JP6192365B2 - Variable capacity compressor - Google Patents

Variable capacity compressor Download PDF

Info

Publication number
JP6192365B2
JP6192365B2 JP2013117190A JP2013117190A JP6192365B2 JP 6192365 B2 JP6192365 B2 JP 6192365B2 JP 2013117190 A JP2013117190 A JP 2013117190A JP 2013117190 A JP2013117190 A JP 2013117190A JP 6192365 B2 JP6192365 B2 JP 6192365B2
Authority
JP
Japan
Prior art keywords
pressure
chamber
valve
control valve
movable body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013117190A
Other languages
Japanese (ja)
Other versions
JP2014234777A (en
Inventor
田口 幸彦
幸彦 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Holdings Corp
Original Assignee
Sanden Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Holdings Corp filed Critical Sanden Holdings Corp
Priority to JP2013117190A priority Critical patent/JP6192365B2/en
Publication of JP2014234777A publication Critical patent/JP2014234777A/en
Application granted granted Critical
Publication of JP6192365B2 publication Critical patent/JP6192365B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、車両エアコンシステム等に使用される可変容量圧縮機に関し、特に、制御圧力を感知してこの制御圧力が設定圧になるよう弁開度を自律的に調整する感圧手段を備えた制御弁により、圧力調整室の圧力を調整して冷媒の吐出容量を可変する可変容量圧縮機に関する。   The present invention relates to a variable capacity compressor used in a vehicle air conditioner system and the like, and particularly includes pressure-sensitive means for sensing a control pressure and autonomously adjusting a valve opening so that the control pressure becomes a set pressure. The present invention relates to a variable capacity compressor that adjusts the pressure of a pressure adjusting chamber by a control valve to vary the discharge capacity of a refrigerant.

この種の可変容量圧縮機として、例えば特許文献1に記載されたものがある。この可変容量圧縮機では、吐出室とクランク室とを接続する圧力供給通路に制御弁を介装し、制御弁により吸入圧力が制御電流値(制御弁の電磁コイルに流す電流値)で設定された設定吸入圧力となるように、圧力供給通路の開度を制御してクランク室の圧力を調整して冷媒の吐出容量を可変している。前記制御弁は、吸入圧力を感知してこの吸入圧力が前記設定吸入圧力となるように弁開度を自律的に調整する感圧手段を備えており、前記感圧手段は、感知した吸入圧力が設定吸入圧力より高い場合には弁開度を小さくし、感知した吸入圧力が設定吸入圧力より低い場合には弁開度を大きくするよう弁開度を自律的に調整する。従って、このような制御弁を用いた可変容量圧縮機では、吸入圧力が制御電流値で決定された設定吸入圧力に維持されるように、制御弁の弁開度が感圧手段によって自律制御されて吐出容量が可変される。   An example of this type of variable capacity compressor is described in Patent Document 1. In this variable capacity compressor, a control valve is interposed in a pressure supply passage that connects the discharge chamber and the crank chamber, and the suction pressure is set by the control valve as a control current value (current value that flows through the electromagnetic coil of the control valve). The refrigerant discharge capacity is varied by adjusting the crank chamber pressure by controlling the opening of the pressure supply passage so that the set suction pressure is obtained. The control valve includes pressure sensing means that senses suction pressure and autonomously adjusts the valve opening so that the suction pressure becomes the set suction pressure, and the pressure sensing means includes the sensed suction pressure. When the pressure is higher than the set suction pressure, the valve opening is decreased, and when the detected suction pressure is lower than the set suction pressure, the valve opening is adjusted autonomously so as to increase the valve opening. Therefore, in a variable capacity compressor using such a control valve, the valve opening of the control valve is autonomously controlled by the pressure sensing means so that the suction pressure is maintained at the set suction pressure determined by the control current value. The discharge capacity can be varied.

特開平11−170858号公報JP-A-11-170858

ところで、特許文献1には、圧縮機の駆動トルクの推定方法が示されている。この推定方法は、制御弁が、特許文献1の図3(b)に示されているように、制御電流値と設定吸入圧力値とが略一義的な関係があるとして、圧縮機の駆動トルク推定に吸入圧力値の代用として制御電流値を用いている。   Incidentally, Patent Document 1 discloses a method for estimating the driving torque of a compressor. In this estimation method, the control valve assumes that the control current value and the set suction pressure value have a substantially unambiguous relationship as shown in FIG. The control current value is used as a substitute for the suction pressure value for estimation.

しかしながら、前述した感圧手段を備えた制御弁は、弁の特性上、電磁コイルに制御電流値を印加してから吸入圧力が設定圧力値に到達するまでは、制御弁は全閉状態となって圧縮機が最大吐出容量状態となる。その後、吸入圧力が低下して設定圧力値に到達すると、制御弁は開弁して圧縮機は吐出容量制御状態となる。この吐出容量制御状態では、制御電流値と設定吸入圧力値とが略一義的な関係にあり、吸入圧力の代用として制御電流値を用いて圧縮機の駆動トルクを精度良く推定できる。しかし、制御弁が閉弁状態で圧縮機が最大吐出容量状態のときは、吸入圧力と制御電流値とが一義的な関係にないため、吸入圧力の代用として制御電流値を用いたのでは、圧縮機が最大吐出容量運転状態の駆動トルクを正確に演算できず、例えば車両エアコンシステム等では、車両のエンジン制御に悪影響を及ぼす虞れがある。   However, the control valve having the pressure sensing means described above is in a fully closed state from the application of the control current value to the electromagnetic coil until the suction pressure reaches the set pressure value due to the characteristics of the valve. Thus, the compressor is in the maximum discharge capacity state. Thereafter, when the suction pressure decreases and reaches the set pressure value, the control valve opens and the compressor enters the discharge capacity control state. In this discharge capacity control state, the control current value and the set suction pressure value have a substantially unambiguous relationship, and the drive torque of the compressor can be accurately estimated using the control current value as a substitute for the suction pressure. However, when the control valve is in the closed state and the compressor is in the maximum discharge capacity state, since the suction pressure and the control current value are not uniquely related, if the control current value is used as a substitute for the suction pressure, The compressor cannot accurately calculate the driving torque in the maximum discharge capacity operation state. For example, in a vehicle air conditioner system or the like, the engine control of the vehicle may be adversely affected.

従って、感圧手段を備えた制御弁を用いた可変容量圧縮機では、その駆動トルクを精度良く算出するには、圧縮機が最大吐出容量状態か吐出容量制御状態かを知る必要がある。言い換えれば、圧縮機の制御弁が閉弁状態(最大吐出容量状態)か開弁状態(吐出容量制御状態)かを知る必要がある。   Therefore, in a variable capacity compressor using a control valve provided with pressure sensitive means, it is necessary to know whether the compressor is in a maximum discharge capacity state or a discharge capacity control state in order to accurately calculate the drive torque. In other words, it is necessary to know whether the control valve of the compressor is closed (maximum discharge capacity state) or opened (discharge capacity control state).

本発明は上記問題点に着目してなされたもので、感圧手段を備えた制御弁の開閉状態を容易に検出可能な可変容量圧縮機を提供することを目的とする。   The present invention has been made paying attention to the above problems, and an object of the present invention is to provide a variable capacity compressor capable of easily detecting the open / closed state of a control valve provided with pressure-sensitive means.

このため、本発明は、制御圧力を感知し当該制御圧力が外部信号で設定された設定圧になるよう弁開度を自律的に調整する感圧手段を備えた制御弁を、吐出圧領域と圧力調整室とを連通する圧力供給通路に介装し、前記制御弁によって前記圧力供給通路の開度を調整して前記圧力調整室の圧力を調整して冷媒の吐出容量を可変する可変容量圧縮機において、前記制御弁は、前記圧力供給通路の一部を構成する弁孔と、前記弁孔を開閉する弁体とを内部に備え、前記制御弁の開閉動作と連動し、前記制御弁が閉弁状態の時に第1の位置に移動し、開弁状態の時に第2の位置に移動する可動体であって、前記弁体と分離して設けられる可動体と、前記可動体の位置を検出して前記制御弁の開閉状態検出信号を出力する弁状態検出手段と、を備えたことを特徴とする。 For this reason, the present invention provides a control valve having pressure sensing means that senses the control pressure and autonomously adjusts the valve opening so that the control pressure becomes a set pressure set by an external signal. Variable displacement compression that is installed in a pressure supply passage that communicates with the pressure adjustment chamber, adjusts the opening of the pressure supply passage by the control valve, and adjusts the pressure in the pressure adjustment chamber to vary the discharge capacity of the refrigerant. In the machine, the control valve includes a valve hole that constitutes a part of the pressure supply passage and a valve body that opens and closes the valve hole, and the control valve is interlocked with an opening and closing operation of the control valve. A movable body that moves to the first position when the valve is closed and moves to the second position when the valve is opened, the movable body provided separately from the valve body, and the position of the movable body And a valve state detecting means for detecting and outputting an open / closed state detection signal of the control valve. And wherein the door.

本発明の可変容量圧縮機によれば、前記圧力供給通路の一部を構成する弁孔と前記弁孔を開閉する弁体とを内部に備える制御弁の開閉動作に連動する可動体を、前記弁体と分離して設け、可動体は制御弁の閉弁時に第1の位置に移動し制御弁の開弁時に第2の位置に移動するので、可動体の位置を検出することによって制御弁の開閉状態を検出できる。その結果、可変容量圧縮機が最大吐出容量状態か吐出容量制御状態を知ることができ、可変容量圧縮機の駆動トルクを精度良く演算することができる。また、可動体の最大可動ストロークを制御弁の弁体の最大開閉ストロークより大幅に大きく設定することができ、制御弁の弁体が僅かに開弁した状態でも可動体の可動ストロークが大きくなり、制御弁の弁体の開度によらず制御弁の開弁状態を検出できる。 According to the variable capacity compressor of the present invention, the movable body interlocking with the opening / closing operation of the control valve having a valve hole constituting a part of the pressure supply passage and a valve body for opening / closing the valve hole , The movable body is provided separately from the valve body, and the movable body moves to the first position when the control valve is closed and moves to the second position when the control valve is opened. Therefore, the control valve is detected by detecting the position of the movable body. The open / closed state of can be detected. As a result, the variable capacity compressor can know the maximum discharge capacity state or the discharge capacity control state, and the driving torque of the variable capacity compressor can be accurately calculated. In addition, the maximum movable stroke of the movable body can be set to be significantly larger than the maximum opening / closing stroke of the valve body of the control valve, and even when the valve body of the control valve is slightly opened, the movable stroke of the movable body is increased. The open state of the control valve can be detected regardless of the opening degree of the valve body of the control valve.

本発明の可変容量圧縮機の第1実施形態を示す断面図である。It is sectional drawing which shows 1st Embodiment of the variable capacity compressor of this invention. 逆止弁の断面図である。It is sectional drawing of a non-return valve. 制御弁を示し、(a)は全体断面図、(b)は弁体とベローズ組立体の連結部分の拡大図である。The control valve is shown, (a) is an overall cross-sectional view, (b) is an enlarged view of a connecting portion of the valve body and the bellows assembly. 制御弁の制御吸入圧力と電流値の関係を示す制御特性図である。It is a control characteristic figure showing the relation between control suction pressure of a control valve, and current value. 弁開閉検出部を示し、(a)は制御弁閉弁時の状態を示す全体断面図、(b)は制御弁開弁時の状態を示す要部断面図である。The valve opening / closing detection part is shown, (a) is a whole sectional view showing a state when the control valve is closed, and (b) is a principal part sectional view showing a state when the control valve is opened. バルブプレート側から見たシリンダヘッドにおける制御弁と弁開閉検出部の配置関係を示す図である。It is a figure which shows the arrangement | positioning relationship of the control valve and valve opening / closing detection part in the cylinder head seen from the valve plate side. 図6の配置関係の制御弁と弁開閉検出部のシリンダヘッド収容断面を示す図である。It is a figure which shows the cylinder head accommodation cross section of the control valve and valve opening / closing detection part of the arrangement | positioning relationship of FIG. 本発明の可変容量圧縮機の第2実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of the variable capacity compressor of this invention. バルブプレート側から見たシリンダヘッドにおける制御弁と弁開閉検出部の配置関係を示す図である。It is a figure which shows the arrangement | positioning relationship of the control valve and valve opening / closing detection part in the cylinder head seen from the valve plate side. 図9の配置関係の制御弁と弁開閉検出部のシリンダヘッド収容断面を示す図である。It is a figure which shows the cylinder head accommodation cross section of the control valve and valve opening / closing detection part of the arrangement | positioning relationship of FIG. 弁開閉検出部を示し、(a)は制御弁閉弁時の状態を示す全体断面図、(b)は制御弁開弁時の状態を示す要部断面図である。The valve opening / closing detection part is shown, (a) is a whole sectional view showing a state when the control valve is closed, and (b) is a principal part sectional view showing a state when the control valve is opened. 第1ハウジング側壁に形成する流出孔の形状例を示す図である。It is a figure which shows the example of a shape of the outflow hole formed in a 1st housing side wall. 本発明の可変容量圧縮機の駆動トルク演算装置の一例を示すブロック構成図である。It is a block block diagram which shows an example of the drive torque calculating apparatus of the variable capacity compressor of this invention.

以下、本発明の実施形態を図面に基づいて説明する。
図1は、本発明の第1実施形態における可変容量圧縮機の概略構成を示し、車両エアコンシステムに使用されるクラッチレス可変容量圧縮機の例である。
図1において、この可変容量圧縮機100は、複数のシリンダボア101aが形成されたシリンダブロック101と、シリンダブロック101の一端に設けられたフロントハウジング102と、シリンダブロック101の他端にバルブプレート103等を介して設けられたシリンダヘッド104と、を備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a schematic configuration of a variable capacity compressor according to a first embodiment of the present invention, which is an example of a clutchless variable capacity compressor used in a vehicle air conditioner system.
In FIG. 1, the variable capacity compressor 100 includes a cylinder block 101 having a plurality of cylinder bores 101a, a front housing 102 provided at one end of the cylinder block 101, a valve plate 103 at the other end of the cylinder block 101, and the like. And a cylinder head 104 provided via the cylinder.

シリンダブロック101とフロントハウジング102とによって形成されるクランク室140内を横断するように駆動軸110が設けられている。駆動軸110の軸方向の中間部周囲には、斜板111が配置されている。斜板111は、駆動軸110に固定されたロータ112とリンク機構120を介して連結し、駆動軸110によって傾角が変化可能に支持されている。   A drive shaft 110 is provided so as to cross the crank chamber 140 formed by the cylinder block 101 and the front housing 102. A swash plate 111 is disposed around an intermediate portion of the drive shaft 110 in the axial direction. The swash plate 111 is connected to a rotor 112 fixed to the drive shaft 110 via a link mechanism 120 and is supported by the drive shaft 110 so that the tilt angle can be changed.

リンク機構120は、ロータ112から突設された第1アーム112aと、斜板111から突設された第2アーム111aと、一端が第1連結ピン122を介して第1アーム112aに対して回動可能に連結され、他端が第2連結ピン123を介して第2アーム111aに対して回動可能に連結されたリンクアーム121と、を備える。   The link mechanism 120 includes a first arm 112 a projecting from the rotor 112, a second arm 111 a projecting from the swash plate 111, and one end rotating relative to the first arm 112 a via the first connecting pin 122. A link arm 121 that is movably coupled and has the other end pivotally coupled to the second arm 111a via a second coupling pin 123.

斜板111の貫通孔111bは、斜板111が最大傾角(θmax)と最小傾角(θmin)の範囲で傾動可能な形状に形成され、貫通孔111bには、駆動軸110と当接する最小傾角規制部と最大傾角規制部とが形成されている。斜板111が駆動軸110に対して直交するときの斜板111の傾角を0°とした場合、貫通孔111bの最小傾角規制部は、斜板111を略0°まで傾角可能に形成され、最大傾角規制部は、斜板111を略20°まで傾角可能に形成されている。   The through hole 111b of the swash plate 111 is formed in a shape that allows the swash plate 111 to tilt within the range of the maximum tilt angle (θmax) and the minimum tilt angle (θmin), and the through hole 111b has a minimum tilt restriction that abuts the drive shaft 110. And a maximum inclination angle restricting portion are formed. When the inclination angle of the swash plate 111 when the swash plate 111 is orthogonal to the drive shaft 110 is 0 °, the minimum inclination restriction portion of the through hole 111b is formed so that the swash plate 111 can be inclined to approximately 0 °. The maximum inclination restriction part is formed so that the swash plate 111 can be inclined to approximately 20 °.

ロータ112と斜板111の間の駆動軸110周囲には、斜板111を最小傾角に向けて付勢する傾角減少バネ114が装着されている。また、斜板111と駆動軸110に設けたバネ支持部材116との間の駆動軸110周囲には、斜板111の傾角を最大傾角より小さい所定の傾角まで増大する方向に付勢する傾角増大バネ115が装着されている。最小傾角における傾角増大バネ115の付勢力は、傾角減少バネ114の付勢力より大きく設定されているので、駆動軸110が回転していないとき、斜板111は、傾角減少バネ114の付勢力と傾角増大バネ115の付勢力とがバランスする所定の傾角に位置決めされる。   Around the drive shaft 110 between the rotor 112 and the swash plate 111, an inclination reduction spring 114 that urges the swash plate 111 toward the minimum inclination angle is mounted. Further, around the drive shaft 110 between the swash plate 111 and the spring support member 116 provided on the drive shaft 110, the inclination angle is increased so that the inclination angle of the swash plate 111 is increased to a predetermined inclination angle smaller than the maximum inclination angle. A spring 115 is attached. The biasing force of the tilt-increasing spring 115 at the minimum tilt angle is set to be larger than the biasing force of the tilt-decreasing spring 114, so that when the drive shaft 110 is not rotating, the swash plate 111 has a biasing force of the tilt-decreasing spring 114. It is positioned at a predetermined tilt angle that balances the biasing force of the tilt angle increasing spring 115.

駆動軸110の一端は、フロントハウジング102のボス部102a内を貫通してフロントハウジング102外側まで延設し、図示しない動力伝達装置に連結される。駆動軸110とボス部102aとの間には、軸封装置130が挿入され、クランク室140と外部空間とを遮断している。   One end of the drive shaft 110 extends through the boss portion 102a of the front housing 102 to the outside of the front housing 102, and is connected to a power transmission device (not shown). A shaft seal device 130 is inserted between the drive shaft 110 and the boss portion 102a to shut off the crank chamber 140 and the external space.

駆動軸110とロータ112の連結体は、ラジアル方向に軸受131、132で支持され、スラスト方向に軸受133、スラストプレート134で支持され、外部駆動源(車両のエンジン)からの動力が動力伝達装置に伝達され、駆動軸110は動力伝達装置と同期して回転する。駆動軸110とスラストプレート134との隙間は、調整ネジ135によって所定の隙間に調整される。   The coupling body of the drive shaft 110 and the rotor 112 is supported by bearings 131 and 132 in the radial direction, and supported by the bearing 133 and the thrust plate 134 in the thrust direction, and power from an external drive source (vehicle engine) is transmitted to the power transmission device. The drive shaft 110 rotates in synchronization with the power transmission device. The clearance between the drive shaft 110 and the thrust plate 134 is adjusted to a predetermined clearance by the adjustment screw 135.

シリンダボア101a内には、ピストン136が配置され、ピストン136のクランク室140側に突出している端部の内側空間には、斜板111の外周部が収容され、斜板111は、一対のシュー137を介して、ピストン136と連動する。従って、斜板111の回転によりピストン136がシリンダボア101a内を往復動する。   A piston 136 is disposed in the cylinder bore 101a, and an outer peripheral portion of the swash plate 111 is accommodated in an inner space of an end portion of the piston 136 that protrudes toward the crank chamber 140. The swash plate 111 includes a pair of shoes 137. Via the piston 136. Accordingly, the piston 136 reciprocates in the cylinder bore 101a by the rotation of the swash plate 111.

シリンダヘッド104には、中央部に環状の隔壁104bで画成された吸入室141と、隔壁104bと外周壁とで画成され吸入室141を環状に取り囲む吐出室142とが形成される。吸入室141は、バルブプレート103に設けられた吸入孔103a及び吸入弁形成体に形成された吸入弁(図示せず)を介してシリンダボア101aと連通し、吐出室142は、バルブプレート103に設けられた吐出孔103b及び吐出弁形成体に形成された吐出弁(図示せず)を介してシリンダボア101aと連通する。   In the cylinder head 104, a suction chamber 141 defined by an annular partition 104b and a discharge chamber 142 defined by the partition 104b and an outer peripheral wall and surrounding the suction chamber 141 in an annular shape are formed at the center. The suction chamber 141 communicates with the cylinder bore 101a via a suction hole 103a provided in the valve plate 103 and a suction valve (not shown) formed in the suction valve forming body, and a discharge chamber 142 is provided in the valve plate 103. The cylinder bore 101a communicates with the discharge hole 103b and a discharge valve (not shown) formed in the discharge valve forming body.

フロントハウジング102、シリンダブロック101、バルブプレート103、シリンダヘッド104は、図示しないガスケット等を介して複数の通しボルト105によって締結され、圧縮機ハウジングが形成される。   The front housing 102, the cylinder block 101, the valve plate 103, and the cylinder head 104 are fastened by a plurality of through bolts 105 through a gasket or the like (not shown) to form a compressor housing.

シリンダブロック101の上部には、冷媒の圧力脈動による騒音・振動を低減するマフラ160が設けられている。マフラ160は、シリンダブロック101の上部に区画形成された形成壁101bに図示しないシール部材を介して蓋部材106を図示しないボルトにより締結して形成される。   A muffler 160 that reduces noise and vibration due to refrigerant pressure pulsation is provided on the cylinder block 101. The muffler 160 is formed by fastening the lid member 106 with a bolt (not shown) via a seal member (not shown) on a forming wall 101b formed in the upper part of the cylinder block 101.

シリンダヘッド104、バルブプレート103、シリンダブロック101に跨って形成されて吐出室142に連通する連通路144とマフラ空間143との接続部には、吐出側冷媒回路から吐出室142への冷媒ガスの逆流を防止する逆止弁200が配置されている。逆止弁200は、上流側の連通路144と下流側のマフラ空間143との圧力差に応答して動作し、圧力差が所定値より小さい場合には連通路144を遮断し、圧力差が所定値より大きい場合には連通路144を開放する。吐出室142は、連通路144、逆止弁200、マフラ空間143及び吐出ポート106aで構成される吐出通路を介して車両エアコンシステムの吐出側冷媒回路に接続される。   A connecting portion between the communication path 144 formed across the cylinder head 104, the valve plate 103, and the cylinder block 101 and communicating with the discharge chamber 142 and the muffler space 143 has a refrigerant gas from the discharge side refrigerant circuit to the discharge chamber 142. A check valve 200 for preventing backflow is disposed. The check valve 200 operates in response to a pressure difference between the upstream communication path 144 and the downstream muffler space 143. When the pressure difference is smaller than a predetermined value, the check valve 200 blocks the communication path 144 and the pressure difference is reduced. When it is larger than the predetermined value, the communication path 144 is opened. The discharge chamber 142 is connected to the discharge-side refrigerant circuit of the vehicle air-conditioning system via a discharge passage formed by the communication passage 144, the check valve 200, the muffler space 143, and the discharge port 106a.

シリンダヘッド104には、外側から吸入室141に向かって吐出室142の一部を横切るように直線状に吸入通路104aが形成され、吸入室141は吸入通路104aを介して車両エアコンシステムの吸入側冷媒回路と接続される。   A suction passage 104a is formed in the cylinder head 104 in a straight line so as to cross a part of the discharge chamber 142 from the outside toward the suction chamber 141. The suction chamber 141 is connected to the suction side of the vehicle air conditioner system via the suction passage 104a. Connected to the refrigerant circuit.

また、シリンダヘッド104には、制御弁300が設けられている。制御弁300は、吐出室142とクランク室140とを連通する圧力供給通路145に介装されて圧力供給通路145の開度を調整し、吐出室142からクランク室140への吐出冷媒ガス導入量を制御する。また、クランク室140内の冷媒は、シリンダブロック101に形成された連通路101cと空間部101d、バルブプレート103に形成されたオリフィス103cで構成される放圧通路146を介して吸入室141へ流れる。従って、制御弁300によってクランク室140の圧力を変化させることができる。尚、制御弁300の詳細については後述する。ここで、前記吐出室142とクランク室140が、本発明の吐出圧領域と圧力調整室にそれぞれ相当する。   The cylinder head 104 is provided with a control valve 300. The control valve 300 is interposed in a pressure supply passage 145 that connects the discharge chamber 142 and the crank chamber 140 to adjust the opening of the pressure supply passage 145, and the amount of refrigerant gas introduced into the crank chamber 140 from the discharge chamber 142. To control. Further, the refrigerant in the crank chamber 140 flows into the suction chamber 141 via the pressure release passage 146 configured by the communication passage 101 c formed in the cylinder block 101, the space portion 101 d, and the orifice 103 c formed in the valve plate 103. . Therefore, the pressure in the crank chamber 140 can be changed by the control valve 300. Details of the control valve 300 will be described later. Here, the discharge chamber 142 and the crank chamber 140 correspond to a discharge pressure region and a pressure adjustment chamber of the present invention, respectively.

斜板111の変角動作は、ピストン136のクランク室140側の面に作用するクランク室140内の圧力に基づく傾角減少モーメントとピストン136のシリンダボア101a側の面に作用するシリンダボア101a内の圧力に基づく傾角増大モーメントとのバランスを崩すことにより行われる。従って、制御弁300によりクランク室140の圧力を変化させれば、斜板111の傾角、つまりピストン136のストロークを変化させることができ、可変容量圧縮機100の吐出容量を可変制御することができる。   The angle change operation of the swash plate 111 is caused by the inclination decreasing moment based on the pressure in the crank chamber 140 acting on the surface of the piston 136 on the crank chamber 140 side and the pressure in the cylinder bore 101a acting on the surface of the piston 136 on the cylinder bore 101a side. This is done by breaking the balance with the inclination increasing moment based on it. Therefore, if the pressure in the crank chamber 140 is changed by the control valve 300, the inclination angle of the swash plate 111, that is, the stroke of the piston 136 can be changed, and the discharge capacity of the variable capacity compressor 100 can be variably controlled. .

制御弁300より下流の圧力供給通路145を構成する連通路101eには、逆止弁250(図中破線で示す)が介装されている。逆止弁250は、図2に示すように連通路101eのクランク室140に面する端部に形成した弁室101fに配設され、一端に連通路101e側の圧力を受け、他端にクランク室140側の圧力を受けて連通路101eを開閉する弁体251と、一端側が弁体251に支持されて連通路101eを閉じる方向に弁体251を弾性付勢する圧縮コイルバネ252と、圧縮コイルバネ252の他端側を支持し、中央部にクランク室140と弁室101fを連通する連通孔253aが形成された支持部材253と、を備えて構成される。そして、逆止弁250は、制御弁300の開弁動作に伴って吐出室142から連通路101eへ吐出冷媒が流入すると、弁体251が圧縮コイルバネ252の付勢力に抗して図2中左方向に移動して圧力供給通路145を開放してクランク室140への冷媒の流入を可能とし、制御弁300の閉弁動作に伴って、吐出室142から連通路101eへの吐出冷媒ガスの流入が遮断されると、弁体251が圧縮コイルバネ252の付勢力により図2に示すように連通路101eを閉鎖してクランク室140から制御弁300側への冷媒の流れを阻止するよう動作する。   A check valve 250 (shown by a broken line in the figure) is interposed in the communication passage 101e that constitutes the pressure supply passage 145 downstream of the control valve 300. As shown in FIG. 2, the check valve 250 is disposed in a valve chamber 101f formed at the end of the communication passage 101e facing the crank chamber 140, receives pressure on the communication passage 101e side at one end, and cranks at the other end. A valve body 251 that opens and closes the communication path 101e under pressure on the chamber 140 side, a compression coil spring 252 that is supported by the valve body 251 at one end side and elastically biases the valve body 251 in a direction to close the communication path 101e, and a compression coil spring And a support member 253 formed with a communication hole 253a that communicates the crank chamber 140 and the valve chamber 101f at the center. When the refrigerant discharged from the discharge chamber 142 flows into the communication passage 101e as the control valve 300 opens, the valve body 251 resists the urging force of the compression coil spring 252 in FIG. The pressure supply passage 145 is moved in the direction to allow the refrigerant to flow into the crank chamber 140, and the discharge refrigerant gas flows into the communication passage 101e from the discharge chamber 142 as the control valve 300 is closed. Is shut off, the valve body 251 operates to close the communication path 101e as shown in FIG. 2 by the urging force of the compression coil spring 252 and prevent the refrigerant from flowing from the crank chamber 140 toward the control valve 300.

また、シリンダヘッド104には、図5に示すように、可動体410を収容する可動体収容部401と、可動体410の位置を検出して制御弁300の開閉状態を検出する弁状態検出部402とを一体に組付けた弁開閉検出部400が設けられている。ここで、可動体収容部401と弁状態検出部402が、本発明の可動体収容手段と弁状態検出手段に相当する。尚、弁開閉検出部400の詳細については後述する。   Further, as shown in FIG. 5, the cylinder head 104 includes a movable body accommodating portion 401 that accommodates the movable body 410 and a valve state detecting portion that detects the open / closed state of the control valve 300 by detecting the position of the movable body 410. A valve opening / closing detection unit 400 that is integrated with 402 is provided. Here, the movable body accommodation unit 401 and the valve state detection unit 402 correspond to the movable body accommodation unit and the valve state detection unit of the present invention. Details of the valve opening / closing detection unit 400 will be described later.

前述した制御弁300の詳細を、図3に基づいて説明する。
図3は制御弁300の構成を示す図で、(a)は全体断面図を示し、(b)は弁体とベローズ組立体の連結部分の拡大図を示す。
制御弁300は、バルブハウジング301に形成され、連通孔301aを介してクランク室140と連通する第1感圧室302と、連通孔301bを介して吐出室142と連通する弁室303と、一端が第1感圧室302に開口し他端が弁室303に開口する弁孔301cと、一端側が弁室303に配設され他端側がバルブハウジング301に形成された支持孔301dに摺動可能に支持されて弁孔301cを開閉する弁体304と、真空にした内部にコイルバネを有し、一端側がバルブハウジング301に固定されて第1感圧室302に配設されクランク室140の圧力を受圧するベローズ組立体305と、一端側にベローズ組立体305の他端側が接離可能に連結し他端側が弁体304の一端側に固定されてベローズ組立体305の変位を弁体304に伝達する連結部306と、弁体304の他端側が配設され連通孔301eを介して吸入室141の圧力が導入される第2感圧室307と、弁体304と一体に形成され弁体304側と反対側の端部に可動コア308が圧入固定されたソレノイドロッド304aと、ソレノイドロッド304aの外周囲に配置され所定の隙間を隔てて可動コア308に対向配置された固定コア309と、固定コア309と可動コア308の間に介装されて可動コア308及びソレノイドロッド304aを介して弁体304を開弁方向に弾性付勢するコイルバネ310と、可動コア308及び固定コア309の外周囲に配置されてソレノイドハウジング311に固定された非磁性体からなる筒状部材312と、筒状部材312を取り囲むようにソレノイドハウジング311に収容された電磁コイル313と、を備えて構成されている。また、制御弁300の外周部には、3つのOリング313a〜313cが設けられている。
Details of the control valve 300 will be described with reference to FIG.
3A and 3B are diagrams showing the configuration of the control valve 300, in which FIG. 3A is an overall cross-sectional view, and FIG. 3B is an enlarged view of a connecting portion between the valve body and the bellows assembly.
The control valve 300 is formed in the valve housing 301, and includes a first pressure sensing chamber 302 that communicates with the crank chamber 140 via the communication hole 301a, a valve chamber 303 that communicates with the discharge chamber 142 via the communication hole 301b, and one end. Is slidable into a valve hole 301c having an opening in the first pressure sensing chamber 302 and the other end opening in the valve chamber 303, and a support hole 301d formed in the valve housing 301 on one end side and in the valve housing 301 on the other end side. The valve body 304 that opens and closes the valve hole 301c, and has a coil spring in a vacuumed interior, one end of which is fixed to the valve housing 301 and disposed in the first pressure sensing chamber 302, and the pressure in the crank chamber 140 is adjusted. The bellows assembly 305 that receives pressure is connected to one end of the bellows assembly 305 so that the other end of the bellows assembly 305 can be contacted and separated, and the other end is fixed to one end of the valve body 304 to displace the bellows assembly 305. A connecting portion 306 for transmitting to the valve body 304, a second pressure sensing chamber 307 in which the other end side of the valve body 304 is disposed and the pressure of the suction chamber 141 is introduced through the communication hole 301e, and the valve body 304 are integrated. The formed solenoid rod 304a is fixedly press-fitted and fixed to the end opposite to the valve body 304 side, and is fixed to the movable core 308 with a predetermined gap between the solenoid rod 304a and the solenoid rod 304a. A core 309, a coil spring 310 that is interposed between the fixed core 309 and the movable core 308 and elastically biases the valve body 304 in the valve opening direction via the movable core 308 and the solenoid rod 304a, and the movable core 308 and the fixed core A cylindrical member 312 made of a non-magnetic material and disposed around the outer periphery of 309 and fixed to the solenoid housing 311; and a solenoid so as to surround the cylindrical member 312. And it is configured to include an electromagnetic coil 313 accommodated in the id housing 311, a. In addition, three O-rings 313 a to 313 c are provided on the outer peripheral portion of the control valve 300.

かかる構成の制御弁300において、弁体304は、支持孔301dの両端に亘って単一径の円筒外周部を有し、閉弁時に一端側が弁孔301cの周囲に形成された弁座面301fに当接し、弁体304と弁座面301fのシール位置は弁体外周端部304bである。従って、弁体304が弁孔301cを介して第1感圧室302側から受けるクランク室140の圧力受圧面積と、弁体304に第2感圧室307を介して作用する吸入室141側の圧力受圧面積は略同等となる。また、弁室303に作用している吐出室142の圧力は弁体304の開閉方向には作用しない。そして、電磁コイル313への通電による電磁力は弁体304の閉弁方向に作用する。   In the control valve 300 having such a configuration, the valve body 304 has a cylindrical outer peripheral portion having a single diameter over both ends of the support hole 301d, and one end side is formed around the valve hole 301c when the valve is closed. The seal position of the valve body 304 and the valve seat surface 301f is the valve body outer peripheral end 304b. Accordingly, the pressure receiving area of the crank chamber 140 that the valve body 304 receives from the first pressure sensing chamber 302 side through the valve hole 301c, and the suction chamber 141 side that acts on the valve body 304 via the second pressure sensing chamber 307. The pressure receiving area is substantially the same. Further, the pressure in the discharge chamber 142 acting on the valve chamber 303 does not act in the opening / closing direction of the valve body 304. The electromagnetic force generated by energizing the electromagnetic coil 313 acts in the valve closing direction of the valve body 304.

従って、弁体304が弁孔301cを介して第1感圧室302側から受けるクランク室140の圧力受圧面積と、弁体304に第2感圧室307を介して作用する吸入室141側の圧力受圧面積と、ベローズ組立体305の弁体開閉方向の有効圧力受圧面積とを、略同等の受圧面積(これをSvとする)に設定すれば、弁体304に作用する力は下記の式(1)で表される。
Ps=−(1/Sv)・F(i)+(F+f)/Sv ・・・(1)
ここで、Psは吸入室141の制御吸入圧力、F(i)は電磁力、fはコイルバネ310の付勢力、Fはベローズ組立体305の付勢力である。
上記の式(1)から、吸入室141の制御吸入圧力Psと電磁コイル313に流す電流値との関係は図4のようになっている。
Accordingly, the pressure receiving area of the crank chamber 140 that the valve body 304 receives from the first pressure sensing chamber 302 side through the valve hole 301c, and the suction chamber 141 side that acts on the valve body 304 via the second pressure sensing chamber 307. If the pressure receiving area and the effective pressure receiving area in the valve body opening / closing direction of the bellows assembly 305 are set to substantially the same pressure receiving area (this is Sv), the force acting on the valve body 304 is expressed by the following equation: It is represented by (1).
Ps = − (1 / Sv) · F (i) + (F + f) / Sv (1)
Here, Ps is the control suction pressure of the suction chamber 141, F (i) is the electromagnetic force, f is the biasing force of the coil spring 310, and F is the biasing force of the bellows assembly 305.
From the above equation (1), the relationship between the control suction pressure Ps of the suction chamber 141 and the current value flowing through the electromagnetic coil 313 is as shown in FIG.

従って、制御弁300は、吸入室141の制御吸入圧力Psが外部から外部信号として与える電磁コイル313の通電量で決定される設定値になるように、吐出室142とクランク室140とを連通する圧力供給通路145の開度を調整し、クランク室140への吐出冷媒ガス導入量を制御して可変容量圧縮機100の吐出容量を可変する。ベローズ305と、連結部306と、弁体304とで構成される感圧手段は、吸入室141の圧力が前記設定値より上昇すると、吐出容量を増大すべく圧力供給通路145の開度を小さくしてクランク室140の圧力を低下させ、吸入室141からシリンダボア101aへの冷媒ガス吸入量を増大させて吸入室141の圧力を低下させる。逆に、吸入室141の圧力が前記設定値を下回ると、吐出容量を減少すべく圧力供給通路145の開度を大きくしてクランク室140の圧力を上昇させ、吸入室141からシリンダボア101aへの冷媒ガス吸入量を減少させて吸入室141の圧力を上昇させる。このように、感圧手段は、吸入室141の圧力(制御圧力)を電磁コイル通電量で決定される設定値に維持するよう弁開度を自律的に制御する。   Therefore, the control valve 300 communicates the discharge chamber 142 and the crank chamber 140 so that the control suction pressure Ps of the suction chamber 141 becomes a set value determined by the energization amount of the electromagnetic coil 313 given as an external signal from the outside. The discharge capacity of the variable capacity compressor 100 is varied by adjusting the opening of the pressure supply passage 145 and controlling the amount of refrigerant gas introduced into the crank chamber 140. The pressure sensing means constituted by the bellows 305, the connecting portion 306, and the valve body 304 reduces the opening of the pressure supply passage 145 to increase the discharge capacity when the pressure in the suction chamber 141 rises above the set value. Thus, the pressure in the crank chamber 140 is decreased, the refrigerant gas suction amount from the suction chamber 141 to the cylinder bore 101a is increased, and the pressure in the suction chamber 141 is decreased. On the other hand, when the pressure in the suction chamber 141 falls below the set value, the opening of the pressure supply passage 145 is increased to reduce the discharge capacity, the pressure in the crank chamber 140 is increased, and the pressure from the suction chamber 141 to the cylinder bore 101a is increased. The refrigerant gas suction amount is decreased to increase the pressure in the suction chamber 141. As described above, the pressure-sensitive means autonomously controls the valve opening so as to maintain the pressure (control pressure) of the suction chamber 141 at a set value determined by the electromagnetic coil energization amount.

図5は、前述の弁開閉検出部400の構成を示す図で、(a)は全体断面図で制御弁300が閉弁状態にあるときの状態を示し、(b)は要部構成図で制御弁300が開弁状態にあるときの状態を示している。
弁開閉検出部400は、可動体収容部401と弁状態検出部402とを一体に組付けて構成され、可動体収容部401のハウジング420に弁状態検出部402を一体に組付けてある。
5A and 5B are diagrams showing the configuration of the valve opening / closing detection unit 400 described above. FIG. 5A is an overall cross-sectional view showing a state when the control valve 300 is in a closed state, and FIG. The state when the control valve 300 is in the open state is shown.
The valve opening / closing detection unit 400 is configured by integrally assembling a movable body accommodation unit 401 and a valve state detection unit 402, and the valve state detection unit 402 is integrally assembled with a housing 420 of the movable body accommodation unit 401.

前記可動体収容部401は、可動体410と、ハウジング420と、を備え、これら可動体410及びハウジング420は、例えば金属材料で形成される。   The movable body accommodating portion 401 includes a movable body 410 and a housing 420, and the movable body 410 and the housing 420 are made of, for example, a metal material.

可動体410は、大径部410aと小径部410bを有する段付き状の円筒形状を成し、小径部410b側の端面に磁石411が固定されている。   The movable body 410 has a stepped cylindrical shape having a large-diameter portion 410a and a small-diameter portion 410b, and a magnet 411 is fixed to the end surface on the small-diameter portion 410b side.

ハウジング420は、一端側が開口した略円筒状の側壁421と、側壁421の開口側端部に圧入固定した第1端壁422と、第1端壁422と対向する他端側に側壁421と一体に形成された第2端壁423と、を備えて構成されている。ハウジング420内には、可動体の大径部410aと小径部410bの外径に合わせて大径部421aと小径部421bとが形成されて段差部421dを有する収容室424が設けられている。収容室424は、可動体410が移動可能に収容され、第1の室424aと第2の室424bとに可動体410によって仕切られている。   The housing 420 is integrated with the side wall 421 on the other end side opposite to the first end wall 422, a substantially cylindrical side wall 421 having one end opened, a first end wall 422 that is press-fitted and fixed to the opening side end of the side wall 421. And a second end wall 423 formed on the surface. A housing chamber 424 having a stepped portion 421d is formed in the housing 420. The large-diameter portion 421a and the small-diameter portion 421b are formed in accordance with the outer diameters of the large-diameter portion 410a and the small-diameter portion 410b of the movable body. The accommodation chamber 424 accommodates the movable body 410 so as to be movable, and is partitioned by the movable body 410 into a first chamber 424a and a second chamber 424b.

収容室424の第1の室424aは、第1端壁422に形成された連通孔422aを介して図7に示す圧力領域104f1と連通して制御弁300と逆止弁250との間の連通路101e(圧力供給通路145)の圧力が作用する。また、収容室424の第2の室424bは、ハウジング420の側壁421に形成した連通孔421cを介して図7に示す圧力領域104f2と連通してクランク室140の圧力が作用する。これにより、可動体410は、第1の室424aの圧力と第2の室424bの圧力との圧力差に追従して収容室424内を移動する。   The first chamber 424a of the storage chamber 424 communicates with the pressure region 104f1 shown in FIG. 7 through a communication hole 422a formed in the first end wall 422 and communicates between the control valve 300 and the check valve 250. The pressure of the passage 101e (pressure supply passage 145) acts. Further, the second chamber 424b of the storage chamber 424 communicates with the pressure region 104f2 shown in FIG. 7 through the communication hole 421c formed in the side wall 421 of the housing 420, and the pressure of the crank chamber 140 acts. As a result, the movable body 410 moves in the accommodation chamber 424 following the pressure difference between the pressure in the first chamber 424a and the pressure in the second chamber 424b.

可動体410は、大径部410aの一方の端面が第1端壁422に当接することにより第1端壁422方向の移動が規制され、大径部411aの他方の端面が収容室424の段差部421dに当接することにより第2端壁423方向の移動が規制される。   The movable body 410 is restricted from moving in the direction of the first end wall 422 when one end surface of the large-diameter portion 410 a abuts against the first end wall 422, and the other end surface of the large-diameter portion 411 a is a step in the storage chamber 424. The movement in the direction of the second end wall 423 is restricted by coming into contact with the portion 421d.

可動体410は、大径部410aの1点が収容室424の大径部421aに当接し、小径部410bの1点が収容室424の小径部421bに当接し、対角上の2点で支持されるようにそれぞれの隙間が調整されている。これにより、可動体410は、その動きが阻害されることなく、スムースに収容室424内を摺動することができる。   In the movable body 410, one point of the large-diameter portion 410a contacts the large-diameter portion 421a of the storage chamber 424, one point of the small-diameter portion 410b contacts the small-diameter portion 421b of the storage chamber 424, and two points on the diagonal. Each gap is adjusted to be supported. Thereby, the movable body 410 can slide smoothly in the storage chamber 424 without the movement being hindered.

弁状態検出部402は、第2端壁423を挟んで磁石411に対峙するように配設されて磁石411の磁束密度の変化を検出する検出素子として例えばホール素子431と、ホール素子431の出力信号を出力する電子回路432と、電子回路432と接続された入出力用コネクタ端子433とを、樹脂でインサート成形されている。弁状態検出部402は、第2端壁423側のハウジング420に収容固定されて可動体収容部401と一体化されている。また、可動体収容部401のハウジング420外周囲には、2つのOリング441a、441bが設けられている。   The valve state detection unit 402 is disposed so as to face the magnet 411 across the second end wall 423 and detects, for example, a Hall element 431 and an output of the Hall element 431 as a detection element that detects a change in magnetic flux density of the magnet 411. An electronic circuit 432 that outputs a signal and an input / output connector terminal 433 connected to the electronic circuit 432 are insert-molded with resin. The valve state detection unit 402 is housed and fixed in the housing 420 on the second end wall 423 side and integrated with the movable body housing unit 401. In addition, two O-rings 441 a and 441 b are provided on the outer periphery of the housing 420 of the movable body accommodating portion 401.

弁状態検出部402は、第1の室424a(上流)と第2の室424b(下流)の圧力差に追従して位置が変化する可動体410の位置を検出することにより、制御弁300の閉弁状態と開弁状態を検出する。具体的には、制御弁300が閉弁して第1の室424aの圧力が第2の室424bの圧力より低下すれば、図5(a)に示すように可動体410は第1の室424aの端面である第1端壁422に当接し、磁石411はホール素子431から最も遠ざかった位置(第1の位置)となる。また、制御弁300が開弁して第1の室424aの圧力が第2の室424bの圧力より上昇すれば、可動体410は第1端壁422から離間して第2の室424b側に移動して図5(b)に示すように段差部421dに当接し、磁石411はホール素子431に最も近づいた位置(第2の位置)となる。電子回路432は、ホール素子431の磁石411の位置に応じた位置検出信号を受けて、可動体410が第1端壁422に当接したときに制御弁300の閉弁状態検出信号を出力し、可動体410が段差部421dに当接したときに制御弁300の開弁状態検出信号を出力する。尚、可動体410の最大可動ストロークは数mm程度に設定されており、これは制御弁300の弁体304の最大開閉ストローク(0.5mm程度)より大幅に大きい。ここで、磁石411とホール素子431で、可動体410の位置を検出する位置検出部が構成され、電子回路432が、ホール素子431の出力信号に基づいて制御弁300の開閉状態検出信号を出力する出力部に相当する。   The valve state detection unit 402 detects the position of the movable body 410 whose position changes following the pressure difference between the first chamber 424a (upstream) and the second chamber 424b (downstream). Detects closed and open states. Specifically, when the control valve 300 is closed and the pressure in the first chamber 424a is lower than the pressure in the second chamber 424b, the movable body 410 is moved to the first chamber as shown in FIG. The magnet 411 comes into contact with the first end wall 422 which is the end surface of the 424a, and is located farthest from the Hall element 431 (first position). In addition, when the control valve 300 is opened and the pressure in the first chamber 424a is higher than the pressure in the second chamber 424b, the movable body 410 is separated from the first end wall 422 and moves toward the second chamber 424b. As shown in FIG. 5 (b), the magnet 411 moves to a position closest to the Hall element 431 (second position). The electronic circuit 432 receives a position detection signal corresponding to the position of the magnet 411 of the Hall element 431, and outputs a closed state detection signal of the control valve 300 when the movable body 410 contacts the first end wall 422. When the movable body 410 comes into contact with the step portion 421d, a valve open state detection signal of the control valve 300 is output. The maximum movable stroke of the movable body 410 is set to about several mm, which is significantly larger than the maximum opening / closing stroke (about 0.5 mm) of the valve body 304 of the control valve 300. Here, the magnet 411 and the Hall element 431 constitute a position detection unit that detects the position of the movable body 410, and the electronic circuit 432 outputs an open / closed state detection signal of the control valve 300 based on the output signal of the Hall element 431. It corresponds to the output unit.

図6は、シリンダヘッド104をバルブプレート103側から見た場合の制御弁300と弁開閉検出部400の配置関係を示す図であり、図7は、図6の配置関係にある制御弁300と弁開閉検出部400のシリンダヘッド104における収容断面を示す図である。
制御弁300は、シリンダヘッド104の図6に破線で示す収納領域に形成された図7の収容孔104eに、第1感圧室302側を先端にして収容される。また、弁開閉検出部400は、シリンダヘッド104の図6に破線で示す収納領域に形成された図7の収容孔104fに連通孔422a側を先端にして収容される。収容孔104fの先端は、制御弁300の収容孔104eの第1感圧室302周囲の圧力領域104e3に差し向けられている。
6 is a diagram showing the arrangement relationship between the control valve 300 and the valve opening / closing detection unit 400 when the cylinder head 104 is viewed from the valve plate 103 side. FIG. 7 is a diagram showing the arrangement relationship between the control valve 300 and the control valve 300 in FIG. FIG. 4 is a view showing a housing cross section in the cylinder head 104 of the valve opening / closing detection unit 400.
The control valve 300 is accommodated in the accommodation hole 104e of FIG. 7 formed in the accommodation area indicated by the broken line in FIG. 6 of the cylinder head 104 with the first pressure-sensitive chamber 302 side as the tip. Further, the valve opening / closing detection unit 400 is housed in the housing hole 104f of FIG. 7 formed in the housing area indicated by the broken line in FIG. 6 of the cylinder head 104 with the communication hole 422a side as the tip. The tip of the accommodation hole 104 f is directed to the pressure region 104 e 3 around the first pressure sensing chamber 302 of the accommodation hole 104 e of the control valve 300.

収容孔104eは、制御弁300に設けた3つのOリング313a〜313cにより、吸入室141の圧力が作用する圧力領域104e1と、吐出室142bの圧力が作用する圧力領域104e2と、クランク室140の圧力が作用する圧力領域104e3とに区画されている。圧力領域104e1は、図6に示すように吸入室141の底壁104hに形成された連通路104dで吸入室141と連通している。圧力領域104e2は、図6に示すようにシリンダヘッド104に形成され吐出室142側の圧力供給通路145を構成する連通路104cにより吐出室142と連通している。圧力領域104e3は、図6に示すように吸入室141の底壁104hからバルブプレート103に向けて延設された複数の押さえ突起104iの1つに形成した連通路104mと図1に示す連通路101eで構成される制御弁側圧力供給通路と逆止弁250とを経由してクランク室140に連通している。ここで、吐出室142は、連通路104c、収容孔104eの圧力領域104e2、制御弁300の内部、圧力領域104e3、連通路104m、連通路101e及び逆止弁250を経由する圧力供給通路145を介してクランク室140に連通している。   The accommodating hole 104e is formed by three O-rings 313a to 313c provided in the control valve 300, a pressure region 104e1 where the pressure of the suction chamber 141 acts, a pressure region 104e2 where the pressure of the discharge chamber 142b acts, and a crank chamber 140 It is partitioned into a pressure region 104e3 where pressure acts. The pressure region 104e1 communicates with the suction chamber 141 through a communication path 104d formed in the bottom wall 104h of the suction chamber 141 as shown in FIG. As shown in FIG. 6, the pressure region 104 e 2 communicates with the discharge chamber 142 through a communication passage 104 c formed in the cylinder head 104 and constituting a pressure supply passage 145 on the discharge chamber 142 side. As shown in FIG. 6, the pressure region 104e3 includes a communication passage 104m formed in one of a plurality of pressing protrusions 104i extending from the bottom wall 104h of the suction chamber 141 toward the valve plate 103, and the communication passage shown in FIG. It communicates with the crank chamber 140 via the control valve side pressure supply passage 101e and the check valve 250. Here, the discharge chamber 142 has a pressure supply passage 145 that passes through the communication passage 104c, the pressure region 104e2 of the accommodation hole 104e, the inside of the control valve 300, the pressure region 104e3, the communication passage 104m, the communication passage 101e, and the check valve 250. Via the crank chamber 140.

収容孔104fは、弁開閉検出部400に設けた2つのOリング441a、441bにより、制御弁300と逆止弁250との間の圧力供給通路145(連通路101eと連通路104m)の圧力が作用する圧力領域104f1と、クランク室140の圧力が作用する圧力領域104f2とに区画されている。圧力領域104f1は、制御弁300側の圧力領域104e3と連通路104gで連通しており、圧力領域104e3を経由して制御弁300下流の圧力が導入される。圧力領域104f2は、図6に示すように吸入室141の底壁104hからバルブプレート103に向けて延設された複数の押さえ突起104iの1つに形成した連通路104jとバルブプレート103等を介してシリンダブロック101に形成された空間部101dと連通しており、クランク室140の圧力が放圧通路146を経由して導入される。また、制御弁300が閉弁したときに連通路101e内の冷媒を素早く吸入室141に流出させるため、図6に示すように制御弁300側の圧力領域104e3と吸入室141とを連通する絞り通路104kが吸入室141の底壁104hに形成されている。ここで、吸入室141は、本発明の吸入圧領域に相当し、前記絞り通路104kは、制御弁300と逆止弁250の間の圧力供給通路145と吸入圧領域とを連通する連通路に相当する。   In the housing hole 104f, the pressure of the pressure supply passage 145 (the communication passage 101e and the communication passage 104m) between the control valve 300 and the check valve 250 is controlled by two O-rings 441a and 441b provided in the valve opening / closing detection unit 400. It is divided into a pressure region 104f1 where the pressure acts and a pressure region 104f2 where the pressure in the crank chamber 140 acts. The pressure region 104f1 communicates with the pressure region 104e3 on the control valve 300 side through the communication passage 104g, and the pressure downstream of the control valve 300 is introduced through the pressure region 104e3. As shown in FIG. 6, the pressure region 104f2 passes through a communication path 104j formed in one of a plurality of pressing protrusions 104i extending from the bottom wall 104h of the suction chamber 141 toward the valve plate 103, the valve plate 103, and the like. The space 101 d formed in the cylinder block 101 communicates with the pressure in the crank chamber 140 through the pressure relief passage 146. In addition, when the control valve 300 is closed, in order to allow the refrigerant in the communication passage 101e to quickly flow out into the suction chamber 141, as shown in FIG. 6, a throttle that connects the pressure region 104e3 on the control valve 300 side and the suction chamber 141 is provided. A passage 104k is formed in the bottom wall 104h of the suction chamber 141. Here, the suction chamber 141 corresponds to the suction pressure region of the present invention, and the throttle passage 104k is a communication passage that connects the pressure supply passage 145 between the control valve 300 and the check valve 250 and the suction pressure region. Equivalent to.

次に、本実施形態の可変容量圧縮機100の動作について説明する。
エンジンからの駆動力によって可変容量圧縮機100の駆動軸110が回転している状態で、エアコンが非作動状態(OFF運転)の場合、制御弁300は非通電状態で開弁し圧力供給通路145を開放する。これにより、逆止弁250の上流側の圧力が昇圧する。逆止弁250は、OFF運転時の吐出吸入圧力差で確実に開弁するように圧縮コイルバネ252の付勢力が設定されているので、このとき逆止弁250は開弁して吐出室142とクランク室140とが圧力供給通路145を介して連通し、吐出冷媒ガスがクランク室140に導入される。これにより、可変容量圧縮機100は最小吐出容量で運転される。尚、最小吐出容量で発生する吐出吸入圧力差では、吐出通路に介装された逆止弁200は開弁しないように設定されているので、圧縮された冷媒は、吐出室142、圧力供給通路145、クランク室140、放圧通路146、吸入室141で構成される内部経路を循環する。
Next, the operation of the variable capacity compressor 100 of the present embodiment will be described.
When the drive shaft 110 of the variable capacity compressor 100 is rotating by the driving force from the engine and the air conditioner is in an inactive state (OFF operation), the control valve 300 is opened in a non-energized state and the pressure supply passage 145 is opened. Is released. As a result, the pressure on the upstream side of the check valve 250 is increased. Since the urging force of the compression coil spring 252 is set so that the check valve 250 is surely opened by the discharge suction pressure difference during the OFF operation, the check valve 250 is opened at this time and the discharge chamber 142 The crank chamber 140 communicates with the crank chamber 140 via the pressure supply passage 145, and the discharged refrigerant gas is introduced into the crank chamber 140. Thereby, the variable capacity compressor 100 is operated with the minimum discharge capacity. It should be noted that since the check valve 200 interposed in the discharge passage is set not to open at the discharge suction pressure difference generated at the minimum discharge capacity, the compressed refrigerant is discharged from the discharge chamber 142 and the pressure supply passage. 145, the crank chamber 140, the pressure relief passage 146, and the suction chamber 141 are circulated through an internal path.

圧縮機100の最小吐出容量運転時では、可動体収容部401の第1の室424aに作用する圧力が第2の室424bに作用する圧力より高く、可動体410は図7(b)に図示したように段差部421dに当接する。これにより、弁状態検出部402では、ホール素子431から電子回路432へ、可動体410の位置が第2の位置であることを示す位置検出信号が出力され、電子回路432は、制御弁300が開弁状態であることを示す開弁状態検出信号を、入出力用コネクタ端子433を介して外部へ出力する。   During the minimum discharge capacity operation of the compressor 100, the pressure acting on the first chamber 424a of the movable body accommodating portion 401 is higher than the pressure acting on the second chamber 424b, and the movable body 410 is illustrated in FIG. As described above, it abuts on the stepped portion 421d. As a result, the valve state detection unit 402 outputs a position detection signal indicating that the position of the movable body 410 is the second position from the Hall element 431 to the electronic circuit 432, and the electronic circuit 432 A valve open state detection signal indicating that the valve is open is output to the outside via the input / output connector terminal 433.

エアコンを作動すべく、車室内目標温度に応じて設定される所定の制御電流値を制御弁300に通電すると、制御弁300は閉弁して制御弁300と逆止弁250とで区画された圧力供給通路145(連通路101eと連通路104m)内の冷媒ガスは、圧力領域104e3を経由して図6の絞り通路104kから吸入室141に流出し、逆止弁250の上流側圧力供給通路145内の圧力が低下して逆止弁250が閉弁する。これにより、可動体収容部401の第1の室424aに作用する圧力が第2の室424bに作用する圧力より低くなり、可動体410は段差部421dから離間して図7(a)のように第1端壁422に当接する。その結果、弁状態検出部402では、ホール素子431から電子回路432へ、可動体410の位置が第1の位置であることを示す位置検出信号が出力され、電子回路432は、制御弁300が閉弁状態であることを示す閉弁状態検出信号を、入出力用コネクタ端子433を介して外部へ出力する。   When the control valve 300 is energized with a predetermined control current value set according to the vehicle interior target temperature in order to operate the air conditioner, the control valve 300 is closed and divided by the control valve 300 and the check valve 250. The refrigerant gas in the pressure supply passage 145 (the communication passage 101e and the communication passage 104m) flows out from the throttle passage 104k in FIG. 6 to the suction chamber 141 via the pressure region 104e3, and is upstream of the check valve 250. The pressure in 145 decreases and the check valve 250 closes. As a result, the pressure acting on the first chamber 424a of the movable body accommodating portion 401 becomes lower than the pressure acting on the second chamber 424b, and the movable body 410 is separated from the step portion 421d as shown in FIG. Abuts against the first end wall 422. As a result, the valve state detection unit 402 outputs a position detection signal indicating that the position of the movable body 410 is the first position from the hall element 431 to the electronic circuit 432, and the electronic circuit 432 A valve closing state detection signal indicating the valve closing state is output to the outside via the input / output connector terminal 433.

制御弁300が閉弁した状態では、吐出冷媒ガスはクランク室140に導入されず、ピストン136が吸入冷媒を圧縮する際に発生するブローバイガスのみがクランク室140に流入する。バルブプレート103に形成したオリフィス103cの開口面積は、ブローバイガスを吸入室141に流すのに必要十分な面積を有しており、クランク室140内の冷媒ガスは、放圧通路146を介して吸入室141に排出され、クランク室140の圧力が低下して吸入室141の圧力と同等となる。その結果、吐出容量が最小の状態から増大して吐出通路に介装した逆止弁200が開弁し、吐出室142が吐出通路を介して車両エアコンシステムの吐出側冷媒回路に接続されて冷媒が循環する。クランク室140の圧力低下により、斜板111の傾角は最大まで増大し、可変容量圧縮機100は最大吐出容量運転となる。   When the control valve 300 is closed, the discharged refrigerant gas is not introduced into the crank chamber 140, and only the blow-by gas generated when the piston 136 compresses the intake refrigerant flows into the crank chamber 140. The opening area of the orifice 103 c formed in the valve plate 103 has a necessary and sufficient area for flowing blow-by gas into the suction chamber 141, and the refrigerant gas in the crank chamber 140 is sucked through the pressure release passage 146. The pressure in the crank chamber 140 decreases and becomes equal to the pressure in the suction chamber 141. As a result, the check valve 200 installed in the discharge passage increases from the minimum discharge capacity, and the discharge chamber 142 is connected to the discharge side refrigerant circuit of the vehicle air conditioner system through the discharge passage. Circulates. Due to the pressure drop in the crank chamber 140, the tilt angle of the swash plate 111 increases to the maximum, and the variable displacement compressor 100 operates at the maximum discharge capacity.

可変容量圧縮機100の最大吐出容量運転時では、吸入室141の圧力が徐々に低下する。そして、吸入室141の圧力が制御弁300の制御電流値で設定された設定圧まで低下すると、感圧手段のベローズ組立305のベローズが伸長して連結部306と連結し、弁体304が弁座面301fから離間して弁孔301cを開き、制御弁300が開弁状態となる。これにより、制御弁300と逆止弁250との間の圧力供給通路(連通路101eと連通路104m)の圧力が昇圧し、可動体収容部401の第1の室424aに作用する圧力が第2の室424bに作用する圧力より高くなり、可動体410が第1端壁422から離間して図7(b)のように段差部421dに当接する。これにより、弁状態検出部402において、ホール素子431から電子回路432へ、可動体410の位置が第2の位置であることを示す位置検出信号が出力され、電子回路432から制御弁300が開弁状態であることを示す開弁状態検出信号が入出力用コネクタ端子433を介して外部へ出力される。   During the maximum discharge capacity operation of the variable capacity compressor 100, the pressure in the suction chamber 141 gradually decreases. When the pressure in the suction chamber 141 decreases to the set pressure set by the control current value of the control valve 300, the bellows of the bellows assembly 305 of the pressure sensing means expands and is connected to the connecting portion 306, and the valve body 304 is The valve hole 301c is opened away from the seating surface 301f, and the control valve 300 is opened. As a result, the pressure in the pressure supply passage (the communication passage 101e and the communication passage 104m) between the control valve 300 and the check valve 250 is increased, and the pressure acting on the first chamber 424a of the movable body accommodating portion 401 is increased. The pressure is higher than the pressure acting on the second chamber 424b, and the movable body 410 is separated from the first end wall 422 and contacts the stepped portion 421d as shown in FIG. 7B. As a result, the valve state detection unit 402 outputs a position detection signal indicating that the position of the movable body 410 is the second position from the hall element 431 to the electronic circuit 432, and the control valve 300 is opened from the electronic circuit 432. A valve open state detection signal indicating the valve state is output to the outside via the input / output connector terminal 433.

制御弁300の開弁後は、制御弁300の開弁によって逆止弁250上流側の圧力供給通路(連通路101eと連通路104m)の圧力が上昇し逆止弁250が開弁し、吐出室142とクランク室140とが圧力供給通路145で連通して吐出冷媒ガスがクランク室140に導入される。放圧通路146を介してクランク室140から吸入室141へ流出する冷媒ガスの流出量はオリフィス103cで制限されるので、クランク室140の圧力が上昇する。クランク室140の圧力と吸入室141の圧力との圧力差が所定値(ΔPH)まで増加すると、斜板111の傾角が減少して吐出容量が減少する。吐出容量が減少して吸入室141の圧力が上昇すると、感圧手段のベローズ組立305のベローズが収縮して弁体304が閉弁方向に移動し、クランク室140に導入される吐出冷媒ガス量が減少してクランク室140の圧力が低下する。クランク室140の圧力低下によりクランク室140の圧力と吸入室141の圧力との圧力差が所定値ΔPL(ΔPL<ΔPH)まで減少すると斜板111の傾角が増加して吐出容量が増加する。このように、制御弁300の開弁後は、感圧手段により、吸入室141の圧力が制御電流値で設定された設定圧になるよう制御弁300の弁開度が自律的に調整され、可変容量圧縮機100は、制御電流値と制御吸入圧力値が一義的な関係にある吐出容量制御状態による運転が実行される。   After the control valve 300 is opened, the pressure of the pressure supply passage (the communication passage 101e and the communication passage 104m) on the upstream side of the check valve 250 increases due to the opening of the control valve 300, and the check valve 250 is opened and discharged. The chamber 142 and the crank chamber 140 communicate with each other through the pressure supply passage 145, and the discharged refrigerant gas is introduced into the crank chamber 140. Since the outflow amount of the refrigerant gas flowing out from the crank chamber 140 to the suction chamber 141 via the pressure release passage 146 is limited by the orifice 103c, the pressure in the crank chamber 140 increases. When the pressure difference between the pressure in the crank chamber 140 and the pressure in the suction chamber 141 increases to a predetermined value (ΔPH), the inclination angle of the swash plate 111 decreases and the discharge capacity decreases. When the discharge capacity decreases and the pressure in the suction chamber 141 increases, the bellows of the bellows assembly 305 of the pressure sensing means contracts, the valve body 304 moves in the valve closing direction, and the amount of discharged refrigerant gas introduced into the crank chamber 140 Decreases and the pressure in the crank chamber 140 decreases. When the pressure difference between the pressure in the crank chamber 140 and the pressure in the suction chamber 141 decreases to a predetermined value ΔPL (ΔPL <ΔPH) due to the pressure drop in the crank chamber 140, the inclination angle of the swash plate 111 increases and the discharge capacity increases. Thus, after the control valve 300 is opened, the valve opening degree of the control valve 300 is autonomously adjusted by the pressure sensing means so that the pressure of the suction chamber 141 becomes the set pressure set by the control current value, The variable capacity compressor 100 is operated in a discharge capacity control state in which the control current value and the control suction pressure value are uniquely related.

即ち、本実施形態の可変容量圧縮機100は、エアコン作動状態において、制御弁300が閉弁すると可動体410が連動して第1の位置である第1端壁422内面側に当接し、弁状態検出部402が、制御弁300の閉弁状態を示す閉弁状態検出信号を出力する。このとき、可変容量圧縮機100は最大吐出容量状態となっている。一方、制御弁300が開弁すると可動体410が連動して第2の位置である段差部421d側に当接し、弁状態検出部402が、制御弁300の開弁状態を示す開弁状態検出信号を出力する。このとき、可変容量圧縮機100は吐出容量制御状態となっている。   That is, in the variable capacity compressor 100 of the present embodiment, when the control valve 300 is closed in the air conditioner operating state, the movable body 410 interlocks and contacts the inner surface side of the first end wall 422 that is the first position. The state detection unit 402 outputs a valve closing state detection signal indicating the valve closing state of the control valve 300. At this time, the variable capacity compressor 100 is in the maximum discharge capacity state. On the other hand, when the control valve 300 is opened, the movable body 410 is interlocked and comes into contact with the stepped portion 421d which is the second position, and the valve state detection unit 402 detects the valve opening state indicating the valve opening state. Output a signal. At this time, the variable capacity compressor 100 is in a discharge capacity control state.

本実施形態の可変容量圧縮機100によれば、制御弁300の開閉動作に連動して第1の位置と第2の位置との間を移動する可動体410の位置を検出して制御弁300の閉弁状態と開弁状態を検出するようにしたので、可変容量圧縮機100の最大吐出容量状態と吐出容量制御状態を容易に判別できる。従って、制御弁300の制御電流値が吸入室141の制御圧力値の代用にならない可変容量圧縮機100の最大吐出容量状態における駆動トルクを精度良く算出することができる。   According to the variable displacement compressor 100 of the present embodiment, the control valve 300 is detected by detecting the position of the movable body 410 that moves between the first position and the second position in conjunction with the opening / closing operation of the control valve 300. Therefore, the maximum discharge capacity state and the discharge capacity control state of the variable capacity compressor 100 can be easily discriminated. Therefore, it is possible to accurately calculate the driving torque in the maximum discharge capacity state of the variable capacity compressor 100 in which the control current value of the control valve 300 does not substitute for the control pressure value of the suction chamber 141.

また、弁開閉検出部400は、簡素な構成で、可動体収容部401と弁状態検出部402を一体に組付けたので、可変容量圧縮機100に容易に装着できる。また、磁石411が収容されている収容室424の第2の室424bは、制御弁300の弁体304と逆止弁250の弁体251とで区画された圧力供給通路145(連通路101eと連通路104m)の領域とは区画されているので、圧力供給通路145(連通路101eと連通路104m)を流れる冷媒に含まれる磨耗粉等の異物が、第2の室424bに侵入することがなく、異物により弁状態検出部402に不具合を生じることが無い。   Further, the valve opening / closing detection unit 400 has a simple configuration, and the movable body housing unit 401 and the valve state detection unit 402 are assembled together, so that the variable capacity compressor 100 can be easily mounted. The second chamber 424b of the storage chamber 424 in which the magnet 411 is stored is a pressure supply passage 145 (the communication passage 101e and the communication passage 101e) partitioned by the valve body 304 of the control valve 300 and the valve body 251 of the check valve 250. Since the area of the communication path 104m) is partitioned, foreign matter such as wear powder contained in the refrigerant flowing through the pressure supply path 145 (the communication path 101e and the communication path 104m) may enter the second chamber 424b. In addition, the foreign matter does not cause trouble in the valve state detection unit 402.

次に、本発明の可変容量圧縮機の第2実施形態について説明する。
本実施形態の可変容量圧縮機は、第1実施形態における制御弁下流の圧力供給通路145(連通路101e)に介装した逆止弁250を省略し、この逆止弁の機能を可動体収容部に組み込んだことが第1実施形態と異なる。
Next, a second embodiment of the variable capacity compressor of the present invention will be described.
The variable displacement compressor of this embodiment omits the check valve 250 interposed in the pressure supply passage 145 (communication passage 101e) downstream of the control valve in the first embodiment, and the function of this check valve is accommodated in a movable body. It is different from the first embodiment that it is incorporated in the part.

図8は、第2実施形態における可変容量圧縮機の概略構成を示し、第1実施形態と同様の車両用エアコンシステムに使用されるクラッチレス可変容量圧縮機の例である。尚、第1実施形態と同一要素には同一符号を付して説明を省略する。
図8において、本実施形態の可変容量圧縮機100′では、後述する本実施形態の可動体収容部501に逆止弁の機能を持たせたことにより、シリンダブロック101に形成する連通路101e(制御弁300の下流側の圧力供給通路145となる)の形成位置を、図中破線で示すように、放圧通路146の一部を構成する連通路101cの上方側としている。
FIG. 8 shows a schematic configuration of the variable capacity compressor in the second embodiment, and is an example of a clutchless variable capacity compressor used in the vehicle air conditioner system similar to the first embodiment. In addition, the same code | symbol is attached | subjected to the same element as 1st Embodiment, and description is abbreviate | omitted.
8, in the variable capacity compressor 100 ′ of the present embodiment, the movable body accommodating portion 501 of the present embodiment, which will be described later, is provided with a check valve function so that the communication path 101e ( The formation position of the pressure supply passage 145 on the downstream side of the control valve 300 is set to the upper side of the communication passage 101c constituting a part of the pressure release passage 146, as indicated by a broken line in the figure.

図9は、本実施形態のシリンダヘッド104をバルブプレート103側から見た場合の制御弁300と弁開閉検出部500の配置関係を示す図であり、図10は、図9の配置関係にある制御弁300と弁開閉検出部500のシリンダヘッド104における収容断面を示す図である。
制御弁300が、シリンダヘッド104に形成した収容孔104eに収容され、収容孔104eが、3つのOリング313a〜313cにより、吸入室141の圧力が作用する圧力領域104e1と、吐出室142bの圧力が作用する圧力領域104e2と、クランク室140の圧力が作用する圧力領域104e3とに区画されていることは、第1実施形態と同様である。
FIG. 9 is a diagram showing an arrangement relationship between the control valve 300 and the valve opening / closing detection unit 500 when the cylinder head 104 of the present embodiment is viewed from the valve plate 103 side, and FIG. 10 is an arrangement relationship of FIG. It is a figure which shows the accommodation cross section in the cylinder head 104 of the control valve 300 and the valve opening / closing detection part 500. FIG.
The control valve 300 is accommodated in an accommodation hole 104e formed in the cylinder head 104, and the accommodation hole 104e has a pressure region 104e1 in which the pressure of the suction chamber 141 acts by the three O-rings 313a to 313c, and the pressure of the discharge chamber 142b. It is the same as in the first embodiment that it is divided into a pressure region 104e2 where the pressure acts and a pressure region 104e3 where the pressure in the crank chamber 140 acts.

一方、弁開閉検出部500が、収容孔104fに収容され、収容孔104fが2つのOリング561a、561bにより、圧力領域104f1と圧力領域104f2とに区画されていること、圧力領域104f1が、連通路104gを介して制御弁300側の圧力領域104e3に連通していることは、第1実施形態と同様であるが、本実施形態では、図9に示すようにシリンダヘッド104に連通路104m(図6参照)はなく、圧力領域104f1は、後述するように弁開閉検出部500の可動体収容部501内部を介して圧力領域104f2と連通し、圧力領域104f2が図9に示すようにシリンダヘッド104に形成した連通路104jとバルブプレート103等を介してシリンダブロック101に形成された連通路101eと連通している。   On the other hand, the valve opening / closing detection unit 500 is housed in the housing hole 104f, and the housing hole 104f is partitioned into two pressure regions 104f1 and 104f2 by two O-rings 561a and 561b. The communication with the pressure region 104e3 on the control valve 300 side via the passage 104g is the same as in the first embodiment. However, in this embodiment, as shown in FIG. 6), the pressure region 104f1 communicates with the pressure region 104f2 via the inside of the movable body accommodating portion 501 of the valve opening / closing detection unit 500, as will be described later, and the pressure region 104f2 is a cylinder head as shown in FIG. The communication path 104j formed in 104 and the communication path 101e formed in the cylinder block 101 via the valve plate 103 and the like communicate with each other. It is.

従って、吐出室142は、連通路104c、圧力領域104e2、制御弁300内部、圧力領域104e3、連通路104g、圧力領域104f1、可動体収納部501内部、圧力領域104f2、連通路104j及び連通路101eを経由する圧力供給通路145を介してクランク室140と連通している。尚、第1実施形態と同様に、圧力領域104e3と吸入室141とを連通する絞り通路104kが吸入室141の底壁104hに形成されており、この絞り通路104kが、制御弁300と可動体収容部501の間の圧力供給通路145と吸入圧領域(本実施形態では吸入室141)とを連通する連通路に相当する。   Accordingly, the discharge chamber 142 includes the communication path 104c, the pressure area 104e2, the control valve 300, the pressure area 104e3, the communication path 104g, the pressure area 104f1, the movable body storage part 501, the pressure area 104f2, the communication path 104j, and the communication path 101e. Is communicated with the crank chamber 140 via a pressure supply passage 145 passing through. As in the first embodiment, a throttle passage 104k that connects the pressure region 104e3 and the suction chamber 141 is formed in the bottom wall 104h of the suction chamber 141. The throttle passage 104k is connected to the control valve 300 and the movable body. This corresponds to a communication path that connects the pressure supply path 145 between the accommodating portions 501 and the suction pressure region (in this embodiment, the suction chamber 141).

次に、本実施形態の弁開閉検出部500について説明する。
図11は、弁開閉検出部500の構成を示す図で、(a)は全体断面図で制御弁300が閉弁状態にあるときの状態を示し、(b)は要部構成図で制御弁300が開弁状態にあるときの状態を示している。
Next, the valve opening / closing detection unit 500 of this embodiment will be described.
11A and 11B are diagrams showing a configuration of the valve opening / closing detection unit 500. FIG. 11A is an overall cross-sectional view showing a state when the control valve 300 is in a closed state, and FIG. 11B is a main part configuration diagram showing a control valve. The state when 300 is in a valve open state is shown.

弁開閉検出部500は、前述した逆止弁の機能を有する可動体収容部501と弁状態検出部502とを、一体に組付けて構成されている。尚、弁状態検出部502は、ホール素子551と、電子回路552と、入出力用コネクタ端子553とを、樹脂材料でインサート成形されており、第1実施形態と同様の構成であるので、説明を省略する。以下では、逆止弁の機能を備えた可動体収容部501について詳述する。   The valve opening / closing detection unit 500 is configured by integrally assembling the movable body housing unit 501 having the above-described check valve function and the valve state detection unit 502. In the valve state detection unit 502, the Hall element 551, the electronic circuit 552, and the input / output connector terminal 553 are insert-molded with a resin material and have the same configuration as in the first embodiment. Is omitted. Below, the movable body accommodating part 501 provided with the function of the non-return valve is explained in full detail.

可動体収容部501は、可動体510と、圧縮コイルバネ520と、第1ハウジング530と、第2ハウジング540とを備えている。第1ハウジング530及び第2ハウジング540は、金属材料、例えば黄銅系材料でそれぞれ形成されている。尚、第1ハウジング530は、樹脂材料で形成してもよい。   The movable body accommodating portion 501 includes a movable body 510, a compression coil spring 520, a first housing 530, and a second housing 540. The first housing 530 and the second housing 540 are each formed of a metal material, for example, a brass-based material. Note that the first housing 530 may be formed of a resin material.

可動体510は、一端開口の略円筒状に形成された第1部材511と、第1部材511の開口端側の内側に固定され第1部材511より小径の略円筒状の側壁を有する一端開口の第2部材512とから構成され、第1部材512の閉塞端側に磁石513が固定されている。第1部材511と第2部材512で区画される内部空間514は、第2部材512に形成されている連通孔512aを介して可動体510の外部と連通している。第1部材511及び第2部材512は、例えばアルミ系の金属材料で形成されている。尚、第1部材511及び第2部材512は、樹脂材料で形成してもよい。   The movable body 510 has a first member 511 formed in a substantially cylindrical shape with one end opening, and a one-end opening having a substantially cylindrical side wall fixed to the inner side of the opening end side of the first member 511 and having a smaller diameter than the first member 511. The second member 512 and the magnet 513 are fixed to the closed end side of the first member 512. An internal space 514 defined by the first member 511 and the second member 512 communicates with the outside of the movable body 510 through a communication hole 512 a formed in the second member 512. The first member 511 and the second member 512 are made of, for example, an aluminum-based metal material. Note that the first member 511 and the second member 512 may be formed of a resin material.

第1ハウジング530は、一端開口の略円筒状に形成されており、外周面にOリング561bが装着された閉塞端側にはその内面側に弁座530aが形成されている。また、閉塞端側の端壁中央部には冷媒の流入孔530bが形成され、側壁には後述する第1の室533aを経由して冷媒が流出する複数の流出孔530cが形成されている。また、側壁の後述する第2の室533bと圧力領域104f2を連通する複数の連通孔530dが形成されている。   The first housing 530 is formed in a substantially cylindrical shape with one end opening, and a valve seat 530a is formed on the inner surface side of the closed end side where the O-ring 561b is mounted on the outer peripheral surface. In addition, a refrigerant inflow hole 530b is formed in the central portion of the end wall on the closed end side, and a plurality of outflow holes 530c through which the refrigerant flows out through a first chamber 533a described later are formed in the side wall. In addition, a plurality of communication holes 530d are formed to communicate a second chamber 533b (described later) on the side wall and the pressure region 104f2.

第2ハウジング540は、Oリング561aが装着される円筒状の側壁540aと、側壁540aの一端側を閉塞する端壁540bと、端壁540bを挟んで側壁540aとは反対側に突出形成され第2部材512の閉塞端側を移動可能に支持する円筒部540cと、を備えて構成されている。   The second housing 540 has a cylindrical side wall 540a to which the O-ring 561a is attached, an end wall 540b that closes one end of the side wall 540a, and a second wall 540a that protrudes from the side wall 540a opposite to the side wall 540a. And a cylindrical portion 540c that movably supports the closed end side of the two members 512.

第2ハウジング540に第1ハウジング530の開口端側を圧入固定することにより、可動体510を移動可能に収容する収容室533(図11(b)参照)が形成されている。可動体510の第1部材511外面と第1ハウジング530内面との隙間は、例えば数十ミクロン〜200ミクロン程度と小さく管理されており、収容室533は、可動体510により第1の室533aと第2の室533bとに仕切られている。第1の室533aは、流入孔530bを介して収容孔104f内の圧力領域104f1と連通可能であり、複数の流出孔530cを介して収容孔104f内の圧力領域104f2と連通可能である。第2の室533bは、連通孔530dを介して収容孔104f内の領域104f2と連通する。従って、前記第1の室533aは、制御弁300側の圧力供給通路(圧力領域104f1と連通路104gと圧力領域104e3)に連通し、第2の室533bは、クランク室140側圧力供給通路(圧力領域104f2と連通路104jと連通路101e)に連通する。また、第1の室533aと第2の室533bは、複数の流出孔530c、圧力領域104f2及び連通孔530dを介して連通しており、流出孔530c、圧力領域104f2及び連通孔530dが、第1の室533aと第2の室533bとを連通する連通部を構成する。第2ハウジング540の円筒部540cと可動体510の第2部材512とで囲まれた空間部は、円筒部540cに形成した絞り通路540dによって第2の室533bと連通している。   By press-fitting and fixing the opening end side of the first housing 530 to the second housing 540, an accommodation chamber 533 (see FIG. 11B) for accommodating the movable body 510 is formed. The clearance between the outer surface of the first member 511 of the movable body 510 and the inner surface of the first housing 530 is managed to be as small as, for example, about several tens to 200 microns, and the storage chamber 533 is separated from the first chamber 533a by the movable body 510. It is partitioned into a second chamber 533b. The first chamber 533a can communicate with the pressure region 104f1 in the accommodation hole 104f through the inflow hole 530b, and can communicate with the pressure region 104f2 in the accommodation hole 104f through the plurality of outflow holes 530c. The second chamber 533b communicates with the region 104f2 in the accommodation hole 104f through the communication hole 530d. Therefore, the first chamber 533a communicates with the pressure supply passage (the pressure region 104f1, the communication passage 104g, and the pressure region 104e3) on the control valve 300 side, and the second chamber 533b is connected to the crank chamber 140 side pressure supply passage ( The pressure region 104f2, the communication path 104j, and the communication path 101e) communicate with each other. The first chamber 533a and the second chamber 533b communicate with each other through a plurality of outflow holes 530c, a pressure region 104f2, and a communication hole 530d. The outflow holes 530c, the pressure region 104f2, and the communication hole 530d are connected to each other. A communication portion that connects the first chamber 533a and the second chamber 533b is formed. A space portion surrounded by the cylindrical portion 540c of the second housing 540 and the second member 512 of the movable body 510 communicates with the second chamber 533b by a throttle passage 540d formed in the cylindrical portion 540c.

圧縮コイルバネ520は、第2の室533b内において、第2ハウジング540と可動体510(第1部材511の端面)との間に支持され、可動体510を弁座530aに向けて付勢しており、可動体510が弁座530aに着座している状態で付勢力を有している。第1ハウジング530の圧入量を調整すれば圧縮コイルバネ520の付勢力を調整することができる。尚、第2ハウジング540の円筒部540cは、圧縮コイルバネ520の内側に設けて、圧縮コイルバネ520のガイド部材を兼ねている。   The compression coil spring 520 is supported between the second housing 540 and the movable body 510 (the end surface of the first member 511) in the second chamber 533b, and urges the movable body 510 toward the valve seat 530a. The movable body 510 has an urging force in a state where the movable body 510 is seated on the valve seat 530a. By adjusting the press-fitting amount of the first housing 530, the urging force of the compression coil spring 520 can be adjusted. The cylindrical portion 540c of the second housing 540 is provided inside the compression coil spring 520 and also serves as a guide member for the compression coil spring 520.

可動体510は、第1部材511の1点が第1ハウジング530の内面に当接し、第2部材512の1点が第2ハウジング540の円筒部540c内面に当接して対角上の2点で支持されるようにそれぞれの隙間が調整されている。これにより、可動体510の動きが阻害されることなく、スムースに摺動することができる。   In the movable body 510, one point of the first member 511 is in contact with the inner surface of the first housing 530, and one point of the second member 512 is in contact with the inner surface of the cylindrical portion 540c of the second housing 540, so that two points diagonally exist. Each gap is adjusted so that it is supported by. Thereby, it can slide smoothly, without the movement of the movable body 510 being inhibited.

かかる構成の可動体収容部501では、可動体510の上流側である圧力領域104f1の圧力と可動体510の下流側である圧力領域104f2の圧力との圧力差に応答して可動体510が収容室533内を移動する。圧力差が所定値より小さい場合は可動体510が弁座530aに当接して可動体511の上流側と下流側とを遮断し、圧力差が所定値を超えると可動体511の上流側と下流側とを開通する。言い換えれば、圧力差が所定値より小さい場合は制御弁300とクランク室140との間の圧力供給通路145を閉鎖してクランク室140から制御弁300側への冷媒の流れを阻止し、圧力差が所定値を超えると制御弁300とクランク室140との間の圧力供給通路145を開放してクランク室140への冷媒の流入を可能とする。従って、本実施形態では可動体収容部501が第1実施形態の逆止弁250の機能を有しており、可動体510が、逆止弁の弁体として機能する。尚、圧縮コイルバネ420の付勢力は極めて小さく、制御弁300の通電がOFFされて可変容量圧縮機100′が最小吐出容量で動作するときに発生する微小差圧でも、可動体510が開弁(図11中、右方向に移動する)するように設定されている。   In the movable body accommodating portion 501 having such a configuration, the movable body 510 accommodates the pressure difference between the pressure in the pressure region 104f1 upstream of the movable body 510 and the pressure in the pressure region 104f2 downstream of the movable body 510. It moves in the chamber 533. When the pressure difference is smaller than a predetermined value, the movable body 510 abuts the valve seat 530a to block the upstream side and the downstream side of the movable body 511, and when the pressure difference exceeds a predetermined value, the upstream side and the downstream side of the movable body 511. Open the side. In other words, when the pressure difference is smaller than the predetermined value, the pressure supply passage 145 between the control valve 300 and the crank chamber 140 is closed to prevent the flow of refrigerant from the crank chamber 140 to the control valve 300 side. Exceeds a predetermined value, the pressure supply passage 145 between the control valve 300 and the crank chamber 140 is opened to allow the refrigerant to flow into the crank chamber 140. Therefore, in this embodiment, the movable body accommodating portion 501 has the function of the check valve 250 of the first embodiment, and the movable body 510 functions as a valve body of the check valve. Note that the biasing force of the compression coil spring 420 is extremely small, and the movable body 510 is opened (even if the differential pressure generated when the control valve 300 is turned off and the variable displacement compressor 100 'operates with the minimum discharge capacity). In FIG. 11, it is set to move in the right direction.

本実施形態の可動体収容部501は、圧縮コイルバネ420の付勢力を弱く、また、バネ定数も小さく設定することで、可動体510の可動ストロークを大きくすることができる。これにより、制御弁300の弁体304が僅かに開弁した状態でも可動体収容部501の可動体510の可動ストロークが大きくなり、制御弁300の弁体304の開度によらず制御弁300の開弁状態を検出できる。尚、可動体510の最大可動ストロークは数mm程度に設定されており、これは制御弁300の弁体304の最大開閉ストローク(0.5mm程度)より大幅に大きい。   The movable body accommodating portion 501 of the present embodiment can increase the movable stroke of the movable body 510 by weakening the biasing force of the compression coil spring 420 and setting the spring constant small. Thereby, even when the valve body 304 of the control valve 300 is slightly opened, the movable stroke of the movable body 510 of the movable body accommodating portion 501 is increased, and the control valve 300 is independent of the opening degree of the valve body 304 of the control valve 300. The valve open state can be detected. The maximum movable stroke of the movable body 510 is set to about several millimeters, which is significantly larger than the maximum opening / closing stroke (about 0.5 mm) of the valve body 304 of the control valve 300.

尚、可動体510の可動ストロークを大きくするため、図12(a)〜(c)に示すように、第1ハウジング530の側壁に形成した流出孔530cの形状は、頂角が弁座530a側に差し向けられた略三角形をなす形状を有していることが望ましい。これによって、冷媒の低流量域でも可動体510の可動ストロークを大きくでき、制御300の開弁状態の検出精度を向上できる。   In order to increase the movable stroke of the movable body 510, as shown in FIGS. 12A to 12C, the shape of the outflow hole 530c formed in the side wall of the first housing 530 is such that the apex angle is on the valve seat 530a side. It is desirable to have a substantially triangular shape directed to Thus, the movable stroke of the movable body 510 can be increased even in the low flow rate region of the refrigerant, and the detection accuracy of the valve opening state of the control 300 can be improved.

次に、第2実施形態の可変容量圧縮機100′の動作について説明する。
エンジンからの駆動力によって可変容量圧縮機100′の駆動軸110が回転している状態で、エアコンが非作動状態(OFF運転)で非通電状態の制御弁300は開弁して圧力供給通路145を開放する。これにより、弁開閉検出部500の可動体収容部501より上流側の圧力供給通路145の圧力が昇圧する。可動体収容部501は、OFF運転時の吐出吸入圧力差で確実に開弁するように圧縮コイルバネ520の付勢力が設定されているので、可動体収容部501の可動体510が図11(b)のように開弁して吐出室142とクランク室140とが圧力供給通路145を介して連通し、吐出冷媒ガスがクランク室140に導入され、可変容量圧縮機100′は最小吐出容量で運転される。尚、このとき、逆止弁200は開弁せず、圧縮された冷媒は、吐出室142、圧力供給通路145、クランク室140、放圧通路146、吸入室141で構成される内部経路を循環することは第1実施形態と同じである。
Next, the operation of the variable capacity compressor 100 ′ of the second embodiment will be described.
In a state where the drive shaft 110 of the variable capacity compressor 100 ′ is rotated by the driving force from the engine, the control valve 300 that is not energized when the air conditioner is in an inactive state (OFF operation) is opened and the pressure supply passage 145 is opened. Is released. As a result, the pressure in the pressure supply passage 145 on the upstream side of the movable body accommodating part 501 of the valve opening / closing detection part 500 is increased. Since the urging force of the compression coil spring 520 is set so that the movable body accommodating portion 501 is reliably opened by the discharge suction pressure difference during the OFF operation, the movable body 510 of the movable body accommodating portion 501 is shown in FIG. ), The discharge chamber 142 and the crank chamber 140 communicate with each other via the pressure supply passage 145, the discharge refrigerant gas is introduced into the crank chamber 140, and the variable capacity compressor 100 'operates with the minimum discharge capacity. Is done. At this time, the check valve 200 does not open, and the compressed refrigerant circulates in an internal path constituted by the discharge chamber 142, the pressure supply passage 145, the crank chamber 140, the pressure release passage 146, and the suction chamber 141. This is the same as in the first embodiment.

圧縮機100′の最小吐出容量運転時では、可動体収容部501の第1の室533aに作用する圧力が第2の室533bに作用する圧力より高く、可動体510の第2部材512の段差部512bが図11(b)に図示したように第2ハウジング540の円筒部540cの端面540eに当接して可動体510の移動が規制される。これにより、弁状態検出部502では、ホール素子551から電子回路552へ、可動体510の位置が第2の位置(磁石513がホール素子551に最も近づいた位置)であることを示す位置検出信号が出力され、電子回路552は、制御弁300が開弁状態であることを示す開弁状態検出信号を、入出力用コネクタ端子553を介して外部へ出力する。   During the minimum discharge capacity operation of the compressor 100 ′, the pressure acting on the first chamber 533 a of the movable body accommodating portion 501 is higher than the pressure acting on the second chamber 533 b, and the level difference of the second member 512 of the movable body 510. As shown in FIG. 11B, the portion 512b contacts the end surface 540e of the cylindrical portion 540c of the second housing 540, and the movement of the movable body 510 is restricted. Thereby, in the valve state detection unit 502, the position detection signal indicating that the position of the movable body 510 is the second position (position where the magnet 513 is closest to the Hall element 551) from the Hall element 551 to the electronic circuit 552. The electronic circuit 552 outputs a valve open state detection signal indicating that the control valve 300 is in a valve open state to the outside via the input / output connector terminal 553.

エアコンを作動すべく、車室内目標温度に応じて設定される所定の制御電流値を制御弁300に通電すると、制御弁300は閉弁して制御弁300と弁開閉検出部500とで区画された圧力供給通路145(圧力領域104e3と連通路104gと圧力領域104f1)内の冷媒ガスは、絞り通路104kから吸入室141に流出し、弁開閉検出部500の上流側圧力供給通路145内の圧力が低下する。これにより、可動体収容部501の第1の室533aに作用する圧力が第2の室533bに作用する圧力より低くなり、可動体510が弁座530aに当接して圧力領域104f1と圧力領域104f2とを遮断する。その結果、弁状態検出部502では、ホール素子551から電子回路552へ、可動体510の位置が第1の位置(磁石513がホール素子551から最も遠ざかった位置)であることを示す位置検出信号が出力され、電子回路552は、制御弁300が閉弁状態であることを示す閉弁状態検出信号を、入出力用コネクタ端子553を介して外部へ出力する。   When the control valve 300 is energized with a predetermined control current value set according to the vehicle interior target temperature in order to operate the air conditioner, the control valve 300 is closed and partitioned by the control valve 300 and the valve opening / closing detection unit 500. The refrigerant gas in the pressure supply passage 145 (the pressure region 104e3, the communication passage 104g, and the pressure region 104f1) flows out from the throttle passage 104k to the suction chamber 141, and the pressure in the upstream pressure supply passage 145 of the valve opening / closing detection unit 500. Decreases. As a result, the pressure acting on the first chamber 533a of the movable body accommodating portion 501 becomes lower than the pressure acting on the second chamber 533b, and the movable body 510 comes into contact with the valve seat 530a to cause the pressure region 104f1 and the pressure region 104f2. And shut off. As a result, in the valve state detection unit 502, the position detection signal indicating that the position of the movable body 510 is the first position (position where the magnet 513 is farthest from the Hall element 551) from the Hall element 551 to the electronic circuit 552. Is output, and the electronic circuit 552 outputs a closed state detection signal indicating that the control valve 300 is closed to the outside via the input / output connector terminal 553.

制御弁300が閉弁した状態では、第1実施形態と同様に、ピストン136が吸入冷媒を圧縮する際に発生するブローバイガスのみがクランク室140に流入し、クランク室140内の冷媒ガスは、放圧通路146を介して吸入室141に排出され、クランク室140の圧力が低下して吸入室141の圧力と同等となる。その結果、吐出容量が最小の状態から増大して吐出通路に介装した逆止弁200が開弁し、吐出室142が吐出通路を介して車両エアコンシステムの吐出側冷媒回路に接続されて冷媒が循環する。クランク室140の圧力低下により、斜板111の傾角は最大まで増大し、可変容量圧縮機100′は最大吐出容量運転となる。   In the state where the control valve 300 is closed, as in the first embodiment, only the blow-by gas generated when the piston 136 compresses the sucked refrigerant flows into the crank chamber 140, and the refrigerant gas in the crank chamber 140 is The pressure is discharged to the suction chamber 141 through the pressure release passage 146, and the pressure in the crank chamber 140 is reduced to be equal to the pressure in the suction chamber 141. As a result, the check valve 200 installed in the discharge passage increases from the minimum discharge capacity, and the discharge chamber 142 is connected to the discharge side refrigerant circuit of the vehicle air conditioner system through the discharge passage. Circulates. Due to the pressure drop in the crank chamber 140, the inclination angle of the swash plate 111 increases to the maximum, and the variable capacity compressor 100 'operates at the maximum discharge capacity.

可変容量圧縮機100′の最大吐出容量運転時では、吸入室141の圧力が徐々に低下する。そして、吸入室141の圧力が制御弁300の制御電流値で設定された設定圧まで低下すると、感圧手段のベローズ組立305のベローズが伸長して連結部306と連結し、弁体304が弁座面301fから離間して弁孔301cを開き、制御弁300が開弁状態となる。これにより、弁開閉検出部500上流側の圧力供給通路145(圧力領域104e3と連通路104gと圧力領域104f1)の圧力が昇圧し、可動体収容部501の第1の室533aに作用する圧力が第2の室533bに作用する圧力より高くなり、可動体510の第2部材512の段差部512bが図11(b)のように第2ハウジング540の円筒部540cの端面540eに当接する。その結果、弁状態検出部502において、ホール素子551から電子回路552へ、可動体510の位置が第2の位置であることを示す位置検出信号が出力され、電子回路552から制御弁300が開弁状態であることを示す開弁状態検出信号が入出力用コネクタ端子553を介して外部へ出力される。   During the maximum discharge capacity operation of the variable capacity compressor 100 ′, the pressure in the suction chamber 141 gradually decreases. When the pressure in the suction chamber 141 decreases to the set pressure set by the control current value of the control valve 300, the bellows of the bellows assembly 305 of the pressure sensing means expands and is connected to the connecting portion 306, and the valve body 304 is The valve hole 301c is opened away from the seating surface 301f, and the control valve 300 is opened. As a result, the pressure in the pressure supply passage 145 (the pressure region 104e3, the communication passage 104g, and the pressure region 104f1) on the upstream side of the valve opening / closing detection unit 500 is increased, and the pressure acting on the first chamber 533a of the movable body accommodating portion 501 is increased. The pressure is higher than the pressure acting on the second chamber 533b, and the stepped portion 512b of the second member 512 of the movable body 510 comes into contact with the end surface 540e of the cylindrical portion 540c of the second housing 540 as shown in FIG. As a result, in the valve state detection unit 502, a position detection signal indicating that the position of the movable body 510 is the second position is output from the hall element 551 to the electronic circuit 552, and the control valve 300 is opened from the electronic circuit 552. A valve open state detection signal indicating the valve state is output to the outside via the input / output connector terminal 553.

制御弁300の開弁後は、可動体収容部501の可動体510が開弁し、吐出室142とクランク室140とが圧力供給通路145で連通して吐出冷媒ガスが制御弁300と可動体収容部501を経由してクランク室140に導入される。放圧通路146を介してクランク室140から吸入室141へ流出する冷媒ガスの流出量はオリフィス103cで制限されるので、クランク室140の圧力が上昇する。クランク室140の圧力と吸入室141の圧力との圧力差が所定値(ΔPH)まで増加すると、斜板111の傾角が減少して吐出容量が減少する。吐出容量が減少して吸入室141の圧力が上昇すると、感圧手段のベローズ組立305のベローズが収縮して弁体304が閉弁方向に移動し、クランク室140に導入される吐出冷媒ガス量が減少してクランク室140の圧力が低下する。クランク室140の圧力低下によりクランク室140の圧力と吸入室141の圧力との圧力差が所定値ΔPL(ΔPL<ΔPH)まで減少すると斜板111の傾角が増加して吐出容量が増加する。このように、制御弁300の開弁後は、感圧手段により、吸入室141の圧力が制御電流値で設定された設定圧になるよう制御弁300の弁開度が自律的に調整され、可変容量圧縮機100′は、制御電流値と制御吸入圧力値が一義的な関係にある吐出容量制御状態による運転が実行される。   After the control valve 300 is opened, the movable body 510 of the movable body accommodating portion 501 is opened, and the discharge chamber 142 and the crank chamber 140 are communicated with each other through the pressure supply passage 145 so that the discharged refrigerant gas is transferred to the control valve 300 and the movable body. It is introduced into the crank chamber 140 via the accommodating portion 501. Since the outflow amount of the refrigerant gas flowing out from the crank chamber 140 to the suction chamber 141 via the pressure release passage 146 is limited by the orifice 103c, the pressure in the crank chamber 140 increases. When the pressure difference between the pressure in the crank chamber 140 and the pressure in the suction chamber 141 increases to a predetermined value (ΔPH), the inclination angle of the swash plate 111 decreases and the discharge capacity decreases. When the discharge capacity decreases and the pressure in the suction chamber 141 increases, the bellows of the bellows assembly 305 of the pressure sensing means contracts, the valve body 304 moves in the valve closing direction, and the amount of discharged refrigerant gas introduced into the crank chamber 140 Decreases and the pressure in the crank chamber 140 decreases. When the pressure difference between the pressure in the crank chamber 140 and the pressure in the suction chamber 141 decreases to a predetermined value ΔPL (ΔPL <ΔPH) due to the pressure drop in the crank chamber 140, the inclination angle of the swash plate 111 increases and the discharge capacity increases. Thus, after the control valve 300 is opened, the valve opening degree of the control valve 300 is autonomously adjusted by the pressure sensing means so that the pressure of the suction chamber 141 becomes the set pressure set by the control current value, The variable capacity compressor 100 ′ is operated in a discharge capacity control state in which the control current value and the control suction pressure value are uniquely related.

本実施形態の可変容量圧縮機100′によれば、第1実施形態の作用効果に加えて、弁開閉検出部500の可動体収容部501に逆止弁に機能を組み込んだので、逆止弁250が省略でき、製造コストを抑制できる利点がある。   According to the variable capacity compressor 100 ′ of this embodiment, in addition to the function and effect of the first embodiment, the function of the check valve is incorporated in the movable body accommodating portion 501 of the valve opening / closing detection unit 500. There is an advantage that 250 can be omitted and the manufacturing cost can be suppressed.

また、円筒部540cと第2部材512で囲まれた空間内に磁石513を配置したので、圧力供給通路145を流れる冷媒に含まれる磨耗粉等の異物により、磁石513とホール素子551で構成された位置検出手段による位置検出に不具合を生じることを防止できる。更に、円筒部540cに形成した絞り通路540dによって、円筒部540cと第2部材512で囲まれた空間に、可動体510の移動に対するダンパー効果を持たせることができる。   In addition, since the magnet 513 is disposed in the space surrounded by the cylindrical portion 540c and the second member 512, the magnet 513 and the Hall element 551 are configured by foreign matter such as wear powder contained in the refrigerant flowing through the pressure supply passage 145. It is possible to prevent problems in position detection by the position detection means. Furthermore, the damper passage 540d formed in the cylindrical portion 540c can have a damper effect on the movement of the movable body 510 in the space surrounded by the cylindrical portion 540c and the second member 512.

次に、本発明の可変容量圧縮機100、100′の駆動トルク演算装置の一例を示し、説明する。
図13は、車両エアコンシステムのエアコンECU600における駆動トルク演算に関連する構成を示したブロック図である。
図13において、蒸発器目標温度設定手段610は、図示しない車室内温度設定と種々の外部情報に基づいて吐出容量制御の最終的な目標となる蒸発器出口空気温度を設定する。制御電流設定手段620は、蒸発器目標温度設定手段610で設定された目標温度と、蒸発器出口に配置された温度検出手段630で検知された実際の温度との偏差を演算し、この偏差が小さくなるように制御弁300の電磁コイル313に通電する制御電流値Iを設定する。駆動手段640は、制御弁300の電磁コイル313を流れる電流が、制御電流設定手段620で設定された制御電流値Iになるように電磁コイル313を駆動する。制御電流は所定の駆動周波数(例えば400〜500Hz)のPWM(パルス幅変調)により、デューティ比を変更することにより調整される。従って、可変容量圧縮機100(又は100′)は、蒸発器目標温度設定手段610で設定された目標温度に、温度検出手段630で検知された実際の温度が近づくように制御電流値Iが調整されて吐出容量が制御される。
Next, an example of the driving torque calculation device of the variable capacity compressors 100 and 100 'of the present invention will be shown and described.
FIG. 13 is a block diagram showing a configuration related to driving torque calculation in air conditioner ECU 600 of the vehicle air conditioner system.
In FIG. 13, an evaporator target temperature setting means 610 sets an evaporator outlet air temperature that is a final target of discharge capacity control based on a vehicle interior temperature setting (not shown) and various external information. The control current setting means 620 calculates the deviation between the target temperature set by the evaporator target temperature setting means 610 and the actual temperature detected by the temperature detection means 630 disposed at the evaporator outlet. A control current value I for energizing the electromagnetic coil 313 of the control valve 300 is set so as to decrease. The driving unit 640 drives the electromagnetic coil 313 so that the current flowing through the electromagnetic coil 313 of the control valve 300 becomes the control current value I set by the control current setting unit 620. The control current is adjusted by changing the duty ratio by PWM (pulse width modulation) at a predetermined drive frequency (for example, 400 to 500 Hz). Therefore, the variable capacity compressor 100 (or 100 ′) adjusts the control current value I so that the actual temperature detected by the temperature detecting means 630 approaches the target temperature set by the evaporator target temperature setting means 610. Thus, the discharge capacity is controlled.

駆動トルク演算手段650には、例えば高圧圧力検出手段660の出力信号Pd、エンジン回転数検出手段670の出力信号Ne、流量検出手段680の出力信号Vr、制御電流設定手段620の出力信号I(制御電流値I)、弁開閉検出部400(又は500)の出力信号(弁開閉状態検出信号)が入力されている。駆動トルク演算手段650は、これら入力信号に基づいて可変容量圧縮機100(又は100′)の駆動トルクTrを演算し、エンジンECU700に出力する。高圧圧力検出手段660及び流量検出手段680は、例えば可変容量圧縮機100(又は100′)の吐出室142とエアコンシステムの凝縮器(図示せず)との間の高圧側冷媒回路に配置される。   The drive torque calculation means 650 includes, for example, an output signal Pd from the high pressure detection means 660, an output signal Ne from the engine speed detection means 670, an output signal Vr from the flow rate detection means 680, and an output signal I (control) from the control current setting means 620. Current value I) and an output signal (valve open / closed state detection signal) of the valve open / close detection unit 400 (or 500) are input. The drive torque calculation means 650 calculates the drive torque Tr of the variable capacity compressor 100 (or 100 ') based on these input signals, and outputs it to the engine ECU 700. The high pressure detection means 660 and the flow rate detection means 680 are arranged in a high pressure side refrigerant circuit between the discharge chamber 142 of the variable capacity compressor 100 (or 100 ′) and the condenser (not shown) of the air conditioner system, for example. .

駆動トルク演算手段650は、弁開閉検出部400(又は500)から閉弁状態検出信号が入力した場合、即ち、制御弁300が閉弁状態にあり、可変容量圧縮機100(又は100′)が最大吐出容量で動作している場合は、可変容量圧縮機100(又は100′)の駆動トルクTrを、例えば次式の4つのパラメータの関数として演算する。
Tr=f(Vr、Pd、Ps、Ne)
ここで、Psは吸入室141の制御圧力であり、最大吐出容量運転時であるので固定値として、他のパラメータから容易に推定できる。
When the valve closing state detection signal is input from the valve opening / closing detection unit 400 (or 500), the drive torque calculating means 650 is in the closed state, that is, the control valve 300 is in the closed state, and the variable capacity compressor 100 (or 100 ') is turned on. When operating at the maximum discharge capacity, the drive torque Tr of the variable capacity compressor 100 (or 100 ') is calculated as a function of, for example, the following four parameters.
Tr = f (Vr, Pd, Ps, Ne)
Here, Ps is the control pressure of the suction chamber 141 and can be easily estimated from other parameters as a fixed value because it is during the maximum discharge capacity operation.

また、弁開閉検出部400(又は500)から開弁状態検出信号が入力した場合、即ち、制御弁300が開弁状態にあり、可変容量圧縮機100(又は100′)が吐出容量制御状態で動作している場合は、吸入室141の制御圧力は制御電流値Iで設定された設定圧力と同等であるので、駆動トルク演算手段650は、制御電流設定手段620から入力する制御電流値Iを吸入室141の制御圧力Psとして代用し、可変容量圧縮機100(又は100′)の駆動トルクTrを、次式の4つのパラメータの関数として演算する。
Tr=f(Vr、Pd、I、Ne)
Further, when a valve open state detection signal is input from the valve opening / closing detection unit 400 (or 500), that is, the control valve 300 is in the valve open state, and the variable displacement compressor 100 (or 100 ') is in the discharge capacity control state. When operating, since the control pressure in the suction chamber 141 is equivalent to the set pressure set by the control current value I, the drive torque calculating means 650 uses the control current value I input from the control current setting means 620. Instead of the control pressure Ps of the suction chamber 141, the driving torque Tr of the variable capacity compressor 100 (or 100 ') is calculated as a function of the following four parameters.
Tr = f (Vr, Pd, I, Ne)

即ち、駆動トルク演算手段650は、可変容量圧縮機100(又は100′)が吐出容量制御状態で動作している場合のみ、トルク演算用の吸入室141の制御圧力Psとして制御弁300の制御電流値Iを代用し、最大吐出容量状態の場合は他のパラメータから推定した値を吸入室141の制御圧力Psとして使用して可変容量圧縮機100(又は100′)の駆動トルクTrを演算するので、演算した駆動トルクTrが実際のトルクから大きく乖離することはなく、可変容量圧縮機の駆動トルクの演算精度が向上する。   That is, the drive torque calculating means 650 controls the control current of the control valve 300 as the control pressure Ps of the suction chamber 141 for torque calculation only when the variable capacity compressor 100 (or 100 ′) is operating in the discharge capacity control state. Substituting the value I and calculating the drive torque Tr of the variable capacity compressor 100 (or 100 ') using the value estimated from other parameters as the control pressure Ps of the suction chamber 141 in the case of the maximum discharge capacity state. The calculated drive torque Tr does not deviate greatly from the actual torque, and the calculation accuracy of the drive torque of the variable capacity compressor is improved.

尚、第1実施形態の可動体収容部401において、可動体410の大径部410aが段差部421dに当接したときに第1の室424aと第2の室424bとを連通する絞り通路を、大径部410aと段差部421dとの当接面の間に設けるとよい。これによって、第1の室424aに異物が侵入した場合に、前記絞り通路を経由して第2の室424bからクランク室140に異物が排出され易くなる。   In the movable body accommodating portion 401 of the first embodiment, a throttle passage that communicates the first chamber 424a and the second chamber 424b when the large diameter portion 410a of the movable body 410 abuts on the stepped portion 421d. It is good to provide between the contact surfaces of the large diameter portion 410a and the stepped portion 421d. As a result, when foreign matter enters the first chamber 424a, the foreign matter is easily discharged from the second chamber 424b to the crank chamber 140 via the throttle passage.

また、第2実施形態の可動体収容部501において、制御弁300側から流入する冷媒流の主流は流入孔530bから第1の室533aと流出孔530cを経由して下流側に流れるが、一部は可動体510の第1部材511の側壁と第1ハウジング530内面との微小な隙間から第2の室533bに漏れる。この流れに沿って異物が第2の室533bに侵入する虞れがある。これを抑制するために、第1部材511の側壁の中間部に異物を流出孔530cに導く環状溝を形成するとよい。   In the movable body accommodating portion 501 of the second embodiment, the main flow of the refrigerant flow flowing from the control valve 300 side flows downstream from the inflow hole 530b via the first chamber 533a and the outflow hole 530c. The portion leaks into the second chamber 533b through a minute gap between the side wall of the first member 511 of the movable body 510 and the inner surface of the first housing 530. There is a possibility that foreign matter may enter the second chamber 533b along this flow. In order to suppress this, an annular groove that guides foreign matter to the outflow hole 530c may be formed in the middle portion of the side wall of the first member 511.

また、各実施形態では、可動体収容部401,501と弁状態検出部402,502を一体化したが、分離して配設するようにしてもよい。   Moreover, in each embodiment, although movable body accommodating part 401,501 and valve state detection part 402,502 were integrated, you may make it arrange | position separately.

また、各実施形態では、吸入室141の圧力を所定値に自律制御する感圧手段を有する制御弁を備えた可変容量圧縮機の例を示したが、圧縮機内部の吐出圧領域の2点間の差圧、吸入圧領域の2点間の差圧、或いは、高圧領域と低圧領域の差圧を自律制御する感圧手段を有する制御弁を備えた可変容量圧縮機にも、本発明を適用できる。   Moreover, in each embodiment, although the example of the variable capacity compressor provided with the control valve which has the pressure-sensitive means which autonomously controls the pressure of the suction chamber 141 to a predetermined value was shown, two points of the discharge pressure area | region inside a compressor are shown. The present invention is also applied to a variable capacity compressor having a control valve having pressure-sensitive means for autonomously controlling a differential pressure between two points in a suction pressure region, or a differential pressure between a high pressure region and a low pressure region. Applicable.

また、各実施形態では、クラッチレス可変容量圧縮機としたが、クラッチ付き可変容量圧縮機としてもよい。また、圧力供給通路の開度を圧縮機内部の圧力を受けて自律的に調整する感圧手段を有する制御弁を備える可変容量圧縮機であれば、本実施形態の往復動式に限らず、ベーン式、スクロール式等、他の駆動方式の可変容量圧縮機としてもよい。   Moreover, in each embodiment, although it was set as the clutchless variable capacity compressor, it is good also as a variable capacity compressor with a clutch. Further, if it is a variable capacity compressor provided with a control valve having a pressure sensing means that autonomously adjusts the opening of the pressure supply passage by receiving the pressure inside the compressor, it is not limited to the reciprocating type of this embodiment, Other drive type variable capacity compressors such as vane type and scroll type may be used.

また、弁状態検出部から出力される制御弁開閉状態を示す開閉状態検出出力を、エアコンシステムの蒸発器送風ファン、内外気切り替えダンパー、エアミックスダンパー等の各制御機器の制御に使用することが考えられる。   Further, the open / closed state detection output indicating the control valve open / closed state output from the valve state detection unit can be used for control of each control device such as an evaporator blower fan, an inside / outside air switching damper, an air mix damper, etc. of the air conditioner system. Conceivable.

100,100′…可変容量圧縮機、140…クランク室、141…吸入室、142…吐出室、145…圧力供給通路、250…逆止弁、300…制御弁、305…ベローズ、306…連結部、304…弁体、400,500…弁開閉検出部、 401,501…可動体収容部、402,502…弁状態検出部、410,510…可動体、411,513…磁石、424a,533a…第1の室、424b,533b…第2の室、431,551…ホール素子、432,552…電子回路   DESCRIPTION OF SYMBOLS 100,100 '... Variable capacity compressor, 140 ... Crank chamber, 141 ... Suction chamber, 142 ... Discharge chamber, 145 ... Pressure supply passage, 250 ... Check valve, 300 ... Control valve, 305 ... Bellows, 306 ... Connection part 304, valve body, 400, 500 ... valve opening / closing detection unit, 401, 501 ... movable body housing unit, 402, 502 ... valve state detection unit, 410, 510 ... movable body, 411, 513 ... magnet, 424a, 533a ... First chamber, 424b, 533b ... second chamber, 431, 551 ... Hall element, 432, 552 ... electronic circuit

Claims (8)

制御圧力を感知し当該制御圧力が外部信号で設定された設定圧になるよう弁開度を自律的に調整する感圧手段を備えた制御弁を、吐出圧領域と圧力調整室とを連通する圧力供給通路に介装し、前記制御弁によって前記圧力供給通路の開度を調整して前記圧力調整室の圧力を調整して冷媒の吐出容量を可変する可変容量圧縮機において、
前記制御弁は、前記圧力供給通路の一部を構成する弁孔と、前記弁孔を開閉する弁体とを内部に備え、
前記制御弁の開閉動作と連動し、前記制御弁が閉弁状態の時に第1の位置に移動し、開弁状態の時に第2の位置に移動する可動体であって、前記弁体と分離して設けられる可動体と、
前記可動体の位置を検出して前記制御弁の開閉状態検出信号を出力する弁状態検出手段と、
を備えたことを特徴とする可変容量圧縮機。
A control valve having pressure sensing means that senses the control pressure and autonomously adjusts the valve opening so that the control pressure becomes a set pressure set by an external signal communicates the discharge pressure region and the pressure adjustment chamber. In a variable capacity compressor that is interposed in a pressure supply passage and adjusts the opening of the pressure supply passage by the control valve to adjust the pressure in the pressure adjustment chamber to vary the discharge capacity of the refrigerant,
The control valve includes a valve hole that constitutes a part of the pressure supply passage and a valve body that opens and closes the valve hole.
In conjunction with the opening and closing operation of the control valve, the movable body moves to the first position when the control valve is in the closed state and moves to the second position when the control valve is in the opened state, and is separated from the valve body A movable body provided as a
Valve state detecting means for detecting the position of the movable body and outputting an open / closed state detection signal of the control valve;
A variable capacity compressor characterized by comprising:
前記制御弁と前記圧力調整室との間の圧力供給通路に介装され、前記制御弁の閉弁動作に伴って前記圧力供給通路を閉鎖して前記圧力調整室から制御弁側への冷媒の流れを阻止し、前記制御弁の開弁動作に伴って前記圧力供給通路を開放して前記圧力調整室への冷媒の流入を可能とする逆止弁と、
前記制御弁と前記逆止弁の間の圧力供給通路と吸入圧領域とを連通する連通路と、
前記可動体を移動可能に収容する収容室を有し、前記収容室が、前記制御弁と前記逆止弁との間の前記圧力供給通路に連通する第1の室と前記圧力調整室に連通する第2の室とに、前記可動体によって仕切られた可動体収容手段と、
を備え、
前記弁状態検出手段は、前記可動体が前記第1の室の端面側に移動したときを前記第1の位置として検出し前記制御弁の閉弁状態検出信号を出力し、前記第2室の端面側に移動したときを前記第2の位置として前記制御弁の開弁状態検出信号を出力する、請求項1に記載の可変容量圧縮機。
The pressure supply passage is interposed between the control valve and the pressure regulation chamber, and the pressure supply passage is closed in accordance with the valve closing operation of the control valve so that the refrigerant from the pressure regulation chamber to the control valve side A check valve that prevents flow and opens the pressure supply passage in accordance with the opening operation of the control valve to allow the refrigerant to flow into the pressure adjustment chamber;
A communication path communicating the pressure supply path between the control valve and the check valve and the suction pressure region;
A storage chamber for movably storing the movable body, wherein the storage chamber communicates with the first chamber and the pressure adjustment chamber communicating with the pressure supply passage between the control valve and the check valve; Movable body containing means partitioned by the movable body into the second chamber,
With
The valve state detection means detects when the movable body moves to the end face side of the first chamber as the first position, outputs a valve closing state detection signal of the control valve, The variable capacity compressor according to claim 1, wherein a valve open state detection signal of the control valve is output with the second position as the time of movement toward the end face.
前記制御弁と前記圧力調整室との間の圧力供給通路に介装された収容室内に移動可能に収容され、前記収容室を、制御弁側圧力供給通路に連通する第1の室と圧力調整室側圧力供給通路に連通する第2の室とに仕切る前記可動体と、該可動体を前記第1の室側に弾性付勢する弾性部材と、前記第1の室と前記第2の室とを連通する連通部と、を備え、前記制御弁の閉弁動作に伴って前記可動体が前記連通部を閉鎖して前記第1の室から前記第2の室側への冷媒の流れを阻止し、前記制御弁の開弁動作に伴って前記可動体が前記弾性部材の付勢力に抗して前記連通部を開放して前記第1の室から前記第2の室への冷媒の流入を可能とする逆止弁機能を備えた可動体収容手段と、
前記制御弁と前記可動体収容手段の間の圧力供給通路と吸入圧領域とを連通する連通路と、
を備え、
前記弁状態検出手段は、前記可動体が前記連通部の閉鎖側に移動したときを前記第1の位置として検出し前記制御弁の閉弁状態検出信号を出力し、前記連通部の開放側に移動したときを前記第2室の端面側に移動したときを前記第2の位置として前記制御弁の開弁状態検出信号を出力する、請求項1に記載の可変容量圧縮機。
Pressure regulation with a first chamber that is movably accommodated in a storage chamber interposed in a pressure supply passage between the control valve and the pressure adjustment chamber, and that communicates the storage chamber with the control valve side pressure supply passage. The movable body that partitions into a second chamber communicating with the chamber-side pressure supply passage, an elastic member that elastically biases the movable body toward the first chamber, the first chamber, and the second chamber A communicating portion that communicates with the control valve, and the movable body closes the communicating portion in accordance with the closing operation of the control valve, and the refrigerant flows from the first chamber to the second chamber side. The movable body opens the communication portion against the urging force of the elastic member in accordance with the opening operation of the control valve, and the refrigerant flows from the first chamber into the second chamber. Movable body containing means having a check valve function that enables
A communication path communicating the pressure supply path and the suction pressure region between the control valve and the movable body housing means;
With
The valve state detection means detects when the movable body moves to the closed side of the communication portion as the first position, outputs a valve closed state detection signal of the control valve, and opens the open side of the communication portion. 2. The variable capacity compressor according to claim 1, wherein a valve open state detection signal of the control valve is output with the second position as a time when moved to an end face side of the second chamber.
前記弁状態検出手段は、前記可動体の位置を検出する位置検出部と、該位置検出部の出力信号に基づいて前記制御弁の開閉状態検出信号を出力する出力部とを、一体的に備えている、請求項1〜3のいずれか1つに記載の可変容量圧縮機。   The valve state detection unit integrally includes a position detection unit that detects the position of the movable body, and an output unit that outputs an open / closed state detection signal of the control valve based on an output signal of the position detection unit. The variable capacity compressor according to any one of claims 1 to 3. 前記可動体収容手段と前記弁状態検出手段とを一体に組付けた、請求項2又は3に記載の可変容量圧縮機。 The variable capacity compressor according to claim 2 or 3 , wherein the movable body housing means and the valve state detection means are assembled together. 前記弁状態検出手段の前記位置検出部は、前記可動体の一端側に固定した磁石と、前記可動体の移動による前記磁石の磁束変化を検出する検出素子と、を備え、前記磁石を前記可動体収容手段の第2の室側に配置した、請求項5に記載の可変容量圧縮機。   The position detection unit of the valve state detection unit includes a magnet fixed to one end of the movable body, and a detection element that detects a change in magnetic flux of the magnet due to the movement of the movable body, and the magnet is movable. The variable capacity compressor according to claim 5, which is disposed on the second chamber side of the body housing means. シリンダボア内のピストンを往復動させて、吸入室からシリンダボア内に吸入した冷媒を圧縮して吐出室に吐出すると共に、前記ピストンの背方のクランク室の圧力を制御して前記ピストンのストロークを変化させて冷媒の吐出容量を可変する往復動式可変容量圧縮機であって、前記吐出圧領域を前記吐出室とし、前記圧力調整室を前記クランク室とした、請求項1〜6のいずれか1つに記載の可変容量圧縮機。   Reciprocating the piston in the cylinder bore compresses the refrigerant sucked into the cylinder bore from the suction chamber and discharges it to the discharge chamber, and controls the pressure in the crank chamber behind the piston to change the stroke of the piston 7. A reciprocating variable displacement compressor that varies the discharge capacity of the refrigerant, wherein the discharge pressure region is the discharge chamber and the pressure adjustment chamber is the crank chamber. The variable capacity compressor described in 1. 前記制御弁は、前記吸入室の圧力を前記制御圧力として感知し、前記吸入室の圧力が外部信号で設定された設定圧になるよう前記感圧手段で自律的に調整する構成である請求項7に記載の可変容量圧縮機。   The control valve is configured to sense the pressure in the suction chamber as the control pressure and to autonomously adjust the pressure in the suction chamber with the pressure sensing means so that the pressure in the suction chamber becomes a set pressure set by an external signal. 8. The variable capacity compressor according to 7.
JP2013117190A 2013-06-03 2013-06-03 Variable capacity compressor Active JP6192365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013117190A JP6192365B2 (en) 2013-06-03 2013-06-03 Variable capacity compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013117190A JP6192365B2 (en) 2013-06-03 2013-06-03 Variable capacity compressor

Publications (2)

Publication Number Publication Date
JP2014234777A JP2014234777A (en) 2014-12-15
JP6192365B2 true JP6192365B2 (en) 2017-09-06

Family

ID=52137661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013117190A Active JP6192365B2 (en) 2013-06-03 2013-06-03 Variable capacity compressor

Country Status (1)

Country Link
JP (1) JP6192365B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014218525B4 (en) 2014-09-16 2016-10-13 Te Connectivity Germany Gmbh Electric control valve for an air conditioning compressor with a sensor for determining the position of the control piston
JP2017214877A (en) * 2016-05-31 2017-12-07 サンデン・オートモーティブコンポーネント株式会社 Variable displacement compressor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257775A (en) * 1988-08-23 1990-02-27 Nippon Denso Co Ltd Solenoid valve with lift sensor
JPH03206369A (en) * 1990-01-08 1991-09-09 Hitachi Ltd Variable capacity swash plate type compressor and capacity display method thereof
JP3687129B2 (en) * 1995-03-23 2005-08-24 株式会社豊田自動織機 Refrigerant inflow prevention structure in compressor
JP3329275B2 (en) * 1997-10-07 2002-09-30 株式会社デンソー Vehicle air conditioner
JP5391648B2 (en) * 2008-10-28 2014-01-15 株式会社豊田自動織機 Capacity control mechanism in variable capacity compressor

Also Published As

Publication number Publication date
JP2014234777A (en) 2014-12-15

Similar Documents

Publication Publication Date Title
JP6495634B2 (en) Variable capacity compressor
US8393170B2 (en) Capacity control system for variable capacity compressor and display device for the system
KR100215158B1 (en) Variable capacity type compressor and method therefor
JP4242624B2 (en) Capacity control valve and control method thereof
JP5235569B2 (en) Capacity control valve, variable capacity compressor and capacity control system of variable capacity compressor
EP1091125A2 (en) Control valve of displacement variable compressor
WO2014148367A1 (en) Control valve and variable capacity compressor provided with said control valve
JP2008157031A (en) Electromagnetic displacement control valve in clutchless variable displacement type compressor
JP6402426B2 (en) Variable capacity compressor
JP2000161234A (en) Variable displacement type compressor, and its displacement control valve
JP2002285956A (en) Control valve of variable displacement compressor
JP5281320B2 (en) Capacity control system for variable capacity compressor
JP6192365B2 (en) Variable capacity compressor
US20170211561A1 (en) Variable displacement swash plate type compressor
EP1207302B1 (en) Control apparatus for variable displacement compressor
JP6228003B2 (en) Flow rate detection device and variable capacity compressor
JP5430401B2 (en) Variable capacity compressor
JP5519199B2 (en) Variable capacity swash plate compressor and air conditioning system using the same
WO2020189604A1 (en) Variable capacity compressor
JP4663579B2 (en) Volume control valve for variable capacity compressor
JP5474284B2 (en) Capacity control system for variable capacity compressor
JP5260906B2 (en) Volume control valve for variable capacity compressor
JP5053740B2 (en) Volume control valve for variable capacity compressor
JP2016169698A (en) Variable capacity type swash plate compressor
WO2016035729A1 (en) Discharge capacity control system for variable capacity compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170808

R150 Certificate of patent or registration of utility model

Ref document number: 6192365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350