WO2016035729A1 - Discharge capacity control system for variable capacity compressor - Google Patents

Discharge capacity control system for variable capacity compressor Download PDF

Info

Publication number
WO2016035729A1
WO2016035729A1 PCT/JP2015/074590 JP2015074590W WO2016035729A1 WO 2016035729 A1 WO2016035729 A1 WO 2016035729A1 JP 2015074590 W JP2015074590 W JP 2015074590W WO 2016035729 A1 WO2016035729 A1 WO 2016035729A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
control
discharge capacity
control current
discharge
Prior art date
Application number
PCT/JP2015/074590
Other languages
French (fr)
Japanese (ja)
Inventor
田口 幸彦
Original Assignee
サンデンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデンホールディングス株式会社 filed Critical サンデンホールディングス株式会社
Publication of WO2016035729A1 publication Critical patent/WO2016035729A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/12Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by varying the length of stroke of the working members

Definitions

  • the present invention relates to a discharge capacity control system for a variable capacity compressor that is inserted in a refrigerant circuit to form a refrigeration cycle, and more particularly to a discharge capacity control system for a variable capacity compressor used in a vehicle air conditioner system or the like.
  • Patent Document 1 a control valve that controls the discharge capacity of a variable capacity compressor with a differential pressure between two points in a discharge pressure area is used to control the valve of the control valve when the pressure in the suction pressure area falls below a preset reference pressure.
  • a technique is disclosed in which a displacement means for increasing the opening is added to avoid operation with a large discharge capacity in a refrigerant shortage state.
  • an object of the present invention is to provide a discharge capacity control system of a variable capacity compressor that can avoid operation with a large discharge capacity in a refrigerant shortage state with a simple configuration without having the displacement means.
  • the discharge capacity control system of the variable capacity compressor according to the present invention is inserted together with a radiator, an expander and an evaporator in a refrigerant circulation path through which refrigerant circulates to constitute a refrigeration cycle of an air conditioner system, and controls the pressure of the control pressure chamber.
  • a system for controlling a discharge capacity of a variable capacity compressor whose discharge capacity changes based on a change, wherein the valve body opens and closes in response to a differential pressure between two points of a refrigerant circulation path inside the variable capacity compressor.
  • a pressure-sensitive member that displaces the actuator, and an actuator that applies an urging force in the valve closing direction to the valve body in accordance with the supplied control current.
  • the differential pressure between the two points and the urging force of the actuator The valve body is displaced in response, the control valve for changing the pressure in the control pressure chamber by adjusting the opening of the pressure supply passage communicating the discharge chamber and the control pressure chamber, and the low pressure region of the refrigerant circulation path
  • the control current supplied to the actuator is changed to reduce the discharge capacity. Therefore, it is possible to avoid operation with a large discharge capacity in a refrigerant shortage state. Since the control valve has a simple configuration having a pressure-sensitive member and an actuator, the cost of the control valve can be suppressed, and the layout of the control valve is facilitated.
  • FIG. 1 is a cross-sectional view of a variable capacity compressor 100 and a control valve 300 which are an example to which the present invention is applied.
  • This variable capacity compressor 100 is inserted together with a radiator, an expander, and an evaporator in a refrigerant circulation path through which refrigerant circulates to constitute a refrigeration cycle of a vehicle air conditioner system.
  • a variable capacity compressor 100 includes a cylinder block 101 having a plurality of cylinder bores 101a, a front housing 102 provided at one end of the cylinder block 101, and a valve plate at the other end of the cylinder block 101. And a cylinder head 104 provided through 103.
  • a control pressure chamber 140 is formed by the cylinder block 101 and the front housing 102, and a drive shaft 110 is provided so as to traverse the inside of the control pressure chamber 140.
  • a swash plate 111 is disposed in the control pressure chamber 140.
  • a through hole 111b is formed at the center of the swash plate 111, and the drive shaft 110 is inserted through the through hole 111b.
  • the swash plate 111 is connected to a rotor 112 fixed to the drive shaft 110 via a link mechanism 120 as a connecting means. As a result, the swash plate 111 rotates with the drive shaft 110, and the inclination angle of the swash plate 111 can be changed along the drive shaft 110.
  • the link mechanism 120 includes a first arm 112 a projecting from the rotor 112, a second arm 111 a projecting from the swash plate 111, and one end pivotable to the first arm 112 a via the first connecting pin 122. And a link arm 121 having the other end rotatably connected to the second arm 111a via a second connection pin 123.
  • the through hole 111b of the swash plate 111 is formed in a shape that allows the swash plate 111 to tilt within a range from the maximum inclination angle to the minimum inclination angle.
  • the through hole 111b is formed with a minimum inclination angle restricting portion that restricts the inclination angle displacement (tilting) of the swash plate 111 in the direction of decreasing the inclination angle by coming into contact with the drive shaft 110.
  • the minimum inclination angle restricting section is configured such that the inclination angle of the swash plate 111 is substantially 0 degree. It is formed so as to allow tilt angle displacement (tilt) until. Further, the tilt angle displacement (tilt) of the swash plate 111 in the direction of increasing the tilt angle is regulated by the swash plate 111 coming into contact with the rotor 112. Therefore, the inclination angle of the swash plate 111 becomes the maximum inclination angle when the swash plate 111 contacts the rotor 112.
  • the drive shaft 110 includes a tilt angle reducing spring 114 that biases the swash plate 111 in a direction that decreases the tilt angle, and a tilt angle increasing spring that biases the swash plate 111 in a direction that increases the tilt angle.
  • 111 is mounted.
  • the inclination angle decreasing spring 114 is mounted between the swash plate 111 and the rotor 112, and the inclination angle increasing spring 115 is fixed to or formed on the swash plate 111 and the drive shaft 110. 116.
  • the urging force of the inclination angle increasing spring 115 is set to be larger than the urging force of the inclination angle decreasing spring 114. For this reason, when the drive shaft 110 is not rotating, that is, when the variable displacement compressor 100 is stopped, the swash plate 111 is biased by the inclination angle decreasing spring 114 and the urging force of the inclination angle increasing spring 115. Are located at an inclination angle (> minimum inclination angle) in which they are balanced.
  • the inclination angle at which the urging force of the inclination angle decreasing spring 114 and the urging force of the inclination angle increasing spring 115 are balanced is set as the minimum inclination angle range in which the compression operation by the piston 136 is ensured. Can be set to a range of degrees.
  • One end of the drive shaft 110 extends through the boss portion 102a of the front housing 102 to the outside of the front housing 102, and is connected to a power transmission device (not shown).
  • a shaft sealing device 130 is inserted between the drive shaft 110 and the boss portion 102a, and the inside of the control pressure chamber 140 is blocked from the external space.
  • the drive shaft 110 and the rotor 112 are supported by bearings 131 and 132 in the radial direction, and supported by a bearing 133 and a thrust plate 134 in the thrust direction.
  • the thrust plate 134 side end of the drive shaft 110 and the thrust plate 134 are adjusted to have a predetermined gap by an adjustment screw 135.
  • the drive shaft 110 rotates in synchronization with the power transmission device when power from an external drive source (not shown) is transmitted to the power transmission device.
  • the piston 136 is disposed in the cylinder bore 101a, and one end of the piston 136 protrudes toward the control pressure chamber 140 side. A space is formed inside this end, and the outer periphery of the swash plate 111 is accommodated in the space, and a pair of shoes 137 are disposed across the peripheral portion of the swash plate 111. That is, the swash plate 111 is configured to be interlocked with the piston 136 via a pair of shoes 137. Therefore, the piston 136 can reciprocate in the cylinder bore 101a by the rotation of the swash plate 111.
  • the cylinder head 104 is formed with a suction chamber 141 disposed in the center and a discharge chamber 142 disposed so as to surround the suction chamber 141 in an annular shape.
  • the suction chamber 141 communicates with each cylinder bore 101a via a communication hole 103a formed in the valve plate 103 and a suction valve (not shown).
  • the discharge chamber 142 communicates with the corresponding cylinder bore 101a via a communication hole 103b formed in the valve plate 103 and a discharge valve (not shown).
  • the front housing 102, the cylinder block 101, the valve plate 103, and the cylinder head 104 are fastened by a plurality of through bolts 105 through a gasket (not shown) to form a compressor housing.
  • a discharge muffler is provided on the upper part of the cylinder block 101.
  • the discharge muffler is formed by fastening a lid member 106 in which a discharge port 106 a is formed and a forming wall 101 b that is partitioned and formed on the cylinder block 101 with a bolt through a seal member (not shown).
  • a muffler chamber 143 in the discharge muffler communicates with the discharge chamber 142 via a throttle passage 144.
  • the discharge chamber 142 is connected to the discharge-side refrigerant circulation path of the air conditioner system via the discharge passage formed by the throttle passage 144, the muffler chamber 143, and the discharge port 106a.
  • a suction port 104a and a communication path 104b are formed in the cylinder head 104.
  • the suction chamber 141 is connected to the suction-side refrigerant circulation path of the air conditioner system via a suction passage formed by the suction port 104a and the communication path 104b. Further, the suction passage extends linearly from the outside of the cylinder head 104 toward the suction chamber 141 so as to cross a part of the discharge chamber 142.
  • the discharge chamber 142, the suction chamber 141, the discharge passage, and the suction passage constitute a part of the refrigerant circulation path of the refrigeration cycle.
  • the cylinder head 104 is further provided with a control valve 300.
  • the control valve 300 is inserted into a pressure supply passage 145 that connects the discharge chamber 142 and the control pressure chamber 140 via a throttle passage 144 and a muffler chamber 143.
  • the control valve 300 increases the degree of opening of the pressure supply passage 145 in response to the pressure difference between the upstream side (discharge chamber 142) and the downstream side (muffler chamber 143) of the throttle passage 144 and the electromagnetic force generated by the current flowing through the solenoid.
  • the amount of discharge gas introduced into the control pressure chamber 140 is adjusted to control.
  • the refrigerant in the control pressure chamber 140 flows to the suction chamber 141 through the pressure release passage 146 constituted by the communication passage 101c, the space 101d, and the orifice 103c formed in the valve plate 103.
  • the pressure supply passage 145 and the pressure release passage 146 form a refrigerant circulation path inside the variable capacity compressor 100.
  • the pressure of the control pressure chamber 140 changes when the control valve 300 adjusts the opening degree of the supply passage 145.
  • the inclination angle of the swash plate 111 that is, the stroke of the piston 136 is changed by the change in the pressure in the control pressure chamber 140, and the discharge capacity in the variable capacity compressor 100 can be variably controlled.
  • FIG. 2 is a cross-sectional view of the control valve 300
  • FIG. 3 is a diagram illustrating characteristics of the control valve 300.
  • the control valve 300 includes a first pressure sensing chamber 302 that is formed in the valve housing 301 and communicates with the discharge chamber 142 via the pressure introduction passage 147 via the communication hole 301a, and the muffler chamber 143 side via the communication hole 301b.
  • a second pressure sensing chamber 303 communicating with the muffler chamber 143 via the pressure supply passage 145; a valve chamber 304 communicating with the control pressure chamber 140 via the pressure supply passage 145 on the control pressure chamber 140 side through the communication hole 301c; A valve hole 301d communicating the pressure sensing chamber 303 and the valve chamber 304; a valve body 305 whose one end is in contact with and away from the valve seat 301e around the valve hole 301d; and opening and closing the valve hole 301d;
  • the second pressure sensitive chamber 303 is partitioned, and the pressure Pd1 of the discharge chamber 142 is received from the first pressure sensitive chamber 302 side, and the pressure Pd2 of the muffler chamber 143 is received from the second pressure sensitive chamber 303 side to discharge pressure.
  • a pressure-sensitive member 306 that is displaced in the opening / closing direction of the valve body 305 in response to a differential pressure (Pd1-Pd2) between two points in the region, and one end side is fixed to the valve body 305 and the other end side is contacted and separated from the pressure-sensitive member 306
  • a pressure-sensitive rod 307 that is connected to transmit the displacement of the pressure-sensitive member 306 to the valve body 304, a solenoid rod 309 that is integrally formed with the valve body 305 at one end, and the valve body 305 according to the supplied control current.
  • an actuator 310 that applies an urging force in the valve closing direction.
  • control valve 305 is displaced according to the differential pressure in the discharge pressure region and the biasing force of the actuator 310.
  • the opening of the supply passage 145 is adjusted by the displacement of the control valve 305, and thereby the pressure in the control pressure chamber 140 changes.
  • the actuator 310 includes a movable iron core 311 press-fitted and fixed to an end opposite to the end integrally formed with the valve body 305 of the solenoid rod 309, and the movable iron core 311 facing the movable iron core 311 with a predetermined gap therebetween.
  • the fixed iron core 312 arranged, the forcible release spring 313 arranged between the fixed iron core 312 and the movable iron core 311 to urge the movable iron core 311 in the valve opening direction, a bottomed cylindrical shape,
  • a housing member 315 that houses the movable iron core 311 and whose opening end is fixed to the solenoid housing 314, and a coil 316 that is housed in the solenoid housing 314 with the housing member 315 inserted therein and whose surface is covered with resin.
  • the movable iron core 311, the fixed iron core 312 and the solenoid housing 314 are all made of a magnetic material and constitute a magnetic circuit.
  • the housing member 315 is formed of a nonmagnetic material.
  • the pressure receiving area Sb of the pressure sensing member 306 in the opening / closing direction of the valve body 305, the pressure receiving area Sv of the pressure Pd1 received by the valve body 305 from the valve hole 301d side, the pressure in the control pressure chamber 140 is Pc, and the actuator 310
  • the force acting on the valve body 305 is expressed by the following equation (1), where f is the biasing force of the forced opening spring 313, I is the current flowing through the coil 316, and F (I) is the biasing force by the actuator 310. .
  • the control valve 300 has a differential pressure (Pd1 ⁇ Pd2) between two points in the discharge pressure region by the connecting body of the pressure sensitive member 306, the pressure sensitive rod 307, the valve body 305, the solenoid rod 309 and the movable iron core 311.
  • Pd1 ⁇ Pd2 differential pressure
  • the opening of the pressure supply passage 145 is decreased to decrease the pressure in the control pressure chamber 140 in order to increase the discharge capacity.
  • the differential pressure (Pd1 ⁇ Pd2) between the two points in the discharge pressure region becomes larger than the set differential pressure, the pressure supply passage 145 is increased to increase the pressure in the control pressure chamber 140 in order to reduce the discharge capacity.
  • the control valve 300 having the connection body autonomously controls the opening degree of the pressure supply passage 145 so that the differential pressure (Pd1-Pd2) between the two points in the discharge pressure region approaches the set differential pressure. Further, since the two points in the discharge pressure region are set to the refrigerant circulation path (discharge passage) sandwiching the throttle passage 144, the control valve 300 sets the differential pressure between the two points in the discharge pressure region as described above.
  • the refrigerant circulation amount is adjusted by bringing the pressure close to the pressure.
  • the set differential pressure (Pd1 ⁇ Pd2) on the left side is affected by Pd2 ⁇ Pc, but Sb >> Sv Therefore, the effect is small.
  • the actuator 310 in the present embodiment is driven by pulse width modulation (PWM control) at a predetermined frequency in the range of, for example, 400 Hz to 500 Hz, and the pulse width (PWM) so that the current value of the coil 316 becomes a desired value.
  • PWM control pulse width modulation
  • PWM pulse width modulation
  • FIG. 4 is a block diagram showing the configuration of the discharge capacity control system 400.
  • the discharge capacity control system 400 controls the discharge capacity of the variable capacity compressor 100.
  • a sensor 402, a pressure sensor 403 as pressure detecting means, and a control current supply means 410 are provided.
  • the A / C switch 401 sets operation (ON) and non-operation (OFF) of the discharge capacity control system 400.
  • the A / C switch 401 is signal-connected to a control current setting unit 413 of a control current supply unit 410 described later.
  • the temperature sensor 402 is installed at the evaporator outlet and detects the evaporator outlet air temperature Te.
  • the temperature sensor 402 is connected to a pressure setting unit 412 described later, and outputs the detected evaporator outlet air temperature Te to the pressure setting unit 412.
  • the pressure sensor 403 detects the pressure in the low pressure region from the evaporator outlet of the air conditioner system to the variable capacity compressor 100 in the refrigerant circuit.
  • the pressure sensor 403 detects the pressure Ps in the suction pressure region.
  • the suction pressure region refers to the suction chamber 141, the communication path 104 b, the suction port 104 a, and the external refrigerant circulation path in the vicinity of the variable capacity compressor 100.
  • the pressure sensor 403 is connected in signal to a control current setting unit 413 described later, and outputs the detected pressure Ps in the suction pressure region to the control current setting unit 413. Further, since the pressure Ps in the suction pressure region is detected, the pressure sensor 403 can quickly respond to a change in discharge volume.
  • the control current supply unit 410 sets a control current in the control valve 300 and supplies the control current to the actuator 310.
  • the control current supply unit 410 includes an evaporator target temperature setting unit 411 that sets a target value of the evaporator outlet air temperature, and a suction pressure region.
  • It has a drive means 414 for adjusting the flowing control current I and a diode 416 arranged in parallel with the coil 316.
  • the evaporator target temperature setting means 411 is signal-connected to an air conditioning setting means (not shown), an outside air temperature sensor, etc., and outputs various external information such as an air conditioning setting such as a vehicle interior temperature setting and an outside air temperature outputted from these. Based on this, the target value Tes of the evaporator outlet air temperature, which is the final target of the discharge capacity control, is set.
  • the evaporator target temperature setting unit 411 is connected in signal to a pressure setting unit 412 described later, and outputs a target value Tes to the pressure setting unit 412.
  • the pressure setting unit 412 is based on a deviation ⁇ T between the target value Tes set by the evaporator target temperature setting unit 411 and the actual evaporator outlet air temperature Te detected by the temperature sensor 402, for example, by PI control.
  • the target value Pss of the pressure in the suction pressure region is set so that the deviation ⁇ T becomes small.
  • the pressure setting unit 412 is connected to the control current setting unit 413 in a signal manner, and outputs the target value Pss of the pressure in the suction pressure region to the control current setting unit 413.
  • an upper limit value PssH and a lower limit value PssL are set for the target value Pss of the pressure in the suction pressure region.
  • the pressure setting unit 412 is in a high rotation speed region where the rotation speed Nc exceeds a predetermined value Nc1 due to the output of the rotation sensor 404 that detects the rotation speed of the variable capacity compressor 100.
  • the lower limit value PssL can be increased from PssL1 to PssL2. Thereby, it is possible to avoid an increase in the discharge capacity in the high rotation speed region.
  • the predetermined value Nc1 is set, for example, as the upper limit (about 5000 rpm) of the normal rotation speed.
  • the rotation speed of the variable capacity compressor 100 may be calculated from the rotation speed of the vehicle engine without providing the rotation sensor.
  • the pressure setting means 412 sets either PssL1 or PssL2 as the lower limit value according to the output value Nc of the rotation sensor 404 as described above. As the output value Nc of 404 becomes higher, a higher lower limit value may be selected. Further, the pressure setting means 412 may use a value calculated based on the output value Nc of the rotation sensor 404 or the rotation speed of the variable capacity compressor calculated from the rotation speed of the vehicle engine as the lower limit value. In the pressure setting means 412, the lower limit value PssL can be changed based on the rotational speed of the variable capacity compressor, but in addition to this, the lower limit value PssL can be changed based on other external information such as the outside air temperature and the operating conditions of the air conditioner system. It may be possible.
  • the control current setting unit 413 When the signal-connected A / C switch 401 is switched from OFF to ON, the control current setting unit 413 performs start-up control that sets the control current I as a function of the elapsed time t from when the signal is connected. . Then, the control current setting unit 413 ends the start-up control when a predetermined time has elapsed, and performs air-conditioning control that sets the control current I based on the operating conditions of the air-conditioning system.
  • the operating conditions of the air conditioner system include, for example, the pressure in the suction pressure region, the target value of the pressure in the suction pressure region, the evaporator air temperature, the target air temperature of the evaporator, other data detected by various air conditioner systems, various target values, etc. It is.
  • the air conditioning control is performed, for example, by PI control based on a deviation ⁇ Ps between the pressure Ps in the suction pressure region detected by the pressure sensor 403 and the target value Pss of the pressure in the suction pressure region set by the pressure setting unit 412.
  • the control current I is set so that the deviation ⁇ Ps becomes small. Further, the control current I is set so that the deviation ⁇ T is directly reduced from the deviation ⁇ T between the target value Tes set by the evaporator target temperature setting means 411 and the evaporator outlet air temperature Te detected by the temperature sensor 402. You may do it.
  • the driving unit 414 includes a switching element driven by pulse width modulation control at a predetermined driving frequency (for example, 400 to 500 Hz), and based on the control current I set by the control current setting unit 413 using this switching element.
  • a predetermined driving frequency for example, 400 to 500 Hz
  • the duty ratio is adjusted so that the current flowing through the coil 316 detected by the current detection means 415 approaches the control current I.
  • the control current supply means 410 configured as described above sets a control current based on the operating condition of the air conditioner system and supplies it to the actuator 310.
  • the lower limit value PssL is set to the target value Pss of the pressure in the suction pressure region as described above.
  • the control current supply means 410 sets the target value in the suction pressure region to a value that is equal to or greater than PssL when the pressure in the suction pressure region, which is the low pressure region of the refrigerant circuit, falls below the preset lower limit value PssL. Then, the control current is set to increase the pressure in the control pressure chamber 140 to increase the pressure in the suction pressure region.
  • the control current supply unit 410 sets the control current so as to decrease the discharge capacity and supplies the control current to the actuator 310 when the pressure in the suction pressure region falls below the preset lower limit value PssL.
  • FIG. 6 shows a control flow of the discharge capacity control system 400.
  • the discharge capacity control system 400 sets the control current I of the coil 316 by start control in S105.
  • the discharge volume control system 400 determines whether or not the time t is less than t1 (S106). If the time t is less than t1, the time t becomes t1 or exceeds t1 (time is up). The activation control is continued by repeating S108 to S112 and S101 to S103 described later.
  • the discharge capacity control system 400 compares and determines the control current calculated in each control with a preset lower limit value Imin (S108).
  • the lower limit value Imin is set as the control current I (S109).
  • the calculated control current is compared with a preset upper limit value Imax (> Imin) (S110), and the calculated control current is determined to be the upper limit value Imax. If so, the upper limit value Imax is set as the control current I (S111).
  • the calculated control current is between the lower limit value Imin and the upper limit Imax, the calculated control current is set as the control current I (S112).
  • the set control current I is output to the coil 316 of the control valve 300 (S113). Then, the process returns to step 101 described above. In this way, the discharge capacity control system 400 repeats the above control until the power is turned off and the process ends.
  • FIG. 8 is a diagram showing an air conditioning control flow (S200) in the control flow of FIG.
  • the discharge capacity control system 400 calculates a deviation ⁇ T between the target value Tes of the evaporator outlet air temperature set in the air conditioning control in S200 and the evaporator outlet air temperature Te detected and read by the temperature sensor 402 (S201).
  • the target pressure value of the pressure in the suction pressure region that is the control target is calculated so that the deviation ⁇ T becomes small (S202).
  • the lower limit value PssL and the upper limit value PssH are set in advance for the target value Pss of the pressure in the suction pressure region. Then, the discharge capacity control system 400 compares and determines the target pressure value calculated in S202 with a preset lower limit value PssL (S203), and when the calculated target pressure value is less than or equal to the lower limit value PssL, The lower limit value PssL is set as the target value Pss (S204). As shown in FIG. 5, either one of PssL1 and PssL2 is set as the lower limit value PssL according to the output value Nc of the rotation sensor 404.
  • the discharge capacity control system 400 compares with the preset upper limit value PssH (S205), and the calculated target pressure value is the upper limit value. If it is equal to or greater than the value PssH, the upper limit value PssH is set as the target value Pss of the suction pressure region (S206).
  • the discharge capacity control system 400 sets the calculated target value as the target value Pss of the pressure in the suction pressure region ( S207).
  • a deviation ⁇ Ps between the pressure Ps in the suction pressure region detected by the pressure sensor 403 and the target value Pss of the pressure in the suction pressure region set by the pressure setting means 412 is calculated (S208), and the absolute value of the deviation ⁇ Ps is calculated. Is determined (S209). If the absolute value of the deviation ⁇ Ps is equal to or smaller than the preset value ⁇ , the current control current I is set as the control current I (S210). That is, the current control current I is maintained. If the absolute value of the deviation ⁇ Ps is larger than the value ⁇ , the control current I is set so that the deviation ⁇ Ps becomes smaller, for example, by PI control (S211).
  • the capacity control system 400 executes the start-up control until time t1, and the control valve 300 has a differential pressure (Pd1-Pd2) between two points in the discharge pressure region.
  • the opening degree of the pressure supply passage 145 is autonomously controlled so as to approach the set differential pressure set by the control current I.
  • the control current I increases proportionally as the time t increases, the discharge capacity is controlled to gradually increase from the minimum capacity side with time. Then, when the timer expires and the start-up control ends, air conditioning control is executed.
  • the deviation ⁇ T is reduced based on the deviation ⁇ T between the target temperature Tes set by the evaporator target temperature setting means 411 and the evaporator outlet air temperature Te detected by the temperature sensor 402. Then, the target value of the pressure in the suction pressure region that is the control target is calculated. The calculated target value of the pressure in the suction pressure region is compared with the lower limit value PssL and the upper limit value PssH, and the target value Pss of the pressure in the suction pressure region is set between the lower limit value PssL and the upper limit value PssH as described above.
  • the discharge capacity is adjusted so that the pressure Ps in the suction pressure region detected by the pressure sensor 403 approaches the target value Pss in the suction pressure region.
  • the evaporator outlet air temperature Te approaches the target value Tes. Note that the pressure Ps in the suction pressure region is controlled within a range of ⁇ ⁇ with respect to the target value Pss of the suction pressure region.
  • the lower limit value PssL is set in advance for the target pressure value Pss in the suction pressure region, when the pressure Ps in the suction pressure region is lower than the lower limit value, the control current is adjusted to supply the pressure.
  • the discharge capacity is reliably reduced. Thereby, large-capacity operation in a refrigerant shortage state can be avoided reliably.
  • the lower limit value PssL is changed to a higher value, thereby increasing the lower limit value of the pressure in the suction pressure area and increasing the discharge capacity in the high rotation speed area. To avoid.
  • the upper limit value PssH is set in advance for the target value Pss of the pressure in the suction pressure region, when the pressure Ps in the suction pressure region exceeds the upper limit value, the discharge capacity is increased and the suction pressure region is excessively exceeded. It is avoided that the pressure Ps increases.
  • the differential pressure (Pd1 ⁇ Pd2) between two points in the discharge pressure region is set by the control current I supplied to the coil 316.
  • the discharge capacity is autonomously controlled so as to be a pressure. Thereby, the discharge capacity is stably controlled by the autonomous adjustment function of the control valve 300 and does not become unstable.
  • the discharge capacity control system 400 according to the present invention electrically detects the pressure Ps in the suction pressure region, and the differential pressure between the two points (Pd1 ⁇ Pd2) is set by the control current I supplied to the coil 316. Since the discharge capacity is controlled by using the control valve 300 that opens and closes the valve hole so as to be the pressure, the discharge capacity can be freely controlled in the range from the minimum capacity to the maximum capacity of the variable capacity compressor 100. .
  • the control valve 300 in the present embodiment has a structure that has a valve body that responds to the differential pressure between two points in the discharge pressure region, and this is the differential pressure between the two points in the suction pressure region, the discharge pressure region and the suction pressure.
  • the variable capacity compressor such as the differential pressure between the two points of the region, the differential pressure between the two points of the discharge pressure region and the control pressure chamber, or the differential pressure between the two points of the control pressure chamber and the suction pressure region. It is good also as a control valve which has a valve body which responds to the differential pressure between two points of a refrigerant circuit.
  • the pressure-sensitive member may be a columnar member that receives different pressures at both ends, instead of pressure-sensitive means such as bellows or diaphragm.
  • the structure in which the valve body and the pressure-sensitive member were formed integrally may be sufficient.
  • variable capacity compressor in the present embodiment is a reciprocating compressor, but may be a variable capacity compressor such as a vane or a scroll.
  • the refrigerant in the present invention is not limited to R134a conventionally used, but may be a refrigerant such as R1234yf or carbon dioxide.

Abstract

[Problem] To provide a discharge capacity control system for a variable capacity compressor with which it is possible, using a simple configuration and without including a displacement means, to avoid operation at a high discharge capacity while there is a shortage of coolant. [Solution] A discharge capacity control system 400 for a variable capacity compressor, the discharge capacity control system 400 controlling the discharge capacity of a variable capacity compressor 100 in which a radiator, an expander, and an evaporator are interposed in a coolant circulation path for circulating a coolant to constitute the refrigeration cycle of an air-conditioner system, and in which the discharge capacity varies on the basis of variation in the pressure in a control pressure chamber 140, wherein the discharge capacity control system 400 is provided with: a control valve 300 having a pressure-sensing member 306 that becomes displaced in the opening/closing direction of a valve body 305 in response to a differential pressure between two points on the coolant circulation path in the variable capacity compressor, and an actuator 310 for applying an urging force in the valve-closing direction to the valve body 305 in accordance with a supplied control current, the valve body 305 being displaced in accordance with the differential pressure between the two points and the urging force from the actuator 310, and the control valve 300 adjusting the opening degree of a pressure supply channel 145, which communicates between a discharge chamber 142 and the control pressure chamber 140, and varying the pressure within the control pressure chamber 140; a pressure detection means 403 for detecting the pressure in the low-pressure region of the coolant circulation path; and a control current supply means 410 for setting a control current and supplying the control current to the actuator 310 so as to reduce the discharge capacity when the pressure in the low-pressure region of the coolant circulation path falls below a lower limit value set in advance.

Description

可変容量圧縮機の吐出容量制御システムDischarge capacity control system for variable capacity compressor
 本発明は、冷凍サイクルを構成すべく冷媒循環路に介挿される可変容量圧縮機の吐出容量制御システムに関し、特に、車両エアコンシステム等に使用される可変容量圧縮機の吐出容量制御システムに関する。 The present invention relates to a discharge capacity control system for a variable capacity compressor that is inserted in a refrigerant circuit to form a refrigeration cycle, and more particularly to a discharge capacity control system for a variable capacity compressor used in a vehicle air conditioner system or the like.
 特許文献1には、吐出圧領域における2地点間の差圧で可変容量圧縮機の吐出容量を制御する制御弁に、吸入圧領域の圧力が予め設定された基準圧力を下回ると制御弁の弁開度を増大させる変位手段を付加し、冷媒不足状態における大きな吐出容量での運転を回避する技術が開示されている。 In Patent Document 1, a control valve that controls the discharge capacity of a variable capacity compressor with a differential pressure between two points in a discharge pressure area is used to control the valve of the control valve when the pressure in the suction pressure area falls below a preset reference pressure. A technique is disclosed in which a displacement means for increasing the opening is added to avoid operation with a large discharge capacity in a refrigerant shortage state.
特開2006-177300号公報JP 2006-177300 A
 しかし、前記技術においては、冷媒不足状態における大きな吐出容量での運転を回避するために変位手段を制御弁に付加しており、これにより、制御弁のコストが増大すると共に制御弁が大型化して可変容量圧縮機における制御弁のレイアウトが困難となるという問題があった。 However, in the above technique, a displacement means is added to the control valve in order to avoid operation with a large discharge capacity in a refrigerant shortage state, which increases the cost of the control valve and increases the size of the control valve. There is a problem that the layout of the control valve in the variable capacity compressor becomes difficult.
 そこで、本発明は、前記変位手段を有することなく簡易な構成で、冷媒不足状態における大きな吐出容量での運転を回避可能な可変容量圧縮機の吐出容量制御システムを提供することを目的とする。 Therefore, an object of the present invention is to provide a discharge capacity control system of a variable capacity compressor that can avoid operation with a large discharge capacity in a refrigerant shortage state with a simple configuration without having the displacement means.
 本発明による可変容量圧縮機の吐出容量制御システムは、エアコンシステムの冷凍サイクルを構成すべく冷媒が循環する冷媒循環路に放熱器、膨張器及び蒸発器と共に介挿され、制御圧力室の圧力の変化に基づいて吐出容量が変化する可変容量圧縮機の吐出容量を制御するシステムであって、前記可変容量圧縮機内部における冷媒循環路の2地点間の差圧に応答して弁体の開閉方向に変位する感圧部材と、供給された制御電流に応じて前記弁体に閉弁方向の付勢力を作用させるアクチュエータと、を有し、前記2地点間の差圧及び前記アクチュエータの付勢力に応じて前記弁体が変位し、吐出室と前記制御圧力室とを連通する圧力供給通路の開度を調整して前記制御圧力室内の圧力を変化させる制御弁と、前記冷媒循環路の低圧領域における圧力を検知する圧力検知手段と、前記冷媒循環路の低圧領域における圧力が予め設定された下限値を下回る場合には吐出容量を減少させるように前記制御電流を設定して前記アクチュエータに供給する制御電流供給手段と、を備える。 The discharge capacity control system of the variable capacity compressor according to the present invention is inserted together with a radiator, an expander and an evaporator in a refrigerant circulation path through which refrigerant circulates to constitute a refrigeration cycle of an air conditioner system, and controls the pressure of the control pressure chamber. A system for controlling a discharge capacity of a variable capacity compressor whose discharge capacity changes based on a change, wherein the valve body opens and closes in response to a differential pressure between two points of a refrigerant circulation path inside the variable capacity compressor. A pressure-sensitive member that displaces the actuator, and an actuator that applies an urging force in the valve closing direction to the valve body in accordance with the supplied control current. The differential pressure between the two points and the urging force of the actuator The valve body is displaced in response, the control valve for changing the pressure in the control pressure chamber by adjusting the opening of the pressure supply passage communicating the discharge chamber and the control pressure chamber, and the low pressure region of the refrigerant circulation path In A pressure detecting means for detecting pressure, and a control for setting the control current so as to decrease the discharge capacity when the pressure in the low pressure region of the refrigerant circuit is lower than a preset lower limit value, and supplying the control current to the actuator Current supply means.
 前記吐出容量制御システムによれば、冷媒が不足して冷媒循環路の低圧領域の圧力が予め設定された下限値を下回ったときに、アクチュエータに供給される制御電流を変更して、吐出容量を減少させることができ、冷媒不足状態における大きな吐出容量での運転を回避することができる。そして、制御弁が感圧部材とアクチュエータとを有する簡易な構成となっているので、制御弁のコストを抑えることができると共に、制御弁のレイアウトが容易となる。 According to the discharge capacity control system, when the refrigerant is insufficient and the pressure in the low pressure region of the refrigerant circuit falls below a preset lower limit value, the control current supplied to the actuator is changed to reduce the discharge capacity. Therefore, it is possible to avoid operation with a large discharge capacity in a refrigerant shortage state. Since the control valve has a simple configuration having a pressure-sensitive member and an actuator, the cost of the control valve can be suppressed, and the layout of the control valve is facilitated.
本発明が適用された可変容量圧縮機及び制御弁の断面図である。It is sectional drawing of the variable capacity compressor and control valve to which this invention was applied. 前記制御弁の断面図である。It is sectional drawing of the said control valve. 前記制御弁の特性を示す図である。It is a figure which shows the characteristic of the said control valve. 本発明に係る吐出容量制御システムの構成を示したブロック図である。It is the block diagram which showed the structure of the discharge capacity | capacitance control system which concerns on this invention. 吸入圧力領域の圧力の目標値の下限値と可変容量圧縮機の回転数との関係を示す図である。It is a figure which shows the relationship between the lower limit of the target value of the pressure of a suction pressure area | region, and the rotation speed of a variable capacity compressor. 本発明に係る吐出容量制御システムの制御フローを示す図である。It is a figure which shows the control flow of the discharge capacity | capacitance control system which concerns on this invention. 前記制御フローの起動制御における制御電流特性を示す図である。It is a figure which shows the control current characteristic in starting control of the said control flow. 前記制御フローにおける空調制御フローを示す図である。It is a figure which shows the air-conditioning control flow in the said control flow.
 以下、添付図面を参照しつつ本発明の実施形態について説明する。
 図1は、本発明が適用された一例である可変容量圧縮機100及び制御弁300の断面図である。
 この可変容量圧縮機100は、車両エアコンシステムの冷凍サイクルを構成すべく冷媒が循環する冷媒循環路に放熱器、膨張器及び蒸発器と共に介挿されている。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a cross-sectional view of a variable capacity compressor 100 and a control valve 300 which are an example to which the present invention is applied.
This variable capacity compressor 100 is inserted together with a radiator, an expander, and an evaporator in a refrigerant circulation path through which refrigerant circulates to constitute a refrigeration cycle of a vehicle air conditioner system.
 図1に示すように、可変容量圧縮機100は、複数のシリンダボア101aが形成されたシリンダブロック101と、シリンダブロック101の一端に設けられたフロントハウジング102と、シリンダブロック101の他端にバルブプレート103を介して設けられたシリンダヘッド104と、を備えている。 As shown in FIG. 1, a variable capacity compressor 100 includes a cylinder block 101 having a plurality of cylinder bores 101a, a front housing 102 provided at one end of the cylinder block 101, and a valve plate at the other end of the cylinder block 101. And a cylinder head 104 provided through 103.
 シリンダブロック101とフロントハウジング102とによって制御圧力室140が形成され、この制御圧力室140内を横断するように駆動軸110が設けられている。
 制御圧力室140内には、斜板111が配置されている。この斜板111の中央部には貫通孔111bが形成されており、駆動軸110はこの貫通孔111bを挿通している。また、斜板111は、駆動軸110に固定されたロータ112と連結手段としてのリンク機構120を介して連結されている。これにより、斜板111は駆動軸110と共に回転し、また、駆動軸110に沿ってその傾斜角が変更可能となっている。
A control pressure chamber 140 is formed by the cylinder block 101 and the front housing 102, and a drive shaft 110 is provided so as to traverse the inside of the control pressure chamber 140.
A swash plate 111 is disposed in the control pressure chamber 140. A through hole 111b is formed at the center of the swash plate 111, and the drive shaft 110 is inserted through the through hole 111b. The swash plate 111 is connected to a rotor 112 fixed to the drive shaft 110 via a link mechanism 120 as a connecting means. As a result, the swash plate 111 rotates with the drive shaft 110, and the inclination angle of the swash plate 111 can be changed along the drive shaft 110.
 リンク機構120は、ロータ112に突設された第1アーム112aと、斜板111に突設された第2アーム111aと、一端が第1連結ピン122を介して第1アーム112aに回動可能に連結されると共に他端が第2連結ピン123を介して第2アーム111aに回動可能に連結されたリンクアーム121と、を含む。 The link mechanism 120 includes a first arm 112 a projecting from the rotor 112, a second arm 111 a projecting from the swash plate 111, and one end pivotable to the first arm 112 a via the first connecting pin 122. And a link arm 121 having the other end rotatably connected to the second arm 111a via a second connection pin 123.
 斜板111の貫通孔111bは、斜板111が最大傾斜角から最小傾斜角の範囲で傾動可能な形状に形成されている。本実施形態において、貫通孔111bには、駆動軸110と当接することによって傾斜角を小さくする方向への斜板111の傾斜角変位(傾動)を規制する最小傾角規制部が形成されている。例えば、斜板111が駆動軸110に対して直交するときの斜板の傾角を0度(最小傾斜角)とした場合、前記最小傾斜角規制部は、斜板111の傾斜角がほぼ0度となるまでの傾斜角変位(傾動)を許容するように形成されている。また、傾斜角を増大させる方向の斜板111の傾斜角変位(傾動)は、斜板111がロータ112に当接することによって規制される。したがって、斜板111の傾斜角は、斜板111がロータ112に当接したときに最大傾斜角となる。 The through hole 111b of the swash plate 111 is formed in a shape that allows the swash plate 111 to tilt within a range from the maximum inclination angle to the minimum inclination angle. In the present embodiment, the through hole 111b is formed with a minimum inclination angle restricting portion that restricts the inclination angle displacement (tilting) of the swash plate 111 in the direction of decreasing the inclination angle by coming into contact with the drive shaft 110. For example, when the inclination angle of the swash plate when the swash plate 111 is orthogonal to the drive shaft 110 is set to 0 degree (minimum inclination angle), the minimum inclination angle restricting section is configured such that the inclination angle of the swash plate 111 is substantially 0 degree. It is formed so as to allow tilt angle displacement (tilt) until. Further, the tilt angle displacement (tilt) of the swash plate 111 in the direction of increasing the tilt angle is regulated by the swash plate 111 coming into contact with the rotor 112. Therefore, the inclination angle of the swash plate 111 becomes the maximum inclination angle when the swash plate 111 contacts the rotor 112.
 駆動軸110には、傾斜角を減少させる方向に斜板111を付勢する傾斜角減少バネ114と、傾斜角を増大させる方向に斜板111を付勢する傾斜角増大バネとが、斜板111を挟んで装着されている。具体的には、傾斜角減少バネ114は、斜板111とロータ112との間に装着されており、傾斜角増大バネ115は、斜板111と駆動軸110に固定又は形成されたバネ支持部材116との間に装着されている。 The drive shaft 110 includes a tilt angle reducing spring 114 that biases the swash plate 111 in a direction that decreases the tilt angle, and a tilt angle increasing spring that biases the swash plate 111 in a direction that increases the tilt angle. 111 is mounted. Specifically, the inclination angle decreasing spring 114 is mounted between the swash plate 111 and the rotor 112, and the inclination angle increasing spring 115 is fixed to or formed on the swash plate 111 and the drive shaft 110. 116.
 ここで、斜板111の傾斜角が最小傾斜角であるときに、傾斜角増大バネ115の付勢力の方が傾斜角減少バネ114の付勢力よりも大きくなるように設定されている。このため、駆動軸110が回転していないとき、すなわち、可変容量圧縮機100が停止しているときに、斜板111は、傾斜角減少バネ114の付勢力と傾斜角増大バネ115の付勢力とがバランスする傾斜角(>最小傾斜角)に位置する。この傾斜角減少バネ114の付勢力と傾斜角増大バネ115の付勢力とがバランスする傾斜角は、ピストン136による圧縮動作が確保される最小の傾斜角範囲として設定されており、例えば1~3度の範囲に設定することができる。 Here, when the inclination angle of the swash plate 111 is the minimum inclination angle, the urging force of the inclination angle increasing spring 115 is set to be larger than the urging force of the inclination angle decreasing spring 114. For this reason, when the drive shaft 110 is not rotating, that is, when the variable displacement compressor 100 is stopped, the swash plate 111 is biased by the inclination angle decreasing spring 114 and the urging force of the inclination angle increasing spring 115. Are located at an inclination angle (> minimum inclination angle) in which they are balanced. The inclination angle at which the urging force of the inclination angle decreasing spring 114 and the urging force of the inclination angle increasing spring 115 are balanced is set as the minimum inclination angle range in which the compression operation by the piston 136 is ensured. Can be set to a range of degrees.
 駆動軸110の一端は、フロントハウジング102のボス部102aを貫通してフロントハウジング102の外側まで延在して、図示省略した動力伝達装置に連結されている。なお、駆動軸110とボス部102aとの間には軸封装置130が挿入されており、制御圧力室140内部は外部空間から遮断されている。 One end of the drive shaft 110 extends through the boss portion 102a of the front housing 102 to the outside of the front housing 102, and is connected to a power transmission device (not shown). A shaft sealing device 130 is inserted between the drive shaft 110 and the boss portion 102a, and the inside of the control pressure chamber 140 is blocked from the external space.
 駆動軸110及びロータ112は、ラジアル方向においては軸受131、132によって支持され、スラスト方向においては軸受133及びスラストプレート134によって支持されている。なお、駆動軸110のスラストプレート134側の端部とスラストプレート134とは、調整ネジ135によって所定の隙間を有するように調整されている。
 そして、駆動軸110は、図示省略した外部駆動源からの動力が前記動力伝達装置に伝達されることにより、前記動力伝達装置と同期して回転する。
The drive shaft 110 and the rotor 112 are supported by bearings 131 and 132 in the radial direction, and supported by a bearing 133 and a thrust plate 134 in the thrust direction. The thrust plate 134 side end of the drive shaft 110 and the thrust plate 134 are adjusted to have a predetermined gap by an adjustment screw 135.
The drive shaft 110 rotates in synchronization with the power transmission device when power from an external drive source (not shown) is transmitted to the power transmission device.
 シリンダボア101a内には、ピストン136が配置され、ピストン136の一端部は制御圧力室140側に突出している。この端部は内側に空間が形成され、その空間に斜板111の外周部が収容され、この斜板111の周縁部近傍部を挟んで一対のシュー137が配設されている。すなわち、斜板111は、一対のシュー137を介して、ピストン136と連動する構成となっている。このため、斜板111の回転によりピストン136がシリンダボア101a内を往復動することが可能となる。 The piston 136 is disposed in the cylinder bore 101a, and one end of the piston 136 protrudes toward the control pressure chamber 140 side. A space is formed inside this end, and the outer periphery of the swash plate 111 is accommodated in the space, and a pair of shoes 137 are disposed across the peripheral portion of the swash plate 111. That is, the swash plate 111 is configured to be interlocked with the piston 136 via a pair of shoes 137. Therefore, the piston 136 can reciprocate in the cylinder bore 101a by the rotation of the swash plate 111.
 シリンダヘッド104には、中央部に配置された吸入室141と、吸入室141を環状に取り囲むように配置された吐出室142と、が形成されている。吸入室141は、バルブプレート103に形成された連通孔103a及び吸入弁(図示省略)を介して、各シリンダボア101aと連通する。吐出室142は、バルブプレート103に形成された連通孔103b及び吐出弁(図示省略)を介して、対応するシリンダボア101aと連通する。 The cylinder head 104 is formed with a suction chamber 141 disposed in the center and a discharge chamber 142 disposed so as to surround the suction chamber 141 in an annular shape. The suction chamber 141 communicates with each cylinder bore 101a via a communication hole 103a formed in the valve plate 103 and a suction valve (not shown). The discharge chamber 142 communicates with the corresponding cylinder bore 101a via a communication hole 103b formed in the valve plate 103 and a discharge valve (not shown).
 ここで、フロントハウジング102、シリンダブロック101、バルブプレート103、シリンダヘッド104が図示しないガスケットを介して複数の通しボルト105によって締結されて圧縮機ハウジングが形成される。 Here, the front housing 102, the cylinder block 101, the valve plate 103, and the cylinder head 104 are fastened by a plurality of through bolts 105 through a gasket (not shown) to form a compressor housing.
 また、シリンダブロック101の上部には吐出マフラが設けられている。吐出マフラは、吐出ポート106aが形成された蓋部材106と、シリンダブロック101上部に区画形成された形成壁101bと、が図示省略したシール部材を介してボルトによって締結されて形成される。吐出マフラ内のマフラ室143は、絞り通路144を介して吐出室142と連通される。これにより、吐出室142は、絞り通路144、マフラ室143及び吐出ポート106aで形成される吐出通路を介してエアコンシステムの吐出側冷媒循環路と接続されている。 Also, a discharge muffler is provided on the upper part of the cylinder block 101. The discharge muffler is formed by fastening a lid member 106 in which a discharge port 106 a is formed and a forming wall 101 b that is partitioned and formed on the cylinder block 101 with a bolt through a seal member (not shown). A muffler chamber 143 in the discharge muffler communicates with the discharge chamber 142 via a throttle passage 144. Thus, the discharge chamber 142 is connected to the discharge-side refrigerant circulation path of the air conditioner system via the discharge passage formed by the throttle passage 144, the muffler chamber 143, and the discharge port 106a.
 シリンダヘッド104には、吸入ポート104a、連通路104bが形成される。そして、吸入室141は、吸入ポート104a及び連通路104bで形成される吸入通路を介してエアコンシステムの吸入側冷媒循環路と接続されている。また、吸入通路は、シリンダヘッド104の外側から吸入室141に向かって吐出室142の一部を横切るように直線状に延設される。ここで、吐出室142、吸入室141、吐出通路、吸入通路は冷凍サイクルの冷媒循環路の一部を構成している。 In the cylinder head 104, a suction port 104a and a communication path 104b are formed. The suction chamber 141 is connected to the suction-side refrigerant circulation path of the air conditioner system via a suction passage formed by the suction port 104a and the communication path 104b. Further, the suction passage extends linearly from the outside of the cylinder head 104 toward the suction chamber 141 so as to cross a part of the discharge chamber 142. Here, the discharge chamber 142, the suction chamber 141, the discharge passage, and the suction passage constitute a part of the refrigerant circulation path of the refrigeration cycle.
 シリンダヘッド104には、さらに制御弁300が設けられている。
 制御弁300は、吐出室142と制御圧力室140とを、絞り通路144、マフラ室143を介して連通する圧力供給通路145に介挿される。制御弁300は、絞り通路144の上流側(吐出室142)と下流側(マフラ室143)との圧力差及びソレノイドに流れる電流によって発生する電磁力に応答して圧力供給通路145の開度を調整し、制御圧力室140への吐出ガス導入量を制御する。また、制御圧力室140内の冷媒は、連通路101c、空間101d、バルブプレート103に形成されたオリフィス103cによって構成される放圧通路146を介して吸入室141へ流れるようになっている。このように、圧力供給通路145と放圧通路146とは可変容量圧縮機100内部における冷媒の循環路を形成している。このため、制御弁300が供給通路145の開度を調整することで制御圧力室140の圧力が変化する。そして、制御圧力室140の圧力の変化により、斜板111の傾斜角、すなわちピストン136のストロークが変化して、可変容量圧縮機100における吐出容量の可変制御が可能となる。
The cylinder head 104 is further provided with a control valve 300.
The control valve 300 is inserted into a pressure supply passage 145 that connects the discharge chamber 142 and the control pressure chamber 140 via a throttle passage 144 and a muffler chamber 143. The control valve 300 increases the degree of opening of the pressure supply passage 145 in response to the pressure difference between the upstream side (discharge chamber 142) and the downstream side (muffler chamber 143) of the throttle passage 144 and the electromagnetic force generated by the current flowing through the solenoid. The amount of discharge gas introduced into the control pressure chamber 140 is adjusted to control. The refrigerant in the control pressure chamber 140 flows to the suction chamber 141 through the pressure release passage 146 constituted by the communication passage 101c, the space 101d, and the orifice 103c formed in the valve plate 103. Thus, the pressure supply passage 145 and the pressure release passage 146 form a refrigerant circulation path inside the variable capacity compressor 100. For this reason, the pressure of the control pressure chamber 140 changes when the control valve 300 adjusts the opening degree of the supply passage 145. The inclination angle of the swash plate 111, that is, the stroke of the piston 136 is changed by the change in the pressure in the control pressure chamber 140, and the discharge capacity in the variable capacity compressor 100 can be variably controlled.
 次に、図2及び図3を参照して、前記制御弁300について、より具体的に説明する。
 図2は、制御弁300の断面図であり、図3は、制御弁300の特性を示す図である。
Next, the control valve 300 will be described more specifically with reference to FIGS. 2 and 3.
FIG. 2 is a cross-sectional view of the control valve 300, and FIG. 3 is a diagram illustrating characteristics of the control valve 300.
 この制御弁300は、バルブハウジング301内に形成されて連通孔301aを介して圧力導入通路147により吐出室142と連通する第1感圧室302と、連通孔301bを介してマフラ室143側の圧力供給通路145によりマフラ室143と連通する第2感圧室303と、連通孔301cを介して制御圧力室140側の圧力供給通路145により制御圧力室140と連通する弁室304と、第2感圧室303と弁室304とを連通する弁孔301dと、一端側が弁孔301dの周囲の弁座301eに接離して弁孔301dを開閉する弁体305と、第1感圧室302と第2感圧室303とを区画し、第1感圧室302側から吐出室142の圧力Pd1を受け、第2感圧室303側からマフラ室143の圧力Pd2を受けて、吐出圧力領域における2地点間の差圧(Pd1-Pd2)に応答して弁体305の開閉方向に変位する感圧部材306と、一端側が弁体305に固定され他端側が感圧部材306に接離可能に連結して感圧部材306の変位を弁体304に伝達する感圧ロッド307と、一端側が弁体305と一体形成されたソレノイドロッド309と、供給された制御電流に応じて弁体305に閉弁方向の付勢力を作用させるアクチュエータ310と、を備えて構成される。このように構成された制御弁300において、制御弁305が吐出圧力領域の差圧及びアクチュエータ310の付勢力に応じて変位する。この制御弁305の変位により供給通路145の開度が調整され、これにより、制御圧力室140内の圧力が変化する。 The control valve 300 includes a first pressure sensing chamber 302 that is formed in the valve housing 301 and communicates with the discharge chamber 142 via the pressure introduction passage 147 via the communication hole 301a, and the muffler chamber 143 side via the communication hole 301b. A second pressure sensing chamber 303 communicating with the muffler chamber 143 via the pressure supply passage 145; a valve chamber 304 communicating with the control pressure chamber 140 via the pressure supply passage 145 on the control pressure chamber 140 side through the communication hole 301c; A valve hole 301d communicating the pressure sensing chamber 303 and the valve chamber 304; a valve body 305 whose one end is in contact with and away from the valve seat 301e around the valve hole 301d; and opening and closing the valve hole 301d; The second pressure sensitive chamber 303 is partitioned, and the pressure Pd1 of the discharge chamber 142 is received from the first pressure sensitive chamber 302 side, and the pressure Pd2 of the muffler chamber 143 is received from the second pressure sensitive chamber 303 side to discharge pressure. A pressure-sensitive member 306 that is displaced in the opening / closing direction of the valve body 305 in response to a differential pressure (Pd1-Pd2) between two points in the region, and one end side is fixed to the valve body 305 and the other end side is contacted and separated from the pressure-sensitive member 306 A pressure-sensitive rod 307 that is connected to transmit the displacement of the pressure-sensitive member 306 to the valve body 304, a solenoid rod 309 that is integrally formed with the valve body 305 at one end, and the valve body 305 according to the supplied control current. And an actuator 310 that applies an urging force in the valve closing direction. In the control valve 300 configured as described above, the control valve 305 is displaced according to the differential pressure in the discharge pressure region and the biasing force of the actuator 310. The opening of the supply passage 145 is adjusted by the displacement of the control valve 305, and thereby the pressure in the control pressure chamber 140 changes.
 アクチュエータ310は、ソレノイドロッド309の弁体305と一体形成された端の反対側の端に圧入固定された可動鉄心311と、ソレノイドロッド309が内挿され所定の隙間を隔てて可動鉄心311と対向配置された固定鉄心312と、固定鉄心312と可動鉄心311との間に配置されて可動鉄心311を開弁方向に付勢する強制開放バネ313と、有底筒状であり、固定鉄心312と可動鉄心311とを収容して開口端側がソレノイドハウジング314に固定された収容部材315と、収容部材315を内挿してソレノイドハウジング314に収容され表面が樹脂で覆われたコイル316と、を有する。 The actuator 310 includes a movable iron core 311 press-fitted and fixed to an end opposite to the end integrally formed with the valve body 305 of the solenoid rod 309, and the movable iron core 311 facing the movable iron core 311 with a predetermined gap therebetween. The fixed iron core 312 arranged, the forcible release spring 313 arranged between the fixed iron core 312 and the movable iron core 311 to urge the movable iron core 311 in the valve opening direction, a bottomed cylindrical shape, A housing member 315 that houses the movable iron core 311 and whose opening end is fixed to the solenoid housing 314, and a coil 316 that is housed in the solenoid housing 314 with the housing member 315 inserted therein and whose surface is covered with resin.
 可動鉄心311、固定鉄心312、ソレノイドハウジング314は、いずれも磁性体材料で形成されており、磁気回路を構成している。また、収容部材315は、非磁性材料で形成されている。コイル316に電流が流れると、可動鉄心311と固定鉄心312との間に電磁力が作用する。この電磁力は、ソレノイドロッド309を介して弁体305を閉弁方向に付勢する。 The movable iron core 311, the fixed iron core 312 and the solenoid housing 314 are all made of a magnetic material and constitute a magnetic circuit. The housing member 315 is formed of a nonmagnetic material. When a current flows through the coil 316, an electromagnetic force acts between the movable iron core 311 and the fixed iron core 312. This electromagnetic force urges the valve body 305 in the valve closing direction via the solenoid rod 309.
 ここで、感圧部材306の弁体305の開閉方向の圧力受圧面積Sb、弁体305が弁孔301d側から受ける圧力Pd1の圧力受圧面積Sv、制御圧力室140内の圧力をPc、アクチュエータ310の強制開放バネ313の付勢力をf、コイル316に流れる電流をI、アクチュエータ310による付勢力をF(I)とすると、弁体305に作用する力は下記の式(1)で表される。
Figure JPOXMLDOC01-appb-I000001
Here, the pressure receiving area Sb of the pressure sensing member 306 in the opening / closing direction of the valve body 305, the pressure receiving area Sv of the pressure Pd1 received by the valve body 305 from the valve hole 301d side, the pressure in the control pressure chamber 140 is Pc, and the actuator 310 The force acting on the valve body 305 is expressed by the following equation (1), where f is the biasing force of the forced opening spring 313, I is the current flowing through the coil 316, and F (I) is the biasing force by the actuator 310. .
Figure JPOXMLDOC01-appb-I000001
 したがって、感圧部材306、感圧ロッド307、弁体305、ソレノイドロッド309及び可動鉄心311との連結体によって、制御弁300は、吐出圧力領域の2地点間の差圧(Pd1-Pd2)がコイル316に流れる電流Iに基づいて設定された設定差圧より小さくなると吐出容量を増大すべく圧力供給通路145の開度を小さくして制御圧力室140の圧力を低下させる。一方、吐出圧力領域の2地点間の差圧(Pd1-Pd2)が設定差圧より大きくなると吐出容量を減少すべく圧力供給通路145の開度を大きくして制御圧力室140の圧力を上昇させる。このようにして、制御圧力室140の圧力を低下させた場合には吐出圧力領域の2地点間の差圧が大きくなり設定差圧に近づき、制御圧力室の圧力を上昇させた場合には吐出圧力領域の2地点間の差圧が小さくなり設定差圧に近づく。すなわち、前記連結体を有する制御弁300は、吐出圧力領域の2地点間の差圧(Pd1-Pd2)が設定差圧に近づくように圧力供給通路145の開度を自律制御する。また、吐出圧力領域の2地点が絞り通路144を挟んだ冷媒循環路(吐出通路)に設定されているので、上記のように制御弁300が吐出圧力領域の2地点間の差圧を設定差圧に近づけることによって冷媒循環量が調整される。
 なお、上記の式(1)において右辺第2項(Pd2-Pc)・Sv/Sbを考慮すると、左辺の設定差圧(Pd1-Pd2)は、Pd2-Pcの影響を受けるが、Sb≫Svであるので、その影響は小さい。
Therefore, the control valve 300 has a differential pressure (Pd1−Pd2) between two points in the discharge pressure region by the connecting body of the pressure sensitive member 306, the pressure sensitive rod 307, the valve body 305, the solenoid rod 309 and the movable iron core 311. When the pressure difference becomes smaller than the set differential pressure set based on the current I flowing through the coil 316, the opening of the pressure supply passage 145 is decreased to decrease the pressure in the control pressure chamber 140 in order to increase the discharge capacity. On the other hand, when the differential pressure (Pd1−Pd2) between the two points in the discharge pressure region becomes larger than the set differential pressure, the pressure supply passage 145 is increased to increase the pressure in the control pressure chamber 140 in order to reduce the discharge capacity. . In this way, when the pressure in the control pressure chamber 140 is decreased, the differential pressure between the two points in the discharge pressure region increases and approaches the set differential pressure, and when the pressure in the control pressure chamber is increased, the discharge is performed. The differential pressure between the two points in the pressure region decreases and approaches the set differential pressure. That is, the control valve 300 having the connection body autonomously controls the opening degree of the pressure supply passage 145 so that the differential pressure (Pd1-Pd2) between the two points in the discharge pressure region approaches the set differential pressure. Further, since the two points in the discharge pressure region are set to the refrigerant circulation path (discharge passage) sandwiching the throttle passage 144, the control valve 300 sets the differential pressure between the two points in the discharge pressure region as described above. The refrigerant circulation amount is adjusted by bringing the pressure close to the pressure.
In consideration of the second term (Pd2−Pc) · Sv / Sb on the right side in the above equation (1), the set differential pressure (Pd1−Pd2) on the left side is affected by Pd2−Pc, but Sb >> Sv Therefore, the effect is small.
 また、コイル316へ通電すると、弁体305にはソレノイドロッド309を介して電磁力が閉弁方向に作用する、すなわち、圧力供給通路145の開度を小さくするように力が作用する。コイル316への通電量が増大すると、圧力供給通路145の開度を小さくする力が増大するので、図3に示すように、設定差圧が増大する方向に変化する。 When the coil 316 is energized, an electromagnetic force acts on the valve body 305 via the solenoid rod 309 in the valve closing direction, that is, a force acts so as to reduce the opening of the pressure supply passage 145. When the energization amount to the coil 316 increases, the force to reduce the opening of the pressure supply passage 145 increases, so that the set differential pressure increases in the direction as shown in FIG.
 なお、本実施形態におけるアクチュエータ310としては、例えば400Hz~500Hzの範囲の所定の周波数でパルス幅変調(PWM制御)により駆動されて、コイル316の電流値が所望の値となるようにパルス幅(デューティ比)が変更されるものを適用することができる。 Note that the actuator 310 in the present embodiment is driven by pulse width modulation (PWM control) at a predetermined frequency in the range of, for example, 400 Hz to 500 Hz, and the pulse width (PWM) so that the current value of the coil 316 becomes a desired value. A device whose duty ratio is changed can be applied.
 次に、図4を参照して本発明の一実施形態である吐出容量制御システム400について説明する。
 図4は、吐出容量制御システム400の構成を示したブロック図である。
 吐出容量制御システム400は、可変容量圧縮機100の吐出容量を制御するもので、本実施形態においては、制御弁300と、A/Cスイッチ401と、回転センサ404と、温度検知手段としての温度センサ402と、圧力検知手段としての圧力センサ403と、制御電流供給手段410と、を備える。
Next, a discharge capacity control system 400 according to an embodiment of the present invention will be described with reference to FIG.
FIG. 4 is a block diagram showing the configuration of the discharge capacity control system 400.
The discharge capacity control system 400 controls the discharge capacity of the variable capacity compressor 100. In this embodiment, the control valve 300, the A / C switch 401, the rotation sensor 404, and the temperature as temperature detection means. A sensor 402, a pressure sensor 403 as pressure detecting means, and a control current supply means 410 are provided.
 A/Cスイッチ401は、吐出容量制御システム400の作動(ON)、非作動(OFF)を設定する。このA/Cスイッチ401は後述の制御電流供給手段410の制御電流設定手段413に信号接続されている。 The A / C switch 401 sets operation (ON) and non-operation (OFF) of the discharge capacity control system 400. The A / C switch 401 is signal-connected to a control current setting unit 413 of a control current supply unit 410 described later.
 温度センサ402は、蒸発器出口に設置され、蒸発器出口空気温度Teを検知する。この温度センサ402は、後述の圧力設定手段412に信号接続されており、検知した蒸発器出口空気温度Teを圧力設定手段412に出力する。 The temperature sensor 402 is installed at the evaporator outlet and detects the evaporator outlet air temperature Te. The temperature sensor 402 is connected to a pressure setting unit 412 described later, and outputs the detected evaporator outlet air temperature Te to the pressure setting unit 412.
 圧力センサ403は、冷媒循環路におけるエアコンシステムの蒸発器出口から可変容量圧縮機100に至る低圧領域の圧力を検知する。例えば圧力センサ403は、吸入圧力領域の圧力Psを検知する。ここで、吸入圧力領域とは、吸入室141、連通路104b、吸入ポート104a及び可変容量圧縮機100の近傍の外部冷媒循環路を指す。この圧力センサ403は、後述の制御電流設定手段413に信号接続されており、検知した吸入圧力領域の圧力Psを制御電流設定手段413に出力する。また、吸入圧力領域の圧力Psを検知するので吐出容量変化に対しても圧力センサ403が素早く応答できる。 The pressure sensor 403 detects the pressure in the low pressure region from the evaporator outlet of the air conditioner system to the variable capacity compressor 100 in the refrigerant circuit. For example, the pressure sensor 403 detects the pressure Ps in the suction pressure region. Here, the suction pressure region refers to the suction chamber 141, the communication path 104 b, the suction port 104 a, and the external refrigerant circulation path in the vicinity of the variable capacity compressor 100. The pressure sensor 403 is connected in signal to a control current setting unit 413 described later, and outputs the detected pressure Ps in the suction pressure region to the control current setting unit 413. Further, since the pressure Ps in the suction pressure region is detected, the pressure sensor 403 can quickly respond to a change in discharge volume.
 制御電流供給手段410は、制御弁300における制御電流を設定してアクチュエータ310に供給するものであり、蒸発器出口空気温度の目標値を設定する蒸発器目標温度設定手段411と、吸入圧力領域の圧力の目標値を設定する圧力設定手段412と、アクチュエータ310のコイル316に流れる制御電流Iを設定する制御電流設定手段413と、コイル316に流れる電流を検知する電流検知手段415と、コイル316に流れる制御電流Iを調整する駆動手段414と、コイル316と並列に配置されたダイオード416と、を有する。 The control current supply unit 410 sets a control current in the control valve 300 and supplies the control current to the actuator 310. The control current supply unit 410 includes an evaporator target temperature setting unit 411 that sets a target value of the evaporator outlet air temperature, and a suction pressure region. A pressure setting means 412 for setting a target value of pressure, a control current setting means 413 for setting a control current I flowing in the coil 316 of the actuator 310, a current detection means 415 for detecting a current flowing in the coil 316, and a coil 316 It has a drive means 414 for adjusting the flowing control current I and a diode 416 arranged in parallel with the coil 316.
 蒸発器目標温度設定手段411は、図示省略した空調設定手段や外気温度センサ等と信号接続されており、これらから出力された車室内温度設定等の空調設定や外気温度等の種々の外部情報に基づいて、吐出容量制御の最終的な目標となる蒸発器出口空気温度の目標値Tesを設定する。また、蒸発器目標温度設定手段411は、後述の圧力設定手段412に信号接続されており、目標値Tesを圧力設定手段412に出力する。 The evaporator target temperature setting means 411 is signal-connected to an air conditioning setting means (not shown), an outside air temperature sensor, etc., and outputs various external information such as an air conditioning setting such as a vehicle interior temperature setting and an outside air temperature outputted from these. Based on this, the target value Tes of the evaporator outlet air temperature, which is the final target of the discharge capacity control, is set. The evaporator target temperature setting unit 411 is connected in signal to a pressure setting unit 412 described later, and outputs a target value Tes to the pressure setting unit 412.
 圧力設定手段412は、蒸発器目標温度設定手段411で設定された目標値Tesと、温度センサ402で検知された実際の蒸発器出口空気温度Teとの偏差ΔTに基づいて、例えばPI制御によって、その偏差ΔTが小さくなるように吸入圧力領域の圧力の目標値Pssを設定する。また、圧力設定手段412は、制御電流設定手段413と信号接続されており、吸入圧力領域の圧力の目標値Pssを制御電流設定手段413に出力する。 The pressure setting unit 412 is based on a deviation ΔT between the target value Tes set by the evaporator target temperature setting unit 411 and the actual evaporator outlet air temperature Te detected by the temperature sensor 402, for example, by PI control. The target value Pss of the pressure in the suction pressure region is set so that the deviation ΔT becomes small. The pressure setting unit 412 is connected to the control current setting unit 413 in a signal manner, and outputs the target value Pss of the pressure in the suction pressure region to the control current setting unit 413.
 ここで、圧力設定手段412において、吸入圧力領域の圧力の目標値Pssには上限値PssH及び下限値PssLが設定されている。また、圧力設定手段412は、例えば図5に示すように、可変容量圧縮機100の回転数を検知する回転センサ404の出力により、回転数Ncが所定値Nc1を超えた高回転数領域になると下限値PssLをPssL1からPssL2に上昇させることができる。これにより、高回転数領域での吐出容量の増大を回避することが可能である。所定値Nc1は、例えば常用回転数の上限(5000rpm程度)として設定される。なお、本発明に係る吐出容量制御システムにおいては、回転センサを備えずに、可変容量圧縮機100の回転数を車両エンジンの回転数から算出しても良い。 Here, in the pressure setting means 412, an upper limit value PssH and a lower limit value PssL are set for the target value Pss of the pressure in the suction pressure region. Further, for example, as shown in FIG. 5, the pressure setting unit 412 is in a high rotation speed region where the rotation speed Nc exceeds a predetermined value Nc1 due to the output of the rotation sensor 404 that detects the rotation speed of the variable capacity compressor 100. The lower limit value PssL can be increased from PssL1 to PssL2. Thereby, it is possible to avoid an increase in the discharge capacity in the high rotation speed region. The predetermined value Nc1 is set, for example, as the upper limit (about 5000 rpm) of the normal rotation speed. In the discharge capacity control system according to the present invention, the rotation speed of the variable capacity compressor 100 may be calculated from the rotation speed of the vehicle engine without providing the rotation sensor.
 また、圧力設定手段412は、上記のようにして回転センサ404の出力値Ncに応じて下限値としてPssL1又はPssL2のいずれか一方を設定しているが、3以上の下限値を有し回転センサ404の出力値Ncが高くなるにつれ、より高い下限値を選択しても良い。さらに、圧力設定手段412は、回転センサ404の出力値Nc又は車両エンジンの回転数から算出された可変容量圧縮機の回転数に基づいて演算した値を下限値として用いても良い。そして、圧力設定手段412において、下限値PssLは可変容量圧縮機の回転数に基づいて変更可能としたが、これに加えて外気温度等の他の外部情報やエアコンシステムの運転条件に基づいて変更可能としても良い。 Further, the pressure setting means 412 sets either PssL1 or PssL2 as the lower limit value according to the output value Nc of the rotation sensor 404 as described above. As the output value Nc of 404 becomes higher, a higher lower limit value may be selected. Further, the pressure setting means 412 may use a value calculated based on the output value Nc of the rotation sensor 404 or the rotation speed of the variable capacity compressor calculated from the rotation speed of the vehicle engine as the lower limit value. In the pressure setting means 412, the lower limit value PssL can be changed based on the rotational speed of the variable capacity compressor, but in addition to this, the lower limit value PssL can be changed based on other external information such as the outside air temperature and the operating conditions of the air conditioner system. It may be possible.
 制御電流設定手段413は、信号接続されているA/Cスイッチ401がOFFからONに切り替わった場合に、ONとなったときからの経過時間tの関数として制御電流Iを設定する起動制御を行う。そして、制御電流設定手段413は、所定時間が経過すると起動制御を終了し、エアコンシステムの運転条件に基づいて制御電流Iを設定する空調制御を行う。エアコンシステムの運転条件とは、例えば、吸入圧力領域の圧力、吸入圧力領域の圧力の目標値、蒸発器空気温度、蒸発器の目標空気温度、その他各種エアコンシステムで検知したデータや各種目標値等である。前記空調制御は、例えば、圧力センサ403で検知された吸入圧力領域の圧力Psと圧力設定手段412で設定された吸入圧力領域の圧力の目標値Pssとの偏差ΔPsに基づいて、例えばPI制御によって、その偏差ΔPsが小さくなるように制御電流Iを設定する。また、蒸発器目標温度設定手段411で設定された目標値Tesと、温度センサ402で検知された蒸発器出口空気温度Teとの偏差ΔTから直接その偏差ΔTが小さくなるように制御電流Iを設定しても良い。 When the signal-connected A / C switch 401 is switched from OFF to ON, the control current setting unit 413 performs start-up control that sets the control current I as a function of the elapsed time t from when the signal is connected. . Then, the control current setting unit 413 ends the start-up control when a predetermined time has elapsed, and performs air-conditioning control that sets the control current I based on the operating conditions of the air-conditioning system. The operating conditions of the air conditioner system include, for example, the pressure in the suction pressure region, the target value of the pressure in the suction pressure region, the evaporator air temperature, the target air temperature of the evaporator, other data detected by various air conditioner systems, various target values, etc. It is. The air conditioning control is performed, for example, by PI control based on a deviation ΔPs between the pressure Ps in the suction pressure region detected by the pressure sensor 403 and the target value Pss of the pressure in the suction pressure region set by the pressure setting unit 412. The control current I is set so that the deviation ΔPs becomes small. Further, the control current I is set so that the deviation ΔT is directly reduced from the deviation ΔT between the target value Tes set by the evaporator target temperature setting means 411 and the evaporator outlet air temperature Te detected by the temperature sensor 402. You may do it.
 駆動手段414は、所定の駆動周波数(例えば400~500Hz)でパルス幅変調制御により駆動されるスイッチング素子を備え、このスイッチング素子を用いて、制御電流設定手段413で設定された制御電流Iに基づいて、電流検知手段415で検知されたコイル316に流れる電流が制御電流Iに近づくようにデューティ比を調整する。 The driving unit 414 includes a switching element driven by pulse width modulation control at a predetermined driving frequency (for example, 400 to 500 Hz), and based on the control current I set by the control current setting unit 413 using this switching element. Thus, the duty ratio is adjusted so that the current flowing through the coil 316 detected by the current detection means 415 approaches the control current I.
 以上のように構成された制御電流供給手段410は、エアコンシステムの運転条件に基づいて制御電流を設定してアクチュエータ310に供給している。また、制御電流供給手段410には上述のように吸入圧力領域の圧力の目標値Pssに下限値PssLが設定されている。これにより、制御電流供給手段410は、冷媒循環路の低圧領域である吸入圧力領域における圧力が予め設定された下限値PssLを下回る場合には吸入圧力領域の目標値をPssL以上となる値に設定し、制御圧力室140の圧力を上昇させて吸入圧力領域の圧力を上昇させるべく制御電流を設定する。そして、制御圧力室140の圧力が上昇することにより吐出容量が減少する。すなわち、制御電流供給手段410は、吸入圧力領域の圧力が予め設定された下限値PssLを下回る場合には吐出容量を減少させるように制御電流を設定してアクチュエータ310に供給する。 The control current supply means 410 configured as described above sets a control current based on the operating condition of the air conditioner system and supplies it to the actuator 310. In the control current supply means 410, the lower limit value PssL is set to the target value Pss of the pressure in the suction pressure region as described above. As a result, the control current supply means 410 sets the target value in the suction pressure region to a value that is equal to or greater than PssL when the pressure in the suction pressure region, which is the low pressure region of the refrigerant circuit, falls below the preset lower limit value PssL. Then, the control current is set to increase the pressure in the control pressure chamber 140 to increase the pressure in the suction pressure region. Then, the discharge capacity decreases as the pressure in the control pressure chamber 140 increases. That is, the control current supply unit 410 sets the control current so as to decrease the discharge capacity and supplies the control current to the actuator 310 when the pressure in the suction pressure region falls below the preset lower limit value PssL.
 ここで、上記にて説明した吐出容量制御システム400の動作を図6~図8を参照して説明する。
 図6は、吐出容量制御システム400の制御フローを示したものである。
 吐出容量制御システム400は、変数F1を有し、タイマで時間tを計測することができ、予め初期条件F1=0、t=0が設定されている。
Here, the operation of the discharge capacity control system 400 described above will be described with reference to FIGS.
FIG. 6 shows a control flow of the discharge capacity control system 400.
The discharge capacity control system 400 has a variable F1, can measure time t with a timer, and initial conditions F1 = 0 and t = 0 are set in advance.
 吐出容量制御システム400は、まず、A/Cスイッチ401のON、OFFを判定する(S101)。A/Cスイッチ401がONであれば吐出容量制御システム400に接続された各センサの出力値や外部装置で設定されるエアコン設定等を読み込む(S102)。次にF1が1か否か判定する(S103)。初期条件ではF1=0であるのでNoとなり、S104に処理を進ませる。S104ではタイマをスタートしA/Cスイッチ401がONとなってからの時間tを計測する。 The discharge capacity control system 400 first determines whether the A / C switch 401 is ON or OFF (S101). If the A / C switch 401 is ON, the output value of each sensor connected to the discharge capacity control system 400, the air conditioner setting set by the external device, etc. are read (S102). Next, it is determined whether F1 is 1 (S103). Since F1 = 0 in the initial condition, the result is No, and the process proceeds to S104. In S104, the timer is started and the time t from when the A / C switch 401 is turned on is measured.
 次に、吐出容量制御システム400は、S105で起動制御によってコイル316の制御電流Iを設定する。起動制御による制御電流Iは、例えば図7に示すように、タイマで計測される時間tの関数として設定される。また、時間t=0のときの制御電流の初期値I0は、制御電流の下限値Iminとして設定される。そして、吐出容量制御システム400は、時間tがt1未満であるか否かを判定し(S106)、時間tがt1未満であれば時間tがt1となる又はt1を超える(タイムアップする)まで後述のS108~S112、及びS101~S103を繰り返して起動制御を継続する。吐出容量制御システム400は、タイマがタイムアップすると、起動制御を終了し(S106)、F1=1、t=0とする(S107)。起動制御を終了した後、S103でF1が1であるかを判定し、F1=1であるのでS200に進み、後に詳述する空調制御によって制御電流Iを設定する。
 なお、吐出容量制御システム400は、A/Cスイッチ401がOFFとなると(S101)、F1=0、t=0とし、すなわちF1と時間tの値を初期化して(S114)、制御フローを終了させる。
Next, the discharge capacity control system 400 sets the control current I of the coil 316 by start control in S105. The control current I by the start control is set as a function of the time t measured by a timer, for example, as shown in FIG. Further, the initial value I0 of the control current at time t = 0 is set as the lower limit value Imin of the control current. Then, the discharge volume control system 400 determines whether or not the time t is less than t1 (S106). If the time t is less than t1, the time t becomes t1 or exceeds t1 (time is up). The activation control is continued by repeating S108 to S112 and S101 to S103 described later. When the timer expires, the discharge capacity control system 400 ends the start-up control (S106), and sets F1 = 1 and t = 0 (S107). After the start-up control is completed, it is determined whether or not F1 is 1 in S103. Since F1 = 1, the process proceeds to S200, and the control current I is set by air conditioning control described in detail later.
When the A / C switch 401 is turned off (S101), the discharge capacity control system 400 sets F1 = 0 and t = 0, that is, initializes the values of F1 and time t (S114), and ends the control flow. Let
 ここで、上記起動制御及び空調制御において、吐出容量制御システム400は、それぞれの制御において演算された制御電流を予め設定された下限値Iminと比較判定し(S108)、下限値Imin以下であれば、下限値Iminを制御電流Iとして設定する(S109)。また、演算された制御電流が下限値Iminより大きい場合は、演算された制御電流を予め設定された上限値Imax(>Imin)と比較判定し(S110)、演算された制御電流が上限値Imax以上であれば、上限値Imaxを制御電流Iとして設定する(S111)。演算された制御電流が下限値Iminと上限Imaxとの間にあるときは演算された制御電流を制御電流Iとして設定する(S112)。次に、設定された制御電流Iを制御弁300のコイル316に出力する(S113)。そして、前述のステップ101に戻る。このようにして、吐出容量制御システム400は、電源がOFFされて終了するまで、以上の制御を繰り返す。 Here, in the start-up control and the air conditioning control, the discharge capacity control system 400 compares and determines the control current calculated in each control with a preset lower limit value Imin (S108). The lower limit value Imin is set as the control current I (S109). When the calculated control current is larger than the lower limit value Imin, the calculated control current is compared with a preset upper limit value Imax (> Imin) (S110), and the calculated control current is determined to be the upper limit value Imax. If so, the upper limit value Imax is set as the control current I (S111). When the calculated control current is between the lower limit value Imin and the upper limit Imax, the calculated control current is set as the control current I (S112). Next, the set control current I is output to the coil 316 of the control valve 300 (S113). Then, the process returns to step 101 described above. In this way, the discharge capacity control system 400 repeats the above control until the power is turned off and the process ends.
 ここで、S200における空調制御について図8を参照して以下に詳述する。
 図8は、図6の制御フローにおける空調制御フロー(S200)を示す図である。
 まず、吐出容量制御システム400は、S200における空調制御で設定された蒸発器出口空気温度の目標値Tesと温度センサ402で検知され読み込んだ蒸発器出口空気温度Teとの偏差ΔTを演算し(S201)、その偏差ΔTに基づいて、例えばPI制御によって、その偏差ΔTが小さくなるように制御目標となる吸入圧力領域の圧力の目標圧力値を演算する(S202)。
Here, the air conditioning control in S200 will be described in detail below with reference to FIG.
FIG. 8 is a diagram showing an air conditioning control flow (S200) in the control flow of FIG.
First, the discharge capacity control system 400 calculates a deviation ΔT between the target value Tes of the evaporator outlet air temperature set in the air conditioning control in S200 and the evaporator outlet air temperature Te detected and read by the temperature sensor 402 (S201). ) Based on the deviation ΔT, for example, by PI control, the target pressure value of the pressure in the suction pressure region that is the control target is calculated so that the deviation ΔT becomes small (S202).
 吐出容量制御システム400においては、上述のように、吸入圧力領域の圧力の目標値Pssには予め下限値PssLと上限値PssHとが設定されている。そして、吐出容量制御システム400は、S202で演算された目標圧力値を予め設定された下限値PssLと比較判定し(S203)、演算された目標圧力値が下限値PssL以下である場合には、下限値PssLを目標値Pssとして設定する(S204)。なお、下限値PssLには図5に示すように、回転センサ404の出力値Ncに応じてPssL1又はPssL2のいずれか一方が設定される。 In the discharge capacity control system 400, as described above, the lower limit value PssL and the upper limit value PssH are set in advance for the target value Pss of the pressure in the suction pressure region. Then, the discharge capacity control system 400 compares and determines the target pressure value calculated in S202 with a preset lower limit value PssL (S203), and when the calculated target pressure value is less than or equal to the lower limit value PssL, The lower limit value PssL is set as the target value Pss (S204). As shown in FIG. 5, either one of PssL1 and PssL2 is set as the lower limit value PssL according to the output value Nc of the rotation sensor 404.
 また、吐出容量制御システム400は、S202で演算された目標圧力値が下限値PssLより大きい場合には、予め設定された上限値PssHと比較判定し(S205)、演算された目標圧力値が上限値PssH以上であれば、上限値PssHを吸入圧力領域の圧力の目標値Pssとして設定する(S206)。 Further, when the target pressure value calculated in S202 is larger than the lower limit value PssL, the discharge capacity control system 400 compares with the preset upper limit value PssH (S205), and the calculated target pressure value is the upper limit value. If it is equal to or greater than the value PssH, the upper limit value PssH is set as the target value Pss of the suction pressure region (S206).
 そして、吐出容量制御システム400は、S202で演算された目標値が下限値PssLと上限PssHとの間にある場合は、演算された目標値を吸入圧力領域の圧力の目標値Pssとして設定する(S207)。 If the target value calculated in S202 is between the lower limit value PssL and the upper limit PssH, the discharge capacity control system 400 sets the calculated target value as the target value Pss of the pressure in the suction pressure region ( S207).
 次に、圧力センサ403で検知された吸入圧力領域の圧力Psと圧力設定手段412で設定された吸入圧力領域の圧力の目標値Pssとの偏差ΔPsを演算し(S208)、偏差ΔPsの絶対値の大きさを判定する(S209)。偏差ΔPsの絶対値が予め設定されている値αと同等か、又はαより小さければ現状の制御電流Iを制御電流Iとして設定する(S210)。つまり、現状の制御電流Iを維持する。偏差ΔPsの絶対値が値αより大きければ、例えばPI制御によって、偏差ΔPsが小さくなるように制御電流Iを設定する(S211)。 Next, a deviation ΔPs between the pressure Ps in the suction pressure region detected by the pressure sensor 403 and the target value Pss of the pressure in the suction pressure region set by the pressure setting means 412 is calculated (S208), and the absolute value of the deviation ΔPs is calculated. Is determined (S209). If the absolute value of the deviation ΔPs is equal to or smaller than the preset value α, the current control current I is set as the control current I (S210). That is, the current control current I is maintained. If the absolute value of the deviation ΔPs is larger than the value α, the control current I is set so that the deviation ΔPs becomes smaller, for example, by PI control (S211).
 以上説明した吐出容量制御システム400の作用を説明する。
 容量制御システム400は、A/CスイッチがOFFからONに切り替わった場合は時間t1に至るまで起動制御を実行し、制御弁300は吐出圧力領域の2地点間の差圧(Pd1-Pd2)が制御電流Iで設定された設定差圧に近づくように圧力供給通路145の開度を自律制御する。このような制御において、制御電流Iは、時間tが増大すると比例的に増大するので、吐出容量が時間と共に最小容量側から徐々に増大するように制御される。そして、タイマがタイムアップして起動制御が終了すると空調制御が実行される。この空調制御では、蒸発器目標温度設定手段411で設定された目標温度Tesと、温度センサ402で検知された蒸発器出口空気温度Teとの偏差量ΔTに基づいて、その偏差ΔTが小さくなるように制御目標となる吸入圧力領域の圧力の目標値が演算される。この演算された吸入圧力領域の圧力の目標値は下限値PssL、上限値PssHと比較され、上記のように吸入圧力領域の圧力の目標値Pssは下限値PssLから上限値PssHの間で設定される。次に、圧力センサ403で検知された吸入圧力領域の圧力Psが吸入圧力領域の圧力の目標値Pssに近づくように吐出容量が調整される。その結果として、蒸発器出口空気温度Teが目標値Tesに近づく。なお、吸入圧力領域の圧力Psは吸入圧力領域の圧力の目標値Pssに対して±αの範囲に制御される。
The operation of the discharge capacity control system 400 described above will be described.
When the A / C switch is switched from OFF to ON, the capacity control system 400 executes the start-up control until time t1, and the control valve 300 has a differential pressure (Pd1-Pd2) between two points in the discharge pressure region. The opening degree of the pressure supply passage 145 is autonomously controlled so as to approach the set differential pressure set by the control current I. In such control, since the control current I increases proportionally as the time t increases, the discharge capacity is controlled to gradually increase from the minimum capacity side with time. Then, when the timer expires and the start-up control ends, air conditioning control is executed. In this air conditioning control, the deviation ΔT is reduced based on the deviation ΔT between the target temperature Tes set by the evaporator target temperature setting means 411 and the evaporator outlet air temperature Te detected by the temperature sensor 402. Then, the target value of the pressure in the suction pressure region that is the control target is calculated. The calculated target value of the pressure in the suction pressure region is compared with the lower limit value PssL and the upper limit value PssH, and the target value Pss of the pressure in the suction pressure region is set between the lower limit value PssL and the upper limit value PssH as described above. The Next, the discharge capacity is adjusted so that the pressure Ps in the suction pressure region detected by the pressure sensor 403 approaches the target value Pss in the suction pressure region. As a result, the evaporator outlet air temperature Te approaches the target value Tes. Note that the pressure Ps in the suction pressure region is controlled within a range of ± α with respect to the target value Pss of the suction pressure region.
 上述のように、吸入圧力領域の圧力の目標値Pssには、予め下限値PssLが設定されているので、吸入圧力領域の圧力Psが下限値を下回る場合は、制御電流を調整して圧力供給通路145の開度を大きくし、制御圧力室140の圧力を上昇させることにより吐出容量が確実に減少される。これにより、冷媒不足状態における大容量運転を確実に回避できる。そして、常用回転数を超えて高回転数領域になると下限値PssLをより高い値に変更することにより、吸入圧領域の圧力の下限値を高くして、高回転数領域での吐出容量の増大を回避する。 As described above, since the lower limit value PssL is set in advance for the target pressure value Pss in the suction pressure region, when the pressure Ps in the suction pressure region is lower than the lower limit value, the control current is adjusted to supply the pressure. By increasing the opening of the passage 145 and increasing the pressure in the control pressure chamber 140, the discharge capacity is reliably reduced. Thereby, large-capacity operation in a refrigerant shortage state can be avoided reliably. When the engine speed exceeds the normal rotation speed and becomes the high rotation speed area, the lower limit value PssL is changed to a higher value, thereby increasing the lower limit value of the pressure in the suction pressure area and increasing the discharge capacity in the high rotation speed area. To avoid.
 また、吸入圧力領域の圧力の目標値Pssには、予め上限値PssHが設定されているので、吸入圧力領域の圧力Psが上限値を上回る場合は吐出容量が増大されて過度に吸入圧力領域の圧力Psが上昇することが回避される。 Further, since the upper limit value PssH is set in advance for the target value Pss of the pressure in the suction pressure region, when the pressure Ps in the suction pressure region exceeds the upper limit value, the discharge capacity is increased and the suction pressure region is excessively exceeded. It is avoided that the pressure Ps increases.
 なお、空調制御において、任意の制御電流Iが設定されている状態では、吐出圧力領域の2地点間の差圧(Pd1-Pd2)がコイル316に供給される制御電流Iにより設定された設定差圧となるように吐出容量が自律的に制御される。これにより、吐出容量は制御弁300の自律調整機能により安定に制御され、不安定となることがない。本発明による吐出容量制御システム400は、電気的に吸入圧力領域の圧力Psを検知し、2地点間の差圧(Pd1-Pd2)がコイル316に供給される制御電流Iにより設定された設定差圧となるように弁孔を開閉する制御弁300を使用して吐出容量を制御するので、可変容量圧縮機100の最小容量から最大容量の範囲で自在に吐出容量を制御することが可能となる。 In the air conditioning control, in a state where an arbitrary control current I is set, the differential pressure (Pd1−Pd2) between two points in the discharge pressure region is set by the control current I supplied to the coil 316. The discharge capacity is autonomously controlled so as to be a pressure. Thereby, the discharge capacity is stably controlled by the autonomous adjustment function of the control valve 300 and does not become unstable. The discharge capacity control system 400 according to the present invention electrically detects the pressure Ps in the suction pressure region, and the differential pressure between the two points (Pd1−Pd2) is set by the control current I supplied to the coil 316. Since the discharge capacity is controlled by using the control valve 300 that opens and closes the valve hole so as to be the pressure, the discharge capacity can be freely controlled in the range from the minimum capacity to the maximum capacity of the variable capacity compressor 100. .
 本実施形態における制御弁300は、吐出圧力領域の2地点間の差圧に応答する弁体を有する構造であるが、これを吸入圧力領域の2地点間の差圧、吐出圧力領域と吸入圧力領域との2地点間の差圧、吐出圧力領域と制御圧力室との2地点間の差圧あるいは制御圧力室と吸入圧力領域との2地点間の差圧等の、可変容量圧縮機内部における冷媒循環路の2地点間の差圧に応答する弁体を有する制御弁としても良い。また感圧部材は、べローズ、ダイアフラム等の感圧手段ではなく、両端に異なる圧力を受ける円柱状の部材でも良い。また弁体と感圧部材が一体に形成された構造であっても良い。 The control valve 300 in the present embodiment has a structure that has a valve body that responds to the differential pressure between two points in the discharge pressure region, and this is the differential pressure between the two points in the suction pressure region, the discharge pressure region and the suction pressure. Within the variable capacity compressor, such as the differential pressure between the two points of the region, the differential pressure between the two points of the discharge pressure region and the control pressure chamber, or the differential pressure between the two points of the control pressure chamber and the suction pressure region. It is good also as a control valve which has a valve body which responds to the differential pressure between two points of a refrigerant circuit. The pressure-sensitive member may be a columnar member that receives different pressures at both ends, instead of pressure-sensitive means such as bellows or diaphragm. Moreover, the structure in which the valve body and the pressure-sensitive member were formed integrally may be sufficient.
 また、本実施形態における可変容量圧縮機は往復動圧縮機としたが、ベーン、スクロール等の可変容量圧縮機としても良い。 The variable capacity compressor in the present embodiment is a reciprocating compressor, but may be a variable capacity compressor such as a vane or a scroll.
 さらに、本発明における冷媒は、従来から用いられているR134aのみでなく、R1234yfや二酸化炭素等の冷媒であっても良い。 Furthermore, the refrigerant in the present invention is not limited to R134a conventionally used, but may be a refrigerant such as R1234yf or carbon dioxide.
 100…可変容量圧縮機、140…制御圧力室、142…吐出室、145…圧力供給通路、305…弁体、306…感圧部材、310…アクチュエータ、403…圧力検知手段(圧力センサ)、410…制御電流供給手段 DESCRIPTION OF SYMBOLS 100 ... Variable capacity compressor, 140 ... Control pressure chamber, 142 ... Discharge chamber, 145 ... Pressure supply passage, 305 ... Valve body, 306 ... Pressure-sensitive member, 310 ... Actuator, 403 ... Pressure detection means (pressure sensor), 410 ... Control current supply means

Claims (5)

  1.  エアコンシステムの冷凍サイクルを構成すべく冷媒が循環する冷媒循環路に放熱器、膨張器及び蒸発器と共に介挿され、制御圧力室の圧力の変化に基づいて吐出容量が変化する可変容量圧縮機の吐出容量を制御するシステムであって、
     前記可変容量圧縮機内部における冷媒循環路の2地点間の差圧に応答して弁体の開閉方向に変位する感圧部材と、供給された制御電流に応じて前記弁体に閉弁方向の付勢力を作用させるアクチュエータと、を有し、前記2地点間の差圧及び前記アクチュエータの付勢力に応じて前記弁体が変位し、吐出室と前記制御圧力室とを連通する圧力供給通路の開度を調整して前記制御圧力室内の圧力を変化させる制御弁と、
     前記冷媒循環路の低圧領域における圧力を検知する圧力検知手段と、
     前記冷媒循環路の低圧領域における圧力が予め設定された下限値を下回る場合には吐出容量を減少させるように前記制御電流を設定して前記アクチュエータに供給する制御電流供給手段と、
     を備える可変容量圧縮機の吐出容量制御システム。
    A variable capacity compressor that is inserted into a refrigerant circulation path through which refrigerant circulates to constitute a refrigeration cycle of an air conditioner system together with a radiator, an expander, and an evaporator, and whose discharge capacity changes based on a change in pressure in a control pressure chamber A system for controlling the discharge capacity,
    A pressure-sensitive member that is displaced in the opening and closing direction of the valve body in response to a differential pressure between two points in the refrigerant circulation path inside the variable capacity compressor, and a valve closing direction in the valve body in accordance with the supplied control current. An actuator for applying an urging force, and the valve body is displaced according to the differential pressure between the two points and the urging force of the actuator, and a pressure supply passage that communicates the discharge chamber and the control pressure chamber. A control valve for adjusting the opening to change the pressure in the control pressure chamber;
    Pressure detecting means for detecting pressure in a low pressure region of the refrigerant circuit;
    Control current supply means for setting the control current to reduce the discharge capacity when the pressure in the low pressure region of the refrigerant circuit is lower than a preset lower limit, and supplying the control current to the actuator;
    A discharge capacity control system for a variable capacity compressor.
  2.  前記下限値は、前記可変容量圧縮機の回転数に応じて変更される請求項1に記載の可変容量圧縮機の吐出容量制御システム。 The discharge capacity control system for a variable capacity compressor according to claim 1, wherein the lower limit value is changed according to the number of rotations of the variable capacity compressor.
  3.  前記制御電流供給手段は、
     前記エアコンシステムの運転条件に基づき前記低圧領域の目標圧力値を演算し、演算された前記目標圧力値が前記下限値より小さい場合には前記下限値を前記低圧領域の圧力の目標値として設定し、前記演算された目標圧力値が前記下限値以上である場合には前記演算された目標圧力値を前記低圧領域の圧力の目標値として設定する圧力設定手段を備え、
     検知した前記低圧領域の圧力と設定された前記低圧領域の圧力の目標値との偏差に基づき前記制御電流を設定する、請求項1又は2に記載の可変容量圧縮機の吐出容量制御システム。
    The control current supply means includes
    A target pressure value in the low pressure region is calculated based on operating conditions of the air conditioner system, and when the calculated target pressure value is smaller than the lower limit value, the lower limit value is set as a target value for the pressure in the low pressure region. And a pressure setting means for setting the calculated target pressure value as a target value of the pressure in the low pressure region when the calculated target pressure value is equal to or greater than the lower limit value,
    The discharge capacity control system of a variable capacity compressor according to claim 1 or 2, wherein the control current is set based on a deviation between the detected pressure in the low pressure region and a target value of the set pressure in the low pressure region.
  4.  前記制御電流供給手段は、前記偏差が予め設定された値より小さい場合は現状の制御電流を維持する、請求項3に記載の可変容量圧縮機の吐出容量制御システム。 The discharge capacity control system for a variable capacity compressor according to claim 3, wherein the control current supply means maintains the current control current when the deviation is smaller than a preset value.
  5.  前記冷媒は二酸化炭素である、請求項1~4のいずれか1項に記載の可変容量圧縮機の吐出容量制御システム。 The discharge capacity control system for a variable capacity compressor according to any one of claims 1 to 4, wherein the refrigerant is carbon dioxide.
PCT/JP2015/074590 2014-09-01 2015-08-31 Discharge capacity control system for variable capacity compressor WO2016035729A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014177146A JP2016050543A (en) 2014-09-01 2014-09-01 Discharge displacement control system for variable displacement compressor
JP2014-177146 2014-09-01

Publications (1)

Publication Number Publication Date
WO2016035729A1 true WO2016035729A1 (en) 2016-03-10

Family

ID=55439791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074590 WO2016035729A1 (en) 2014-09-01 2015-08-31 Discharge capacity control system for variable capacity compressor

Country Status (2)

Country Link
JP (1) JP2016050543A (en)
WO (1) WO2016035729A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105007A (en) * 2004-10-04 2006-04-20 Toyota Industries Corp Displacement control mechanism in variable displacement compressor
JP2006177300A (en) * 2004-12-24 2006-07-06 Toyota Industries Corp Capacity control mechanism in variable displacement compressor
JP2009162134A (en) * 2008-01-08 2009-07-23 Toyota Industries Corp Control valve for variable displacement type compressor
JP2009209823A (en) * 2008-03-05 2009-09-17 Sanden Corp Displacement control system for variable displacement compressor
JP2010065649A (en) * 2008-09-12 2010-03-25 Sanden Corp Capacity control valve, variable displacement compressor, and capacity control system of variable displacement compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105007A (en) * 2004-10-04 2006-04-20 Toyota Industries Corp Displacement control mechanism in variable displacement compressor
JP2006177300A (en) * 2004-12-24 2006-07-06 Toyota Industries Corp Capacity control mechanism in variable displacement compressor
JP2009162134A (en) * 2008-01-08 2009-07-23 Toyota Industries Corp Control valve for variable displacement type compressor
JP2009209823A (en) * 2008-03-05 2009-09-17 Sanden Corp Displacement control system for variable displacement compressor
JP2010065649A (en) * 2008-09-12 2010-03-25 Sanden Corp Capacity control valve, variable displacement compressor, and capacity control system of variable displacement compressor

Also Published As

Publication number Publication date
JP2016050543A (en) 2016-04-11

Similar Documents

Publication Publication Date Title
KR101012529B1 (en) Air conditioner
JP5413837B2 (en) Capacity control system and display device for variable capacity compressor
US6453685B2 (en) Control apparatus and control method for variable displacement compressor
EP1457676B1 (en) Control valve for a variable displacement compressor
JP2001165055A (en) Control valve and displacement variable compressor
EP1122430A2 (en) Controller for variable displacement compressor
JP2009063179A (en) Drive torque arithmetic unit for compressor and capacity control system of variable displacement compressor
EP1106830A2 (en) Control valve in variable displacement compressor
JP2001349624A (en) Volume control valve for air conditioner and variable volume type compressor
JP2002285956A (en) Control valve of variable displacement compressor
US7210911B2 (en) Controller for variable displacement compressor and control method for the same
US8506261B2 (en) Displacement control system for variable displacement compressor
WO2009081754A1 (en) Capacity control system for variable capacity compressor
US6705102B2 (en) Vehicular air-conditioner
JP2001193662A (en) Control device of variable displacement compressor
JP2004098757A (en) Air conditioner
US6520749B2 (en) Control valve for variable displacement compressor
JP5075682B2 (en) Capacity control system for variable capacity compressor
WO2016035729A1 (en) Discharge capacity control system for variable capacity compressor
WO2015098697A1 (en) Flow rate detection device and variable displacement compressor
JP2006070902A (en) Variable displacement type compressor
JP6192365B2 (en) Variable capacity compressor
JP2007064056A (en) Control valve of variable displacement type compressor
JP2005337044A (en) Mechanical capacity control valve of variable capacity swash plate compressor
JP2009062822A (en) Capacity control system for variable displacement compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15837237

Country of ref document: EP

Kind code of ref document: A1