお、形成しようとする微細構造体3とは逆の凹凸形状を有する金型の作製方法はどのような方法を用いても構わない。
例えば半導体プロセスの電子線描画やイオンエッチングなどのリソグラフィー技術を利用して型基材に形成しようとする微細構造体3とは逆の凹凸形状の微細構造体を形成して原型を作製する方法を用いることができる。
Note that any method may be used as a method of manufacturing a mold having an uneven shape opposite to the microstructure 3 to be formed.
For example, a method of producing a prototype by forming a fine structure having an uneven shape opposite to the fine structure 3 to be formed on a mold base using a lithography technique such as electron beam drawing or ion etching of a semiconductor process. Can be used.

また、型基材に形成しようとする微細構造体3を形成した後、Niなどの金属を用いて電鋳法により反転型を作製する方法などを用いることができる。
なお、本発明は、上述の実施の形態に例示した構成に限らず、その趣旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
Moreover, after forming the microstructure 3 to be formed on the mold base, a method of producing an inverted mold by electroforming using a metal such as Ni can be used.
Needless to say, the present invention is not limited to the configuration exemplified in the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

たとえば、光学素子1や光学素子21における高傾斜部2の形状は、光軸7に対して傾斜した円錐面や平面でもよい。   For example, the shape of the high inclination portion 2 in the optical element 1 or the optical element 21 may be a conical surface or a plane inclined with respect to the optical axis 7.

1 光学素子
1a 曲面
1b 平坦面
2 高傾斜部
3 微細構造体
3a 凸部
4 凸部形成方向
5 曲面1aの法線方向
6 傾き角度
7 光軸
8 面頂
21 光学素子
23 微細構造体
23a 凸部
24 凸部形成方向
25 曲面1aの法線方向
26 傾き角度
DESCRIPTION OF SYMBOLS 1 Optical element 1a Curved surface 1b Flat surface 2 Highly inclined part 3 Fine structure 3a Convex part 4 Convex part forming direction 5 Normal direction 6 of the curved surface 1a Inclination angle 7 Optical axis 8 Surface top 21 Optical element 23 Fine structure 23a Convex part 24 Convex part forming direction 25 Normal direction of curved surface 1a 26 Inclination angle

Claims (8)

可視光線の波長よりも短い周期で凹または凸の複数の微細構造体が形成された光学機能面を有する光学素子であって、
少なくとも一部の前記微細構造体が、前記光学機能面の法線方向に対して傾いて形成されていることを特徴とする光学素子。
An optical element having an optical functional surface on which a plurality of concave or convex fine structures are formed with a period shorter than the wavelength of visible light,
At least a part of the fine structure is formed to be inclined with respect to a normal direction of the optical function surface.
請求項1記載の光学素子において、
前記光学素子は、前記光学機能面の法線方向が当該光学素子の光軸に対して30°以上の角度をなす高傾斜部を有し、
当該高傾斜部においては、前記微細構造体が、前記光学機能面の法線方向に対して傾いて形成されていることを特徴とする光学素子。
The optical element according to claim 1, wherein
The optical element has a high slope portion in which the normal direction of the optical function surface forms an angle of 30 ° or more with respect to the optical axis of the optical element,
In the high inclination portion, the fine structure is formed to be inclined with respect to a normal direction of the optical function surface.
請求項1または請求項2記載の光学素子において、
前記微細構造体の前記法線方向に対する傾き角度が±5°以上であることを特徴とする光学素子。
The optical element according to claim 1 or 2,
An optical element, wherein an inclination angle of the fine structure with respect to the normal direction is ± 5 ° or more.
請求項1から請求項3のいずれか1項に記載の光学素子において、
複数の前記微細構造体の前記法線方向に対する傾き角度および傾き方向の少なくとも一方がランダムに形成されていることを特徴とする光学素子。
The optical element according to any one of claims 1 to 3,
An optical element, wherein at least one of an inclination angle and an inclination direction with respect to the normal direction of the plurality of fine structures is randomly formed.
可視光線の波長よりも短い周期で凹または凸の複数の微細構造体が形成された光学機能面を有する光学素子の製造方法であって、
少なくとも一部の前記微細構造体を、前記光学機能面の法線方向に対して傾けて形成することを特徴とする光学素子の製造方法。
A method of manufacturing an optical element having an optical functional surface on which a plurality of concave or convex microstructures are formed with a period shorter than the wavelength of visible light,
At least a part of the fine structure is formed to be inclined with respect to a normal direction of the optical function surface.
請求項5記載の光学素子の製造方法において、
前記光学素子は、前記光学機能面の法線方向が当該光学素子の光軸に対して30°以上の角度をなす高傾斜部を有し、
当該高傾斜部においては、前記微細構造体を、前記光学機能面の法線方向に対して傾けて形成することを特徴とする光学素子の製造方法。
In the manufacturing method of the optical element according to claim 5,
The optical element has a high slope portion in which the normal direction of the optical function surface forms an angle of 30 ° or more with respect to the optical axis of the optical element,
In the high inclined portion, the microstructure is formed to be inclined with respect to the normal direction of the optical function surface.
請求項5または請求項6記載の光学素子の製造方法において、
前記微細構造体の前記法線方向に対する傾き角度が±5°以上であることを特徴とする光学素子の製造方法。
In the manufacturing method of the optical element of Claim 5 or Claim 6,
The method of manufacturing an optical element, wherein an inclination angle of the fine structure with respect to the normal direction is ± 5 ° or more.
請求項5から請求項7のいずれか1項に記載の光学素子の製造方法において、
複数の前記微細構造体の前記法線方向に対する傾き角度および傾き方向の少なくとも一方をランダムに形成することを特徴とする光学素子の製造方法。
In the manufacturing method of the optical element of any one of Claims 5-7,
A manufacturing method of an optical element, wherein at least one of an inclination angle and an inclination direction with respect to the normal direction of the plurality of fine structures is randomly formed.
JP2009159012A 2009-07-03 2009-07-03 Optical element and method for producing the same Pending JP2011013562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009159012A JP2011013562A (en) 2009-07-03 2009-07-03 Optical element and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009159012A JP2011013562A (en) 2009-07-03 2009-07-03 Optical element and method for producing the same

Publications (1)

Publication Number Publication Date
JP2011013562A true JP2011013562A (en) 2011-01-20

Family

ID=43592491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009159012A Pending JP2011013562A (en) 2009-07-03 2009-07-03 Optical element and method for producing the same

Country Status (1)

Country Link
JP (1) JP2011013562A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003066203A (en) * 2001-08-28 2003-03-05 Hitachi Maxell Ltd Method for forming fine rugged structure, and member having the ruggedness
JP2004361906A (en) * 2003-04-07 2004-12-24 Minolta Co Ltd Transmission type optical element and optical device
JP2007171857A (en) * 2005-12-26 2007-07-05 Ricoh Co Ltd Optical element and optical scanner
WO2007142186A1 (en) * 2006-06-06 2007-12-13 Panasonic Corporation Optical member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003066203A (en) * 2001-08-28 2003-03-05 Hitachi Maxell Ltd Method for forming fine rugged structure, and member having the ruggedness
JP2004361906A (en) * 2003-04-07 2004-12-24 Minolta Co Ltd Transmission type optical element and optical device
JP2007171857A (en) * 2005-12-26 2007-07-05 Ricoh Co Ltd Optical element and optical scanner
WO2007142186A1 (en) * 2006-06-06 2007-12-13 Panasonic Corporation Optical member

Similar Documents

Publication Publication Date Title
CN100399061C (en) Fresnel lens and lighting apparatus provided with the fresnel lens
TWI764897B (en) Diffusion plate and projection-type projector apparatus
JP2011107195A (en) Optical element, method of manufacturing the same, minutely rugged structure, and molding die
WO2016143350A1 (en) Diffusion plate
JP2014038314A (en) Optical element, projection device, measurement device and manufacturing method
JP2007127855A (en) Optical element
JPWO2005109042A1 (en) Optical element and manufacturing method thereof
US9500778B2 (en) Optical element, mold, and optical device
US10725212B2 (en) Lens
JP2004317922A (en) Surface processing method, optical element, and metal mold therefor
US10641931B2 (en) Fresnel lens and manufacturing method for Fresnel lens
JP5519386B2 (en) Optical element
JP4794351B2 (en) Anti-reflection structure and optical device having the same
JP4206447B2 (en) Fine lattice and its mold
JP2011017781A (en) Optical device and optical system
JP5105771B2 (en) Anti-reflection structure and optical device having the same
TW201447386A (en) Optical lens
JP2009187001A (en) Antireflection structure, method of manufacturing antireflection structure, and optical device provided with antireflection structure
JP2016191839A (en) Optical element, projection device, and measurement device
JP2006053220A (en) Member having antireflection part, molding die for the member and method of manufacturing the die
JP2011013562A (en) Optical element and method for producing the same
CN111886446B (en) Optical device for changing light distribution
JP2011059264A (en) Optical element
US20100254013A1 (en) Fresnel lens with cavities
JP5484837B2 (en) Optical element, method for manufacturing optical element, and fine uneven structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130709