JP2011013044A - Electric conductivity detector - Google Patents

Electric conductivity detector Download PDF

Info

Publication number
JP2011013044A
JP2011013044A JP2009156253A JP2009156253A JP2011013044A JP 2011013044 A JP2011013044 A JP 2011013044A JP 2009156253 A JP2009156253 A JP 2009156253A JP 2009156253 A JP2009156253 A JP 2009156253A JP 2011013044 A JP2011013044 A JP 2011013044A
Authority
JP
Japan
Prior art keywords
electrodes
measurement
flow path
measuring
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009156253A
Other languages
Japanese (ja)
Inventor
Takehiro Aoyanagi
雄大 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2009156253A priority Critical patent/JP2011013044A/en
Publication of JP2011013044A publication Critical patent/JP2011013044A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an electric conductivity detector which has a good output linearity for an ion concentration contained in liquid eluted from a separation column and whose measuring cell capacity is small.SOLUTION: The electric conductivity detector includes two working electrodes arranged in parallel, two measuring electrodes arranged so as to be parallel to and sandwiched by the two working electrodes, an insulator for filling a space between the two working electrodes, a channel which is arranged so as to contact with the two working electrodes and the two measuring electrodes and brings the liquid to flow therein, and a measuring cell which brings current flowing into/out of the measuring electrodes to be extremely small, thereby solving the problem.

Description

本発明は電気伝導度検出器、特に液体クロマトグラフィーで用いられる電気伝導度検出器に関する。   The present invention relates to an electrical conductivity detector, and more particularly to an electrical conductivity detector used in liquid chromatography.

液体クロマトグラフィーのうちイオンクロマトグラフィーは、主として無機の陽イオン、無機の陰イオン、有機酸またはアミン類の分離定量に用いられる方法であり、分離カラムにより保持時間差をもって溶出されたイオンは、通常電気伝導度検出器によって溶出されたイオン量を測定する。   Among liquid chromatography, ion chromatography is a method mainly used for separation and quantification of inorganic cations, inorganic anions, organic acids or amines. The amount of ions eluted by the conductivity detector is measured.

イオンクロマトグラフィーの分析時間は、カラム分離剤の高性能化や、システム全体の高耐圧化により短縮されているものの、溶出されたイオンの検出に用いる電気伝導度検出器は出力の直線性が低いため、検量線の作成に多くの既知濃度試料による測定が必要である。そのため、前記分離剤やシステムによる分析時間短縮のメリットを活かしきれない。よって、イオンクロマトグラフィーのさらなる分析時間の短縮には、溶出したイオン濃度に対する出力直線性がよく、かつセル容量が小さい電気伝導度検出器が必要である。   Although the analysis time of ion chromatography has been shortened by improving the performance of column separation agents and increasing the pressure resistance of the entire system, the conductivity detector used to detect the eluted ions has low output linearity. Therefore, it is necessary to measure with many samples of known concentration to create a calibration curve. Therefore, the merit of shortening the analysis time by the separating agent and system cannot be fully utilized. Therefore, in order to further shorten the analysis time of ion chromatography, an electrical conductivity detector having good output linearity with respect to the eluted ion concentration and a small cell capacity is required.

電気伝導度検出器は通常、平行に設置した二つの電極(11)間に分離カラムから溶出された液が流れる構造からなる測定セル(10)を有しており、前記二つの電極間に電圧を印加したときの電流値を電気伝導度として測定する(図1)。このとき、電極間に直流電圧を印加すると電極周辺で分極が起こり溶液の電気伝導度を正しく検出することができないため、通常は1kHz程度の交流電圧を印加する交流インピーダンス法にて測定する。分離カラムから溶出された液のインピーダンスは溶出液中のイオン濃度に関係するため、交流インピーダンス法では前記関係を利用してイオン濃度を測定する。   The electrical conductivity detector usually has a measuring cell (10) having a structure in which a liquid eluted from a separation column flows between two electrodes (11) installed in parallel, and a voltage is applied between the two electrodes. The current value at the time of applying is measured as the electric conductivity (FIG. 1). At this time, when a DC voltage is applied between the electrodes, polarization occurs around the electrodes and the electric conductivity of the solution cannot be detected correctly. Therefore, measurement is usually performed by an AC impedance method in which an AC voltage of about 1 kHz is applied. Since the impedance of the liquid eluted from the separation column is related to the ion concentration in the eluate, the alternating current impedance method measures the ion concentration using the above relationship.

通常用いられる二つの電極からなる測定セルを有した電気伝導度検出器(図1)では、測定されるインピーダンスは、移動相の電気伝導度によるインピーダンスの他に、電極/電解質界面インピーダンスに依存する。前記界面インピーダンスはイオン濃度が高いほどその割合が増えるため、測定応答性が低下し、検量線の直線性低下の原因となった。   In an electric conductivity detector (Fig. 1) having a measurement cell consisting of two commonly used electrodes, the measured impedance depends on the electrode / electrolyte interface impedance in addition to the impedance due to the electric conductivity of the mobile phase. . Since the ratio of the interfacial impedance increases as the ion concentration increases, the measurement responsiveness decreases, causing a decrease in the linearity of the calibration curve.

電極/電解質界面インピーダンスの影響を低減する方法として、二つの作用電極(12)と二つの測定電極(13)からなる測定セル(図2)を用いる方法があり、前記測定セルを液体クロマトグラフィー用電気伝導度検出器に適用することで、測定電極への電流の出入りが減るため、前記界面インピーダンスの影響を低減することができる(特許文献1)。しかしながら、特許文献1の測定セルを用いても、前記測定電極(13)への電流の出入(70)が存在するため(図2)、イオン濃度によって電流が流れる経路が変化する。   As a method for reducing the influence of the electrode / electrolyte interface impedance, there is a method using a measurement cell (FIG. 2) comprising two working electrodes (12) and two measurement electrodes (13), and the measurement cell is used for liquid chromatography. By applying it to an electrical conductivity detector, the current flowing into and out of the measurement electrode is reduced, so that the influence of the interface impedance can be reduced (Patent Document 1). However, even when the measurement cell of Patent Document 1 is used, since the current flows in and out (70) to the measurement electrode (13) (FIG. 2), the path through which the current flows changes depending on the ion concentration.

また、微量分析および/または高感度分析を行なうことを目的に、特許文献1の測定セル容量を小さくしようとした場合、以下のような問題があった。流路の内径を狭くすることでセル容量を小さくしようとした場合、作用電極(12)、測定電極(13)、ならびに作用電極(12)−測定電極(13)間または測定電極(13)−測定電極(13)間にある絶縁体(14)を貫通する、分離カラムから溶出された液が流れる流路(15)の中心位置合わせが難しくなり、測定セル内部でピークが拡がる問題があった。また、電極(12、13)間隔を狭くすることでセル容量を小さくしようとした場合、測定電極(13)間の長さが短くなることによる、電極/電解質界面インピーダンスの影響の問題があった。   Moreover, when trying to reduce the measurement cell capacity of Patent Document 1 for the purpose of performing microanalysis and / or high sensitivity analysis, there are the following problems. When attempting to reduce the cell capacity by narrowing the inner diameter of the flow path, the working electrode (12), the measuring electrode (13), and the working electrode (12) -measuring electrode (13) or measuring electrode (13)- There is a problem that it becomes difficult to align the center of the flow path (15) through which the liquid eluted from the separation column passes through the insulator (14) between the measurement electrodes (13), and the peak expands inside the measurement cell. . Also, when trying to reduce the cell capacity by reducing the distance between the electrodes (12, 13), there is a problem of the influence of the electrode / electrolyte interface impedance due to the shortening of the length between the measurement electrodes (13). .

特開昭57−189052号公報JP-A-57-189052

本発明の課題は、分離カラムから溶出した液に含まれるイオン濃度に対する出力直線性がよく、かつ測定セル容量が小さい液体クロマトグラフィー用電気伝導度検出器を提供することである。   An object of the present invention is to provide an electric conductivity detector for liquid chromatography having good output linearity with respect to ion concentration contained in a liquid eluted from a separation column and a small measuring cell capacity.

上記課題を鑑みてなされた本発明は、以下の発明を包含する:
第一の発明は、
平行に設置した二つの作用電極と、
前記二つの作用電極と平行、かつ挟まれる位置に設置した二つの測定電極と、
前記二つの作用電極の間を埋める絶縁体と、
前記二つの作用電極および前記二つの測定電極と接触するように設置した、液体を流すための流路と、
を備えた測定セルを有した液体クロマトグラフィー用電気伝導度検出器において、
前記測定電極への電流の出入りが極めて少ないことを特徴とする、液体クロマトグラフィー用電気伝導度検出器である。
The present invention made in view of the above problems includes the following inventions:
The first invention is
Two working electrodes installed in parallel,
Two measuring electrodes placed parallel to and between the two working electrodes, and
An insulator filling between the two working electrodes;
A flow path for flowing a liquid, placed in contact with the two working electrodes and the two measuring electrodes;
In an electrical conductivity detector for liquid chromatography having a measuring cell comprising:
It is an electrical conductivity detector for liquid chromatography, characterized in that current flows into and out of the measurement electrode very little.

第二の発明は、
平行に設置した二つの作用電極と、
前記二つの作用電極と平行、かつ挟まれる位置に設置した二つの測定電極と、
前記二つの作用電極の間を埋める絶縁体と、
前記二つの作用電極および前記二つの測定電極と接触するように設置した、液体を流すための流路と、
を備えた測定セルを有した液体クロマトグラフィー用電気伝導度検出器において、
前記測定セルにおける、前記測定電極と流路との接触領域の長さが、前記二つの測定電極の間隔および/または流路の内径と比較し十分に短いことを特徴とする、液体クロマトグラフィー用電気伝導度検出器である。
The second invention is
Two working electrodes installed in parallel,
Two measuring electrodes placed parallel to and between the two working electrodes, and
An insulator filling between the two working electrodes;
A flow path for flowing a liquid, placed in contact with the two working electrodes and the two measuring electrodes;
In an electrical conductivity detector for liquid chromatography having a measuring cell comprising:
The length of the contact region between the measurement electrode and the flow channel in the measurement cell is sufficiently shorter than the distance between the two measurement electrodes and / or the inner diameter of the flow channel, for liquid chromatography It is an electrical conductivity detector.

第三の発明は、
平行に設置した二つの作用電極と、
前記二つの作用電極と平行、かつ挟まれる位置に設置した二つの平板測定電極と、
前記作用電極と測定電極との間を埋める二つの絶縁体と、
前記二つの平板測定電極の間を埋める絶縁体と、
前記二つの作用電極、前記二つの平板測定電極、および前記三つの絶縁体を貫通する、液体を流すための流路と、
を備えた測定セルを有した液体クロマトグラフィー用電気伝導度検出器において、
前記測定セルにおける、前記平板測定電極と流路との接触領域の長さが、前記二つの平板測定電極の間を埋める絶縁体と流路との接触領域の長さおよび/または前記流路の内径より十分に短いことを特徴とする、液体クロマトグラフィー用電気伝導度検出器である。
The third invention is
Two working electrodes installed in parallel,
Two flat measurement electrodes installed in a position parallel to and sandwiched between the two working electrodes;
Two insulators filling the gap between the working electrode and the measuring electrode;
An insulator filling between the two plate measuring electrodes;
A flow path for flowing liquid, penetrating the two working electrodes, the two plate measuring electrodes, and the three insulators;
In an electrical conductivity detector for liquid chromatography having a measuring cell comprising:
In the measurement cell, the length of the contact area between the flat plate measurement electrode and the flow path is the length of the contact area between the insulator and the flow path that fills the space between the two flat plate measurement electrodes and / or the flow path. An electric conductivity detector for liquid chromatography characterized by being sufficiently shorter than the inner diameter.

第四の発明は、前記平板測定電極と流路との接触領域の長さが、前記二つの平板測定電極の間を埋める絶縁体と流路との接触領域の長さおよび/または前記流路の内径の1/5以下であることを特徴とする、第三の発明に記載の電気伝導度検出器である。   According to a fourth aspect of the present invention, the length of the contact area between the flat plate measurement electrode and the flow path is the length of the contact area between the insulator and the flow path that fills between the two flat plate measurement electrodes and / or the flow path. The electrical conductivity detector according to the third aspect of the present invention, wherein the electrical conductivity detector is 1/5 or less of the inner diameter of the first invention.

第五の発明は、
平行に設置した二つの作用電極と、
前記二つの作用電極と平行、かつ挟まれる位置に設置した二つの棒状または針状測定電極と、
前記二つの作用電極の間を埋める絶縁体と、
前記二つの作用電極および前記絶縁体を貫通し、かつ前記二つの測定電極の一端と接触可能な、液体を流すための流路と、
を備えた測定セルを有した液体クロマトグラフィー用電気伝導度検出器において、
前記測定セルにおける、前記測定電極の外径が前記測定電極間の間隔および/または前記流路の内径に対して十分に短いことを特徴とする、液体クロマトグラフィー用電気伝導度検出器である。
The fifth invention is
Two working electrodes installed in parallel,
Two rod-shaped or needle-shaped measuring electrodes installed at a position parallel to and sandwiched between the two working electrodes,
An insulator filling between the two working electrodes;
A flow path for flowing liquid, penetrating the two working electrodes and the insulator, and being in contact with one end of the two measuring electrodes;
In an electrical conductivity detector for liquid chromatography having a measuring cell comprising:
In the measurement cell, the electrical conductivity detector for liquid chromatography is characterized in that an outer diameter of the measurement electrode is sufficiently shorter than an interval between the measurement electrodes and / or an inner diameter of the flow path.

第六の発明は、前記二つの作用電極の外側に、片側に一つまたは両側に一対の電極をさらに設置した測定セルを有した、第二から第五の発明に記載の電気伝導度検出器である。   A sixth aspect of the present invention is the electrical conductivity detector according to the second to fifth aspects of the present invention, further comprising a measuring cell on one side or a pair of electrodes on both sides outside the two working electrodes. It is.

第七の発明は、前記二つの測定電極間に位置する絶縁体の外表面に、一つまたは二つの電極をさらに設置した測定セルを有した、第二から第六の発明に記載の電気伝導度検出器である。   According to a seventh aspect of the present invention, there is provided an electrical conduction apparatus according to any one of the second to sixth aspects, further comprising a measurement cell further provided with one or two electrodes on the outer surface of the insulator located between the two measurement electrodes. It is a degree detector.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の電気伝導度検出器用測定セルにおける作用電極の形状は、液体が流れる流路が貫通する形状であれば特に限定はなく、一例として他の配管と接続するためのジョイントを含むブロック形状からなる作用電極をあげることができる。また、測定電極の形状についても特に限定されないが、一般的には厚さが一定で貫通孔が開いた平板電極、外径が一定の棒状電極、一端が針状になった針状電極などが用いられる。   The shape of the working electrode in the measurement cell for an electrical conductivity detector of the present invention is not particularly limited as long as the flow path through which the liquid flows, and as an example, from a block shape including a joint for connecting to other piping. The working electrode can be raised. Also, the shape of the measurement electrode is not particularly limited, but in general, a flat plate electrode having a constant thickness and a through hole, a rod-like electrode having a constant outer diameter, a needle-like electrode having a needle-like end, etc. Used.

本発明の電気伝導度検出器用測定セルにおける作用電極および測定電極の材質は、導電性を有し、かつ液体クロマトグラフィーで用いる移動相に対して耐性を有する材質であればよく、ステンレス鋼、金、白金などを例示できる。また、本発明の電気伝導度検出器用測定セルにおける絶縁体の材質は、絶縁性を有し、かつ液体クロマトグラフィーで用いる移動相に対して耐性を有する材質であればよく、一般にポリテトラフルオロエチレン(PTFE)などが用いられる。   The working electrode and measurement electrode in the measurement cell for electrical conductivity detector of the present invention may be made of any material that has conductivity and resistance to the mobile phase used in liquid chromatography, such as stainless steel, gold And platinum. In addition, the material of the insulator in the measurement cell for electrical conductivity detector of the present invention may be any material that has insulating properties and resistance to the mobile phase used in liquid chromatography, and is generally polytetrafluoroethylene. (PTFE) or the like is used.

次に、本発明における二つの測定電極と流路との接触領域の長さについて説明する。測定電極として平板電極を用いたときは、測定電極を流路が貫通した部分における、液体が流れる方向に対する長さのことをいい、前記電極の平面と前記液体が流れる方向とが直交する場合は、前記電極の厚さがそのまま接触領域の長さとなる。測定電極として棒状または針状電極を用いたときは、前記電極と流路とが接触した部分における前記液体の流れる方向に対する長さのことをいい、前記電極の軸と前記液体が流れる方向とが直交する場合は、前記電極と接触する部分の外径がそのまま接触領域の長さとなる。   Next, the length of the contact area between the two measurement electrodes and the flow path in the present invention will be described. When a flat plate electrode is used as the measurement electrode, it means the length of the part where the flow path passes through the measurement electrode with respect to the direction in which the liquid flows, and when the plane of the electrode and the direction in which the liquid flows are orthogonal to each other The thickness of the electrode becomes the length of the contact area as it is. When a rod-like or needle-like electrode is used as a measurement electrode, it refers to the length with respect to the direction in which the liquid flows in the portion where the electrode and the flow path are in contact, and the axis of the electrode and the direction in which the liquid flows When orthogonal, the outer diameter of the portion in contact with the electrode becomes the length of the contact area as it is.

接触領域の長さは短いほどよく、特に二つの測定電極の間隔および/または流路の内径と比較し十分に短いと、特許文献1で開示の従来の測定セルと比較し測定電極間への電流の出入りを低減させることができる。特に、測定電極として平板電極を用いたときは、前記接触領域の長さが前記電極間を埋める絶縁体と流路との接触領域の長さおよび/または前記電極を貫通する流路の内径に対して1/5以下であると、測定電極として棒状または針状電極を用いたときは、前記電極の外径が前記電極間の間隔および/または前記電極と接触する流路の内径に対して1/5以下であると、測定電極間への電流の出入りをさらに低減させることができるため、好ましい。   The length of the contact region is preferably as short as possible. In particular, when the distance between the two measurement electrodes and / or the inner diameter of the flow path is sufficiently short, the distance between the measurement electrodes is smaller than that of the conventional measurement cell disclosed in Patent Document 1. Current in / out can be reduced. In particular, when a flat plate electrode is used as the measurement electrode, the length of the contact region is set to the length of the contact region between the insulator and the channel filling the gap between the electrodes and / or the inner diameter of the channel passing through the electrode. On the other hand, when it is 1/5 or less, when a rod-like or needle-like electrode is used as the measurement electrode, the outer diameter of the electrodes is relative to the distance between the electrodes and / or the inner diameter of the flow path in contact with the electrodes. When it is 1/5 or less, it is preferable because the current flowing between the measurement electrodes can be further reduced.

本発明の電気伝導度検出器用測定セルの別の態様として、測定セルのうち二つの測定電極が、流路の液体が流れる方向に対して窪んだ位置に配置されている測定セルをあげることができる。前記測定セルの例として、測定電極が平板電極の場合は、平板測定電極を貫通する流路の内径を前記二つの平板測定電極の間を埋める絶縁体の貫通する流路の内径より大きくした測定セルを、測定電極が棒状または針状電極の場合は、液体が流れる流路(主流路)から分岐し、かつ前記測定電極と接触する枝流路を備えた測定セルをあげることができる。   Another aspect of the measurement cell for an electrical conductivity detector according to the present invention is a measurement cell in which two measurement electrodes of the measurement cell are arranged at positions recessed with respect to the direction of liquid flow. it can. As an example of the measurement cell, when the measurement electrode is a flat plate electrode, the measurement is made such that the inner diameter of the flow path penetrating the flat plate measurement electrode is larger than the inner diameter of the flow path penetrating the insulator filling the space between the two flat measurement electrodes. In the case where the measurement electrode is a rod-like or needle-like electrode, examples of the cell include a measurement cell having a branch channel that branches from a channel (main channel) through which a liquid flows and contacts the measurement electrode.

本発明の電気伝導度検出器用測定セルのさらに別の態様として、
平行に設置した二つの作用電極と、
前記二つの作用電極と平行、かつ挟まれる位置に設置した二つの測定電極と、
前記二つの作用電極の間を埋める絶縁体と、
前記二つの作用電極および前記二つの測定電極と接触するように設置した液体を流すための流路を備え、
前記二つの測定電極が、前記流路の液体が流れる方向に対して窪んだ位置に設置しており、
前記測定電極と流路との接触領域の長さが、前記二つの測定電極の間隔および/または前記絶縁体を貫通する流路の内径より十分に短い電気伝導度検出器用測定セルがあげられる。
As still another aspect of the measurement cell for electrical conductivity detector of the present invention,
Two working electrodes installed in parallel,
Two measuring electrodes placed parallel to and between the two working electrodes, and
An insulator filling between the two working electrodes;
A flow path for flowing a liquid placed in contact with the two working electrodes and the two measuring electrodes;
The two measurement electrodes are installed at positions that are recessed with respect to the flow direction of the liquid in the flow path,
An example of the measurement cell for an electrical conductivity detector is that the length of the contact region between the measurement electrode and the flow path is sufficiently shorter than the distance between the two measurement electrodes and / or the inner diameter of the flow path that penetrates the insulator.

なお、本発明の電気伝導度検出器用測定セルにおいて、二つの作用電極の外側に、片側に一つまたは両側に一対の電極をさらに設置する、および/または二つの測定電極間に位置する絶縁体の外表面に、一つまたは二つの電極をさらに設置して所定の電圧を加えると、流路以外を流れる漏れ電流の影響を低減することができるため、さらに好ましい。   In the measurement cell for an electrical conductivity detector of the present invention, an insulator is provided on the outside of the two working electrodes, one electrode on one side or a pair of electrodes on both sides, and / or located between the two measuring electrodes. It is further preferable that one or two electrodes are further installed on the outer surface and a predetermined voltage is applied, since the influence of leakage current flowing outside the flow path can be reduced.

本発明の液体クロマトグラフィー用電気伝導度検出器は、二つの作用電極と二つの測定電極を備え、かつ前記測定電極への電流の出入りが極めて少ない測定セルを有していることを特徴としており、従来の二つの作用電極と二つの測定電極を備えた測定セルと比較し、イオン濃度変化による電流経路の変化が低減している。したがって、従来の二つの作用電極と二つの測定電極を備えた測定セルと比較し、高濃度イオン溶液を測定した場合の出力直線性が向上し、結果として検量線の直線性が向上した電気伝導度検出器を提供することができる。   The electrical conductivity detector for liquid chromatography of the present invention is characterized in that it has two working electrodes and two measuring electrodes, and has a measuring cell in which current flows into and out of the measuring electrodes. Compared to a conventional measurement cell having two working electrodes and two measurement electrodes, the change in the current path due to the change in ion concentration is reduced. Therefore, compared with the conventional measuring cell with two working electrodes and two measuring electrodes, the output linearity when measuring a high concentration ionic solution is improved, and as a result, the linearity of the calibration curve is improved. A degree detector can be provided.

また本発明の電気伝導度検出器は、液体を流すための流路を短くしても検量線の直線性が低下しないため、流路の内径を狭くすることなく、測定セルを小型化することができる。よって、測定セル内部でピークが拡がる問題がなく、微量かつ高感度な分析が可能な電気伝導度検出器を提供することができる。   In addition, the electrical conductivity detector of the present invention does not decrease the linearity of the calibration curve even if the flow path for flowing the liquid is shortened, so that the measurement cell can be downsized without reducing the inner diameter of the flow path. Can do. Therefore, it is possible to provide an electrical conductivity detector that does not have a problem of a peak spreading inside the measurement cell and that can be analyzed with a very small amount and high sensitivity.

さらに、前記測定セルの有する二つの作用電極の外側に、片側に一つまたは両側に一対の電極をさらに設置したり、前記測定セルの有する二つの測定電極間に位置する絶縁体の外表面に、一つまたは二つの電極をさらに設置したりすると、流路以外を流れる漏れ電流の影響を低減することができるため、さらに高感度/高精度な分析が可能な電気伝導度検出器を提供することができる。   Furthermore, on the outer side of the two working electrodes of the measurement cell, one electrode on one side or a pair of electrodes on both sides is further installed, or on the outer surface of the insulator located between the two measurement electrodes of the measurement cell. If one or two electrodes are further installed, the influence of leakage current flowing outside the flow path can be reduced, so that an electrical conductivity detector capable of further high sensitivity / high accuracy analysis is provided. be able to.

二つの電極を備えた測定セルを有した、従来の電気伝導度検出器の模式図。The schematic diagram of the conventional electrical conductivity detector which has the measurement cell provided with two electrodes. 二つの作用電極および二つの測定電極を備えた、従来の電気伝導度検出器に用いる測定セルの模式図(特許文献1)。The schematic diagram of the measuring cell used for the conventional electrical conductivity detector provided with two working electrodes and two measuring electrodes (patent document 1). 本発明の電気伝導度検出器の一態様を示す図。The figure which shows the one aspect | mode of the electrical conductivity detector of this invention. 本発明の電気伝導度検出器の一態様を示す図。The figure which shows the one aspect | mode of the electrical conductivity detector of this invention. 本発明の電気伝導度検出器の一態様を示す図。The figure which shows the one aspect | mode of the electrical conductivity detector of this invention. 本発明の電気伝導度検出器の一態様を示す図。The figure which shows the one aspect | mode of the electrical conductivity detector of this invention. 図3または図1の検出器を用いてKCl水溶液を測定した結果を示すグラフ。The graph which shows the result of having measured KCl aqueous solution using the detector of FIG. 3 or FIG.

以下、図面に基づき本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to the drawings.

本発明の電気伝導度検出器の第一の態様を図3に示す。   A first embodiment of the electrical conductivity detector of the present invention is shown in FIG.

図3に示す検出器のうち測定セル(10)は、二つの作用電極(12)と二枚の平板測定電極(13)を備えており、作用電極(12)と測定電極(13)の間、および二枚の測定電極(13)の間は絶縁体(14)で埋められている。二つの作用電極(12)のうちの一つは分離カラムから溶出した液が流れる配管と接続するためのジョイントを含んだブロック形状をしており、もう一つは測定セル(10)を通過した分離カラムから溶出した液を廃液タンク、または別の分析装置/分析カラム等に流すための配管と接続するためのジョイントを含んだブロック形状をしている。二つの作用電極(12)には分離カラムから溶出した液を流すための流路(15)を備えており、前記流路(15)は二つの作用電極(12)、二枚の測定電極(13)および絶縁体(14)を同軸方向に貫通するように設置し、分離カラムから溶出した液が測定セル(10)内に流れるようにする。二枚の測定電極(13)は、分離カラムから溶出した液が流れる方向と直交する方向に設置している。なお、図3における測定電極(13)は流路(15)との接触領域が小さいほど好ましく、測定電極(13)と流路(15)との接触領域の長さ、すなわち測定電極(13)で使用する平板の厚さが0.1mm以下とすると特に好ましい。   The measuring cell (10) of the detector shown in FIG. 3 includes two working electrodes (12) and two flat plate measuring electrodes (13), and is between the working electrode (12) and the measuring electrode (13). And the space between the two measurement electrodes (13) is filled with an insulator (14). One of the two working electrodes (12) has a block shape including a joint for connecting to a pipe through which the liquid eluted from the separation column flows, and the other passed through the measuring cell (10). It has a block shape including a joint for connecting with a pipe for flowing the liquid eluted from the separation column to a waste liquid tank or another analyzer / analytical column. The two working electrodes (12) are provided with a flow path (15) for flowing the liquid eluted from the separation column. The flow path (15) includes two working electrodes (12), two measurement electrodes ( 13) and the insulator (14) are installed so as to penetrate in the coaxial direction so that the liquid eluted from the separation column flows into the measurement cell (10). The two measurement electrodes (13) are installed in a direction orthogonal to the direction in which the liquid eluted from the separation column flows. In addition, it is preferable that the measurement electrode (13) in FIG. 3 has a smaller contact area with the flow path (15), and the length of the contact area between the measurement electrode (13) and the flow path (15), that is, the measurement electrode (13). It is particularly preferable that the thickness of the flat plate used in the above is 0.1 mm or less.

図3に示す検出器のうち、差動アンプ(20)および電流検出アンプ(50)は、測定セル(10)を流れる、分離カラムから溶出した液に対し、入力インピーダンスが十分高いアンプ、例えばインスツルメンテーションアンプを使用すればよい。   Among the detectors shown in FIG. 3, the differential amplifier (20) and the current detection amplifier (50) are amplifiers having a sufficiently high input impedance with respect to the liquid eluted from the separation column flowing through the measurement cell (10), for example, an amplifier. A instrumentation amplifier may be used.

図3に示す検出器のうち、電圧発振部(30)は、電気伝導度が測定可能であれば特に制限はないが、周波数1kHz程度の正弦波発信回路を用いると、測定セル(10)を流れる、分離カラムから溶出した液の分極の影響が低減可能なため好ましい。なお、電圧発振部(30)の発振振幅は測定電極間の電位差が一定となるようにフィードバックすることで、電流検出器抵抗(40)の端子間電圧は電解液の電気伝導度に比例した値となる。   Among the detectors shown in FIG. 3, the voltage oscillation unit (30) is not particularly limited as long as the electrical conductivity can be measured, but when a sine wave transmission circuit having a frequency of about 1 kHz is used, the measurement cell (10) is provided. This is preferable because the influence of the polarization of the flowing liquid eluted from the separation column can be reduced. The oscillation amplitude of the voltage oscillation unit (30) is fed back so that the potential difference between the measurement electrodes becomes constant, so that the voltage across the current detector resistor (40) is a value proportional to the electrical conductivity of the electrolyte. It becomes.

本発明の電気伝導度検出器の第二の態様を図4に示す。なお、図4のうち測定セル(10)以外の構成は図3の検出器と同様である。   A second embodiment of the electrical conductivity detector of the present invention is shown in FIG. In FIG. 4, the configuration other than the measurement cell (10) is the same as that of the detector of FIG.

図4に示す検出器のうち測定セル(10)は、二つの作用電極(12)と二本の針状測定電極(13)を備えており、二つの作用電極(12)の間は絶縁体(14)で埋められており、測定電極(13)も前記絶縁体(14)で覆われている。二つの作用電極(12)のうちの一つは分離カラムから溶出した液が流れる配管と接続するためのジョイントを含んだブロック形状をしており、もう一つは測定セル(10)を通過した分離カラムから溶出した液を廃液タンク、または別の分析装置/分析カラム等に流すための配管と接続するためのジョイントを含んだブロック形状をしている。二つの作用電極(12)には分離カラムから溶出した液を流すための流路(15)を備えており、前記流路(15)は二つの作用電極(12)および絶縁体(14)を同軸方向に貫通するように設置することで、分離カラムから溶出した液が測定セル(10)内に流れるようにする。また、前記流路(15)と二本の測定電極(13)の一端とが接触するように設置する。二本の測定電極(13)は、その軸が分離カラムから溶出した液が流れる方向と直交するように設置する。なお、図4における測定電極(13)は接触領域の長さが小さいほど好ましく、測定電極(13)と流路(15)との接触面積が0.01mm以下とすると特に好ましい。 The measuring cell (10) of the detector shown in FIG. 4 includes two working electrodes (12) and two needle-shaped measuring electrodes (13), and an insulator is provided between the two working electrodes (12). (14) and the measurement electrode (13) is also covered with the insulator (14). One of the two working electrodes (12) has a block shape including a joint for connecting to a pipe through which the liquid eluted from the separation column flows, and the other passed through the measuring cell (10). It has a block shape including a joint for connecting with a pipe for flowing the liquid eluted from the separation column to a waste liquid tank or another analyzer / analytical column. The two working electrodes (12) are provided with a flow path (15) for flowing the liquid eluted from the separation column, and the flow path (15) includes two working electrodes (12) and an insulator (14). By installing so as to penetrate in the coaxial direction, the liquid eluted from the separation column flows into the measurement cell (10). Moreover, it installs so that the said flow path (15) and the end of two measurement electrodes (13) may contact. The two measurement electrodes (13) are installed so that their axes are orthogonal to the direction in which the liquid eluted from the separation column flows. In addition, the measurement electrode (13) in FIG. 4 is so preferable that the length of a contact region is small, and it is especially preferable that the contact area of a measurement electrode (13) and a flow path (15) shall be 0.01 mm < 2 > or less.

本発明の電気伝導度検出器の第三の態様を図5に示す。なお、図5のうち測定セル(10)以外の構成は図3の検出器と同様である。   A third embodiment of the electrical conductivity detector of the present invention is shown in FIG. In FIG. 5, the configuration other than the measurement cell (10) is the same as that of the detector of FIG.

図5に示す検出器のうち測定セル(10)は、二つの作用電極(12)と二枚の平板測定電極(13)を備えており、作用電極(12)と測定電極(13)の間、および二枚の測定電極(13)の間は絶縁体(14)で埋められている。二つの作用電極(12)のうちの一つは分離カラムから溶出した液が流れる配管と接続するためのジョイントを含んだブロック形状をしており、もう一つは測定セル(10)を通過した分離カラムから溶出した液を廃液タンク、または別の分析装置/分析カラム等に流すための配管と接続するためのジョイントを含んだブロック形状をしている。二つの作用電極(12)には分離カラムから溶出した液を流すための流路(15)を備えており、前記流路(15)は二つの作用電極(12)、二枚の測定電極(13)および絶縁体(14)を貫通するように設置し、分離カラムから溶出した液が測定セル(10)内に流れるようにする。二枚の測定電極(13)は、分離カラムから溶出した液が流れる方向と直交する方向に設置している。二枚の測定電極(13)を貫通する流路(15)の内径は、作用電極(12)と測定電極(13)の間および二枚の測定電極(13)の間を埋める絶縁体を貫通する流路(15)の内径よりも大きくしている。前記構成により、従来の二つの作用電極と二つの測定電極を備えた測定セルと比較し、個々の測定電極(13)への電流の出入が低減するため、イオン濃度変化による電流経路の変化を低減させることができる。なお、図5における測定電極(13)を貫通する流路(15)の内径が前記二枚の測定電極(13)の間を埋める絶縁体(14)を貫通する流路(15)の内径より測定電極(13)で使用する平板の厚さの1/2以上大きいと、より好ましい。さらに、図5における測定電極(13)は流路(15)との接触領域が小さいほど好ましく、測定電極(13)と流路(15)との接触領域の長さ、すなわち測定電極(13)で使用する平板の厚さが0.1mm以下とすると特に好ましい。   The measuring cell (10) of the detector shown in FIG. 5 includes two working electrodes (12) and two flat measuring electrodes (13), and is between the working electrode (12) and the measuring electrode (13). And the space between the two measurement electrodes (13) is filled with an insulator (14). One of the two working electrodes (12) has a block shape including a joint for connecting to a pipe through which the liquid eluted from the separation column flows, and the other passed through the measuring cell (10). It has a block shape including a joint for connecting with a pipe for flowing the liquid eluted from the separation column to a waste liquid tank or another analyzer / analytical column. The two working electrodes (12) are provided with a flow path (15) for flowing the liquid eluted from the separation column. The flow path (15) includes two working electrodes (12), two measurement electrodes ( 13) and the insulator (14) so as to penetrate, and the liquid eluted from the separation column flows into the measurement cell (10). The two measurement electrodes (13) are installed in a direction orthogonal to the direction in which the liquid eluted from the separation column flows. The inner diameter of the flow path (15) passing through the two measurement electrodes (13) penetrates the insulator between the working electrode (12) and the measurement electrode (13) and between the two measurement electrodes (13). It is larger than the inner diameter of the flow path (15). Compared with a conventional measurement cell having two working electrodes and two measurement electrodes, the configuration described above reduces the current flow into and out of the individual measurement electrodes (13). Can be reduced. Note that the inner diameter of the flow path (15) passing through the measurement electrode (13) in FIG. 5 is larger than the inner diameter of the flow path (15) passing through the insulator (14) filling the gap between the two measurement electrodes (13). It is more preferable that the thickness of the flat plate used in the measurement electrode (13) is 1/2 or more. Furthermore, it is preferable that the measurement electrode (13) in FIG. 5 has a smaller contact area with the flow path (15), and the length of the contact area between the measurement electrode (13) and the flow path (15), that is, the measurement electrode (13). It is particularly preferable that the thickness of the flat plate used in the above is 0.1 mm or less.

本発明の電気伝導度検出器の第四の態様を図6に示す。なお、図6のうち測定セル(10)以外の構成は図3の検出器と同様である。   A fourth embodiment of the electrical conductivity detector of the present invention is shown in FIG. In FIG. 6, the configuration other than the measurement cell (10) is the same as that of the detector of FIG.

図6に示す検出器のうち測定セル(10)は、二つの作用電極(12)と二本の針状測定電極(13)を備えており、二つの作用電極(12)の間は絶縁体(14)で埋められており、測定電極(13)も前記絶縁体(14)で覆われている。二つの作用電極(12)のうちの一つは分離カラムから溶出した液が流れる配管と接続するためのジョイントを含んだブロック形状をしており、もう一つは測定セル(10)を通過した分離カラムから溶出した液を廃液タンク、または別の分析装置/分析カラム等に流すための配管と接続するためのジョイントを含んだブロック形状をしている。二つの作用電極(12)には分離カラムから溶出した液を流すための主流路(15)を備えており、主流路(15)は二つの作用電極(12)および絶縁体(14)を貫通するように設置することで、分離カラムから溶出した液が測定セル(10)内を流れるようにする。また、二本の測定電極(13)の一端と主流路(15)とを接続するための枝流路(16)も備えている。二本の測定電極(13)および前記枝流路(16)の軸は、前記主流路(15)の軸と直交するように設置する。前記構成により、従来の二つの作用電極と二つの測定電極を備えた測定セルと比較し、個々の測定電極(13)への電流の出入が低減するため、イオン濃度変化による電流経路の変化を低減させることができる。なお、図6における枝流路(16)の長さが、測定電極(13)の外径の1/2以上あると、より好ましい。さらに、図6における測定電極(13)は接触領域の長さが小さいほど好ましく、測定電極(13)と流路(15)との接触面積が0.01mm以下とすると特に好ましい。 The measuring cell (10) of the detector shown in FIG. 6 includes two working electrodes (12) and two needle-shaped measuring electrodes (13), and an insulator is provided between the two working electrodes (12). (14) and the measurement electrode (13) is also covered with the insulator (14). One of the two working electrodes (12) has a block shape including a joint for connecting to a pipe through which the liquid eluted from the separation column flows, and the other passed through the measuring cell (10). It has a block shape including a joint for connecting with a pipe for flowing the liquid eluted from the separation column to a waste liquid tank or another analyzer / analytical column. The two working electrodes (12) are provided with a main channel (15) for flowing the liquid eluted from the separation column, and the main channel (15) passes through the two working electrodes (12) and the insulator (14). As a result, the liquid eluted from the separation column flows in the measurement cell (10). Further, a branch channel (16) for connecting one end of the two measurement electrodes (13) and the main channel (15) is also provided. The axes of the two measurement electrodes (13) and the branch channel (16) are installed so as to be orthogonal to the axis of the main channel (15). Compared with a conventional measurement cell having two working electrodes and two measurement electrodes, the configuration described above reduces the current flow into and out of the individual measurement electrodes (13). Can be reduced. In addition, it is more preferable that the length of the branch channel (16) in FIG. 6 is 1/2 or more of the outer diameter of the measurement electrode (13). Furthermore, the measurement electrode (13) in FIG. 6 is preferably as the contact region length is small, and the contact area between the measurement electrode (13) and the flow path (15) is particularly preferably 0.01 mm 2 or less.

以下、実施例に基づいて、本発明をさらに詳細に説明するが、これらは本発明の一実施形態であり、本発明を限定するものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, these are one Embodiment of this invention, and do not limit this invention.

実施例1
図3に示す電気伝導度検出器を用いて、様々な濃度のKCl水溶液を測定した。
Example 1
Various concentrations of KCl aqueous solutions were measured using the electrical conductivity detector shown in FIG.

図3に示す検出器のうち、作用電極(12)および平板測定電極(13)の材質は316ステンレス鋼(SUS316)を、絶縁体(14)の材質はポリテトラフルオロエチレン(PTFE)とした。二枚の測定電極(13)の間を埋める絶縁体(14)の厚さは1.0mm、作用電極(12)と測定電極(13)との間を埋める絶縁体(14)の厚さは0.2mmとした。作用電極(12)、測定電極(13)および絶縁体(14)を貫通する流路(15)の内径は0.8mmとした。電圧発振部(30)は、周波数1kHzの正弦波を測定電極(13)間の振幅が常に1V一定となるように出力した。   In the detector shown in FIG. 3, the working electrode (12) and the plate measuring electrode (13) are made of 316 stainless steel (SUS316), and the insulator (14) is made of polytetrafluoroethylene (PTFE). The thickness of the insulator (14) filling between the two measurement electrodes (13) is 1.0 mm, and the thickness of the insulator (14) filling between the working electrode (12) and the measurement electrode (13) is 0.2 mm. The internal diameter of the flow path (15) which penetrates a working electrode (12), a measurement electrode (13), and an insulator (14) was 0.8 mm. The voltage oscillation unit (30) output a sine wave having a frequency of 1 kHz so that the amplitude between the measurement electrodes (13) is always constant at 1V.

前記検出器において、二枚の測定電極(13)の厚さを0.012mm、0.1mm、0.2mm、0.5mm、1.0mmとした測定セル(10)、および図1に示す二つの電極からなる測定セルを用いて、既知濃度のKCl溶液を測定セル(10)に流した場合の検出器出力を測定した。   In the detector, the measurement cell (10) in which the thickness of the two measurement electrodes (13) is 0.012 mm, 0.1 mm, 0.2 mm, 0.5 mm, and 1.0 mm, and the two shown in FIG. Using a measuring cell composed of two electrodes, the detector output when a KCl solution of a known concentration was passed through the measuring cell (10) was measured.

上記測定セルを用いたときの、KCl水溶液濃度と検出器出力との関係をプロットしたときの結果を図7に示す。なお、図7において横軸はKCl濃度(mM)を、縦軸は検出器出力を1mMの出力が1となるように規格化した値を示す。二つの電極からなる測定セル(図7の2極電極、図1の10)よりも、二つの参照電極と二つの測定電極からなる測定セル(図7の4極電極、図3の10)のほうがKCl濃度に対する検出器出力の直線性が良好であった。また、測定電極(13)の厚さを薄くするほど、KCl濃度に対する検出器出力の直線性が良好であり、特に測定電極(13)の厚さが、二枚の測定電極(13)の間を埋める絶縁体(14)の厚さおよび/または流路(15)の内径の1/5以下のとき(0.2mm以下)が良好であった。   FIG. 7 shows the results of plotting the relationship between the KCl aqueous solution concentration and the detector output when the measurement cell is used. In FIG. 7, the horizontal axis indicates the KCl concentration (mM), and the vertical axis indicates the value obtained by normalizing the detector output so that the output of 1 mM is 1. Rather than a measurement cell consisting of two electrodes (bipolar electrode in FIG. 7, 10 in FIG. 1), a measurement cell consisting of two reference electrodes and two measurement electrodes (quadrupole electrode in FIG. 7, 10 in FIG. 3). However, the linearity of the detector output with respect to the KCl concentration was better. Further, the thinner the measurement electrode (13), the better the linearity of the detector output with respect to the KCl concentration. In particular, the thickness of the measurement electrode (13) is between the two measurement electrodes (13). When the thickness of the insulator (14) filling the surface and / or the inner diameter of the flow path (15) is 1/5 or less (0.2 mm or less), it was good.

本発明の液体クロマトグラフィー用電気伝導度検出器は、従来の検出器と比較し、イオン濃度変化による電流経路の変化が低減している。その結果、高濃度イオン溶液を測定した場合の出力直線性が向上し、結果として検量線の直線性が向上した電気伝導度検出器を提供することができる。また、本発明の電気伝導度検出器は、流路の内径を狭くすることなく、測定セルを小型化することができる。以上より、前記装置を用いることでイオンクロマトグラフィーの微量かつ高感度な分析が可能となる。   The electrical conductivity detector for liquid chromatography of the present invention has a reduced change in current path due to a change in ion concentration, as compared with a conventional detector. As a result, the output linearity when measuring a high concentration ionic solution is improved, and as a result, an electric conductivity detector with improved linearity of the calibration curve can be provided. Moreover, the electrical conductivity detector of the present invention can reduce the size of the measurement cell without reducing the inner diameter of the flow path. From the above, by using the above-mentioned apparatus, it is possible to perform analysis with a small amount and high sensitivity of ion chromatography.

10 測定セル
11 電極
12 作用電極
13 測定電極
14 絶縁体
15 流路
20 差動アンプ
30 電圧発振部
40 電流検出抵抗
50 電流検出アンプ
60 電圧検出部
70 電気力線
DESCRIPTION OF SYMBOLS 10 Measurement cell 11 Electrode 12 Working electrode 13 Measuring electrode 14 Insulator 15 Flow path 20 Differential amplifier 30 Voltage oscillation part 40 Current detection resistor 50 Current detection amplifier 60 Voltage detection part 70 Electric force line

Claims (7)

平行に設置した二つの作用電極と、
前記二つの作用電極と平行、かつ挟まれる位置に設置した二つの測定電極と、
前記二つの作用電極の間を埋める絶縁体と、
前記二つの作用電極および前記二つの測定電極と接触するように設置した、液体を流すための流路と、
を備えた測定セルを有した液体クロマトグラフィー用電気伝導度検出器において、
前記測定電極への電流の出入りが極めて少ないことを特徴とする、液体クロマトグラフィー用電気伝導度検出器。
Two working electrodes installed in parallel,
Two measuring electrodes placed parallel to and between the two working electrodes, and
An insulator filling between the two working electrodes;
A flow path for flowing a liquid, placed in contact with the two working electrodes and the two measuring electrodes;
In an electrical conductivity detector for liquid chromatography having a measuring cell comprising:
An electrical conductivity detector for liquid chromatography, characterized in that current flows into and out of the measurement electrode very little.
平行に設置した二つの作用電極と、
前記二つの作用電極と平行、かつ挟まれる位置に設置した二つの測定電極と、
前記二つの作用電極の間を埋める絶縁体と、
前記二つの作用電極および前記二つの測定電極と接触するように設置した、液体を流すための流路と、
を備えた測定セルを有した液体クロマトグラフィー用電気伝導度検出器において、
前記測定セルにおける、前記測定電極と流路との接触領域の長さが、前記二つの測定電極の間隔および/または流路の内径と比較し十分に短いことを特徴とする、液体クロマトグラフィー用電気伝導度検出器。
Two working electrodes installed in parallel,
Two measuring electrodes placed parallel to and between the two working electrodes, and
An insulator filling between the two working electrodes;
A flow path for flowing a liquid, placed in contact with the two working electrodes and the two measuring electrodes;
In an electrical conductivity detector for liquid chromatography having a measuring cell comprising:
The length of the contact region between the measurement electrode and the flow channel in the measurement cell is sufficiently shorter than the distance between the two measurement electrodes and / or the inner diameter of the flow channel, for liquid chromatography Electrical conductivity detector.
平行に設置した二つの作用電極と、
前記二つの作用電極と平行、かつ挟まれる位置に設置した二つの平板測定電極と、
前記作用電極と測定電極との間を埋める二つの絶縁体と、
前記二つの平板測定電極の間を埋める絶縁体と、
前記二つの作用電極、前記二つの平板測定電極、および前記三つの絶縁体を貫通する、液体を流すための流路と、
を備えた測定セルを有した液体クロマトグラフィー用電気伝導度検出器において、
前記測定セルにおける、前記平板測定電極と流路との接触領域の長さが、前記二つの平板測定電極の間を埋める絶縁体と流路との接触領域の長さおよび/または前記流路の内径より十分に短いことを特徴とする、液体クロマトグラフィー用電気伝導度検出器。
Two working electrodes installed in parallel,
Two flat measurement electrodes installed in a position parallel to and sandwiched between the two working electrodes;
Two insulators filling the gap between the working electrode and the measuring electrode;
An insulator filling between the two plate measuring electrodes;
A flow path for flowing liquid, penetrating the two working electrodes, the two plate measuring electrodes, and the three insulators;
In an electrical conductivity detector for liquid chromatography having a measuring cell comprising:
In the measurement cell, the length of the contact area between the flat plate measurement electrode and the flow path is the length of the contact area between the insulator and the flow path that fills the space between the two flat plate measurement electrodes and / or the flow path. An electrical conductivity detector for liquid chromatography, characterized by being sufficiently shorter than the inner diameter.
前記平板測定電極と流路との接触領域の長さが、前記二つの平板測定電極の間を埋める絶縁体と流路との接触領域の長さおよび/または前記流路の内径の1/5以下であることを特徴とする、請求項3に記載の電気伝導度検出器。 The length of the contact area between the flat plate measurement electrode and the flow path is 1/5 of the length of the contact area between the insulator and the flow path filling the gap between the two flat plate measurement electrodes and / or the inner diameter of the flow path. The electrical conductivity detector according to claim 3, wherein: 平行に設置した二つの作用電極と、
前記二つの作用電極と平行、かつ挟まれる位置に設置した二つの棒状または針状測定電極と、
前記二つの作用電極の間を埋める絶縁体と、
前記二つの作用電極および前記絶縁体を貫通し、かつ前記二つの測定電極の一端と接触可能な、液体を流すための流路と、
を備えた測定セルを有した液体クロマトグラフィー用電気伝導度検出器において、
前記測定セルにおける、前記測定電極の外径が前記測定電極間の間隔および/または前記流路の内径に対して十分に短いことを特徴とする、液体クロマトグラフィー用電気伝導度検出器。
Two working electrodes installed in parallel,
Two rod-shaped or needle-shaped measuring electrodes installed at a position parallel to and sandwiched between the two working electrodes,
An insulator filling between the two working electrodes;
A flow path for flowing liquid, penetrating through the two working electrodes and the insulator, and in contact with one end of the two measurement electrodes;
In an electrical conductivity detector for liquid chromatography having a measuring cell comprising:
An electrical conductivity detector for liquid chromatography, wherein an outer diameter of the measurement electrode in the measurement cell is sufficiently shorter than an interval between the measurement electrodes and / or an inner diameter of the flow path.
前記二つの作用電極の外側に、片側に一つまたは両側に一対の電極をさらに設置した測定セルを有した、請求項2から5に記載の電気伝導度検出器。 The electrical conductivity detector according to claim 2, further comprising a measurement cell having one electrode on one side or a pair of electrodes on both sides outside the two working electrodes. 前記二つの測定電極間に位置する絶縁体の外表面に、一つまたは二つの電極をさらに設置した測定セルを有した、請求項2から6に記載の電気伝導度検出器。 The electrical conductivity detector according to claim 2, further comprising a measurement cell further provided with one or two electrodes on an outer surface of an insulator located between the two measurement electrodes.
JP2009156253A 2009-06-30 2009-06-30 Electric conductivity detector Pending JP2011013044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009156253A JP2011013044A (en) 2009-06-30 2009-06-30 Electric conductivity detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009156253A JP2011013044A (en) 2009-06-30 2009-06-30 Electric conductivity detector

Publications (1)

Publication Number Publication Date
JP2011013044A true JP2011013044A (en) 2011-01-20

Family

ID=43592108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009156253A Pending JP2011013044A (en) 2009-06-30 2009-06-30 Electric conductivity detector

Country Status (1)

Country Link
JP (1) JP2011013044A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10234435B2 (en) 2015-10-20 2019-03-19 Samsung Electronics Co., Ltd. Conductivity detector and ion chromatography system including the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57189052A (en) * 1981-05-16 1982-11-20 Toyo Soda Mfg Co Ltd Electric conductivity detector
JPH0894580A (en) * 1994-06-17 1996-04-12 Varian Assoc Inc Electron capture detector with guard electrode
JP2009008427A (en) * 2007-06-26 2009-01-15 Mitsubishi Electric Corp Method for assessing remaining life of power receiving/distributing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57189052A (en) * 1981-05-16 1982-11-20 Toyo Soda Mfg Co Ltd Electric conductivity detector
JPH0894580A (en) * 1994-06-17 1996-04-12 Varian Assoc Inc Electron capture detector with guard electrode
JP2009008427A (en) * 2007-06-26 2009-01-15 Mitsubishi Electric Corp Method for assessing remaining life of power receiving/distributing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10234435B2 (en) 2015-10-20 2019-03-19 Samsung Electronics Co., Ltd. Conductivity detector and ion chromatography system including the same

Similar Documents

Publication Publication Date Title
Galama et al. Method for determining ion exchange membrane resistance for electrodialysis systems
Cheng et al. Determination of carbohydrates by capillary zone electrophoresis with amperometric detection at a nano-nickel oxide modified carbon paste electrode
US9297776B2 (en) Probe
Qin et al. Determination of ammonium and metal ions by capillary electrophoresis–potential gradient detection using ionic liquid as background electrolyte and covalent coating reagent
Opekar et al. Dual-channel capillary electrophoresis for simultaneous determination of cations and anions
Masár et al. Conductivity detection and quantitation of isotachophoretic analytes on a planar chip with on-line coupled separation channels
JP2006308502A (en) Device for detecting moisture density in sf6 gas
Zhang et al. Sweeping under controlled electroosmotic flow and micellar electrokinetic chromatography for on-line concentration and determination of trace phlorizin and quercitrin in urine samples
Ghoneim et al. A protocol to characterize pH sensing materials and systems
Zavazalova et al. Carbon‐Based Electrodes for Sensitive Electroanalytical Determination of Aminonaphthalenes
JP2001215203A (en) Instrument for measuring electric conductivity, method of measuring electric conductivity of soil, and instrument for measuring electric conductivity of soil solution
Horáková et al. Combination of large volume sample stacking and dynamic pH junction for on-line preconcentration of weak electrolytes by capillary electrophoresis in comparison with isotachophoretic techniques
CN106501318A (en) A kind of metallic conduit defect detecting technique based on frequency-changing AC fall-of-potential method
JP2011013044A (en) Electric conductivity detector
Ren et al. Determination of inorganic anions in saliva by electroosmotic flow controlled counterflow isotachophoretic stacking under field-amplified sample injection
Bayraktepe et al. Voltammetric determination of etoposide by using sepiolite clay modified electrode and its interaction with DNA
Nantaphol et al. Ultrasensitive and Simple Method for Determination of N‐Acetyl‐l‐Cysteine in Drug Formulations Using a Diamond Sensor
CN103954836A (en) Method for testing volume resistivity of carbon fiber monofilaments and applied testing support thereof
Wang et al. Wall-jet conductivity detector for microchip capillary electrophoresis
US7652479B2 (en) Electrolyte measurement device and measurement procedure
Zhang et al. On-column amperometric detection of ofloxacin and pasiniazid in urine by capillary electrophoresis with an improved fractured joint and small detection cell
Ṕerez et al. ISFET sensor characterization
Zhang et al. Monitoring gradient profile on-line in micro-and nano-high performance liquid chromatography using conductivity detection
JP2012103219A (en) Noncontact impedance monitor
RU2708682C1 (en) Contact sensor of specific electric conductivity of liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130827