JP2011012940A - Hybrid hot water supply system - Google Patents

Hybrid hot water supply system Download PDF

Info

Publication number
JP2011012940A
JP2011012940A JP2009160267A JP2009160267A JP2011012940A JP 2011012940 A JP2011012940 A JP 2011012940A JP 2009160267 A JP2009160267 A JP 2009160267A JP 2009160267 A JP2009160267 A JP 2009160267A JP 2011012940 A JP2011012940 A JP 2011012940A
Authority
JP
Japan
Prior art keywords
hot water
water storage
water supply
temperature
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009160267A
Other languages
Japanese (ja)
Other versions
JP5353497B2 (en
Inventor
Daisuke Kuboi
大輔 久保井
Daichi Ishikawa
大地 石川
Keiichiro Shioya
圭一郎 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2009160267A priority Critical patent/JP5353497B2/en
Publication of JP2011012940A publication Critical patent/JP2011012940A/en
Application granted granted Critical
Publication of JP5353497B2 publication Critical patent/JP5353497B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hybrid hot water supply system, capable of attaining reduction in running cost, improvement in energy consumption, and reduction in COemission.SOLUTION: The hybrid hot water supply system 100 typically includes: a hot water storage tank 110; a heat pump water heater 122; a hot water storage determination means 112 which determines whether the hot water storage is a predetermined hot water storage quantity or more; a combustion water heater 130 which supplies hot water to the hot water storage tank when the hot water storage is less than the predetermined hot water storage quantity; a water supply temperature acquisition means 106; an external air temperature acquisition means 150; a heating capability acquisition unit 218 which acquires a heating capability of the heat pump water heater at an acquired external air temperature; an arithmetic unit 220 which computes a hot water supply flow rate of the heat pump water heater based on the acquired water supply temperature and heating capability and a hot water supply temperature; and a correction unit 222 which corrects the predetermined hot water storage quantity by increasing or decreasing it based on the hot water supply flow rate.

Description

本発明は、ヒートポンプ式給湯器の補助熱源器として燃焼式給湯器を備えるハイブリッド給湯システムに関するものである。   The present invention relates to a hybrid hot water supply system including a combustion hot water heater as an auxiliary heat source for a heat pump hot water heater.

近年、ランニングコストの低減、エネルギーの有効利用(省エネルギー)、および温室効果ガスであるCO排出量削減の観点から、業務用および一般家庭用ともにヒートポンプ式給湯器の普及が進んでいる。ヒートポンプ式給湯器は、液体が気化するときに周囲の熱を吸収し、気体が凝縮して液化するときに熱を発する性質を利用している。これにより、ヒートポンプ式給湯器は、燃焼式給湯器に比べて、一次エネルギー消費量を約40%、CO排出量を約58%程度削減することができ、ランニングコストも大幅に抑えることが可能であるとされている。 In recent years, from the viewpoints of reducing running costs, effective use of energy (energy saving), and reduction of CO 2 emissions, which are greenhouse gases, heat pump water heaters have been widely used for both commercial and general household use. The heat pump type water heater uses the property of absorbing ambient heat when the liquid is vaporized and generating heat when the gas is condensed and liquefied. As a result, the heat pump water heater can reduce primary energy consumption by approximately 40% and CO 2 emissions by approximately 58%, and running costs can be significantly reduced compared to combustion water heaters. It is said that.

しかし、ヒートポンプ式給湯器は、急速に大量の湯(高温水)を生成する用途には不向きである。そこで、ヒートポンプ式給湯器の出湯能力を補うために、ヒートポンプ式給湯器に補助熱源器として燃焼式給湯器を併設したいわゆるハイブリッド給湯システムも繁用されている。これに付随して、ハイブリッド給湯システムに関する様々な技術の提案、開示もなされてきている。   However, the heat pump water heater is not suitable for applications that rapidly generate a large amount of hot water (high temperature water). Therefore, so-called hybrid hot water supply systems in which a heat pump hot water heater is provided with a combustion hot water heater as an auxiliary heat source in order to supplement the hot water discharge capacity of the heat pump hot water heater are also frequently used. Accompanying this, various techniques related to the hybrid hot water supply system have been proposed and disclosed.

例えば特許文献1には、夜間は主にヒートポンプ式給湯器を稼働させ、昼間は貯湯量が第1貯湯量を下回る場合にヒートポンプ式給湯器だけを稼働させ、さらに少ない第2貯湯量を下回る場合にのみ燃焼式給湯器を併せて稼働させる技術が記載されている。かかる構成によれば、高いエネルギー効率で必要な貯湯能力を得ることができるとされている。   For example, in Patent Document 1, when the heat pump type hot water heater is mainly operated at night, when the amount of hot water stored is lower than the first amount of hot water during the day, only the heat pump type hot water heater is operated, and when the amount is lower than the second amount of hot water stored. No. 1 describes a technique for operating a combustion type water heater together. According to such a configuration, it is said that necessary hot water storage capacity can be obtained with high energy efficiency.

特許第4139826号公報Japanese Patent No. 4139826

しかしながら、特許文献1では、燃焼式給湯器が貯湯タンクに対して出湯を行うか否かを制御するために、ある特定の値である第2貯湯量を閾値として用いている。このような閾値(第2貯湯量)は、概して湯切れを回避するために最も過酷な条件となる最厳冬期を勘案して設定される。そのため、最厳冬期以外の時期においては、燃焼式給湯器を稼動させずともヒートポンプ式給湯器のみで対応できるところを、両方を稼動させてしまうおそれがあった。   However, in patent document 1, in order to control whether a combustion type water heater performs hot water discharge with respect to a hot water storage tank, the 2nd hot water storage amount which is a specific value is used as a threshold value. Such a threshold value (second hot water storage amount) is generally set in consideration of the severe winter season, which is the most severe condition in order to avoid running out of hot water. Therefore, in times other than the severest winter season, there is a risk of operating both places that can be handled only by the heat pump type water heater without operating the combustion type water heater.

また、特許文献1では、総給湯量の予測を反映して燃焼式給湯器の稼動を判断することができなかった。具体的には、それほどの総給湯量を要しないと予測される場合には、浴槽の湯張り等によって貯湯タンクの貯湯量が一時的に第2貯湯量を下回ったとしてもヒートポンプ式給湯器のみを稼動させれば対応できるところを、両方を稼動させてしまっていた。   Moreover, in patent document 1, it was not able to judge the operation | movement of a combustion type water heater reflecting the prediction of the total hot water supply amount. Specifically, if it is predicted that a large amount of hot water will not be required, even if the amount of hot water stored in the hot water storage tank temporarily falls below the second amount of hot water due to hot water in the bathtub, etc., only the heat pump type hot water heater Both of them were in operation where it was possible to cope with it.

当然ながら、ヒートポンプ式給湯器のみで対応できるところを燃焼式給湯器も併せて稼動させることは、ランニングコスト、省エネルギー、CO排出量の観点から無駄が生じることとなる。 Needless to say, operating a combustion water heater together with a heat pump water heater alone can be wasteful in terms of running cost, energy saving, and CO 2 emission.

本発明は、このような課題に鑑みてなされたものであり、ヒートポンプ式給湯器の出湯能力に影響を及ぼす給水温度や外気温度、また予測される総給湯量等を考慮して、燃焼式給湯器の稼動を制御することにより、さらなるランニングコストの低減、エネルギー消費量の改善、CO排出量の削減を図り得るハイブリッド給湯システムを提供することを目的とする。 The present invention has been made in view of such a problem, and in consideration of the water supply temperature and the outside air temperature that affect the tapping capacity of the heat pump water heater, the predicted total hot water supply amount, and the like, the combustion type hot water supply An object of the present invention is to provide a hybrid hot water supply system that can further reduce running costs, improve energy consumption, and reduce CO 2 emissions by controlling the operation of the boiler.

上記課題を解決するために本発明の代表的な構成は、ヒートポンプ式給湯器の補助熱源器として燃焼式給湯器を備えるハイブリッド給湯システムであって、貯湯タンクと、貯湯タンクに対して出湯するヒートポンプ式給湯器と、貯湯タンクの貯湯量が所定貯湯量以上であるかどうかを判断する貯湯量判断手段と、貯湯量判断手段が所定貯湯量未満であると判断した場合に、貯湯タンクに対して出湯する燃焼式給湯器と、給水温度を取得する給水温度取得手段と、外気温度を取得する外気温度取得手段と、ヒートポンプ式給湯器の加熱能力と外気温度の対応関係が記憶されたヒートポンプ特性テーブルと、ヒートポンプ特性テーブルを参照して、取得された外気温度に対応する加熱能力を取得する加熱能力取得部と、少なくとも取得された給水温度および加熱能力、並びにヒートポンプ式給湯器の貯湯タンクに対しての出湯温度に基づいて、ヒートポンプ式給湯器が単位時間当たりに出湯可能な出湯流量を算出する演算部と、算出された出湯流量と予め設定されたこの出湯流量の基準値との差を求め、この差に基づき所定貯湯量を増減して補正する補正部と、を備えることを特徴とする。   In order to solve the above problems, a representative configuration of the present invention is a hybrid hot water supply system including a combustion type hot water heater as an auxiliary heat source for a heat pump hot water heater, and a hot water storage tank and a heat pump for discharging hot water to the hot water storage tank A hot water storage amount determining means for determining whether the hot water storage amount of the water heater, the hot water storage tank is equal to or greater than the predetermined hot water storage amount, A heat pump characteristic table storing the correspondence relationship between the heating capacity and the outside air temperature of the combustion type water heater for extracting hot water, the feed water temperature obtaining means for obtaining the feed water temperature, the outside air temperature obtaining means for obtaining the outside air temperature, and the heat pump water heater. A heating capacity acquisition unit that acquires the heating capacity corresponding to the acquired outside air temperature with reference to the heat pump characteristic table, and at least the acquired water supply Based on the temperature and heating capacity, and the hot water temperature for the hot water storage tank of the heat pump water heater, a calculation unit for calculating the hot water flow rate at which the heat pump water heater can discharge hot water per unit time, and the calculated hot water flow rate And a correction unit that obtains a difference from a preset reference value of the hot water flow rate and corrects by increasing or decreasing a predetermined hot water storage amount based on the difference.

かかる構成によれば、ヒートポンプ式給湯器の出湯能力に影響を及ぼす給水温度や外気温度を考慮して、燃焼式給湯器の稼動可否が判断される閾値(所定貯湯量)を増減して補正することができる。これにより、不必要な燃焼式給湯器の稼動を排除することができ、さらなるランニングコストの低減、エネルギー消費量の改善(エネルギー消費量の低減)、CO排出量の削減を図り得る。 According to such a configuration, the threshold value (predetermined hot water storage amount) for determining whether or not the combustion type hot water heater can be operated is corrected by taking into consideration the hot water temperature and the outside air temperature that affect the hot water discharge capacity of the heat pump hot water heater. be able to. Thereby, unnecessary operation of the combustion type water heater can be eliminated, and further reduction of running cost, improvement of energy consumption (reduction of energy consumption), and reduction of CO 2 emission can be achieved.

上記課題を解決するために本発明の他の代表的な構成は、ヒートポンプ式給湯器の補助熱源器として燃焼式給湯器を備えるハイブリッド給湯システムであって、貯湯タンクと、貯湯タンクに対して出湯するヒートポンプ式給湯器と、貯湯タンクの貯湯量が所定貯湯量以上であるかどうかを判断する貯湯量判断手段と、貯湯量判断手段が所定貯湯量未満であると判断した場合に、貯湯タンクに対して出湯する燃焼式給湯器と、当該ハイブリッド給湯システムを利用すると予測される人数情報を入出力可能な人数管理システムと、所定時間における1人当たりの給湯使用量を求める原単位割出部と、少なくとも予測される人数情報および1人当たりの給湯使用量に基づいて、必要となる総給湯量を算出する演算部と、算出された総給湯量と予め設定されたこの総給湯量の基準値との差を求め、この差に基づき所定貯湯量を増減して補正する補正部と、を備えることを特徴とする。   In order to solve the above problems, another representative configuration of the present invention is a hybrid hot water supply system including a combustion type hot water heater as an auxiliary heat source for a heat pump hot water heater, and a hot water storage tank and a hot water supply to the hot water storage tank. A heat pump type water heater, a hot water storage amount judging means for judging whether or not the amount of hot water stored in the hot water storage tank is greater than or equal to a predetermined hot water storage amount, and a hot water storage amount judging means that Combustion type water heater for hot water supply, a number management system capable of inputting / outputting number information predicted to use the hybrid hot water supply system, a basic unit indexing unit for obtaining the amount of hot water used per person at a predetermined time, Based on at least the predicted number of people information and the amount of hot water used per person, a calculation unit that calculates the total amount of hot water required, and the calculated total amount of hot water Has been obtains the difference between the reference value of the total hot water supply amount, characterized in that it comprises a correction unit for correcting by increasing or decreasing a predetermined amount of hot water storage on the basis of this difference.

かかる構成によれば、少なくとも人数管理システムから出力される人数情報および1人当たりの給湯使用量に基づき予測(算出)される総給湯量等を考慮して、燃焼式給湯器の稼動可否が判断される閾値(所定貯湯量)を増減して補正することができる。これにより、不必要な燃焼式給湯器の稼動を排除することができ、さらなるランニングコストの低減、エネルギー消費量の改善、CO排出量の削減を図り得る。 According to such a configuration, whether or not the combustion-type hot water heater can be operated is determined in consideration of at least the number of people information output from the number management system and the total hot water supply amount predicted (calculated) based on the hot water supply usage per person. The threshold value (predetermined hot water storage amount) can be increased or decreased for correction. Thereby, unnecessary operation of the combustion type water heater can be eliminated, and further reduction of running cost, improvement of energy consumption, and reduction of CO 2 emission can be achieved.

当該ハイブリッド給湯システムは、過去の人数情報と給湯使用量の実績データを関連づけて記憶する原単位割出データテーブルをさらに備え、上記原単位割出部は、過去の人数情報と実績データに基づき、1人当たりの給湯使用量を求めるとよい。これにより、現場に則した総給湯量の予測(算出)が可能となる。   The hybrid hot water supply system further includes a basic unit indexing data table that stores past number information and actual data of hot water usage in association with each other, and the basic unit indexing unit is based on past number information and actual data, The amount of hot water used per person should be determined. Thereby, prediction (calculation) of the total hot water supply amount according to the field is attained.

上記課題を解決するために本発明の他の代表的な構成は、ヒートポンプ式給湯器の補助熱源器として燃焼式給湯器を備えるハイブリッド給湯システムであって、貯湯タンクと、貯湯タンクに対して出湯するヒートポンプ式給湯器と、貯湯タンクの貯湯量が所定貯湯量以上であるかどうかを判断する貯湯量判断手段と、貯湯量判断手段が所定貯湯量未満であると判断した場合に、貯湯タンクに対して出湯する燃焼式給湯器と、給水温度を取得する給水温度取得手段もしくは外気温度を取得する外気温度取得手段、または暦情報を取得する暦情報取得手段と、取得された給水温度もしくは外気温度、または暦情報から使用者のおおよその利用温度を予測する利用温度予測部と、少なくとも予測される利用温度に基づいて、必要となる総給湯量を算出する演算部と、算出された総給湯量と予め設定されたこの総給湯量の基準値との差を求め、この差に基づき所定貯湯量を増減して補正する補正部と、を備えることを特徴とする。   In order to solve the above problems, another representative configuration of the present invention is a hybrid hot water supply system including a combustion type hot water heater as an auxiliary heat source for a heat pump hot water heater, and a hot water storage tank and a hot water supply to the hot water storage tank. A heat pump type water heater, a hot water storage amount judging means for judging whether or not the amount of hot water stored in the hot water storage tank is greater than or equal to a predetermined hot water storage amount, and a hot water storage amount judging means that Combustion-type water heater for discharging hot water, supply water temperature acquisition means for acquiring supply water temperature or outside air temperature acquisition means for acquiring outside air temperature, or calendar information acquisition means for acquiring calendar information, and acquired water supply temperature or outside air temperature Or, a usage temperature prediction unit that predicts the user's approximate usage temperature from calendar information, and calculates the total amount of hot water required based on at least the predicted usage temperature. And a correction unit that obtains a difference between the calculated total hot water supply amount and a preset reference value of the total hot water supply amount, and corrects by increasing or decreasing the predetermined hot water storage amount based on the difference. Features.

かかる構成によれば、使用者のおおよその利用温度に基づき予測(算出)される総給湯量等を考慮して、燃焼式給湯器の稼動可否が判断される閾値(所定貯湯量)を増減して補正することができる。これにより、不必要な燃焼式給湯器の稼動を排除することができ、さらなるランニングコストの低減、エネルギー消費量の改善、CO排出量の削減を図り得る。 According to such a configuration, the threshold value (predetermined hot water storage amount) for determining whether the combustion hot water heater can be operated is increased or decreased in consideration of the total hot water supply amount predicted (calculated) based on the approximate usage temperature of the user. Can be corrected. Thereby, unnecessary operation of the combustion type water heater can be eliminated, and further reduction of running cost, improvement of energy consumption, and reduction of CO 2 emission can be achieved.

上記補正部は、求められた差を貯湯タンクに貯湯された場合の高さに換算して、この高さ分閾値(所定貯湯量)を増減して補正するとよい。これにより、燃焼式給湯器の稼動可否が判断される閾値(所定貯湯量)を好適に補正することができる。   The said correction | amendment part is good to convert and correct | amend the calculated | required difference to the height at the time of hot water storage in a hot water storage tank, and to increase / decrease this threshold value (predetermined hot water storage amount). Thereby, the threshold value (predetermined hot water storage amount) for determining whether or not the combustion hot water heater can be operated can be suitably corrected.

上記貯湯タンクは密閉式であって、貯湯量判断手段として異なる高さに配置された複数の温度センサーが備えられており、所定貯湯量を判断する温度センサーを選択することにより、補正部による補正を行うとよい。これにより、密閉式の貯湯タンクを利用する当該ハイブリッド給湯システムを好適に構成することができる。   The hot water storage tank is hermetically sealed, and has a plurality of temperature sensors arranged at different heights as hot water storage amount judging means. By selecting a temperature sensor that determines a predetermined hot water storage amount, correction by the correction unit It is good to do. Thereby, the said hybrid hot-water supply system using an enclosed hot water storage tank can be comprised suitably.

上記温度センサーは、貯湯タンクの内側に配置、またはこの貯湯タンクの外面に貼付されるとよい。すなわち、温度センサーを貯湯タンクの内側に配置して貯湯温度を直接測定することが望ましいが、既存の貯湯タンクの外面に複数の温度センサーを貼付して当該ハイブリッド給湯システムを導入することもできる。   The temperature sensor may be disposed inside the hot water storage tank or attached to the outer surface of the hot water storage tank. That is, it is desirable to directly measure the hot water temperature by arranging a temperature sensor inside the hot water storage tank, but the hybrid hot water supply system can also be introduced by attaching a plurality of temperature sensors to the outer surface of an existing hot water storage tank.

上記貯湯タンクは開放式であって、貯湯量判断手段は、水位検知センサーであってもよい。すなわち、利用する貯湯タンクの形式を問わず、当該ハイブリッド給湯システムを適用可能である。   The hot water storage tank may be an open type, and the hot water storage amount determination means may be a water level detection sensor. That is, the hybrid hot water supply system is applicable regardless of the type of hot water storage tank to be used.

本発明によれば、ヒートポンプ式給湯器の出湯能力に影響を及ぼす給水温度や外気温度、また予測される総給湯量等を考慮して、燃焼式給湯器の稼動条件を可変させることにより、さらなるランニングコストの低減、エネルギー消費量の改善、CO排出量の削減を図り得るハイブリッド給湯システムを提供することができる。 According to the present invention, the operating conditions of the combustion-type water heater can be further changed in consideration of the water supply temperature and the outside air temperature that affect the hot-water discharge capacity of the heat pump water heater, and the predicted total amount of hot water supply. A hybrid hot water supply system that can reduce running costs, improve energy consumption, and reduce CO 2 emissions can be provided.

第1実施形態にかかるハイブリッド給湯システムの概略的な構成を示す図である。It is a figure showing a schematic structure of a hybrid hot-water supply system concerning a 1st embodiment. 第1実施形態にかかる制御装置の機能ブロック図である。It is a functional block diagram of a control device concerning a 1st embodiment. 第1実施形態にかかる基準値データテーブルの詳細を示す図である。It is a figure which shows the detail of the reference value data table concerning 1st Embodiment. 第1実施形態を適用した実施例1について説明する図である。It is a figure explaining Example 1 to which 1st Embodiment is applied. 第1実施形態に関連する給水温度、外気温度の地域別の実測データを示す図である。It is a figure which shows the actual measurement data according to area | region of the water supply temperature relevant to 1st Embodiment, and external temperature. 第2実施形態にかかるハイブリッド給湯システムの概略的な構成を示す図である。It is a figure which shows schematic structure of the hybrid hot-water supply system concerning 2nd Embodiment. 第2実施形態にかかる制御装置の機能ブロック図である。It is a functional block diagram of a control device concerning a 2nd embodiment. 第2実施形態にかかる基準値データテーブルの詳細を示す図である。It is a figure which shows the detail of the reference value data table concerning 2nd Embodiment. 第2実施形態にかかる原単位割出データテーブルを例示的に示す図である。It is a figure which shows exemplarily the basic unit index data table concerning a 2nd embodiment. 第2実施形態を適用した実施例2について説明する図である。It is a figure explaining Example 2 to which 2nd Embodiment is applied. 第3実施形態にかかるハイブリッド給湯システムの概略的な構成を示す図である。It is a figure which shows schematic structure of the hybrid hot-water supply system concerning 3rd Embodiment. 第3実施形態にかかる制御装置の機能ブロック図である。It is a functional block diagram of a control device concerning a 3rd embodiment. 第3実施形態にかかる基準値データテーブルの詳細を示す図である。It is a figure which shows the detail of the reference value data table concerning 3rd Embodiment. 第3実施形態を適用した実施例3について説明する図である。It is a figure explaining Example 3 to which 3rd Embodiment is applied. 他の実施形態におけるハイブリッド給湯システムを例示する図である。It is a figure which illustrates the hybrid hot-water supply system in other embodiment.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値などは、発明の理解を容易とするための例示に過ぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書及び図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.

[第1実施形態]
図1は、第1実施形態にかかるハイブリッド給湯システム100の概略的な構成を示す図である。ハイブリッド給湯システム100は、給水手段102、給水配管104、給水温度取得手段としての温度センサー(以下、給水温度センサー106と称する)、貯湯タンク110、貯湯量判断手段としての温度センサー(以下、貯湯温度センサー112と称する)、入水配管120、ヒートポンプ式給湯器122、出湯配管124、第2入水配管130、燃焼式給湯器132、第2出湯配管134、給湯配管140、給湯温度取得手段としての温度センサー(以下、給湯温度センサー144と称する)、外気温度取得手段としての温度センサー(以下、外気温度センサー150と称する)、制御装置160を包含する。なお、図1は、概略的な構成を示すものであって、実際には各配管に、開閉弁、逆止弁、減圧弁、定流量弁、安全弁、自動空気抜き弁、ポンプ等のうち、適宜必要なものが取り付けられる。
[First embodiment]
FIG. 1 is a diagram illustrating a schematic configuration of a hybrid hot water supply system 100 according to the first embodiment. The hybrid hot water supply system 100 includes a water supply means 102, a water supply pipe 104, a temperature sensor (hereinafter referred to as a water supply temperature sensor 106) as a water supply temperature acquisition means, a hot water storage tank 110, and a temperature sensor (hereinafter referred to as hot water storage temperature) as a hot water storage amount determination means. (Referred to as sensor 112), incoming water pipe 120, heat pump type hot water heater 122, outgoing hot water pipe 124, second incoming water pipe 130, combustion hot water heater 132, second outgoing hot water pipe 134, hot water supply pipe 140, temperature sensor as hot water supply temperature acquisition means (Hereinafter referred to as a hot water supply temperature sensor 144), a temperature sensor as an outside air temperature acquisition means (hereinafter referred to as an outside air temperature sensor 150), and a control device 160. In addition, FIG. 1 shows a schematic configuration. Actually, each pipe is appropriately selected from an on-off valve, a check valve, a pressure reducing valve, a constant flow valve, a safety valve, an automatic air vent valve, a pump, and the like. Install what you need.

給水手段102は、受水槽、高架水槽、水道管等であって、貯湯タンク110に貯留された湯水が使用されると給水配管104を介して貯湯タンク110へ給水を行う。給水配管104には給水温度センサー106が備えられていて、かかる給水温度センサー106は、測定した給水温度を制御装置160へ伝達する。   The water supply means 102 is a water receiving tank, an elevated water tank, a water pipe, or the like, and supplies hot water to the hot water storage tank 110 via the water supply pipe 104 when hot water stored in the hot water storage tank 110 is used. The feed water pipe 104 is provided with a feed water temperature sensor 106, and the feed water temperature sensor 106 transmits the measured feed water temperature to the control device 160.

貯湯タンク110は、密閉式であって、それぞれが異なる高さ位置に配置された複数の貯湯温度センサー112を備えている。貯湯温度センサー112は、本実施形態では貯湯タンク110の内側に配置されるが、外面に貼付されてもよい。既存の貯湯タンクでは、内部に複数の貯湯温度センサー112を配置(追加)するのに難を有するが、外面に貼付することで簡潔かつ容易にハイブリッド給湯システム100を導入することができる。   The hot water storage tank 110 is a hermetically sealed type, and includes a plurality of hot water storage temperature sensors 112 arranged at different height positions. Although the hot water storage temperature sensor 112 is disposed inside the hot water storage tank 110 in the present embodiment, it may be attached to the outer surface. In the existing hot water storage tank, it is difficult to arrange (add) a plurality of hot water storage temperature sensors 112 inside, but the hot water supply system 100 can be introduced simply and easily by sticking to the outer surface.

それぞれの貯湯温度センサー112は、貯湯タンク110の貯湯温度を測定して、制御装置160へ伝達する。制御装置160は、伝達されたこれら貯湯温度の中から、対象とする貯湯温度センサー112aが測定した貯湯温度を参照して燃焼式給湯器132の稼動可否を判断(制御)する。例えば、貯湯温度55℃以下で燃焼式給湯器132を稼動し、貯湯温度60℃以上で燃焼式給湯器132の稼動を停止する。なお、図1中、標準時において制御装置160が対象とする貯湯温度センサー112aを黒丸で示す(図1中の貯湯温度センサー112bについては後程説明する)。   Each hot water storage temperature sensor 112 measures the hot water storage temperature of the hot water storage tank 110 and transmits it to the controller 160. The controller 160 determines (controls) whether or not the combustion-type hot water supply device 132 can be operated by referring to the hot water storage temperature measured by the target hot water storage temperature sensor 112a from among the transmitted hot water storage temperatures. For example, the combustion water heater 132 is operated at a hot water storage temperature of 55 ° C. or lower, and the operation of the combustion water heater 132 is stopped at a hot water storage temperature of 60 ° C. or higher. In FIG. 1, the hot water storage temperature sensor 112a targeted by the control device 160 at standard time is indicated by a black circle (the hot water storage temperature sensor 112b in FIG. 1 will be described later).

貯湯温度に基づいて燃焼式給湯器132が制御されるのは、貯湯温度が貯湯タンク110の貯湯量を示す指標だからである。詳述すると、貯湯タンク110の下部においては給水配管104より低温水が給水され、上部においては出湯配管124、第2出湯配管134より高温水が出湯されるため、貯湯タンク110の貯湯温度は概して図1中点線で記す位置A、位置B、位置Cにおいてそれぞれ差異を生じる。正確ではないが、貯湯タンク110の下部と上部にそれぞれ水と湯が分離して貯留されているようなイメージとなる。   The reason why the combustion type water heater 132 is controlled based on the hot water storage temperature is that the hot water storage temperature is an index indicating the amount of hot water stored in the hot water storage tank 110. More specifically, since the low temperature water is supplied from the water supply pipe 104 at the lower part of the hot water storage tank 110 and the high temperature water is discharged from the hot water supply pipe 124 and the second hot water supply pipe 134 at the upper part, the hot water storage temperature of the hot water storage tank 110 is generally high. Differences occur at positions A, B, and C indicated by dotted lines in FIG. Although not accurate, the image is such that water and hot water are separated and stored in the lower and upper parts of the hot water storage tank 110, respectively.

そのため、貯湯温度によって、その温度が測定された高さ位置において貯留されているのが湯か水かを判断することができる。すなわち、各貯湯温度センサー112は、貯湯タンク110の貯湯量がそれぞれの高さ位置に応じて定められる閾値(所定貯湯量)以上か未満かを判断することができる。   Therefore, it is possible to determine whether hot water or water is stored at the height position where the temperature is measured based on the hot water storage temperature. That is, each hot water storage temperature sensor 112 can determine whether or not the amount of hot water stored in the hot water storage tank 110 is greater than or less than a threshold value (predetermined hot water storage amount) determined according to each height position.

入水配管120は、貯湯タンク110の下部から低温水を抜き出し、ヒートポンプ式給湯器122へ入水する。ヒートポンプ式給湯器122のCOP(成績係数:coefficient of performance)は、入水温度や外気温度に依存する。具体的には、入水温度が低く、外気温度が高い方がCOPの値は向上する。   The incoming water pipe 120 extracts low temperature water from the lower part of the hot water storage tank 110 and enters the heat pump hot water heater 122. The COP (coefficient of performance) of the heat pump water heater 122 depends on the incoming water temperature and the outside air temperature. Specifically, the COP value is improved when the incoming water temperature is lower and the outside air temperature is higher.

ヒートポンプ式給湯器122は、圧縮器、凝縮器、膨張弁、蒸発器、空冷ファン等からなり、いわゆるヒートポンプサイクルによって入水した低温水を加熱し、高温水を生成する。特に近年では、自然冷媒であるCOを熱媒体として循環させるエコキュート(登録商標)が注目を集めている。 The heat pump hot water heater 122 includes a compressor, a condenser, an expansion valve, an evaporator, an air cooling fan, and the like, and heats the low-temperature water that has entered by a so-called heat pump cycle to generate high-temperature water. In particular, in recent years, Ecocute (registered trademark) that circulates CO 2 , which is a natural refrigerant, as a heat medium has attracted attention.

出湯配管124は、ヒートポンプ式給湯器122によって生成された高温水を貯湯タンク110上部へと出湯する。このときの出湯温度(ヒートポンプ式給湯器122の出湯温度)は、概して40℃から90℃の範囲内で定められる。なお、出湯温度は概して設備導入時に初期設定値として定められる。   The hot water supply pipe 124 discharges hot water generated by the heat pump hot water heater 122 to the upper part of the hot water storage tank 110. The hot water temperature at this time (the hot water temperature of the heat pump type hot water heater 122) is generally determined within the range of 40 ° C to 90 ° C. The tapping temperature is generally determined as an initial set value when the equipment is introduced.

第2入水配管130は、貯湯タンク110から中温水または低温水を抜き出し、燃焼式給湯器132へ入水する。燃焼式給湯器132は、ヒートポンプ式給湯器122のように入水温度や外気温度といった外界条件によってCOPが変化するわけではなく、かかる燃焼式給湯器132には通常いかなる温度の湯水をも入水可能である。ただし、全体的に、燃焼式給湯器132のCOPはヒートポンプ式給湯器122よりも低めである。   The second water intake pipe 130 extracts medium-temperature water or low-temperature water from the hot water storage tank 110 and enters the combustion hot water heater 132. Unlike the heat pump water heater 122, the combustion hot water heater 132 does not change the COP depending on the ambient conditions such as the incoming water temperature and the outside air temperature, and the combustion hot water heater 132 can normally enter hot water of any temperature. is there. However, as a whole, the COP of the combustion type water heater 132 is lower than that of the heat pump type water heater 122.

燃焼式給湯器132は、ヒーターやボイラー等による給湯器であって、ヒートポンプ式給湯器122の補助熱源器として利用される。かかる燃焼式給湯器132の稼動可否は、制御装置160によって制御される。燃焼式給湯器132によって生成された高温水は、第2出湯配管134によって貯湯タンク110上部へと出湯される。   The combustion hot water heater 132 is a hot water heater such as a heater or a boiler, and is used as an auxiliary heat source for the heat pump hot water heater 122. Whether or not the combustion type water heater 132 can be operated is controlled by the control device 160. The high-temperature water generated by the combustion hot water supply device 132 is discharged to the upper part of the hot water storage tank 110 through the second hot water supply pipe 134.

給湯配管140は、給湯温度センサー144を備え、給湯負荷142へ給湯を行う。かかる給湯温度センサー144により測定された温度は、制御装置160へと伝達される。   The hot water supply pipe 140 includes a hot water supply temperature sensor 144 and supplies hot water to the hot water supply load 142. The temperature measured by the hot water supply temperature sensor 144 is transmitted to the control device 160.

外気温度センサー150は、外気温度を測定する。測定された温度は、制御装置160へと伝達される。   The outside air temperature sensor 150 measures the outside air temperature. The measured temperature is transmitted to the control device 160.

制御装置160は、給水温度、外気温度に基づいて、標準時の貯湯温度センサー112aから、他の貯湯温度センサー112bへと貯湯温度を参照する対象を変更する。換言すれば、燃焼式給湯器132の稼動可否が判断される閾値(所定貯湯量)を増減して補正する。そして、この閾値(所定貯湯量)を基準として、燃焼式給湯器132の稼動を制御する。   Based on the feed water temperature and the outside air temperature, the control device 160 changes the reference for the hot water storage temperature from the hot water storage temperature sensor 112a at the standard time to the other hot water storage temperature sensor 112b. In other words, the threshold value (predetermined hot water storage amount) for determining whether or not the combustion hot water heater 132 can be operated is increased or decreased for correction. Then, the operation of the combustion type water heater 132 is controlled based on this threshold value (predetermined hot water storage amount).

図2は、第1実施形態にかかる制御装置160の機能ブロック図である。制御装置160は、制御部200、温度データ取得部210、装置メモリ212、加熱能力取得部218、演算部220、補正部222から構成される。   FIG. 2 is a functional block diagram of the control device 160 according to the first embodiment. The control device 160 includes a control unit 200, a temperature data acquisition unit 210, a device memory 212, a heating capacity acquisition unit 218, a calculation unit 220, and a correction unit 222.

制御部200は、中央処理装置(CPU)を含んで構成され、制御装置160全体を制御する。また、燃焼式給湯器132の稼動可否を判断する。   The control unit 200 includes a central processing unit (CPU) and controls the entire control device 160. Further, it is determined whether or not the combustion type water heater 132 can be operated.

温度データ取得部210は、給水温度センサー106、貯湯温度センサー112、給湯温度センサー144、外気温度センサー150からそれぞれの測定温度を取得(受信)する。   The temperature data acquisition unit 210 acquires (receives) each measured temperature from the water supply temperature sensor 106, the hot water storage temperature sensor 112, the hot water supply temperature sensor 144, and the outside air temperature sensor 150.

装置メモリ212は、ROM、RAM、EEPROM、不揮発性RAM、フラッシュメモリ、HDD等からなる記録媒体である。装置メモリ212は、基準値データテーブル214、ヒートポンプ特性テーブル216を記憶している。   The device memory 212 is a recording medium composed of ROM, RAM, EEPROM, nonvolatile RAM, flash memory, HDD, and the like. The device memory 212 stores a reference value data table 214 and a heat pump characteristic table 216.

図3は、第1実施形態にかかる基準値データテーブル214の詳細を示す図である。図3に示すように、基準値データテーブル214には給水温度、出湯温度、外気温度を含む種々の初期設定値(自動計算値)、すなわち基準値が記憶されている。特に、給水温度や外気温度は、最も過酷な条件となる最厳冬期を勘案し設定される。具体的には、最厳冬期におけるアメダス気象データの観測値が自動入力される。   FIG. 3 is a diagram showing details of the reference value data table 214 according to the first embodiment. As shown in FIG. 3, the reference value data table 214 stores various initial set values (automatic calculation values) including a feed water temperature, a tapping temperature, and an outside air temperature, that is, reference values. In particular, the water supply temperature and the outside air temperature are set in consideration of the severest winter season, which is the most severe condition. Specifically, the observed value of AMeDAS weather data in the severe winter season is automatically input.

ヒートポンプ特性テーブル216(詳細は不図示)には、外気温度別にヒートポンプ式給湯器122の加熱能力(kW/h)すなわち対応関係が記憶される。そして、加熱能力取得部218は、ヒートポンプ特性テーブル216を参照して、温度データ取得部210が受信した外気温度に対応する加熱能力を取得する。   The heat pump characteristic table 216 (details not shown) stores the heating capacity (kW / h), that is, the correspondence relationship of the heat pump type hot water heater 122 for each outside air temperature. And the heating capability acquisition part 218 acquires the heating capability corresponding to the outside temperature which the temperature data acquisition part 210 received with reference to the heat pump characteristic table 216.

演算部220は、温度データ取得部210が受信した給水温度と、加熱能力取得部218が取得した加熱能力と、ヒートポンプ式給湯器122の出湯温度に基づいて、ヒートポンプ式給湯器122が単位時間当たりに出湯可能な出湯流量を算出する。   Based on the water supply temperature received by the temperature data acquisition unit 210, the heating capability acquired by the heating capability acquisition unit 218, and the tapping temperature of the heat pump type hot water heater 122, the calculation unit 220 is configured so that the heat pump type hot water heater 122 per unit time. The amount of hot water that can be poured into the hot water is calculated.

補正部222は、演算部220によって単位時間当たりの算出された出湯流量と、基準値データテーブル214に記憶された単位時間当たりの出湯流量の基準値との差を求め、この差に基づいて燃焼式給湯器132の稼動可否が判断される閾値(所定貯湯量)を増減して補正する。具体的には、求められた差を貯湯タンク110に貯湯された場合の高さに換算する。そして、この高さ分、標準時の貯湯温度センサー112aから離れた位置にある他の貯湯温度センサー112bに貯湯温度を参照する対象を変更する。   The correction unit 222 obtains a difference between the hot water flow rate calculated per unit time by the arithmetic unit 220 and the reference value of the hot water flow rate per unit time stored in the reference value data table 214, and combustion is performed based on the difference. The threshold value (predetermined hot water storage amount) for determining whether or not the hot water heater 132 is operable is increased and decreased for correction. Specifically, the obtained difference is converted into a height when hot water is stored in the hot water storage tank 110. Then, the object for referring to the hot water storage temperature is changed to another hot water storage temperature sensor 112b located at a position away from the hot water storage temperature sensor 112a at the standard time by this height.

図4は、第1実施形態を適用した実施例1について説明する図である。特に図4(a)は燃焼式給湯器132の稼動条件を可変させる(補正する)フローを例示する図、図4(b)は実施例1にかかる測定(算出)データを示す図である。以下、実施例1として具体的な数値を示し、燃焼式給湯器132の稼動条件の補正について詳細に説明する。   FIG. 4 is a diagram illustrating Example 1 to which the first embodiment is applied. In particular, FIG. 4A is a diagram illustrating a flow for changing (correcting) the operating condition of the combustion type water heater 132, and FIG. 4B is a diagram illustrating measurement (calculation) data according to the first embodiment. Hereinafter, specific numerical values will be shown as the first embodiment, and the correction of the operating condition of the combustion type water heater 132 will be described in detail.

まず、温度データ取得部210が給水温度、外気温度を取得する(S230)。ここで図4(b)に示すように、給水温度が20℃、外気温度が24℃であったとする。次に、加熱能力取得部218がヒートポンプ特性テーブル216を参照して、外気温度が24℃のときのヒートポンプ式給湯器122の加熱能力を取得する(S232)。ここで、24℃のときの加熱能力を40kWとする。   First, the temperature data acquisition unit 210 acquires the water supply temperature and the outside air temperature (S230). Here, it is assumed that the water supply temperature is 20 ° C. and the outside air temperature is 24 ° C. as shown in FIG. Next, the heating capacity acquisition unit 218 refers to the heat pump characteristic table 216 to acquire the heating capacity of the heat pump hot water heater 122 when the outside air temperature is 24 ° C. (S232). Here, the heating capacity at 24 ° C. is 40 kW.

次に、演算部220がヒートポンプ式給湯器122の給水温度と、出湯温度の温度差を求める(S234)。ここで、出湯温度は概して初期設定値として設定されるので、基準値と同一の値(65℃)を用いることができる。よって、温度差は45℃となる。なおS232とS234は順不同である。   Next, the calculating part 220 calculates | requires the temperature difference of the feed water temperature of the heat pump type hot water heater 122, and the tapping temperature (S234). Here, since the tapping temperature is generally set as an initial set value, the same value (65 ° C.) as the reference value can be used. Therefore, the temperature difference is 45 ° C. Note that S232 and S234 are out of order.

次に、演算部220がS232で取得した加熱能力、S234で求めた温度差から単位時間当たりの出湯流量を算出する(S236)。すなわち、加熱能力40kW、温度差45℃であるので、単位時間当たりの出湯流量は以下のように算出される。
40kW×860kcal/h・kW÷45℃=764L/h
ここで、860kcal/hは、1kWの電力から1時間当たりに発生する熱量である。
Next, the hot water flow rate per unit time is calculated from the heating capacity acquired in S232 and the temperature difference obtained in S234 (S236). That is, since the heating capacity is 40 kW and the temperature difference is 45 ° C., the discharged hot water flow rate per unit time is calculated as follows.
40 kW × 860 kcal / h · kW ÷ 45 ° C. = 764 L / h
Here, 860 kcal / h is the amount of heat generated per hour from 1 kW of power.

なお、ここでは1時間当たりの出湯流量を算出しているが、これに限定されるわけではない。単位時間としては、貯湯タンク110の容量などに応じて、1日当たりの出湯流量等都合のよいものを採用してよい。   In addition, although the tap water flow rate per hour is calculated here, it is not necessarily limited to this. As the unit time, a convenient unit such as a hot water flow rate per day may be adopted according to the capacity of the hot water storage tank 110 or the like.

次に、補正部222が単位時間当たりの出湯流量764L/h(算出値)と、基準値データテーブル216に記憶されたその基準値591L/hとの差(算出値−基準値)、173L/hを求める(S238)。次に、補正部222が求められた差173L/hを基準値データテーブル216に記憶された貯湯タンク110の底面積1.5mで割って、貯湯タンク110に貯湯された場合の高さ116mmに換算する(S240)。 Next, the correction unit 222 calculates a difference between the hot water flow rate 764 L / h (calculated value) per unit time and the reference value 591 L / h stored in the reference value data table 216 (calculated value−reference value), 173 L / h. h is obtained (S238). Next, the difference 173 L / h obtained by the correction unit 222 is divided by the bottom area 1.5 m 2 of the hot water storage tank 110 stored in the reference value data table 216, and the height when the hot water is stored in the hot water storage tank 110 is 116 mm. (S240).

次に、図1に示すように、補正部222が標準時の貯湯温度センサー112aから、116mmの高さにある他の貯湯温度センサー112bに測定温度を参照する対象を変更する(S242)。これにより、燃焼式給湯器132は、貯湯温度センサー112bが測定した貯湯温度に基づいて、その稼動可否が判断される。   Next, as shown in FIG. 1, the correction unit 222 changes the reference object of the measured temperature from the hot water storage temperature sensor 112a at the standard time to another hot water storage temperature sensor 112b at a height of 116 mm (S242). Thus, whether or not the combustion-type hot water heater 132 is operable is determined based on the hot water storage temperature measured by the hot water storage temperature sensor 112b.

以上、本発明の第1実施形態について詳述した。かかる第1実施形態によれば、ヒートポンプ式給湯器122の出湯能力に影響を及ぼす給水温度や外気温度を考慮して、燃焼式給湯器132の稼動可否が判断される貯湯タンク110の閾値(所定貯湯量)を増減して補正することができる。このようにヒートポンプ式給湯器122の出湯能力が増えた分だけ燃焼式給湯器132の稼働を遅らせることにより、不必要な燃焼式給湯器132の稼動を排除することができ、さらなるランニングコストの低減、エネルギー消費量の改善、CO排出量の削減を図り得る。 The first embodiment of the present invention has been described in detail above. According to the first embodiment, the threshold of the hot water storage tank 110 (predetermined whether or not the combustion hot water heater 132 can be operated is determined in consideration of the feed water temperature and the outside air temperature that affect the hot water discharge capacity of the heat pump hot water heater 122. The amount of hot water storage) can be increased or decreased for correction. Thus, by delaying the operation of the combustion hot water heater 132 by an amount corresponding to the increase in the hot water supply capacity of the heat pump hot water heater 122, unnecessary operation of the combustion hot water heater 132 can be eliminated, and the running cost can be further reduced. , Improve energy consumption and reduce CO 2 emissions.

なお、図5は、第1実施形態に関連する給水温度、外気温度の地域ごとの月別実測データを示す図である。図5に示すように、給水温度では最大24.7℃、外気温度では最大27.1℃もの差異を生じ得る。これより、本実施形態が極めて多大な効果を奏し得ることは明らかである。   In addition, FIG. 5 is a figure which shows the monthly actual measurement data for every area | region of the water supply temperature relevant to 1st Embodiment, and external temperature. As shown in FIG. 5, a difference of up to 24.7 ° C. at the feed water temperature and a maximum of 27.1 ° C. at the outside air temperature can occur. From this, it is clear that this embodiment can have a very great effect.

[第2実施形態]
図6は、第2実施形態にかかるハイブリッド給湯システム300の概略的な構成を示す図である。また、図7は、第2実施形態にかかる制御装置360の機能ブロック図である。上記第1実施形態と説明の重複する部分については、同一の符号を付して説明を省略する。
[Second Embodiment]
FIG. 6 is a diagram illustrating a schematic configuration of a hybrid hot water supply system 300 according to the second embodiment. FIG. 7 is a functional block diagram of the control device 360 according to the second embodiment. The same parts as those in the first embodiment will be denoted by the same reference numerals and the description thereof will be omitted.

上記第1実施形態では、給水温度および外気温度等に基づいて、燃焼式給湯器132の稼動可否が判断される貯湯タンク110の閾値(所定貯湯量)を増減して補正した。第2実施形態では、予測される総給湯量等に基づいて、燃焼式給湯器132の稼動可否が判断される貯湯タンク110の閾値(所定貯湯量)を増減して補正する。すなわち、第2実施形態の第1実施形態との違いは、流量計342、人数管理システム358を更に備え、制御装置360が異なっている点である。   In the first embodiment, the threshold value (predetermined hot water storage amount) of the hot water storage tank 110 for determining whether the combustion hot water heater 132 is operable is corrected based on the water supply temperature, the outside air temperature, and the like. In the second embodiment, the threshold value (predetermined hot water storage amount) of the hot water storage tank 110 for determining whether or not the combustion hot water heater 132 is operable is corrected based on the predicted total hot water supply amount and the like. That is, the difference of the second embodiment from the first embodiment is that the flow meter 342 and the number of people management system 358 are further provided, and the control device 360 is different.

流量計342は、給水配管104に備えられ、給水の流量すなわち給湯使用量を測定する。そして、測定された流量は、制御装置360に伝達される。なお、本実施形態では、流量計342を給水配管104に配置しているが、給湯配管140に配置してもよい。   The flow meter 342 is provided in the water supply pipe 104 and measures the flow rate of the water supply, that is, the amount of hot water used. Then, the measured flow rate is transmitted to the control device 360. In the present embodiment, the flow meter 342 is disposed in the water supply pipe 104, but may be disposed in the hot water supply pipe 140.

人数管理システム358は、ホテルの宿泊管理システムや病院の入院者等管理システム、他の顧客情報管理システムといったハイブリッド給湯システム100を利用すると予測される人数情報を入出力可能なものを利用(転用)できる。人数管理システム358に入力された人数情報は、随時、制御装置360に伝達される。   The number of people management system 358 is a device that can input / output the number of people information predicted to use the hybrid hot water supply system 100 such as a hotel accommodation management system, a hospital inpatient management system, or another customer information management system (reuse). it can. The number information input to the number management system 358 is transmitted to the control device 360 as needed.

制御装置360は、制御部200、人数情報取得部408、温度データ取得部210、流量データ取得部410、装置メモリ412、原単位割出部418、演算部420、補正部422から構成される。そして、装置メモリ412は、基準値データテーブル414、原単位割出データテーブル416を有する。   The control device 360 includes a control unit 200, a number information acquisition unit 408, a temperature data acquisition unit 210, a flow rate data acquisition unit 410, a device memory 412, a basic unit indexing unit 418, a calculation unit 420, and a correction unit 422. The device memory 412 has a reference value data table 414 and a basic unit index data table 416.

人数情報取得部408は、人数管理システム358から人数情報を取得する。また、流量データ取得部410は、流量計342から測定された流量(給湯使用量)を取得(受信)する。   The number information acquisition unit 408 acquires number information from the number management system 358. Further, the flow rate data acquisition unit 410 acquires (receives) the flow rate (hot water supply usage amount) measured from the flow meter 342.

図8は、第2実施形態にかかる基準値データテーブル414の詳細を示す図である。図8(a)に示すように、基準値データテーブル414には少なくとも、業種、計測原単位、人数情報、1日当たりの総給湯量の初期設定値が記憶されている。特に計測原単位の初期設定値は、図8(b)に例示的に示される業種ごとの計測原単位を勘案して設定される。   FIG. 8 is a diagram showing details of the reference value data table 414 according to the second embodiment. As shown in FIG. 8A, the reference value data table 414 stores at least the industry type, the measurement basic unit, the number information, and the initial set value of the total hot water supply amount per day. In particular, the initial setting value of the measurement basic unit is set in consideration of the measurement basic unit for each industry shown as an example in FIG.

図9は、第2実施形態にかかる原単位割出データテーブル416を例示的に示す図である。図9に示すように、原単位割出データテーブル416は、少なくとも人数情報取得部408が取得した人数情報と、流量データ取得部410が取得した流量すなわち給湯使用量の実績データを関連づけて記憶している。本実施形態においては、原単位割出データテーブル416には、過去の人数情報と給湯使用量の実績データが日付や曜日等を踏まえて関連づけられ記憶されている。そして、さらに原単位割出部418が割り出した所定時間における1人当たりの給湯使用量(以下、計測原単位と称する)が原単位割出データテーブル416に記憶される。   FIG. 9 is a diagram exemplarily showing the basic unit index data table 416 according to the second embodiment. As shown in FIG. 9, the basic unit index data table 416 stores at least the number of people information acquired by the number of people information acquisition unit 408 and the flow rate acquired by the flow rate data acquisition unit 410, that is, the actual data of hot water usage. ing. In the present embodiment, in the basic unit index data table 416, past number information and actual performance data of hot water supply usage are stored in association with each other based on the date, day of the week, and the like. Further, the amount of hot water used per person (hereinafter referred to as a measurement basic unit) for a predetermined time determined by the basic unit indexing unit 418 is stored in the basic unit index data table 416.

原単位割出部418は、原単位割出データテーブル416に記憶される過去の人数情報と給湯使用量の実績データを参照して、計測原単位を求める。この計測原単位は、種々(任意)の方式に基づき割り出される。そして、上述したように、原単位割出データテーブル416にその割り出された値が記憶される。   The basic unit indexing unit 418 obtains a measurement basic unit by referring to past number information and actual hot water consumption data stored in the basic unit index data table 416. This measurement basic unit is determined based on various (arbitrary) methods. As described above, the calculated value is stored in the basic unit index data table 416.

種々(任意)の方式を具体的に例示すると、図9に示すように、単純に年間平均値としたり、曜日ごとの平均値として計測原単位を割り出したりしてよい。また、A、B、Cにランク分けをして、Aを年間平均値の1.2倍、Bを年間平均値の1.0倍、Cを年間平均値の0.8倍として計測原単位を割り出し、原単位割出データテーブル416に記憶させていてもよい。このように使用者の所望の方式で計測原単位を割出可能としたことにより、現場に則した総給湯量の予測(算出)が可能となる。なお、これらの平均値の割出において突飛なデータが存在した場合には、そのデータを計測原単位の割出から除外可能であると好適である。   To specifically illustrate various (arbitrary) systems, as shown in FIG. 9, the annual average value may be simply calculated, or the measurement basic unit may be calculated as the average value for each day of the week. In addition, A, B, and C are ranked, A is 1.2 times the annual average, B is 1.0 times the annual average, and C is 0.8 times the annual average. May be stored in the basic unit index data table 416. Thus, by making it possible to determine the measurement basic unit by the method desired by the user, it becomes possible to predict (calculate) the total amount of hot water supply in accordance with the site. In addition, when there is unexpected data in the calculation of these average values, it is preferable that the data can be excluded from the calculation of the measurement basic unit.

演算部420は、人数情報取得部408が取得した人数情報と、原単位割出データテーブル416が割り出した計測原単位に基づいて、必要となる総給湯量を算出する。このとき、例えば年間平均値や曜日ごとの平均値を計測原単位として利用する場合には、演算部420が自動的に(曜日ごとに割り出された計測原単位を利用する場合には対応する曜日の)原単位割出データテーブル416を参照するように構築することができる。また、Aを1.2倍、Bを1.0倍、Cを0.8倍とランク分けされた計測原単位を利用する場合には、予測する日の計測原単位をどのランクにするか使用者がボタン等によって外部から入力可能であると好ましい。   The calculation unit 420 calculates the required total amount of hot water supply based on the number of people information acquired by the number of people information acquisition unit 408 and the measurement basic unit calculated by the basic unit index data table 416. At this time, for example, when the annual average value or the average value for each day of the week is used as the measurement basic unit, the calculation unit 420 automatically corresponds (when the measurement basic unit calculated for each day of the week is used). It can be constructed to refer to the basic unit index data table 416 (of the day of the week). In addition, when using a measurement basic unit that is ranked A as 1.2 times, B as 1.0 times, and C as 0.8 times, which rank should be used as the measurement basic unit for the predicted day? It is preferable that the user can input from the outside with a button or the like.

補正部422は、演算部420によって1日当たりの算出された総給湯量(予測値)と、基準値データテーブル414に記憶された1日当たりの総給湯量の基準値の差を求め、この差に基づいて燃焼式給湯器132の稼動可否が判断される閾値(所定貯湯量)を増減して補正する。具体的には、総給湯量の差を貯湯タンク110に貯湯された場合の高さに換算する。そして、この高さ分、標準時の貯湯温度センサー112aから離れた位置にある他の貯湯温度センサー112bに貯湯温度を参照する対象を変更する。   The correction unit 422 obtains a difference between the total hot water supply amount (predicted value) calculated per day by the arithmetic unit 420 and the reference value of the total hot water supply amount per day stored in the reference value data table 414, and uses this difference as a difference. Based on this, the threshold value (predetermined hot water storage amount) for determining whether or not the combustion hot water heater 132 can be operated is increased and decreased for correction. Specifically, the difference in the total hot water supply amount is converted into the height when hot water is stored in the hot water storage tank 110. Then, the object for referring to the hot water storage temperature is changed to another hot water storage temperature sensor 112b located at a position away from the hot water storage temperature sensor 112a at the standard time by this height.

図10は、第2実施形態を適用した実施例2について説明する図である。特に図10(a)は燃焼式給湯器132の稼動条件を可変させる(補正する)フローを例示する図、図10(b)は実施例2にかかる測定(算出)データを示す図である。以下、実施例2として具体的な数値を示し、燃焼式給湯器132の稼動条件の補正について詳細に説明する。   FIG. 10 is a diagram illustrating Example 2 to which the second embodiment is applied. In particular, FIG. 10A is a diagram illustrating a flow for changing (correcting) the operating condition of the combustion type water heater 132, and FIG. 10B is a diagram illustrating measurement (calculation) data according to the second embodiment. Hereinafter, specific numerical values will be shown as the second embodiment, and the correction of the operating condition of the combustion type water heater 132 will be described in detail.

まず、人数情報取得部408が、人数管理システム358から翌日予測される人数情報を取得する(S430)。ここで、図10(b)に示すように、人数情報が88人であったとする。   First, the number of people information acquisition unit 408 acquires the number of people information predicted the next day from the number of people management system 358 (S430). Here, as shown in FIG. 10B, it is assumed that the number information is 88 people.

次に、演算部420が、原単位割出データテーブル416に記憶された過去の人数情報と給湯使用量の実績データから、計測原単位を求める(S432)。ここで、計測原単位として、過去の人数情報と給湯使用量の実績データから割り出された年間平均値206L/人・日を利用するものとする。なおS430とS432は順不同である。   Next, the calculation part 420 calculates | requires a measurement basic unit from the past number information stored in the basic unit index data table 416, and the performance data of hot water supply usage (S432). Here, it is assumed that an average value 206 L / person / day calculated from past number information and actual data of hot water consumption is used as a measurement basic unit. Note that S430 and S432 are in no particular order.

次に、演算部420がS430で取得した人数情報、S432で求めた計測原単位から、翌日必要となる総給湯量を算出する(S434)。すなわち、人数情報が88人、計測原単位が206L/人・日であるので、翌日必要な総給湯量はこれらを乗じることにより、18111L/日と算出される。   Next, the total hot water supply amount required for the next day is calculated from the number information acquired in S430 by the calculation unit 420 and the measurement basic unit obtained in S432 (S434). That is, since the number information is 88 people and the measurement basic unit is 206 L / person / day, the total amount of hot water required for the next day is calculated to be 18111 L / day by multiplying them.

次に、補正部422が、翌日必要となる総給湯量18111L(予測値)と、基準値データテーブル416に記憶された総給湯量の基準値20000L/日との差(基準値−予測値)、1889L/日を求める(S436)。次に、補正部422が求められた差1889L/日を基準値データテーブル416に記憶された貯湯タンク110の底面積1.5mで割って、貯湯タンク110に貯湯された場合の高さ1259mmに換算する(S438)。 Next, the correction unit 422 determines the difference between the total hot water supply amount 18111L (predicted value) required on the next day and the reference value 20000L / day of the total hot water supply amount stored in the reference value data table 416 (reference value-predicted value). , 1889L / day is obtained (S436). Next, the difference 1889 L / day obtained by the correction unit 422 is divided by the bottom area 1.5 m 2 of the hot water storage tank 110 stored in the reference value data table 416, and the height when the hot water is stored in the hot water storage tank 110 is 1259 mm. (S438).

次に、図6に示すように、補正部422が、標準時の貯湯温度センサー112aから1259mmの高さにある他の貯湯温度センサー112bに測定温度を参照する対象を変更する(S440)。すなわち、燃焼式給湯器132は、貯湯温度センサー112bが測定した貯湯温度に基づいて、その稼動可否が判断される。   Next, as shown in FIG. 6, the correction | amendment part 422 changes the object which refers measured temperature to the other hot water storage temperature sensor 112b in the height of 1259 mm from the hot water storage temperature sensor 112a of a standard time (S440). That is, whether or not the combustion type water heater 132 is operable is determined based on the hot water storage temperature measured by the hot water storage temperature sensor 112b.

以上、本発明の第2実施形態について詳述した。かかる第2実施形態によれば、少なくとも人数管理システム358から出力される人数情報および計測原単位に基づき予測(算出)される総給湯量等を考慮して、燃焼式給湯器132の稼動可否が判断される閾値(所定貯湯量)を増減して補正することができる。これにより、不必要な燃焼式給湯器132の稼動を排除することができ、さらなるランニングコストの低減、エネルギー消費量の改善、CO排出量の削減を図り得る。 The second embodiment of the present invention has been described in detail above. According to the second embodiment, whether or not the combustion water heater 132 can be operated is determined in consideration of at least the number of people information output from the number of people management system 358 and the total hot water supply amount predicted (calculated) based on the measurement basic unit. The threshold value (predetermined hot water storage amount) determined can be increased or decreased for correction. Thereby, unnecessary operation of the combustion type water heater 132 can be eliminated, and further reduction of running cost, improvement of energy consumption, and reduction of CO 2 emission can be achieved.

[第3実施形態]
図11は、第3実施形態にかかるハイブリッド給湯システム500の概略的な構成を示す図である。また、図12は、第3実施形態にかかる制御装置560の機能ブロック図である。上記第1実施形態と説明の重複する部分については、同一の符号を付して説明を省略する。
[Third embodiment]
FIG. 11 is a diagram illustrating a schematic configuration of a hybrid hot water supply system 500 according to the third embodiment. FIG. 12 is a functional block diagram of the control device 560 according to the third embodiment. The same parts as those in the first embodiment will be denoted by the same reference numerals and the description thereof will be omitted.

上記第1実施形態では、給水温度および外気温度等に基づいて、燃焼式給湯器132の稼動可否が判断される貯湯タンク110の閾値(所定貯湯量)を増減して補正した。第3実施形態では、使用者のおおよその利用温度から予測(算出)される総給湯量等に基づいて、燃焼式給湯器132の稼動可否が判断される貯湯タンク110の閾値(所定貯湯量)を増減して補正する。すなわち、第3実施形態は、第2給水手段540、第2給水配管542、混合弁544をさらに備え、制御装置560が異なっている点で第1実施形態と違いがある。   In the first embodiment, the threshold value (predetermined hot water storage amount) of the hot water storage tank 110 for determining whether the combustion hot water heater 132 is operable is corrected based on the water supply temperature, the outside air temperature, and the like. In the third embodiment, the threshold value of the hot water storage tank 110 (predetermined hot water storage amount) for determining whether or not the combustion hot water heater 132 can be operated based on the total hot water supply amount predicted (calculated) from the user's approximate use temperature. Increase or decrease to correct. That is, the third embodiment is different from the first embodiment in that the second water supply means 540, the second water supply pipe 542, and the mixing valve 544 are further provided and the control device 560 is different.

第2給水手段540は、制御装置560に制御されるものではなく、使用者が手元のカラン(給湯負荷142)を操作することによって混合弁544を調整し、湯水を混合して所望の温度に調整する。すなわち、使用者の手元までは給湯配管140と第2給水配管542が並行して配設されており、使用者が任意に給湯(高温水)と給水(低温水)を混合させる。繰り返しになるが、第3実施形態は、この使用者の所望の温度、すなわち使用者のおおよその利用温度が季節や気温によって異なることに着目したものである。   The second water supply means 540 is not controlled by the control device 560, but the user adjusts the mixing valve 544 by operating the currant (hot water supply load 142) at hand, and mixes the hot and cold water to a desired temperature. adjust. That is, the hot water supply pipe 140 and the second water supply pipe 542 are arranged in parallel up to the user's hand, and the user arbitrarily mixes hot water supply (high temperature water) and water supply (low temperature water). To reiterate, the third embodiment focuses on the fact that the user's desired temperature, that is, the user's approximate use temperature varies depending on the season and temperature.

制御装置560は、制御部200、温度データ取得部210、暦情報取得手段としてのカレンダー610、装置メモリ612、利用温度予測部618、演算部620、補正部622から構成される。そして、装置メモリ612は、基準値データテーブル614を有する。   The control device 560 includes a control unit 200, a temperature data acquisition unit 210, a calendar 610 as a calendar information acquisition unit, a device memory 612, a use temperature prediction unit 618, a calculation unit 620, and a correction unit 622. The device memory 612 has a reference value data table 614.

カレンダー610は、暦情報を保持している。そして、総給湯量が予測される日の暦情報を利用温度予測部618に受け渡す。暦情報とは、日付であってもよいが、季節単位、月単位、もしくは週単位などに区分してもよい。さらに、春夏秋冬の間の時期である中間期、梅雨、ゴールデンウィーク、盆暮れ正月などの風習上の特別な時期などを区分してもよい。本実施形態においては、季節単位を例示して説明する。   The calendar 610 holds calendar information. Then, the calendar information of the day on which the total hot water supply amount is predicted is transferred to the use temperature prediction unit 618. The calendar information may be a date, but may be divided into seasonal units, monthly units, weekly units, or the like. Furthermore, it is possible to classify special periods such as mid-term, which is the period between spring, summer, autumn and winter, the rainy season, Golden Week, and Bonsai New Year. In the present embodiment, a description will be given taking seasonal units as an example.

図13は、第3実施形態にかかる基準値データテーブル614の詳細を示す図である。図13に示すように、基準値データテーブル614には基準利用温度の初期設定値および季節(夏期、中間期、冬期)ごとの利用温度等が記憶されている。基準利用温度の初期設定値は、最も過酷な条件となる最厳冬期を想定して設定される。また、図示していないが、給水温度、外気温度ごとの利用温度が基準値データテーブル614に記憶されていてもよい。なお、本実施形態においては、1日当たりの総給湯量は60℃換算値(60℃の湯の場合に必要となる給湯量)を用いている。   FIG. 13 is a diagram showing details of the reference value data table 614 according to the third embodiment. As shown in FIG. 13, the reference value data table 614 stores an initial set value of the reference use temperature, a use temperature for each season (summer, intermediate, winter), and the like. The initial set value of the reference usage temperature is set assuming the severest winter season, which is the most severe condition. Further, although not shown, the use temperature for each of the water supply temperature and the outside air temperature may be stored in the reference value data table 614. In this embodiment, the total amount of hot water supply per day is a 60 ° C. converted value (the amount of hot water required for 60 ° C. hot water).

利用温度予測部618は、季節(夏期、中間期、冬期)ごとの利用温度等が記憶されている基準値データテーブル614を参照して、温度データ取得部210が取得(受信)した給水温度もしくは外気温度、またはカレンダー610の暦情報から、使用者のおおよその利用温度を予測する。   The use temperature prediction unit 618 refers to the reference value data table 614 in which the use temperature and the like for each season (summer, intermediate, and winter) are stored, or the water supply temperature acquired (received) by the temperature data acquisition unit 210 or The user's approximate use temperature is predicted from the outside air temperature or the calendar information of the calendar 610.

演算部620は、予測される利用温度に基づいて、必要となる総給湯量を算出する。また、補正部622は、演算部620によって1日当たりの総給湯量(予測値)と、基準値データデーブル614に記憶された1日当たりの総給湯量の基準値の差を求め、この差に基づいて燃焼式給湯器132の稼動可否が判断される閾値(所定貯湯量)を増減して補正する。具体的には、総給湯量の差を貯湯タンク110に貯湯された場合の高さに換算する。そして、この高さ分、標準時の貯湯温度センサー112aから離れた位置にある他の貯湯温度センサー112bに貯湯温度を参照する対象を変更する。   The calculating part 620 calculates the total amount of hot water supply required based on the predicted use temperature. Further, the correction unit 622 obtains a difference between the total hot water supply amount (predicted value) per day by the calculation unit 620 and the reference value of the total hot water supply amount per day stored in the reference value data table 614, and based on this difference. Then, the threshold value (predetermined hot water storage amount) for determining whether or not the combustion type water heater 132 is operable is increased or decreased for correction. Specifically, the difference in the total hot water supply amount is converted into the height when hot water is stored in the hot water storage tank 110. Then, the object for referring to the hot water storage temperature is changed to another hot water storage temperature sensor 112b located at a position away from the hot water storage temperature sensor 112a at the standard time by this height.

図14は、第3実施形態を適用した実施例3について説明する図である。特に図14(a)は燃焼式給湯器132の稼動条件を可変させる(補正する)フローを例示する図、図14(b)は実施例3にかかる測定(算出)データを示す図である。以下、実施例3として具体的な数値を示し、燃焼式給湯器132の稼動条件の補正について詳細に説明する。   FIG. 14 is a diagram illustrating Example 3 to which the third embodiment is applied. In particular, FIG. 14A is a diagram illustrating a flow of changing (correcting) the operating condition of the combustion type water heater 132, and FIG. 14B is a diagram illustrating measurement (calculation) data according to the third embodiment. Hereinafter, specific numerical values will be shown as the third embodiment, and the correction of the operating condition of the combustion type water heater 132 will be described in detail.

まず、利用温度予測部618が給水温度もしくは外気温度、または暦情報から使用者のおおよその利用温度を予測する(S630)。ここで、図14(b)に示すように、利用温度を38℃とする。   First, the use temperature prediction unit 618 predicts the approximate use temperature of the user from the water supply temperature or the outside air temperature, or calendar information (S630). Here, as shown in FIG.14 (b), utilization temperature shall be 38 degreeC.

次に、演算部620が、予測された利用温度と、基準値データテーブル614に記憶された1日当たりの総給湯量(基準値)および基準利用温度から、必要となる総給湯量を算出する(S632)。すなわち、予測された利用温度38℃、1日当たりの総給湯量(基準値)20000L/日、基準利用温度42℃であるので、必要となる総給湯量は以下のように算出される。
20000L/日×38℃/42℃=18095L/日
Next, the calculation unit 620 calculates the required total hot water supply amount from the predicted use temperature, the total hot water supply amount per day (reference value) and the reference use temperature stored in the reference value data table 614 ( S632). That is, since the predicted use temperature is 38 ° C., the total hot water supply amount per day (reference value) is 20000 L / day, and the reference use temperature is 42 ° C., the required total hot water supply amount is calculated as follows.
20000 L / day × 38 ° C./42° C. = 18095 L / day

次に、補正部622が、必要となる総給湯量18095L/日(予測値)と、基準値データテーブル416に記憶された総給湯量の基準値20000L/日との差(基準値−予測値)、1905L/日を求める(S634)。次に、補正部622が、求められた差1905L/日を基準値データテーブル416に記憶された貯湯タンク110の底面積1.5mで割って、貯湯タンク110に貯湯された場合の高さ1270mmに換算する(S636)。 Next, the correction unit 622 determines the difference between the required total hot water supply amount 18095 L / day (predicted value) and the reference value 20000 L / day of the total hot water supply amount stored in the reference value data table 416 (reference value−predicted value). ), 1905 L / day is obtained (S634). Next, the height when the correction unit 622 divides the obtained difference 1905 L / day by the bottom area 1.5 m 2 of the hot water storage tank 110 stored in the reference value data table 416 and stores the hot water in the hot water storage tank 110. Converted to 1270 mm (S636).

次に、図11に示すように、補正部622が標準時の貯湯温度センサー112aから、1270mmの高さにある他の貯湯温度センサー112bに測定温度を参照する対象を変更する(S638)。すなわち、燃焼式給湯器132は、貯湯温度センサー112bが測定した貯湯温度に基づいて、その稼動可否が判断される。   Next, as shown in FIG. 11, the correction unit 622 changes the target for referring to the measured temperature from the hot water storage temperature sensor 112a at the standard time to another hot water storage temperature sensor 112b at a height of 1270 mm (S638). That is, whether or not the combustion type water heater 132 is operable is determined based on the hot water storage temperature measured by the hot water storage temperature sensor 112b.

以上、本発明の第3実施形態について詳述した。かかる第3実施形態によれば、使用者のおおよその利用温度に基づき予測(算出)される総給湯量等を考慮して、燃焼式給湯器132の稼動可否が判断される閾値(所定貯湯量)を増減して補正することができる。これにより、不必要な燃焼式給湯器132の稼動を排除することができ、さらなるランニングコストの低減、エネルギー消費量の改善、CO排出量の削減を図り得る。 The third embodiment of the present invention has been described in detail above. According to the third embodiment, the threshold value (predetermined hot water storage amount) for determining whether or not the combustion hot water heater 132 can be operated in consideration of the total hot water supply amount predicted (calculated) based on the approximate usage temperature of the user. ) To increase or decrease. Thereby, unnecessary operation of the combustion type water heater 132 can be eliminated, and further reduction of running cost, improvement of energy consumption, and reduction of CO 2 emission can be achieved.

[他の実施形態]
図15は、他の実施形態におけるハイブリッド給湯システム700を例示する図である。上記第1実施形態から第3実施形態では、密閉式の貯湯タンク110を用いる構成を説明した。本実施形態では、開放式の貯湯タンク710を採用するハイブリッド給湯システム700について説明する。なお、上記第1実施形態と説明の重複する部分については、同一の符号を付して説明を省略する。
[Other embodiments]
FIG. 15 is a diagram illustrating a hybrid hot water supply system 700 according to another embodiment. In the first to third embodiments, the configuration using the sealed hot water storage tank 110 has been described. In the present embodiment, a hybrid hot water supply system 700 that employs an open hot water storage tank 710 will be described. In addition, about the part which overlaps with the said 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.

ハイブリッド給湯システム700は、給水手段102、給水温度センサー106、入水配管720、ヒートポンプ式給湯器122、燃焼式給湯器132、出湯配管724、貯湯タンク710、貯湯量判断手段としての水位検知センサー712、給湯配管140、給湯温度センサー144、外気温度センサー150、制御装置160を包含する。   The hybrid hot water supply system 700 includes a water supply means 102, a water supply temperature sensor 106, a water inlet pipe 720, a heat pump hot water heater 122, a combustion hot water heater 132, a hot water outlet pipe 724, a hot water storage tank 710, a water level detection sensor 712 as a hot water storage amount determination means, A hot water supply pipe 140, a hot water supply temperature sensor 144, an outside air temperature sensor 150, and a control device 160 are included.

入水配管720は、給水手段102より流入した水をヒートポンプ式給湯器122または燃焼式給湯器132に入水する。出湯配管724は、ヒートポンプ式給湯器122や燃焼式給湯器132で生成された高温水を貯湯タンク710に対して出湯する。   The water inlet pipe 720 enters the water flowing in from the water supply means 102 into the heat pump hot water heater 122 or the combustion hot water heater 132. The hot water supply pipe 724 discharges hot water generated by the heat pump hot water heater 122 and the combustion hot water heater 132 to the hot water storage tank 710.

貯湯タンク710は、開放式であって、内部にはヒートポンプ式給湯器122や燃焼式給湯器132で生成された高温水が貯湯される。すなわち、貯湯タンク710は、密閉式の貯湯タンク110のように直接低温水の給水がなされるわけではない。   The hot water storage tank 710 is an open type, and high temperature water generated by the heat pump hot water heater 122 and the combustion hot water heater 132 is stored therein. That is, the hot water storage tank 710 is not directly supplied with low-temperature water like the sealed hot water storage tank 110.

そのため、開放式の貯湯タンク710では、水位検知センサー712が水位(水面726の高さ)を検知することにより、その貯湯量が判断される。そして、検知された貯湯量に基づきヒートポンプ式給湯器122や燃焼式給湯器132の稼動を制御する。なお、水圧センサーを給湯配管140の高さに挿入し、水圧を検知することによって貯湯タンク710の貯湯量を判断してもよい。   Therefore, in the open-type hot water storage tank 710, the water level detection sensor 712 detects the water level (the height of the water surface 726), whereby the amount of stored hot water is determined. Then, the operation of the heat pump hot water heater 122 and the combustion hot water heater 132 is controlled based on the detected hot water storage amount. Note that the amount of hot water stored in the hot water storage tank 710 may be determined by inserting a water pressure sensor at the height of the hot water supply pipe 140 and detecting the water pressure.

よって、第1実施形態から第3実施形態において上述した燃焼式給湯器132の稼動条件を可変させる手法については、本実施形態におけるハイブリッド給等システム700(開放式の貯湯タンク710)においても、燃焼式給湯器132の稼動可否が判断される水位の閾値(所定貯湯量)を切り替えることにより、同様に適用することができる。   Therefore, the method for changing the operating condition of the combustion type hot water heater 132 described above in the first to third embodiments is also used in the hybrid water supply system 700 (open hot water storage tank 710) in the present embodiment. It can be similarly applied by switching the threshold value of water level (predetermined hot water storage amount) for determining whether or not the hot water heater 132 can be operated.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to the example which concerns. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

本発明は、ヒートポンプ式給湯器の補助熱源器として燃焼式給湯器を備えるハイブリッド給湯システムに利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used for a hybrid hot water supply system including a combustion hot water heater as an auxiliary heat source for a heat pump hot water heater.

100、300、500、700…ハイブリッド給湯システム、102…給水手段、104…給水配管、106…給水温度センサー、110、710…貯湯タンク、112…貯湯温度センサー、120…入水配管、122…ヒートポンプ式給湯器、124、724…出湯配管、130…第2入水配管、132…燃焼式給湯器、134…第2出湯配管、140…給湯配管、142…給湯負荷、144…給湯温度センサー、150…外気温度センサー、160、360、560…制御装置、200…制御部、210…温度データ取得部、212、412、612…装置メモリ、214、414、614…基準値データテーブル、216…ヒートポンプ特性テーブル、218…加熱能力取得部、220、420、620…演算部、222、422、622…補正部、342…流量計、358…人数管理システム、408…人数情報取得部、410…流量データ取得部、416…原単位割出データテーブル、418…原単位割出部、540…第2給水手段、542…第2給水配管、544…混合弁、610…カレンダー、618…利用温度予測部、712…水位検知センサー、720…入水配管、726…水面 DESCRIPTION OF SYMBOLS 100, 300, 500, 700 ... Hybrid hot water supply system, 102 ... Water supply means, 104 ... Water supply piping, 106 ... Water supply temperature sensor, 110, 710 ... Hot water storage tank, 112 ... Hot water storage temperature sensor, 120 ... Water supply piping, 122 ... Heat pump type Hot water heaters 124, 724 ... Hot water piping, 130 ... Second incoming water piping, 132 ... Combustion hot water heater, 134 ... Second hot water piping, 140 ... Hot water supply piping, 142 ... Hot water supply load, 144 ... Hot water temperature sensor, 150 ... Outside air Temperature sensor, 160, 360, 560 ... control device, 200 ... control unit, 210 ... temperature data acquisition unit, 212, 412, 612 ... device memory, 214, 414, 614 ... reference value data table, 216 ... heat pump characteristic table, 218 ... Heating capacity acquisition unit, 220, 420, 620 ... Calculation unit, 222, 422, DESCRIPTION OF SYMBOLS 22 ... Correction | amendment part, 342 ... Flowmeter, 358 ... Person number management system, 408 ... Person number information acquisition part, 410 ... Flow volume data acquisition part, 416 ... Basic unit index data table, 418 ... Basic unit index part, 540 ... No. 2 water supply means, 542 ... 2nd water supply pipe, 544 ... mixing valve, 610 ... calendar, 618 ... utilization temperature prediction part, 712 ... water level detection sensor, 720 ... water intake pipe, 726 ... water surface

Claims (8)

ヒートポンプ式給湯器の補助熱源器として燃焼式給湯器を備えるハイブリッド給湯システムであって、
貯湯タンクと、
前記貯湯タンクに対して出湯するヒートポンプ式給湯器と、
前記貯湯タンクの貯湯量が所定貯湯量以上であるかどうかを判断する貯湯量判断手段と、
前記貯湯量判断手段が前記所定貯湯量未満であると判断した場合に、前記貯湯タンクに対して出湯する燃焼式給湯器と、
給水温度を取得する給水温度取得手段と、
外気温度を取得する外気温度取得手段と、
前記ヒートポンプ式給湯器の加熱能力と前記外気温度の対応関係が記憶されたヒートポンプ特性テーブルと、
前記ヒートポンプ特性テーブルを参照して、前記取得された外気温度に対応する前記加熱能力を取得する加熱能力取得部と、
少なくとも前記取得された給水温度および加熱能力、並びに前記ヒートポンプ式給湯器の前記貯湯タンクに対しての出湯温度に基づいて、前記ヒートポンプ式給湯器が単位時間当たりに出湯可能な出湯流量を算出する演算部と、
前記算出された出湯流量と予め設定された出湯流量の基準値との差を求め、該差に基づき前記所定貯湯量を増減して補正する補正部と、
を備えることを特徴とするハイブリッド給湯システム。
A hybrid hot water system comprising a combustion water heater as an auxiliary heat source for a heat pump water heater,
A hot water storage tank,
A heat pump type water heater for discharging water to the hot water storage tank;
Hot water storage amount judging means for judging whether or not the hot water storage amount of the hot water storage tank is equal to or greater than a predetermined hot water storage amount;
A combustion hot water supply device for discharging hot water to the hot water storage tank when the hot water storage amount determining means determines that the hot water storage amount is less than the predetermined hot water storage amount;
Water supply temperature acquisition means for acquiring the water supply temperature;
Outside temperature acquisition means for acquiring outside temperature;
A heat pump characteristic table in which the correspondence between the heating capacity of the heat pump water heater and the outside air temperature is stored;
With reference to the heat pump characteristic table, a heating capacity acquisition unit that acquires the heating capacity corresponding to the acquired outside air temperature;
An operation for calculating a flow rate of hot water that can be discharged by the heat pump water heater per unit time based on at least the acquired water temperature and heating capacity, and the hot water temperature of the heat pump water heater with respect to the hot water storage tank. And
A correction unit that calculates a difference between the calculated hot water flow rate and a preset reference value of the hot water flow rate, and corrects the predetermined hot water storage amount based on the difference;
A hot water supply system characterized by comprising:
ヒートポンプ式給湯器の補助熱源器として燃焼式給湯器を備えるハイブリッド給湯システムであって、
貯湯タンクと、
前記貯湯タンクに対して出湯するヒートポンプ式給湯器と、
前記貯湯タンクの貯湯量が所定貯湯量以上であるかどうかを判断する貯湯量判断手段と、
前記貯湯量判断手段が前記所定貯湯量未満であると判断した場合に、前記貯湯タンクに対して出湯する燃焼式給湯器と、
当該ハイブリッド給湯システムを利用すると予測される人数情報を入出力可能な人数管理システムと、
所定時間における1人当たりの給湯使用量を求める原単位割出部と、
少なくとも前記予測される人数情報および前記1人当たりの給湯使用量に基づいて、必要となる総給湯量を算出する演算部と、
前記算出された総給湯量と予め設定された総給湯量の基準値との差を求め、該差に基づき前記所定貯湯量を増減して補正する補正部と、
を備えることを特徴とするハイブリッド給湯システム。
A hybrid hot water system comprising a combustion water heater as an auxiliary heat source for a heat pump water heater,
A hot water storage tank,
A heat pump type water heater for discharging water to the hot water storage tank;
Hot water storage amount judging means for judging whether or not the hot water storage amount of the hot water storage tank is equal to or greater than a predetermined hot water storage amount;
A combustion hot water supply device for discharging hot water to the hot water storage tank when the hot water storage amount determining means determines that the hot water storage amount is less than the predetermined hot water storage amount;
Number of people management system that can input and output the number of people information predicted to use the hybrid hot water system,
A basic unit indexing unit that calculates the amount of hot water used per person at a given time,
An arithmetic unit that calculates a required total hot water supply amount based on at least the predicted number of people information and the hot water supply usage per person,
A correction unit that obtains a difference between the calculated total hot water supply amount and a preset reference value of the total hot water supply amount, and corrects the predetermined hot water storage amount by increasing or decreasing based on the difference;
A hot water supply system characterized by comprising:
過去の人数情報と給湯使用量の実績データを関連づけて記憶する原単位割出データテーブルをさらに備え、
前記原単位割出部は、前記過去の人数情報と前記実績データに基づき、前記1人当たりの給湯使用量を求めることを特徴とする請求項2に記載のハイブリッド給湯システム。
It further comprises a basic unit index data table for storing past number information and actual data of hot water consumption in association with each other,
3. The hybrid hot water supply system according to claim 2, wherein the basic unit indexing unit obtains the amount of hot water used per person based on the past number of people information and the actual data.
ヒートポンプ式給湯器の補助熱源器として燃焼式給湯器を備えるハイブリッド給湯システムであって、
貯湯タンクと、
前記貯湯タンクに対して出湯するヒートポンプ式給湯器と、
前記貯湯タンクの貯湯量が所定貯湯量以上であるかどうかを判断する貯湯量判断手段と、
前記貯湯量判断手段が前記所定貯湯量未満であると判断した場合に、前記貯湯タンクに対して出湯する燃焼式給湯器と、
給水温度を取得する給水温度取得手段もしくは外気温度を取得する外気温度取得手段、または暦情報を取得する暦情報取得手段と、
前記取得された給水温度もしくは外気温度、または前記暦情報から使用者のおおよその利用温度を予測する利用温度予測部と、
少なくとも前記予測される利用温度に基づいて、必要となる総給湯量を算出する演算部と、
前記算出された総給湯量と予め設定された総給湯量の基準値との差を求め、該差に基づき前記所定貯湯量を増減して補正する補正部と、
を備えることを特徴とするハイブリッド給湯システム。
A hybrid hot water system comprising a combustion water heater as an auxiliary heat source for a heat pump water heater,
A hot water storage tank,
A heat pump type water heater for discharging water to the hot water storage tank;
Hot water storage amount judging means for judging whether or not the hot water storage amount of the hot water storage tank is equal to or greater than a predetermined hot water storage amount;
A combustion hot water supply device for discharging hot water to the hot water storage tank when the hot water storage amount determining means determines that the hot water storage amount is less than the predetermined hot water storage amount;
A feed water temperature obtaining means for obtaining a feed water temperature, an outside air temperature obtaining means for obtaining an outside air temperature, or a calendar information obtaining means for obtaining calendar information;
A use temperature prediction unit that predicts an approximate use temperature of the user from the acquired water supply temperature or outside air temperature, or the calendar information;
An arithmetic unit that calculates a required total hot water supply amount based on at least the predicted use temperature;
A correction unit that obtains a difference between the calculated total hot water supply amount and a preset reference value of the total hot water supply amount, and corrects the predetermined hot water storage amount by increasing or decreasing based on the difference;
A hot water supply system characterized by comprising:
前記補正部は、前記求められた差を前記貯湯タンクに貯湯された場合の高さに換算して、該高さ分前記所定貯湯量を増減することを特徴とする請求項1から4のいずれか1項に記載のハイブリッド給湯システム。   The said correction | amendment part converts the calculated | required difference into the height at the time of storing hot water in the said hot water storage tank, and increases / decreases the said predetermined | prescribed hot water storage amount by this height. The hybrid hot water supply system according to claim 1. 前記貯湯タンクは密閉式であって、
前記貯湯量判断手段として異なる高さに配置された複数の温度センサーが備えられており、
前記所定貯湯量を判断する前記温度センサーを選択することにより、前記補正部による補正を行うことを特徴とする請求項1から5のいずれか1項に記載のハイブリッド給湯システム。
The hot water storage tank is hermetically sealed,
A plurality of temperature sensors arranged at different heights as the hot water storage amount judging means are provided,
The hybrid hot water supply system according to any one of claims 1 to 5, wherein the correction by the correction unit is performed by selecting the temperature sensor that determines the predetermined hot water storage amount.
前記温度センサーは、前記貯湯タンクの内側に配置、または該貯湯タンクの外面に貼付されることを特徴とする請求項6に記載のハイブリッド給湯システム。   The hybrid hot water supply system according to claim 6, wherein the temperature sensor is disposed inside the hot water storage tank or attached to an outer surface of the hot water storage tank. 前記貯湯タンクは開放式であって、
前記貯湯量判断手段は、水位検知センサーであることを特徴とする請求項1から5のいずれか1項に記載のハイブリッド給湯システム。
The hot water storage tank is an open type,
The hybrid hot water supply system according to any one of claims 1 to 5, wherein the hot water storage amount determination means is a water level detection sensor.
JP2009160267A 2009-07-06 2009-07-06 Hybrid hot water supply system Active JP5353497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009160267A JP5353497B2 (en) 2009-07-06 2009-07-06 Hybrid hot water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009160267A JP5353497B2 (en) 2009-07-06 2009-07-06 Hybrid hot water supply system

Publications (2)

Publication Number Publication Date
JP2011012940A true JP2011012940A (en) 2011-01-20
JP5353497B2 JP5353497B2 (en) 2013-11-27

Family

ID=43592022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009160267A Active JP5353497B2 (en) 2009-07-06 2009-07-06 Hybrid hot water supply system

Country Status (1)

Country Link
JP (1) JP5353497B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015025624A (en) * 2013-07-26 2015-02-05 リンナイ株式会社 Hot water supply system
JP2016125800A (en) * 2015-01-08 2016-07-11 株式会社コロナ Hot water storage type water heater
JP2016217622A (en) * 2015-05-20 2016-12-22 三菱電機ビルテクノサービス株式会社 Water heater operation control device and program
WO2021130884A1 (en) * 2019-12-25 2021-07-01 三菱電機株式会社 Hot water supply control device, hot water supply control system, and hot water supply control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005517A (en) * 2000-06-23 2002-01-09 Osaka Gas Co Ltd Hot water storage type hot water supply heat source device
JP2007032904A (en) * 2005-07-26 2007-02-08 Aisin Seiki Co Ltd Cogeneration system
JP2008051435A (en) * 2006-08-25 2008-03-06 Rinnai Corp Hot water storage type hot water supply system
JP4139826B2 (en) * 2005-06-13 2008-08-27 株式会社日本サーモエナー Hybrid hot water supply system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005517A (en) * 2000-06-23 2002-01-09 Osaka Gas Co Ltd Hot water storage type hot water supply heat source device
JP4139826B2 (en) * 2005-06-13 2008-08-27 株式会社日本サーモエナー Hybrid hot water supply system
JP2007032904A (en) * 2005-07-26 2007-02-08 Aisin Seiki Co Ltd Cogeneration system
JP2008051435A (en) * 2006-08-25 2008-03-06 Rinnai Corp Hot water storage type hot water supply system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015025624A (en) * 2013-07-26 2015-02-05 リンナイ株式会社 Hot water supply system
JP2016125800A (en) * 2015-01-08 2016-07-11 株式会社コロナ Hot water storage type water heater
JP2016217622A (en) * 2015-05-20 2016-12-22 三菱電機ビルテクノサービス株式会社 Water heater operation control device and program
WO2021130884A1 (en) * 2019-12-25 2021-07-01 三菱電機株式会社 Hot water supply control device, hot water supply control system, and hot water supply control method

Also Published As

Publication number Publication date
JP5353497B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
US10295199B2 (en) Water heater controller or system
US10408495B2 (en) Companion water heater
JP5353498B2 (en) Hybrid hot water supply system
JP5353497B2 (en) Hybrid hot water supply system
US11226135B2 (en) Control apparatus and method for combination space and water heating
JP2007327728A (en) Heat pump hot-water supply system
JP2007285659A (en) Hot water supply device
JP2011075250A (en) Operation method for water heater, and water heater
JP2007218554A (en) Storage type water heater
JP2010112680A (en) Storage type hot water supply device
JP5314813B1 (en) Cogeneration system
JP5151626B2 (en) Heat pump water heater
JP3891954B2 (en) Hot water storage water heater
JP2012229883A (en) Hybrid water heater
KR100633238B1 (en) Heating storage system for several heat storage-tank in one network
JP3855938B2 (en) Hot water storage water heater
JP2013088065A (en) Liquid heater
JP2003287284A (en) Hot-water storage-type hot-water supply device
JP2005223964A (en) Operation control system for cogeneration system
JP6906164B2 (en) Cogeneration system and its operation method
JP2013148323A (en) Storage type water heater
JP5694845B2 (en) Heat pump bath water heater
JP2003322414A (en) Hot water storage type water heater
US20240044550A1 (en) Improvements in heating systems
JP4893010B2 (en) Hot water storage water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R150 Certificate of patent or registration of utility model

Ref document number: 5353497

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350