JP2011012548A - Variable displacement swash plate type compressor and air conditioner system using the same - Google Patents

Variable displacement swash plate type compressor and air conditioner system using the same Download PDF

Info

Publication number
JP2011012548A
JP2011012548A JP2009154485A JP2009154485A JP2011012548A JP 2011012548 A JP2011012548 A JP 2011012548A JP 2009154485 A JP2009154485 A JP 2009154485A JP 2009154485 A JP2009154485 A JP 2009154485A JP 2011012548 A JP2011012548 A JP 2011012548A
Authority
JP
Japan
Prior art keywords
suction
pressure
chamber
valve
throttle valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009154485A
Other languages
Japanese (ja)
Other versions
JP5519199B2 (en
Inventor
Kazutaka Kowada
一隆 小和田
Katsumi Sakamoto
克己 坂元
Nobukazu Takagi
伸和 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Thermal Systems Japan Corp
Original Assignee
Valeo Thermal Systems Japan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Thermal Systems Japan Corp filed Critical Valeo Thermal Systems Japan Corp
Priority to JP2009154485A priority Critical patent/JP5519199B2/en
Priority to PCT/JP2010/004026 priority patent/WO2011001621A1/en
Priority to EP10793796.3A priority patent/EP2450572A4/en
Publication of JP2011012548A publication Critical patent/JP2011012548A/en
Application granted granted Critical
Publication of JP5519199B2 publication Critical patent/JP5519199B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1009Distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • F04B49/225Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves with throttling valves or valves varying the pump inlet opening or the outlet opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1809Controlled pressure
    • F04B2027/1818Suction pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1863Controlled by crankcase pressure with an auxiliary valve, controlled by
    • F04B2027/1877External parameters

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a variable displacement swash plate type compressor wherein it is possible to prevent decreases in performance caused by restricting a suction path in an operating area in which low pressure pulsation does not occur, and to sufficiently reduce low pressure pulsation by restricting a suction path in an operating area that is prone to the occurrence of low pressure pulsation, and an air conditioner system using the compressor.SOLUTION: This variable displacement swash plate type compressor 4 is provided with: a suction throttle valve 62 that is disposed in a suction path 61 for guiding a coolant that has been sucked from a suction inlet 60 to a suction chamber 54 and that adjusts the path area for the coolant that passes through the suction path 61; and a solenoid valve 70 that arbitrarily adjusts the aperture of the suction throttle valve 62. The solenoid valve 70 may be one that adjusts the aperture of the suction throttle valve 62 by regulating the pressure in a back pressure chamber 68 of the suction throttle valve 62 or one that directly controls the aperture of the suction throttle valve 62 depending on the applied electric energy.

Description

本発明は、吸入弁の自励振動に起因する圧力脈動が圧縮機外に伝播して異音が発生することを防止する機構を備えたピストン型圧縮機、より詳しくは、圧力脈動が発生する運転領域において吸入通路を絞って圧力脈動の圧縮機外への伝搬を少なくし、圧力脈動が発生しない運転領域において吸入通路が絞られて性能低下を招くことを回避した可変容量斜板式圧縮機およびこれを用いた空調装置システムに関する。   The present invention relates to a piston type compressor having a mechanism for preventing pressure pulsation caused by self-excited vibration of a suction valve from propagating outside the compressor and generating abnormal noise, and more specifically, pressure pulsation occurs. A variable capacity swash plate compressor that restricts the suction passage in the operation region to reduce the propagation of pressure pulsation outside the compressor, and avoids the suction passage being restricted in the operation region where the pressure pulsation does not occur, resulting in performance degradation. The present invention relates to an air conditioning system using this.

従来、ピストン式圧縮機においては、シリンダブロックの吸入弁の先端と対峙する位置に所定の深さを持つストッパが形成されており、シリンダボア内に冷媒ガスが吸入されるときに吸入弁の先端がこのストッパに当接することにより、この吸入弁が自励振動を起こすことが防がれている。
しかし、ピストン式可変容量圧縮機においては、シリンダボアに吸入されるガス量が最大容量時と可変容量時とでは異なるために、最大容量時に合せてストッパの深さを設定すると、特に小容量時には吸入弁の変位量が小さいために吸入弁の先端がストッパに当らない状態となる。このため、吸入弁が自励振動を起こし、これにより吸入室のガスの圧力変動が発生してこの圧力脈動が圧縮機外に伝播し異音が発生する不都合がある。
Conventionally, in a piston compressor, a stopper having a predetermined depth is formed at a position facing the tip of the suction valve of the cylinder block, and when the refrigerant gas is sucked into the cylinder bore, the tip of the suction valve is By contacting the stopper, the suction valve is prevented from causing self-excited vibration.
However, in a piston type variable capacity compressor, the amount of gas sucked into the cylinder bore is different between the maximum capacity and the variable capacity. Therefore, if the stopper depth is set according to the maximum capacity, the suction is especially small. Since the amount of displacement of the valve is small, the tip of the suction valve does not hit the stopper. For this reason, the suction valve causes self-excited vibration, which causes a problem that the pressure fluctuation of the gas in the suction chamber is generated, and this pressure pulsation propagates outside the compressor to generate noise.

このため、従来においては、下記する特許文献1や特許文献2に示される対策が講じられている。
このうち、特許文献1に示す構成は、圧縮機の吸入通路に、開口面積を制御する開度制御弁を設け、この開度制御弁を吸入通路のガスの流れによる差圧とばね力とを利用して作動させることにより、吸入流量が小さい時に吸入通路を絞って小容量時に発生する吸入脈動が圧縮機外に伝播することを抑制し、吸入流量が大きい時に吸入通路の開口面積を大きくするようにしている。
For this reason, conventionally, the countermeasures shown in Patent Document 1 and Patent Document 2 described below have been taken.
Among these, the configuration shown in Patent Document 1 is provided with an opening control valve for controlling the opening area in the suction passage of the compressor, and this opening control valve is provided with a differential pressure and a spring force due to the gas flow in the suction passage. By operating it, the suction passage is throttled when the suction flow rate is small, and the suction pulsation generated at the small capacity is prevented from propagating outside the compressor, and the opening area of the suction passage is increased when the suction flow rate is large. I am doing so.

また、特許文献2に示す構成は、吸入通路上に吸入圧力とクランク室圧力との差圧に基づいて吸入通路の開度を調整する開度制御弁を設け、この開度調整弁を容量に応じて変化するクランク室圧力を利用して、最大容量時にはバネによる付勢力の影響を弱めて開度を最大にし易くし、小容量時にはバネによる付勢力の影響を強めて開度を小さくし易くしている。   In the configuration shown in Patent Document 2, an opening degree control valve for adjusting the opening degree of the suction passage is provided on the suction passage based on the differential pressure between the suction pressure and the crank chamber pressure. Using the crank chamber pressure that changes accordingly, it is easy to maximize the opening by weakening the influence of the spring force at the maximum capacity, and to reduce the opening degree by increasing the influence of the spring force at the small capacity. is doing.

特開2001−136776JP 2001-136776 特開2005−337232JP 2005-337232 A

しかしながら、上記特許文献1の構成では、吸入通路のガスの流れによる差圧とばね力を利用して開度制御弁を作動させているため、脈動低減を重視してばね力を強く設定すると最大容量時にも吸入通路が絞られて冷房能力が低下し、逆に最大容量時の冷房能力を重視してばね力を弱く設定すると絞り効果が必要な低容量時に十分に脈動を低減することができないという不都合がある。   However, in the configuration of Patent Document 1 described above, since the opening degree control valve is operated using the differential pressure due to the gas flow in the suction passage and the spring force, if the spring force is set strongly with emphasis on pulsation reduction, When the capacity is reduced, the suction passage is throttled and the cooling capacity is lowered. Conversely, if the spring force is set weakly with emphasis on the cooling capacity at the maximum capacity, the pulsation cannot be sufficiently reduced at the low capacity where the throttling effect is required. There is an inconvenience.

また、一般的に可変容量圧縮機においては、各ピストンに作用するシリンダボア内の圧力とクランク室圧力との差に基づいて斜板の傾斜角度を変化させる構造となっている。シリンダボア内の圧力は、ピストンが下死点にあるときは吸入室の圧力にほぼ等しく、ピストンによって冷媒ガスが圧縮されるのに伴い徐々に上昇していく。そしてシリンダボア内の圧力が吐出室の圧力を超えると吐出弁前後の圧力差により弁が開かれ冷媒ガスが吐出室に吐出される。すなわちシリンダボア内の圧力は、斜板が一回転する間に吸入圧から吐出圧(厳密には吐出弁の開き遅れや抵抗のためもう少し高く)まで変化し、その圧力は常時ピストンに作用している。   In general, the variable capacity compressor has a structure in which the inclination angle of the swash plate is changed based on the difference between the pressure in the cylinder bore acting on each piston and the crank chamber pressure. The pressure in the cylinder bore is substantially equal to the pressure in the suction chamber when the piston is at the bottom dead center, and gradually increases as the refrigerant gas is compressed by the piston. When the pressure in the cylinder bore exceeds the pressure in the discharge chamber, the valve is opened due to the pressure difference before and after the discharge valve, and refrigerant gas is discharged into the discharge chamber. That is, the pressure in the cylinder bore changes from the suction pressure to the discharge pressure (strictly, a little higher due to delay in opening of the discharge valve and resistance) during one rotation of the swash plate, and the pressure always acts on the piston. .

ピストンに作用するシリンダボア内の圧力は、斜板の傾斜角を増加させる方向に作用するため、吸入室とクランク室の圧力差が同じであっても、吐出圧が高い条件ほど相対的に傾斜角が大きい(吐出容量が大きい)角度に斜板が制御されることとなる。   Since the pressure in the cylinder bore acting on the piston acts in the direction of increasing the inclination angle of the swash plate, even if the pressure difference between the suction chamber and the crank chamber is the same, the higher the discharge pressure, the relatively the inclination angle The swash plate is controlled at an angle with a large (discharge capacity is large).

このため、特許文献2に開示される開度調整弁は、吐出圧力に関わらず吸入室圧力とクランク室圧力との差圧に基づいて開度を調整するものであるため、例えばクランク室の圧力と吸入室の圧力の差が0.1MPaを超えたときにこの開度調整弁が吸入通路を絞るように設定したとすると、吐出室の圧力が低い(例えば0.8MPa)条件時には、斜板の傾斜角が30%以下になるまで開度制御弁が作動せず、吐出室の圧力が高い(例えば2.5MPa)条件時には、斜板の傾斜角が70%以下の条件で開度調整弁が吸入通路を絞り始めるということが起こりうる。このことは、低圧脈動が発生せず吸入通路を絞る必要がない高負荷時に吸入通路を絞って性能を損なってしまうことを意味しており、特許文献2に示す開度調整弁においても、各負荷条件に対応して冷房能力の確保と脈動低減を両立することが出来ないものであった。   For this reason, the opening adjustment valve disclosed in Patent Document 2 adjusts the opening based on the differential pressure between the suction chamber pressure and the crank chamber pressure regardless of the discharge pressure. If the opening adjustment valve is set to throttle the suction passage when the difference between the pressure in the suction chamber and the suction chamber exceeds 0.1 MPa, the swash plate is used when the pressure in the discharge chamber is low (for example, 0.8 MPa) The opening control valve does not operate until the inclination angle of the swash plate is 30% or less, and when the pressure in the discharge chamber is high (for example, 2.5 MPa), the opening adjustment valve is operated with the inclination angle of the swash plate being 70% or less Can begin to throttle the suction passage. This means that low pressure pulsation does not occur and it is not necessary to restrict the intake passage, and that the intake passage is restricted at the time of high load and the performance is impaired. It was impossible to achieve both cooling capacity and pulsation reduction corresponding to the load conditions.

本発明は、係る事情に鑑みてなされたものであり、低圧脈動が発生しない運転領域において吸入通路が絞られて性能低下を招くことがないようにし、また、低圧脈動が発生しやすい運転領域において、吸入通路を絞って低圧脈動を十分に低減することが可能な可変容量斜板式圧縮機およびこれを用いた空調装置システムを提供することを主たる課題としている。   The present invention has been made in view of such circumstances, and in the operation region where the low pressure pulsation does not occur, the suction passage is restricted so that the performance is not deteriorated, and in the operation region where the low pressure pulsation is likely to occur. The main object is to provide a variable capacity swash plate compressor capable of sufficiently reducing the low pressure pulsation by narrowing the suction passage and an air conditioner system using the same.

上記課題を達成するために、本発明者らは、圧縮機に吸入された冷媒を吸入室に導く吸入通路の冷媒通路面積を外部から任意に調節できるようにすれば、上述した不都合を解消することができるとの知見に基づき、本発明を完成させるに至った。   In order to achieve the above-mentioned problems, the present inventors have solved the above-mentioned inconvenience if the refrigerant passage area of the suction passage that guides the refrigerant sucked into the compressor to the suction chamber can be arbitrarily adjusted from the outside. The present invention has been completed based on the knowledge that it is possible.

即ち、本発明に係る可変容量斜板式圧縮機は、ハウジングと、前記ハウジングに形成されたシリンダボア内を往復動するピストンと、前記ハウジング内に形成されたクランク室、吸入室、及び吐出室と、前記クランク室を貫通し、前記ハウジングに回転自在に支承されたシャフトと、前記クランク室に収容され、前記シャフトの回転により回転して前記ピストンを往復動させる斜板と、前記ハウジングに形成されて作動流体を吸入する吸入口及び吐出する吐出口とを有し、前記吸入口から吸入した作動流体を、前記ハウジングに形成された吸入通路を介して前記吸入室へ導き、前記ピストンにより圧縮した後に前記吐出室を介して前記吐出口から吐出させる構成において、前記吸入通路に、この吸入通路を通過する冷媒の通路面積を調節する吸入絞り弁を設け、この吸入絞り弁の開度を外部からの要求(指令)に基づき任意に調整する外部調整手段を設けたことを特徴としている。   That is, a variable capacity swash plate compressor according to the present invention includes a housing, a piston that reciprocates in a cylinder bore formed in the housing, a crank chamber, a suction chamber, and a discharge chamber formed in the housing, A shaft that penetrates the crank chamber and is rotatably supported by the housing, a swash plate that is housed in the crank chamber and rotates by the rotation of the shaft to reciprocate the piston, and is formed in the housing. A suction port for sucking a working fluid and a discharge port for discharging the working fluid; after the working fluid sucked from the suction port is guided to the suction chamber through a suction passage formed in the housing and compressed by the piston; In the configuration for discharging from the discharge port through the discharge chamber, the passage area of the refrigerant passing through the suction passage is adjusted in the suction passage. The inlet throttle valve is provided, it is characterized in that a external adjustment means for adjusting arbitrarily based the opening degree of the intake throttle valve to an external request (command).

このような構成によれば、圧縮機の吸入通路に吸入絞り弁が設けられ、さらにその吸入絞り弁の開度を外部からの要求に基づき任意に調整する外部調整手段が設けられているので、高吐出圧力条件での中〜高容量運転時において、クランク室圧が所定量上昇したとしても吸入絞り弁の開度を外部調整手段により全開状態に維持することができ、また、低圧脈動が発生する条件においては、外部調整手段により吸入絞り弁を作動させ着実に吸入脈動の伝播を抑制することが可能となる。   According to such a configuration, the suction throttle valve is provided in the suction passage of the compressor, and further, the external adjustment means for arbitrarily adjusting the opening degree of the suction throttle valve based on a request from the outside is provided. During medium to high capacity operation under high discharge pressure conditions, even if the crank chamber pressure rises by a predetermined amount, the opening of the intake throttle valve can be kept fully open by an external adjustment means, and low pressure pulsation occurs Under such conditions, the suction throttle valve can be steadily suppressed by operating the suction throttle valve by the external adjustment means.

ここで、前記外部調整手段は、前記吸入絞り弁の背圧室の圧力を調整して前記吸入絞り弁の開度を調整するソレノイドバルブを用いてもよい。
吸入絞り弁の背圧室の圧力を調整することにより吸入絞り弁の開度が調整されるので、ソレノイドバルブの弁体変位量が少なくても、背圧室の圧力により、十分な押圧力で吸入絞り弁を作動させることが可能となる。
Here, the external adjustment means may use a solenoid valve that adjusts the pressure of the back pressure chamber of the suction throttle valve to adjust the opening of the suction throttle valve.
Since the opening of the suction throttle valve is adjusted by adjusting the pressure in the back pressure chamber of the suction throttle valve, even if the displacement of the solenoid valve is small, the pressure in the back pressure chamber is sufficient. The suction throttle valve can be operated.

また、前記外部調整手段は、外部からの要求(指令)に基づき前記吸入絞り弁の開度を直接制御するものであってもよい。
このような構成によれば、吸入絞り弁の開度を外部からの要求に基づき直接制御することができるので、高精度に吸入絞り弁の開度を制御することが可能となる。
The external adjustment means may directly control the opening of the suction throttle valve based on an external request (command).
According to such a configuration, since the opening degree of the suction throttle valve can be directly controlled based on an external request, the opening degree of the suction throttle valve can be controlled with high accuracy.

本発明に係る空調装置システムは、上述した可変容量斜板式圧縮機を、少なくとも凝縮器、膨張装置、蒸発器と共に配管結合をして冷凍サイクルを構成し、 前記可変容量斜板式圧縮機に前記吸入室の圧力に基づいて前記クランク室の圧力を制御する圧力制御弁を更に設け、車両側の要求に応じて前記外部調整手段を駆動する吸入絞り制御手段を更に具備することを特徴としている。   The air conditioner system according to the present invention comprises a pipe coupling the above-described variable capacity swash plate compressor together with at least a condenser, an expansion device, and an evaporator to form a refrigeration cycle, and the suction to the variable capacity swash plate compressor A pressure control valve for controlling the pressure in the crank chamber based on the pressure in the chamber is further provided, and suction throttle control means for driving the external adjustment means in response to a request on the vehicle side is further provided.

ここで、前記外部調整手段は、前記吸入絞り弁の背圧室の圧力を調整して前記吸入絞り弁の開度を調整するソレノイドバルブとしても、投入される電気エネルギに応じて前記吸入絞り弁の開度を直接制御するものであってもよい。   Here, the external adjusting means may be a solenoid valve that adjusts the pressure of the back pressure chamber of the suction throttle valve to adjust the opening of the suction throttle valve, or the suction throttle valve according to the electric energy that is input. The opening degree may be directly controlled.

このような構成によれば、圧力制御弁は、吸入室の圧力すなわち吸入絞り弁の下流の圧力に基づいてクランク室圧力を制御するため、圧縮機は吸入絞り弁の下流の圧力に基づいて容量が制御される。ここで、吸入絞り制御手段からの要求により外部調整手段が駆動され、吸入絞り弁が吸入通路を絞ると、その絞り効果のため、吸入室の圧力が低下し、圧力制御弁は低下した吸入圧力を受けてクランク室圧力を上昇させ、結果として吐出容量が減少し吸入室の圧力は吸入通路が絞られる以前の圧力でバランスすることとなる。
このように、可変容量圧縮機が吸入室の圧力が一定になるよう容量を自立制御する働きを利用し、吸入絞り弁部で圧力差を与えることにより容量を任意に減少させると同時に、低容量時の低圧脈動の伝播を抑制することが可能となる。
According to such a configuration, since the pressure control valve controls the crank chamber pressure based on the pressure in the suction chamber, that is, the pressure downstream of the suction throttle valve, the compressor has a capacity based on the pressure downstream of the suction throttle valve. Is controlled. Here, when the external adjustment means is driven by the request from the suction throttle control means and the suction throttle valve throttles the suction passage, the pressure of the suction chamber decreases due to the throttle effect, and the pressure control valve decreases the suction pressure. As a result, the crank chamber pressure is increased, and as a result, the discharge capacity is reduced and the pressure in the suction chamber is balanced with the pressure before the suction passage is throttled.
In this way, the variable capacity compressor uses the function of self-controlling the capacity so that the pressure in the suction chamber becomes constant, and the capacity is arbitrarily reduced by giving a pressure difference at the suction throttle valve part, and at the same time a low capacity It becomes possible to suppress the propagation of low-pressure pulsation at the time.

以上述べたように、本発明によれば、吸入口から吸入した作動流体を吸入室に導く吸入通路に、この吸入通路を通過する冷媒の通路面積を調整する吸入絞り弁を設け、この吸入絞り弁の開度を外部調整手段を設けて外部からの要求に基づき任意に調整するようにしたので、低圧脈動が発生しない運転領域においては、吸入通路が絞られて性能低下を招くことがなくなり、また、低圧脈動が発生しやすい運転領域においては、外部調整手段により吸入絞り弁を作動させて吸入通路を絞ることで低圧脈動を十分に低減することが可能となる。   As described above, according to the present invention, the suction throttle valve for adjusting the passage area of the refrigerant passing through the suction passage is provided in the suction passage for guiding the working fluid sucked from the suction port to the suction chamber. Since the opening of the valve is arbitrarily adjusted based on the request from the outside by providing an external adjustment means, in the operation region where the low pressure pulsation does not occur, the suction passage is throttled and the performance is not deteriorated. Further, in an operation region where low pressure pulsation is likely to occur, low pressure pulsation can be sufficiently reduced by operating the suction throttle valve by the external adjustment means to throttle the suction passage.

図1は、本発明に係る空調装置システムの構成例を示す図である。FIG. 1 is a diagram showing a configuration example of an air conditioner system according to the present invention. 図2は、本発明に係る可変容量斜板式圧縮機の構成例を示す断面図である。FIG. 2 is a cross-sectional view showing a configuration example of a variable capacity swash plate compressor according to the present invention. 図3は、可変容量斜板式圧縮機のバルブプレートのピストンと対峙する付近を示した断面図である。FIG. 3 is a cross-sectional view showing the vicinity of the piston of the valve plate of the variable capacity swash plate compressor. 図4は、本発明に係る可変容量斜板式圧縮機の吸入絞り弁と外部調整手段の構成例を示す断面図である。FIG. 4 is a cross-sectional view showing a configuration example of the suction throttle valve and the external adjustment means of the variable capacity swash plate compressor according to the present invention. 図5は、可変絞り機構の制御動作例を示すフローチャートである。FIG. 5 is a flowchart showing an example of the control operation of the variable aperture mechanism. 図6は、本発明に係る可変容量斜板式圧縮機の吸入絞り弁と外部調整手段の他の構成例を示す断面図である。FIG. 6 is a cross-sectional view showing another configuration example of the suction throttle valve and the external adjustment means of the variable capacity swash plate compressor according to the present invention. 図7は、吸入絞り弁と外部調整手段のさらに他の構成例を示す断面図である。FIG. 7 is a cross-sectional view showing still another configuration example of the suction throttle valve and the external adjustment means.

以下、本発明の実施形態を添付図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1において、車両に搭載される冷凍サイクル1の構成例が示されている。この冷凍サイクル1は、吐出容量を可変するための圧力制御弁2及び冷媒を吸入室に導く吸入経路の通路面積を可変させる可変絞り機構3を備えた可変容量斜板式圧縮機(以下、圧縮機という)4、冷媒を冷却する凝縮器5、冷媒を減圧する膨張装置6、空調通路7に配置されて作動流体を蒸発気化する蒸発器8を有して構成されている。この冷凍サイクル1では、圧縮機4の吐出側を凝縮器5を介して膨張装置6に接続し、圧縮機4の吐出側から膨張装置6の流入側に至る経路によって高圧ラインが構成されている。また、膨張装置6の流出側は蒸発器8に接続され、この蒸発器8の流出側は圧縮機4の吸入側に接続されており、膨張装置6の流出側から圧縮機4の吸入側に至る経路によって低圧ラインが構成されている。   In FIG. 1, the structural example of the refrigerating cycle 1 mounted in a vehicle is shown. The refrigeration cycle 1 includes a variable capacity swash plate compressor (hereinafter referred to as a compressor) having a pressure control valve 2 for varying the discharge capacity and a variable throttle mechanism 3 for varying the passage area of the suction path for introducing the refrigerant to the suction chamber. 4. A condenser 5 that cools the refrigerant, an expansion device 6 that decompresses the refrigerant, and an evaporator 8 that evaporates and evaporates the working fluid. In the refrigeration cycle 1, the discharge side of the compressor 4 is connected to the expansion device 6 via the condenser 5, and a high-pressure line is configured by a path from the discharge side of the compressor 4 to the inflow side of the expansion device 6. . The outflow side of the expansion device 6 is connected to the evaporator 8, and the outflow side of the evaporator 8 is connected to the suction side of the compressor 4, so that the outflow side of the expansion device 6 is connected to the suction side of the compressor 4. The low pressure line is constituted by the route to reach.

したがって、この冷凍サイクル1においては、圧縮機4で圧縮された冷媒が、高温高圧の冷媒として凝縮器5に入り、ここで冷却されて膨張装置6へ送られる。そして、この膨張装置6において減圧されて低温低圧の湿り蒸気となり、蒸発器8においてここを通過する空気と熱交換してガス状となり、しかる後に圧縮機4へ戻される。   Therefore, in the refrigeration cycle 1, the refrigerant compressed by the compressor 4 enters the condenser 5 as a high-temperature and high-pressure refrigerant, is cooled here, and is sent to the expansion device 6. Then, the pressure is reduced in the expansion device 6 to become low-temperature and low-pressure wet steam, and heat is exchanged with the air passing therethrough in the evaporator 8 to form a gas, which is then returned to the compressor 4.

10は、空調通路内に配されて蒸発器8の出口側の空気温度を検出する温度センサであり、この温度センサからの信号や、車室内温度などを検出する他のセンサ11からの信号、空調装置を稼働・停止や車室内の目標温度などを設定する操作パネル12からの信号は、制御装置13に入力される。   Reference numeral 10 denotes a temperature sensor that is arranged in the air conditioning passage and detects the air temperature on the outlet side of the evaporator 8. A signal from this temperature sensor, a signal from another sensor 11 that detects the vehicle interior temperature, etc. A signal from the operation panel 12 for setting the air conditioner to be operated / stopped, a target temperature in the passenger compartment, and the like is input to the control device 13.

この制御装置13は、前述した各種信号をデータとして入力する入力回路、読出専用メモリ(ROM)及びランダムアクセスメモリ(RAM)からなるメモリ部、前記メモリ部に格納されたプログラムを呼び出して前記データを加工したり制御信号を演算する中央演算処理装置(CPU)、可変絞り機構2へ制御信号を出力する制御信号出力回路などから構成され、各種センサ10.11や操作パネル12からの信号に基づき、可変絞り機構3を制御するようにしている。   The control device 13 inputs the above-described various signals as data, a memory unit including a read-only memory (ROM) and a random access memory (RAM), and calls a program stored in the memory unit to obtain the data. It consists of a central processing unit (CPU) that processes and calculates control signals, a control signal output circuit that outputs control signals to the variable aperture mechanism 2, and the like. Based on signals from various sensors 10.11 and the operation panel 12, The variable aperture mechanism 3 is controlled.

図2において、上述した圧縮機4の具体的構成例が示されている。この圧縮機は、シリンダブロック21と、このシリンダブロック21のリア側にバルブプレート22を介して組み付けられたリアハウジング23と、シリンダブロック21のフロント側に組付けられ、シリンダブロック21と共にクランク室24を画成するフロントハウジング25とを有して構成されている。これらフロントハウジング25、シリンダブロック21、バルブプレート22、及び、リアハウジング23は、締結ボルト26により軸方向に締結されて圧縮機4のハウジングを構成している。   In FIG. 2, the specific structural example of the compressor 4 mentioned above is shown. The compressor includes a cylinder block 21, a rear housing 23 assembled to the rear side of the cylinder block 21 via a valve plate 22, a front side of the cylinder block 21, and a crank chamber 24 together with the cylinder block 21. And a front housing 25 that defines The front housing 25, the cylinder block 21, the valve plate 22, and the rear housing 23 are fastened in the axial direction by fastening bolts 26 to constitute the housing of the compressor 4.

フロントハウジング25とシリンダブロック21とによって画成されるクランク室24には、一端がフロントハウジング25から突出するシャフト27が収容されている。このシャフト27のフロントハウジング25から突出した部分には、軸方向に取り付けられた中継部材28を介してクラッチ板29が固定されている。フロントハウジング25のボス部25aには回転自在に外嵌された駆動プーリ30がクラッチ板29に対峙して設けられ、クラッチ板29は、駆動プーリ30に埋設された励磁電磁コイル31への通電により駆動プーリ30に吸着され、駆動プーリ30に与えられる回転動力がシャフト27に伝達されるようになっている。   A crank chamber 24 defined by the front housing 25 and the cylinder block 21 accommodates a shaft 27 having one end protruding from the front housing 25. A clutch plate 29 is fixed to a portion of the shaft 27 protruding from the front housing 25 via a relay member 28 attached in the axial direction. A drive pulley 30 that is rotatably fitted around the boss portion 25 a of the front housing 25 is provided opposite to the clutch plate 29, and the clutch plate 29 is energized by energizing an excitation electromagnetic coil 31 embedded in the drive pulley 30. The rotational power that is attracted to the drive pulley 30 and applied to the drive pulley 30 is transmitted to the shaft 27.

また、このシャフト27の一端側は、フロントハウジング25との間に設けられたシール部材32を介してフロントハウジング25との間が気密よく封じられると共にラジアル軸受33にて回転自在に支持されており、シャフト27の他端側は、シリンダブロック21の略中央に形成された収容孔34に収容されるスラスト軸受35及びこれに隣接してリア側に設けられたラジアル軸受36にて回転自在に支持されている。   Further, one end of the shaft 27 is hermetically sealed with the front housing 25 through a seal member 32 provided between the shaft 27 and is supported rotatably by a radial bearing 33. The other end side of the shaft 27 is rotatably supported by a thrust bearing 35 accommodated in an accommodation hole 34 formed substantially at the center of the cylinder block 21 and a radial bearing 36 provided on the rear side adjacent thereto. Has been.

シリンダブロック21には、前記収容孔34と、この収容孔34を中心とする円周上に等間隔に配された複数のシリンダボア37とが形成されており、それぞれのシリンダボア37には、片頭ピストン40が往復摺動可能に挿入されている。   The cylinder block 21 is formed with the accommodation hole 34 and a plurality of cylinder bores 37 arranged at equal intervals on a circumference centered on the accommodation hole 34. Each cylinder bore 37 has a single-head piston. 40 is inserted so that reciprocation is possible.

前記シャフト27には、クランク室24内において、該シャフト27と一体に回転するスラストフランジ41が固定されている。このスラストフランジ41は、シャフト27に対して略垂直に形成されたフロントハウジング25の内壁面にスラスト軸受42を介して回転自在に支持されている。そして、このスラストフランジ41には、リンク部材43を介して斜板44が連結されている。   A thrust flange 41 that rotates integrally with the shaft 27 is fixed to the shaft 27 in the crank chamber 24. The thrust flange 41 is rotatably supported on an inner wall surface of the front housing 25 formed substantially perpendicular to the shaft 27 via a thrust bearing 42. A swash plate 44 is connected to the thrust flange 41 via a link member 43.

斜板44は、シャフト27上に設けられたヒンジボール45を介して傾動可能に保持されているもので、スラストフランジ41の回転に同期して一体に回転するようになっている。これらスラストフランジ41と斜板44とによってシャフト27の回転に同期して回転する動力伝達機構が構成されている。そして、斜板44の周縁部分には、前後に設けられた一対のシュー46を介して片頭ピストン40の係合部40aが係留されている。   The swash plate 44 is held so as to be tiltable via a hinge ball 45 provided on the shaft 27, and rotates integrally with the rotation of the thrust flange 41. The thrust flange 41 and the swash plate 44 constitute a power transmission mechanism that rotates in synchronization with the rotation of the shaft 27. And the engaging part 40a of the single-headed piston 40 is moored by the peripheral part of the swash plate 44 via a pair of shoes 46 provided in the front and back.

したがって、シャフト27が回転すると、これに伴って斜板44が回転し、この斜板44の回転運動がシュー46を介して片頭ピストン40の往復直線運動に変換され、シリンダボア37内においてピストン40とバルブプレート22とにより画成された圧縮室47(図3に示す)の容積が変更されるようになっている。   Accordingly, when the shaft 27 is rotated, the swash plate 44 is rotated accordingly, and the rotational motion of the swash plate 44 is converted into the reciprocating linear motion of the one-headed piston 40 via the shoe 46, and The volume of the compression chamber 47 (shown in FIG. 3) defined by the valve plate 22 is changed.

バルブプレート22には、図3にも示されるように、シリンダブロック側端面に設けられた吸入弁50によって開閉される吸入孔51と、リアハウジング側端面に設けられた吐出弁52によって開閉される吐出孔53とがそれぞれのシリンダボア37に対応して形成されている。また、リアハウジング23には、圧縮室47に供給する冷媒を収容するための吸入室54と、圧縮室47から吐出した冷媒を収容するための吐出室55とがそれぞれ形成されている。この例において、吸入室54はリアハウジング23の略中央に形成され、吐出室55は吸入室54の周囲に形成されている。   As shown in FIG. 3, the valve plate 22 is opened and closed by a suction hole 51 opened and closed by a suction valve 50 provided on the cylinder block side end surface and a discharge valve 52 provided on the rear housing side end surface. A discharge hole 53 is formed corresponding to each cylinder bore 37. Further, the rear housing 23 is formed with a suction chamber 54 for storing the refrigerant supplied to the compression chamber 47 and a discharge chamber 55 for storing the refrigerant discharged from the compression chamber 47. In this example, the suction chamber 54 is formed substantially at the center of the rear housing 23, and the discharge chamber 55 is formed around the suction chamber 54.

吸入弁50は、吸入弁側ガスケット56と共にシリンダブロック21とバルブプレート22との間に挟持され、また、吐出弁52は、吐出弁側ガスケット57と共にバルブプレート22とリアハウジング23との間に挟持されている。   The suction valve 50 is sandwiched between the cylinder block 21 and the valve plate 22 together with the suction valve side gasket 56, and the discharge valve 52 is sandwiched between the valve plate 22 and the rear housing 23 together with the discharge valve side gasket 57. Has been.

前記吸入弁側ガスケット56は、シリンダブロック21と吸入弁50との間に配されているもので、各シリンダボア37を囲繞するように設けられている。また、シリンダボア37のバルブプレート側の端部には、吸入弁50の開弁動作を規制する吸入弁用ストッパ58が形成されている。この吸入弁用ストッパ58は、吸入弁50の先端と対峙する位置に所定の深さに切削されて形成され、この例では、中間容量時の吸入ガス量に合せてストッパの深さが設定されている。
また、吐出弁側ガスケット57は、吐出弁52とリアハウジング23との間に配されるもので、吸入孔51を囲繞するように設けられていると共に、吐出弁52の開弁動作を規制する吐出弁用ストッパ59が一体に形成されている。
The intake valve side gasket 56 is disposed between the cylinder block 21 and the intake valve 50 and is provided so as to surround each cylinder bore 37. A suction valve stopper 58 that restricts the opening operation of the suction valve 50 is formed at the end of the cylinder bore 37 on the valve plate side. The suction valve stopper 58 is formed by cutting to a predetermined depth at a position facing the tip of the suction valve 50. In this example, the depth of the stopper is set in accordance with the amount of suction gas at the intermediate capacity. ing.
Further, the discharge valve side gasket 57 is disposed between the discharge valve 52 and the rear housing 23 and is provided so as to surround the suction hole 51 and regulates the valve opening operation of the discharge valve 52. A discharge valve stopper 59 is integrally formed.

リアハウジング23には、外部サイクルから冷媒を吸入するための吸入口60と、吸入口60から吸入された冷媒を吸入室54に導く吸入通路61と、冷媒を外部サイクルへ吐出するための吐出口(図示せず)と、吐出室に吐出された冷媒を吐出口に導く吐出通路(図示せず)とが形成されている。   The rear housing 23 has a suction port 60 for sucking refrigerant from the external cycle, a suction passage 61 for leading the refrigerant sucked from the suction port 60 to the suction chamber 54, and a discharge port for discharging the refrigerant to the external cycle. (Not shown) and a discharge passage (not shown) for guiding the refrigerant discharged to the discharge chamber to the discharge port are formed.

吸入口60と吸入室54をつなぐ吸入通路61上には、図4にも示されるように、吸入絞り弁62が配されている。この吸入絞り弁62は、吸入通路61の途中に形成された弁収容室63に冷媒の流れ方向に変位可能に収容され、弁収容室63に弾装されたスプリング64により開弁方向に付勢されている。   A suction throttle valve 62 is disposed on the suction passage 61 connecting the suction port 60 and the suction chamber 54 as shown in FIG. The suction throttle valve 62 is housed in a valve housing chamber 63 formed in the middle of the suction passage 61 so as to be displaceable in the refrigerant flow direction, and is biased in the valve opening direction by a spring 64 elastically mounted in the valve housing chamber 63. Has been.

具体的には、弁収容室63を吸入口60から延設された吸入通路61と軸心を一致させて吸入通路61の径よりも大きい径に形成し、この弁収容室63の側面に吸入室54に通じる連通部66を開口し、また、吸入絞り弁62を、一端が解放され、他端が閉塞された筒状に形成し、閉塞部62aを吸入口側に向けて弁収容室63に摺動可能に収容すると共に弁収容室63の吸入口側に弾装されたスプリング64により吸入口60から遠ざかる方向に付勢するようにしている。連通部66は、吸入絞り弁62がスプリング64に付勢されて最も吸入口60から遠ざかる位置にある場合に吸入絞り弁62の側面で塞がれることなく全開となり、吸入絞り弁62がスプリング64に抗して吸入口側へ変位すると吸入絞り弁62の側面で絞られて開度が小さくなるようになっている。   Specifically, the valve housing chamber 63 is formed to have a diameter larger than the diameter of the suction passage 61 by aligning the axial center with the suction passage 61 extending from the suction port 60, and suction is performed on the side surface of the valve housing chamber 63. The communication portion 66 that communicates with the chamber 54 is opened, and the suction throttle valve 62 is formed in a cylindrical shape with one end open and the other end closed, and the valve housing chamber 63 faces the closing portion 62a toward the suction port side. And is urged in a direction away from the suction port 60 by a spring 64 elastically mounted on the suction port side of the valve storage chamber 63. The communication portion 66 is fully opened without being blocked by the side surface of the suction throttle valve 62 when the suction throttle valve 62 is urged by the spring 64 and is located farthest from the suction port 60, and the suction throttle valve 62 is fully opened. When the valve is displaced toward the suction port side, it is throttled by the side surface of the suction throttle valve 62 so that the opening degree becomes small.

吸入絞り弁62の閉塞部62aにはオリフィス67が形成され、また吸入絞り弁62の内側には背圧室68が形成され、背圧室68と吸入通路61とはオリフィス67を介して連通している。したがって、吸入絞り弁62は、吸入室上流の圧力(吸入通路61の圧力)、背圧室68の圧力、及びスプリング64のばね力とがバランスした位置に変位し、背圧室68の圧力を高めない限り、背圧室68の圧力と吸入通路61の圧力とはオリフィス67を介して均衡し、連通部66はスプリング64のばね力により全開の状態(吸入絞り弁62の開度は最大)となる。   An orifice 67 is formed in the closing portion 62 a of the suction throttle valve 62, and a back pressure chamber 68 is formed inside the suction throttle valve 62. The back pressure chamber 68 and the suction passage 61 communicate with each other via the orifice 67. ing. Therefore, the suction throttle valve 62 is displaced to a position where the pressure upstream of the suction chamber (pressure of the suction passage 61), the pressure of the back pressure chamber 68, and the spring force of the spring 64 are balanced, and the pressure of the back pressure chamber 68 is reduced. Unless increased, the pressure in the back pressure chamber 68 and the pressure in the suction passage 61 are balanced via the orifice 67, and the communication portion 66 is fully opened by the spring force of the spring 64 (the opening degree of the suction throttle valve 62 is maximum). It becomes.

吸入絞り弁62の開度の調整、即ち、背圧室68の圧力調整は、外部調製手段を構成する以下に述べるソレノイドバルブ70により行われる。尚、この吸入絞り弁62とソレノイドバルブ70とにより、前記可変絞り機構3が構成されている。   The adjustment of the opening degree of the suction throttle valve 62, that is, the pressure adjustment of the back pressure chamber 68 is performed by a solenoid valve 70 described below that constitutes an external preparation means. The suction throttle valve 62 and the solenoid valve 70 constitute the variable throttle mechanism 3.

ソレノイドバルブ70は、リアハウジング23に内装されているもので、円柱状のボディ71の中心に形成された軸孔72に弁体73のロッド部75が摺動自在に配されている。弁体73は、軸孔72の径よりも大きな径に形成されて軸孔72の開口周縁に着座する頭部74と、この頭部74から延設されたロッド部75とを有し、ロッド部75には、頭部74から所定の範囲にかけて径を相対的に小さくしたくびれ部75aが形成されている。   The solenoid valve 70 is housed in the rear housing 23, and the rod portion 75 of the valve body 73 is slidably disposed in a shaft hole 72 formed in the center of a cylindrical body 71. The valve body 73 has a head 74 that is formed to have a diameter larger than the diameter of the shaft hole 72 and is seated on the periphery of the opening of the shaft hole 72, and a rod portion 75 that extends from the head 74. In the portion 75, a constricted portion 75a having a relatively small diameter from the head 74 to a predetermined range is formed.

ボディ71の先端部には、吸入絞り弁62の背圧室68に連通すると共に軸孔72に連通する連通室76が設けられ、この連通室76には、弁体73の頭部74とこの弁体73を閉方向(図中、下方)に付勢する弁バネ77が収容されている。   A communication chamber 76 that communicates with the back pressure chamber 68 of the suction throttle valve 62 and communicates with the shaft hole 72 is provided at the distal end portion of the body 71, and the communication chamber 76 includes a head 74 of the valve element 73 and the head 74. A valve spring 77 for energizing the valve body 73 in the closing direction (downward in the figure) is accommodated.

また、ボディ71には、軸孔72に連通すると共に、この軸孔72と軸心を合わせて収納固定された円筒状のシリンダ80と、このシリンダ80の周囲に巻回された電磁コイル81と、前記シリンダ80の内部に摺動自在に挿入され、軸孔72を挿通する弁体73のロッド部75に当接するプランジャ82と、シリンダ80の基端側開口端に取り付けられたアジャストキャップと83と、プランジャ82の背面とアジャストキャップ83との間に弾装されてプランジャ82を弁体側(図中、上側)へ付勢するスプリング84とを有している。   In addition, the body 71 communicates with the shaft hole 72, and a cylindrical cylinder 80 that is housed and fixed with the shaft hole 72 aligned with the shaft center, and an electromagnetic coil 81 wound around the cylinder 80, A plunger 82 which is slidably inserted into the cylinder 80 and abuts against the rod portion 75 of the valve body 73 which is inserted through the shaft hole 72; and an adjustment cap 83 which is attached to the proximal end opening end of the cylinder 80; And a spring 84 which is elastically mounted between the back surface of the plunger 82 and the adjustment cap 83 and urges the plunger 82 toward the valve element side (the upper side in the figure).

ソレノイドバルブ70の側面中央部には吐出室55の圧力を導入する吐出圧導入ポート85が設けられており、さらにその下(背圧室と反対側)には吸入室54の圧力を導入する吸入圧導入ポート86が設けられている。
吐出圧導入ポート85は、ボディ71の径方向に延設され、弁体73のくびれ部75aと対峙する軸孔72の側面に開口されている。また、吸入圧導入ポート86は、ボディ71の径方向に延設され、軸孔72の内周面に形成された溝87と連通しており、吸入圧導入ポート86から導入された吸入圧を弁体73の下面に導くようにしている。
A discharge pressure introduction port 85 for introducing the pressure of the discharge chamber 55 is provided at the center of the side surface of the solenoid valve 70, and further, a suction for introducing the pressure of the suction chamber 54 below (on the side opposite to the back pressure chamber). A pressure introducing port 86 is provided.
The discharge pressure introduction port 85 extends in the radial direction of the body 71 and opens on the side surface of the shaft hole 72 that faces the constricted portion 75 a of the valve body 73. The suction pressure introduction port 86 extends in the radial direction of the body 71 and communicates with a groove 87 formed on the inner peripheral surface of the shaft hole 72. The suction pressure introduction port 86 receives the suction pressure introduced from the suction pressure introduction port 86. The valve body 73 is guided to the lower surface.

したがって、電磁コイル81への通電量を調整することによりプランジャ82を下方へ吸引する力を調整することができ、電磁コイル81に通電されていないときはプランジャ82はプランジャ下に設けられたスプリング84により上方へ付勢され、弁体73が弁ばね77に抗して開く。これにより、吐出圧導入ポート85を介して導入された高圧ガスは弁体73に形成されたクビレ部75aの周囲を通過して連通室76に至り、この連通室76を介して背圧室68へ導かれる。   Therefore, the force for attracting the plunger 82 downward can be adjusted by adjusting the energization amount to the electromagnetic coil 81. When the electromagnetic coil 81 is not energized, the plunger 82 is a spring 84 provided under the plunger. , And the valve element 73 is opened against the valve spring 77. As a result, the high-pressure gas introduced through the discharge pressure introduction port 85 passes around the constricted portion 75 a formed in the valve body 73 and reaches the communication chamber 76, and the back pressure chamber 68 is passed through the communication chamber 76. Led to.

これに対して、ばね力に打ち勝つだけの吸引力が発生するよう電磁コイル81に通電されている時は、プランジャ82は下方に移動し、弁体73は、弁ばね77のばね力により下方へ変位し、軸孔72を閉じる。軸孔72はストレートに形成されているため、弁体73のクビレ部75aに導入された高圧が作用する面積がクビレ部75aの上面と下面とで同じ面積となり、吐出圧が高いときであっても、吐出圧の影響を受けて弁体73が開かないようになっている。   On the other hand, when the electromagnetic coil 81 is energized so as to generate an attractive force that overcomes the spring force, the plunger 82 moves downward and the valve element 73 moves downward due to the spring force of the valve spring 77. Displacement closes the shaft hole 72. Since the shaft hole 72 is formed straight, the area on which the high pressure introduced into the constricted portion 75a of the valve body 73 acts is the same on the upper surface and the lower surface of the constricted portion 75a, and the discharge pressure is high. However, the valve element 73 is prevented from opening due to the influence of the discharge pressure.

また、吸入圧導入ポート86から導入された吸入圧は弁体73の下面に回り込むようなっているため、背圧室68の圧力が吸入室54の圧力とほぼ均しいときは、吸入圧の影響もキャンセルされる。すなわち、このソレノイドバルブの開度は圧力の影響を受けずに電磁コイル81への通電量だけでコントロールされる。   In addition, since the suction pressure introduced from the suction pressure introduction port 86 wraps around the lower surface of the valve body 73, when the pressure in the back pressure chamber 68 is almost equal to the pressure in the suction chamber 54, the influence of the suction pressure. Will also be canceled. That is, the opening degree of the solenoid valve is controlled only by the energization amount to the electromagnetic coil 81 without being affected by the pressure.

また、ソレノイドバルブ70を介して背圧室68に導入されたガスは前述の吸入絞り弁62の中央に設けたオリフィス67を通じて吸入圧領域に連通しているため、ソレノイドバルブ70を通じて背圧室68に導入されるガス量とオリフィス67を通じて開放されるガス量のバランスにより背圧室68の圧力を調整することができる。   Further, since the gas introduced into the back pressure chamber 68 via the solenoid valve 70 communicates with the suction pressure region through the orifice 67 provided in the center of the suction throttle valve 62, the back pressure chamber 68 is passed through the solenoid valve 70. The pressure in the back pressure chamber 68 can be adjusted by the balance between the amount of gas introduced into the gas and the amount of gas released through the orifice 67.

上述した圧縮機において、リアハウジング23内には、さらに、吸入室54の圧力に基づいてクランク室24の圧力を調整する周知の圧力制御弁2が設けられている。この種の圧力制御弁2は、ベローズやダイヤフラム等の感圧部材を吸入圧に対応させ、吸入圧が所定の値を下回ったときに感圧部材によって弁体を動かし、クランク室圧を調圧するようになっている。クランク室圧の調圧方法としては、吸入圧が所定値を下回ったときに弁座を開いて吐出圧をクランク室24に導入するもの、クランク室24から吸入室54へ逃がすガス量を制限するもの、その両方の組み合わせ、と種々のものがあるが、この実施例においては、吐出室55とクランク室24とを連通する給気通路89の連通状態を圧力制御弁2で調整することで、吐出室55の高圧ガスをクランク室24に導入する構成が採用されている。この圧力制御弁2によって、クランク室24の圧力が制御され、ピストンストローク、即ち、吐出容量が調節されるようになっている。   In the above-described compressor, a known pressure control valve 2 that adjusts the pressure in the crank chamber 24 based on the pressure in the suction chamber 54 is further provided in the rear housing 23. This type of pressure control valve 2 adjusts the crank chamber pressure by causing a pressure sensitive member such as a bellows or a diaphragm to correspond to the suction pressure and moving the valve body by the pressure sensitive member when the suction pressure falls below a predetermined value. It is like that. As a method of adjusting the crank chamber pressure, when the suction pressure falls below a predetermined value, the valve seat is opened and the discharge pressure is introduced into the crank chamber 24, and the amount of gas released from the crank chamber 24 to the suction chamber 54 is limited. In this embodiment, the pressure control valve 2 adjusts the communication state of the air supply passage 89 that connects the discharge chamber 55 and the crank chamber 24. A configuration is adopted in which the high-pressure gas in the discharge chamber 55 is introduced into the crank chamber 24. The pressure of the crank chamber 24 is controlled by the pressure control valve 2, and the piston stroke, that is, the discharge capacity is adjusted.

図5 において、制御装置13による可変絞り機構3の制御動作例がフローチャートとして示されている。この制御動作により、車両側の要求に応じてソレノイドバルブを駆動する吸入絞り制御手段が構成されている。
以下、このフローチャートに基づいて可変絞り機構3の制御動作例を説明すると、制御装置13は、まず空調装置の停止指令が出されて圧縮機4が停止状態にあるか否かを判定する(ステップS01)。この判定において、空調装置が停止状態にあると判定された場合には、可変絞り機構3のソレノイドバルブ70への制御信号(Dt)をゼロ(ソレノドへ供給する電流をゼロ)に設定する(ステップS02)。これによりプランジャ82がスプリング84のばね力により図中上方へ押し上げられて弁体73がそれに伴って上方へ移動し、背圧室68に高圧圧力が導入されて吸入絞り弁がスプリング64に抗して押し上げられ、連通部66を塞いで吸入通路61が遮断される。
In FIG. 5, an example of the control operation of the variable aperture mechanism 3 by the control device 13 is shown as a flowchart. By this control operation, suction throttle control means for driving the solenoid valve in response to a request on the vehicle side is configured.
Hereinafter, based on this flowchart, the control operation example of the variable throttle mechanism 3 will be described. First, the control device 13 determines whether or not the compressor 4 is in a stopped state when a stop command for the air conditioner is issued (step). S01). In this determination, if it is determined that the air conditioner is in a stopped state, the control signal (Dt) to the solenoid valve 70 of the variable throttle mechanism 3 is set to zero (the current supplied to the solenoid is zero) (step) S02). As a result, the plunger 82 is pushed upward in the drawing by the spring force of the spring 84 and the valve body 73 is moved upward accordingly, and a high pressure is introduced into the back pressure chamber 68 so that the suction throttle valve resists the spring 64. The suction passage 61 is blocked by closing the communication portion 66.

また、ステップS01において、空調装置が稼働状態にあると判定された場合には、ステップS03において、蒸発器出口の空気温度(Te)が蒸発器出口の空気設定温度(Te(set))より高いか否かを、また、ステップS04において、蒸発器出口の空気温度(Te)が蒸発器出口の空気設定温度(Te(set))より低いか否かを判定し、蒸発器出口の空気温度(Te)が蒸発器出口の空気設定温度(Te(set))より高いと判定された場合には、設定温度よりも蒸発器8から吹出す空気温度が高い場合であるので、吸入絞り弁62を全開方向へ動かすために制御信号(デューティ比:Dt)を大きく(ソレノドイへ供給する電流量を大きく)設定する(ステップS05)。これにより、プランジャ82が下方へ吸引され、弁体73が弁ばね77のばね力により閉鎖方向(図中、下方)に変位し、背圧室68への圧力供給が絞られるため背圧室68と吸入通路61の圧力差が小さくなり、スプリング64によるばね力により吸入絞り弁62が下方に変位して吸入通路61の絞りを小さくする(連通部66を開いて絞り抵抗を軽減させる)。   If it is determined in step S01 that the air conditioner is in operation, the evaporator outlet air temperature (Te) is higher than the evaporator outlet air set temperature (Te (set)) in step S03. In step S04, it is determined whether the air temperature (Te) at the evaporator outlet is lower than the air set temperature (Te (set)) at the evaporator outlet. When it is determined that Te) is higher than the air set temperature (Te (set)) at the outlet of the evaporator, the air temperature blown out from the evaporator 8 is higher than the set temperature. In order to move in the fully open direction, the control signal (duty ratio: Dt) is set large (the amount of current supplied to the solenoid) is set (step S05). As a result, the plunger 82 is sucked downward, the valve body 73 is displaced in the closing direction (downward in the figure) by the spring force of the valve spring 77, and the pressure supply to the back pressure chamber 68 is restricted, so that the back pressure chamber 68. The pressure difference between the suction passage 61 and the suction passage 61 is reduced, and the suction throttle valve 62 is displaced downward by the spring force of the spring 64 to reduce the throttle of the suction passage 61 (open the communicating portion 66 to reduce the throttle resistance).

これに対して、蒸発器出口の空気温度(Te)が蒸発器出口の空気設定温度(Te(set))より低いと判定された場合には、設定温度よりも蒸発器から吹出す空気温度が低い場合であるので、吸入絞り弁62を全閉方向へ動かすために制御信号(Dt)を小さく(ソレノドイへ供給する電流量を小さく)設定する(ステップS06)。これにより、プランジャ82がスプリング84のばね力により上方へ変位して、弁体73が弁ばね77のばね力に抗して開方向に変位し、背圧室68への高圧冷媒の供給が多くなるため背圧室68と吸入通路61との圧力差が大きくなり、スプリング64のばね力に抗して吸入絞り弁62が上方に変位し、吸入通路61の絞りを大きくする。
尚、蒸発器出口の空気温度(Te)が蒸発器出口の空気設定温度(Te(set))と同じであると判定された場合には、現状の制御量を維持する(ステップS07)。
On the other hand, when it is determined that the air temperature (Te) at the evaporator outlet is lower than the air set temperature (Te (set)) at the evaporator outlet, the air temperature blown from the evaporator is lower than the set temperature. Since it is low, the control signal (Dt) is set to be small (the amount of current supplied to the solenoid) is small in order to move the suction throttle valve 62 in the fully closed direction (step S06). As a result, the plunger 82 is displaced upward by the spring force of the spring 84, the valve body 73 is displaced in the opening direction against the spring force of the valve spring 77, and a large amount of high-pressure refrigerant is supplied to the back pressure chamber 68. Therefore, the pressure difference between the back pressure chamber 68 and the suction passage 61 is increased, the suction throttle valve 62 is displaced upward against the spring force of the spring 64, and the throttle of the suction passage 61 is increased.
If it is determined that the air temperature (Te) at the outlet of the evaporator is the same as the air set temperature (Te (set)) at the outlet of the evaporator, the current control amount is maintained (step S07).

したがって、以上の吸入絞り弁の制御に基づき、車室内の熱負荷に応じた圧縮機の運転状態について説明すると、以下のようになる。
<(1)全容量運転>
車室内が十分に冷えていないときは、冷凍サイクル1の低圧側の圧力(吸入圧力)は高い状態にある。このような場合には、十分な冷房能力を確保する必要があり、脈動が発生する条件でもないため、吸入絞り制御手段は、ソレノイドバルブ70が全閉状態を維持するよう所定値以上の電流を電磁コイル81に与える。これにより背圧室68の圧力は吸入通路61の圧力と均圧し、スプリング64のばね力により吸入絞り弁62は全開状態を維持し、吸入室54の圧力も十分高いため圧力制御弁2も作動せず、斜板44は最大傾斜角で運転され、圧縮機4は最大容量での運転を維持する。
Therefore, the operation state of the compressor according to the heat load in the passenger compartment based on the above control of the intake throttle valve will be described as follows.
<(1) Full capacity operation>
When the passenger compartment is not sufficiently cooled, the pressure (intake pressure) on the low pressure side of the refrigeration cycle 1 is high. In such a case, it is necessary to ensure sufficient cooling capacity, and it is not a condition for generating pulsation. Therefore, the suction throttle control means supplies a current equal to or greater than a predetermined value so that the solenoid valve 70 remains fully closed. The electromagnetic coil 81 is given. As a result, the pressure in the back pressure chamber 68 is equalized with the pressure in the suction passage 61, the suction throttle valve 62 is kept fully open by the spring force of the spring 64, and the pressure in the suction chamber 54 is sufficiently high, so that the pressure control valve 2 is also operated. Instead, the swash plate 44 is operated at the maximum inclination angle, and the compressor 4 maintains the operation at the maximum capacity.

<(2)中間容量運転>
車室内が冷えてくると、蒸発器8の熱負荷も低くなり、吸入圧力が低下してくる。このとき、蒸発器8の出口空気温度が、目標空気温度を下回っていなければ、まだ冷凍能力が過剰ではないため、吸入絞り制御手段は、ソレノイドバルブ70が全閉状態を維持するよう所定値以上の電流を電磁コイル81に与える。これにより吸入絞り弁62は全開状態を維持する。圧縮機4の吸入室54の圧力が所定値を下回ると、圧力制御弁2のベローズが伸張して弁座を開き、吐出室の高圧ガスがクランク室24に導入され、斜板44の傾斜角が小さくなり、圧縮機4の容量が少なくなると共に、吸入圧力の低下(冷えすぎ)が阻止される。
<(2) Intermediate capacity operation>
As the passenger compartment cools, the heat load on the evaporator 8 also decreases, and the suction pressure decreases. At this time, if the outlet air temperature of the evaporator 8 is not lower than the target air temperature, the refrigerating capacity is not excessive yet, so that the suction throttle control means exceeds the predetermined value so that the solenoid valve 70 is kept in the fully closed state. Is supplied to the electromagnetic coil 81. As a result, the suction throttle valve 62 is kept fully open. When the pressure in the suction chamber 54 of the compressor 4 falls below a predetermined value, the bellows of the pressure control valve 2 expands to open the valve seat, the high-pressure gas in the discharge chamber is introduced into the crank chamber 24, and the inclination angle of the swash plate 44 Is reduced, the capacity of the compressor 4 is reduced, and a reduction (overcooling) of the suction pressure is prevented.

<(3)低容量運転+吸入絞り>
熱負荷のさらなる低下や、車内設定温度の変更等により、蒸発器8の出口空気温度が、目標出口空気温度を下回った場合は、冷凍能力が過剰であるので、吸入絞り制御手段は、ソレノイドバルブ70への通電量を減らして、背圧室68へ高圧圧力を導入させる。上昇した背圧室68と吸入通路61の圧力差に応じて吸入絞り弁62が吸入通路61を絞ることにより、吸入室54の圧力が低下する。圧力制御弁2は、この吸入室54の圧力の低下に基づいて、クランク室24の圧力を上昇させて圧縮機4の容量を小さくさせるため、冷凍能力が小さくなり結果として吸入室54の圧力は一定に保たれる。このとき吸入絞り弁62の上流、すなわち冷凍サイクルの蒸発器8側の圧力は、吸入絞り弁62前後の圧力差により、吸入室54の圧力に比して高くなっており、見かけ上、圧力制御弁2の設定吸入圧を上昇させて冷凍能力を小さくした構成と同様の能力制御が得られる。
低負荷時の低容量運転であるために、吸入脈動が発生する領域であるが、吸入通路61が吸入絞り弁62により絞られているので、車両側への脈動の伝播は抑えられる。
<(3) Low capacity operation + suction restriction>
When the outlet air temperature of the evaporator 8 falls below the target outlet air temperature due to a further decrease in the heat load or a change in the vehicle interior temperature, the refrigerating capacity is excessive. The amount of current supplied to 70 is reduced, and a high pressure is introduced into the back pressure chamber 68. The suction throttle valve 62 throttles the suction passage 61 according to the pressure difference between the increased back pressure chamber 68 and the suction passage 61, and the pressure in the suction chamber 54 decreases. Since the pressure control valve 2 increases the pressure in the crank chamber 24 to reduce the capacity of the compressor 4 based on the decrease in the pressure in the suction chamber 54, the refrigeration capacity is reduced, and as a result, the pressure in the suction chamber 54 is reduced. Kept constant. At this time, the pressure upstream of the suction throttle valve 62, that is, the pressure on the evaporator 8 side of the refrigeration cycle is higher than the pressure in the suction chamber 54 due to the pressure difference before and after the suction throttle valve 62. Capability control similar to the configuration in which the set suction pressure of the valve 2 is increased to reduce the refrigeration capability is obtained.
Although it is a region where suction pulsation occurs due to low capacity operation at low load, since the suction passage 61 is throttled by the suction throttle valve 62, propagation of pulsation to the vehicle side can be suppressed.

尚、上述の実施例においては、吸入絞り弁62が吸入ガスの流れに沿って開閉するようになっているが、図6に示されるように、吸入絞り弁62をスプールタイプとし、吸入絞り弁62の動きを吸入ガスの流れに対し直交させてもよい。   In the above-described embodiment, the intake throttle valve 62 opens and closes along the flow of the intake gas. However, as shown in FIG. The movement of 62 may be orthogonal to the flow of intake gas.

この例においては、リアハウジング23に吸入通路61と直交する弁体摺動通路90を設け、この弁体摺動通路90に、スプール状の吸入絞り弁62を摺動可能に配置すると共に前述と同様のソレノイドバルブ70を吸入絞り弁62の軸方向で対峙させて取り付けることで吸入絞り弁62の動きを制御するようにしている。   In this example, a valve body sliding passage 90 orthogonal to the suction passage 61 is provided in the rear housing 23, and a spool-like suction throttle valve 62 is slidably disposed in the valve body sliding passage 90, and A similar solenoid valve 70 is attached to face the suction throttle valve 62 in the axial direction so that the movement of the suction throttle valve 62 is controlled.

吸入絞り弁62は、中間部に小径部62aが形成され、一端にスプリング91によりソレノイドバルブ70に向けて付勢された第1の摺動部62bが、また、他端に吸入通路61の冷媒が流れる通路断面を可変させる第2の摺動部62cが形成されている。スプリング91が収容されている部分は吸入室54に連通しており、また、第2の摺動部62cとソレノイドバルブ70の先端部との間に背圧室68が構成され、この背圧室68は、第2の摺動部62cに形成されたオリフィス67を介して吸入通路61と連通している。したがって、背圧室68の圧力と吸入通路61の圧力とが均衡している状態においては、吸入絞り弁62がスプリング91により付勢されて第2の摺動部62cが吸入通路61から外れ、小径部62aが吸入通路61に臨むようになっている。また、背圧室68の圧力が吸入通路61の圧力より相対的に高くなれば、吸入絞り弁62がスプリング91のばね力に抗して図中左方へ変位し、第2の摺動部62cで吸入通路61が徐々に絞られることとなり、最も左方に変位した場合には、吸入通路61を遮断するようになっている。
尚、他の構成は、前記構成例と同様であるので、同一箇所に同一符号を付して説明を省略する。このような構成においても、前記構成例と同様の作用効果を有する。
The suction throttle valve 62 is formed with a small diameter portion 62a at an intermediate portion, a first sliding portion 62b urged toward the solenoid valve 70 by a spring 91 at one end, and a refrigerant of the suction passage 61 at the other end. A second sliding portion 62c that changes the cross section of the passage through which the gas flows is formed. The portion in which the spring 91 is accommodated communicates with the suction chamber 54, and a back pressure chamber 68 is formed between the second sliding portion 62c and the tip of the solenoid valve 70, and this back pressure chamber. 68 communicates with the suction passage 61 through an orifice 67 formed in the second sliding portion 62c. Therefore, in a state where the pressure in the back pressure chamber 68 and the pressure in the suction passage 61 are balanced, the suction throttle valve 62 is urged by the spring 91, and the second sliding portion 62c is disengaged from the suction passage 61. The small diameter portion 62 a faces the suction passage 61. If the pressure in the back pressure chamber 68 is relatively higher than the pressure in the suction passage 61, the suction throttle valve 62 is displaced to the left in the figure against the spring force of the spring 91, and the second sliding portion. The suction passage 61 is gradually throttled at 62c, and the suction passage 61 is blocked when the suction passage 61 is displaced to the leftmost.
In addition, since the other structure is the same as that of the said structural example, it attaches | subjects the same code | symbol to the same location, and abbreviate | omits description. Such a configuration also has the same operational effects as the above configuration example.

また、上述の構成は、吸入絞り弁62の背面に背圧室68を設け、圧力の力を利用して吸入絞り弁62を動かすようにしたが、図7に示されるように、ソレノイドで直接吸入絞り弁62を駆動させるようにしてもよい。   In the above-described configuration, the back pressure chamber 68 is provided on the back surface of the suction throttle valve 62, and the suction throttle valve 62 is moved using the pressure force. However, as shown in FIG. The suction throttle valve 62 may be driven.

この例においては、吸入通路61の途中に配設される吸入絞り弁62をソレノイドバルブ70と一体化してプランジャとして機能させているもので、一端が閉塞された筒状の吸入絞り弁62を、ボディ71に形成された軸孔72に移動可能に収容すると共に、ボディ71の軸孔72に軸心を合わせて固定された円筒状のシリンダ80に摺動自在に挿入している。ボディ71には、その先端に軸孔72に連通する流入口92が形成され、また、側面に軸孔72に連通する流出口93が形成され、吸入絞り弁62がボディ71の先端に当接すると、流入口92が閉塞されるようになっている。   In this example, the suction throttle valve 62 disposed in the middle of the suction passage 61 is integrated with the solenoid valve 70 so as to function as a plunger, and the cylindrical suction throttle valve 62 closed at one end is The shaft 71 is movably accommodated in a shaft hole 72 formed in the body 71 and is slidably inserted into a cylindrical cylinder 80 which is fixed to the shaft hole 72 of the body 71 with its axis aligned. The body 71 has an inlet 92 communicating with the shaft hole 72 at the tip thereof, and an outlet 93 communicating with the shaft hole 72 on the side surface thereof, so that the suction throttle valve 62 contacts the tip of the body 71. Then, the inflow port 92 is closed.

また、可変絞り機構3は、吸入絞り弁62を駆動制御するために、シリンダ80の周囲に巻回された電磁コイル81と、シリンダ80の基端側開口部に取り付けられたアジャストキャップ83と、このアジャストキャップ83と吸入絞り弁62との間に弾装されて吸入絞り弁62を流入口92に向けて付勢するスプリング84とを有している。尚、吸入絞り弁62の内側は、ボディ71、シリンダ80、及び吸入絞り弁62に形成された通孔94,95,96を介して吸入室54の圧力が導かれるようになっている。   Further, the variable throttle mechanism 3 includes an electromagnetic coil 81 wound around the cylinder 80 and an adjustment cap 83 attached to the proximal end opening of the cylinder 80 in order to drive and control the suction throttle valve 62. A spring 84 is provided between the adjustment cap 83 and the suction throttle valve 62 and biases the suction throttle valve 62 toward the inlet 92. Note that the pressure in the suction chamber 54 is guided to the inside of the suction throttle valve 62 through the body 71, the cylinder 80, and through holes 94, 95, 96 formed in the suction throttle valve 62.

したがって、電磁コイル81への通電量を制御することにより吸入絞り弁62を下方へ吸引する力を調整することができ、電磁コイル81に通電されていないときは吸入絞り弁62はスプリング84により上方に付勢され、ボディ71に形成された流入口92を閉塞し、吸入通路61を遮断する。   Therefore, by controlling the energization amount to the electromagnetic coil 81, the force for attracting the suction throttle valve 62 downward can be adjusted. When the electromagnetic coil 81 is not energized, the suction throttle valve 62 is moved upward by the spring 84. The inlet 92 formed in the body 71 is closed, and the suction passage 61 is blocked.

これに対して、スプリング84のばね力に打ち勝つだけの吸引力が発生するよう電磁コイル81に通電されている時は、吸入絞り弁62は下方に移動し、磁力、吸入通路61の圧力、吸入室54の圧力、スプリング84のばね力が釣り合った位置で停止する。そして、吸入絞り弁62が最も下方へ変位した場合には、吸入絞り弁62が流出口93から外れ、流入口92と流出口93との連通状態が最大となる。尚、流入口92と流出口93の大きさは、連通状態が最大となる高冷媒流量運転でも圧力損失が生じないように十分な通路面積が確保されている。   On the other hand, when the electromagnetic coil 81 is energized so as to generate an attractive force that overcomes the spring force of the spring 84, the suction throttle valve 62 moves downward, and the magnetic force, the pressure of the suction passage 61, the suction It stops at a position where the pressure of the chamber 54 and the spring force of the spring 84 are balanced. When the suction throttle valve 62 is displaced downward, the suction throttle valve 62 is disengaged from the outlet 93, and the communication state between the inlet 92 and the outlet 93 is maximized. In addition, the size of the inflow port 92 and the outflow port 93 has a sufficient passage area so that pressure loss does not occur even in the high refrigerant flow rate operation where the communication state is maximum.

したがって、このような吸入絞り弁62とソレノイドバルブ70とを一体化した構成においても、高吐出圧力条件での中〜高容量運転時において吸入絞り弁の開度を全開状態に維持することができ、また、低圧脈動が発生する条件においては、吸入脈動の伝播を抑制することが可能となる。   Therefore, even in the configuration in which the suction throttle valve 62 and the solenoid valve 70 are integrated, the opening degree of the suction throttle valve can be maintained in a fully opened state during medium to high capacity operation under a high discharge pressure condition. In addition, under conditions where low-pressure pulsation occurs, it is possible to suppress the propagation of suction pulsation.

尚、上述した第1、第2の実施例においては、背圧室68とソレノイドバルブ70を隣接させて構成したが、背圧室68とソレノイド70を離して配置し、背圧室68と連通室76とをガス通路で連結して連通室76の圧力をガス通路を介して背圧室68に導くようにしてもよい。
また、上述の図5で示す制御動作例においては、冷凍サイクルの熱負荷を制御対象として可変絞り機構3を制御したが、脈動の発生有無を検出もしくは推定して、可変絞り機構3を制御するようにしてもよい。
さらに、上述した圧力制御弁においては内部制御式とした例を示したが、圧力制御弁をソレノイド等の外力により圧力設定点を変えることが出来る外部制御弁とし、冷凍サイクルの熱負荷に応じた冷凍能力制御は、吸入絞り弁でなく、この外部制御弁に受け持たせても良い。この場合、吸入絞り弁の作動指令は脈動発生を因子とすることにより、より正確な能力制御と脈動低減を得ることが可能となる。
さらにまた、上述の第1、第2の実施例においては、吸入絞り弁を吸入ガスの流れに沿う弁、もしくは流れに直交するスプール弁としたが、バタフライ弁を外部調整手段により所定角度回転させて吸入通路を絞るようにしても良い。
In the first and second embodiments described above, the back pressure chamber 68 and the solenoid valve 70 are disposed adjacent to each other. However, the back pressure chamber 68 and the solenoid 70 are separated from each other and communicated with the back pressure chamber 68. The chamber 76 may be connected by a gas passage so that the pressure in the communication chamber 76 is guided to the back pressure chamber 68 through the gas passage.
In the control operation example shown in FIG. 5 described above, the variable throttle mechanism 3 is controlled with the heat load of the refrigeration cycle as a control target. However, the variable throttle mechanism 3 is controlled by detecting or estimating the occurrence of pulsation. You may do it.
Furthermore, in the above-described pressure control valve, an example of an internal control type has been shown. However, the pressure control valve is an external control valve that can change the pressure set point by an external force such as a solenoid, and is in accordance with the heat load of the refrigeration cycle. The refrigeration capacity control may be assigned to this external control valve instead of the suction throttle valve. In this case, it is possible to obtain more accurate capacity control and pulsation reduction by making the operation command of the suction throttle valve a factor of occurrence of pulsation.
Furthermore, in the first and second embodiments described above, the intake throttle valve is a valve that follows the flow of the intake gas, or a spool valve that is orthogonal to the flow of the intake gas, but the butterfly valve is rotated by a predetermined angle by the external adjustment means. The suction passage may be throttled.

1 冷凍サイクル
2 圧力制御弁
3 可変絞り機構
4 圧縮機
5 凝縮器
6 膨張装置
8 蒸発器
21 シリンダブロック
22 バルブプレート
23 リアハウジング
25 フロントハウジング
37 シリンダボア
40 ピストン
44 斜板
54 吸入室
55 吐出室
60 吸入口
61 吸入通路
62 吸入絞り弁
68 背圧室
70 ソレノイドバルブ
DESCRIPTION OF SYMBOLS 1 Refrigerating cycle 2 Pressure control valve 3 Variable throttle mechanism 4 Compressor 5 Condenser 6 Expansion device 8 Evaporator 21 Cylinder block 22 Valve plate 23 Rear housing 25 Front housing 37 Cylinder bore 40 Piston 44 Swash plate 54 Suction chamber 55 Discharge chamber 60 Suction Port 61 Suction passage 62 Suction throttle valve 68 Back pressure chamber 70 Solenoid valve

Claims (4)

ハウジングと、前記ハウジングに形成されたシリンダボア内を往復動するピストンと、前記ハウジング内に形成されたクランク室、吸入室、及び吐出室と、前記クランク室を貫通し、前記ハウジングに回転自在に支承されたシャフトと、前記クランク室に収容され、前記シャフトの回転により回転して前記ピストンを往復動させる斜板と、前記ハウジングに形成されて作動流体を吸入する吸入口及び吐出する吐出口とを有し、前記吸入口から吸入した作動流体を、前記ハウジングに形成された吸入通路を介して前記吸入室へ導き、前記ピストンにより圧縮した後に前記吐出室を介して前記吐出口から吐出させる可変容量斜板式圧縮機において、
前記吸入通路に、この吸入通路を通過する冷媒の通路面積を調節する吸入絞り弁を設け、この吸入絞り弁の開度を外部からの要求に基づき任意に調整する外部調整手段を設けたことを特徴とする可変容量斜板式圧縮機。
A housing, a piston that reciprocates in a cylinder bore formed in the housing, a crank chamber, a suction chamber, and a discharge chamber formed in the housing, and penetrates the crank chamber and is rotatably supported by the housing. A shaft, a swash plate that is housed in the crank chamber and is rotated by the rotation of the shaft to reciprocate the piston, and a suction port that is formed in the housing and sucks a working fluid and a discharge port that discharges the working fluid. A variable capacity that guides the working fluid sucked from the suction port to the suction chamber via a suction passage formed in the housing, and discharges the working fluid from the discharge port through the discharge chamber after being compressed by the piston In swash plate compressor,
The suction passage is provided with a suction throttle valve that adjusts the passage area of the refrigerant that passes through the suction passage, and is provided with an external adjustment means that arbitrarily adjusts the opening of the suction throttle valve based on a request from the outside. A variable capacity swash plate compressor.
前記外部調整手段は、前記吸入絞り弁の背圧室の圧力を調整して前記吸入絞り弁の開度を調整するソレノイドバルブであることを特徴とする請求項1記載の可変容量斜板式圧縮機。   2. The variable capacity swash plate compressor according to claim 1, wherein the external adjustment means is a solenoid valve that adjusts the opening of the suction throttle valve by adjusting the pressure of the back pressure chamber of the suction throttle valve. . 前記外部調整手段は、外部からの要求に基づき前記吸入絞り弁の開度を直接制御するものである請求項1記載の可変容量斜板式圧縮機。   2. The variable capacity swash plate compressor according to claim 1, wherein the external adjustment means directly controls the opening of the suction throttle valve based on an external request. 前記請求項1乃至3のいずれかに記載の可変容量斜板式圧縮機を、少なくとも凝縮器、膨張装置、蒸発器と共に配管結合をして冷凍サイクルを構成し、
前記可変容量斜板式圧縮機に前記吸入室の圧力に基づいて前記クランク室の圧力を制御する圧力制御弁を更に設け、
車両側の要求に応じて前記外部調整手段を駆動する吸入絞り制御手段を更に具備することを特徴とする空調装置システム。
The variable capacity swash plate compressor according to any one of claims 1 to 3 is connected to a pipe together with at least a condenser, an expansion device, and an evaporator to constitute a refrigeration cycle,
The variable capacity swash plate compressor is further provided with a pressure control valve for controlling the pressure of the crank chamber based on the pressure of the suction chamber,
An air conditioner system further comprising suction throttle control means for driving the external adjustment means in response to a request on the vehicle side.
JP2009154485A 2009-06-30 2009-06-30 Variable capacity swash plate compressor and air conditioning system using the same Active JP5519199B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009154485A JP5519199B2 (en) 2009-06-30 2009-06-30 Variable capacity swash plate compressor and air conditioning system using the same
PCT/JP2010/004026 WO2011001621A1 (en) 2009-06-30 2010-06-17 Variable displacement swash plate-type compressor and air conditioning system using said compressor
EP10793796.3A EP2450572A4 (en) 2009-06-30 2010-06-17 Variable displacement swash plate-type compressor and air conditioning system using said compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009154485A JP5519199B2 (en) 2009-06-30 2009-06-30 Variable capacity swash plate compressor and air conditioning system using the same

Publications (2)

Publication Number Publication Date
JP2011012548A true JP2011012548A (en) 2011-01-20
JP5519199B2 JP5519199B2 (en) 2014-06-11

Family

ID=43410712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009154485A Active JP5519199B2 (en) 2009-06-30 2009-06-30 Variable capacity swash plate compressor and air conditioning system using the same

Country Status (3)

Country Link
EP (1) EP2450572A4 (en)
JP (1) JP5519199B2 (en)
WO (1) WO2011001621A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190066548A (en) * 2017-12-05 2019-06-13 한온시스템 주식회사 Precise control of suction damping device in a variable displacement compressor
CN112303290A (en) * 2019-07-31 2021-02-02 惠州市唐群座椅科技股份有限公司 Integrated switch device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325455A (en) * 1986-07-18 1988-02-02 株式会社日立製作所 Refrigeration system
WO2002101237A1 (en) * 2001-06-06 2002-12-19 Tgk Co., Ltd. Variable displacement compressor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09228956A (en) * 1996-02-20 1997-09-02 Toyota Autom Loom Works Ltd Variable displacement compressor
JP4209522B2 (en) * 1998-11-27 2009-01-14 カルソニックカンセイ株式会社 Swash plate type variable capacity compressor
DE112004002149D2 (en) * 2003-09-02 2006-07-13 Luk Fahrzeug Hydraulik Compressor or air conditioning

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325455A (en) * 1986-07-18 1988-02-02 株式会社日立製作所 Refrigeration system
WO2002101237A1 (en) * 2001-06-06 2002-12-19 Tgk Co., Ltd. Variable displacement compressor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190066548A (en) * 2017-12-05 2019-06-13 한온시스템 주식회사 Precise control of suction damping device in a variable displacement compressor
US10655617B2 (en) 2017-12-05 2020-05-19 Hanon Systems Precise control of suction damping device in a variable displacement compressor
KR102131642B1 (en) * 2017-12-05 2020-07-09 한온시스템 주식회사 Precise control of suction damping device in a variable displacement compressor
US11319939B2 (en) 2017-12-05 2022-05-03 Hanon Systems Precise control of suction damping device in a variable displacement compressor
CN112303290A (en) * 2019-07-31 2021-02-02 惠州市唐群座椅科技股份有限公司 Integrated switch device
CN112303290B (en) * 2019-07-31 2021-11-09 惠州市唐群座椅科技股份有限公司 Integrated switch device

Also Published As

Publication number Publication date
EP2450572A4 (en) 2017-07-12
EP2450572A1 (en) 2012-05-09
JP5519199B2 (en) 2014-06-11
WO2011001621A1 (en) 2011-01-06

Similar Documents

Publication Publication Date Title
JP4081965B2 (en) Capacity control mechanism of variable capacity compressor
US6244159B1 (en) Variable displacement type swash plate compressor and displacement control valve
JP5391648B2 (en) Capacity control mechanism in variable capacity compressor
JP4431462B2 (en) Swash plate type variable capacity compressor and electromagnetic control valve
US8292596B2 (en) Variable displacement type compressor with displacement control mechanism
EP1936192A2 (en) Electromagnetic displacement control valve in clutchless type variable displacement compressor
US9010138B2 (en) Variable displacement compressor
JP3726759B2 (en) Control device for variable capacity compressor
WO2017002784A1 (en) Variable capacity compressor
JP2002285956A (en) Control valve of variable displacement compressor
WO2015093502A1 (en) Pressure control valve and variable displacement compressor using same
JP5519199B2 (en) Variable capacity swash plate compressor and air conditioning system using the same
EP1026398A2 (en) Control valve for variable displacement compressors
JP4501112B2 (en) Control unit for variable capacity compressor
JP5430401B2 (en) Variable capacity compressor
JP6192365B2 (en) Variable capacity compressor
JP2007064056A (en) Control valve of variable displacement type compressor
JP5474284B2 (en) Capacity control system for variable capacity compressor
WO2017170467A1 (en) Variable displacement compressor
JPWO2016098822A1 (en) Variable capacity compressor
JP5260906B2 (en) Volume control valve for variable capacity compressor
JP2006051870A (en) Vehicle air-conditioner
JP5053740B2 (en) Volume control valve for variable capacity compressor
JP2000002179A (en) Variable capacity swash plate type compressor
JP2009024693A (en) Variable displacement compressor and variable displacement compressor control valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140403

R150 Certificate of patent or registration of utility model

Ref document number: 5519199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250