JP2011010540A - Power supply - Google Patents

Power supply Download PDF

Info

Publication number
JP2011010540A
JP2011010540A JP2010119961A JP2010119961A JP2011010540A JP 2011010540 A JP2011010540 A JP 2011010540A JP 2010119961 A JP2010119961 A JP 2010119961A JP 2010119961 A JP2010119961 A JP 2010119961A JP 2011010540 A JP2011010540 A JP 2011010540A
Authority
JP
Japan
Prior art keywords
voltage
power supply
switch
output voltage
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010119961A
Other languages
Japanese (ja)
Other versions
JP5310648B2 (en
Inventor
Katsutoshi Yamanaka
克利 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2010119961A priority Critical patent/JP5310648B2/en
Publication of JP2011010540A publication Critical patent/JP2011010540A/en
Application granted granted Critical
Publication of JP5310648B2 publication Critical patent/JP5310648B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a power supply capable of easily outputting a low voltage by carrying out direct DC-AC conversion from a DC power supply, such as, storage battery to AC voltage, securing a current path for an inductor so as to improve security and decreasing the number of switches on the current path so as to improve the efficiency.SOLUTION: The power supply outputs a single-phase AC voltage Vrs by switching a step-up mode, and a step-down mode in which a single-phase AC voltage Vrs is output by alternately controlling two states: a positive connection state in which a positive voltage is output between terminals R1 and S1 with bidirectional switches 1, 2 (10, 11 in Fig.1) turned on; and a negative connection state in which a negative voltage is output between the terminals R1 and S1 with bidirectional switches 3, 4 (12, 13 in Fig.1) turned on, and a voltage is output, in such a manner, that the absolute voltage value |Vrs| of the single-phase AC voltage Vrs becomes lower than the voltage of a storage voltage 6 by controlling the time ratio of the two states.

Description

本発明は、直流を単相交流へ変換する電源装置に関する。 The present invention relates to a power supply device that converts direct current to single-phase alternating current.

従来の電源装置は、鉛・リチウムイオン、Ni−HMや電気二重層キャパシタなどの蓄電池といった直流電源からの電力を単相交流へ変換するために、入出力にインダクタを備え双方向に昇降圧可能なマトリクスコンバータを用いていた(例えば、特許文献1参照)。

Conventional power supply devices are equipped with inductors at the input and output and can be stepped up and down in both directions to convert power from DC power sources such as lead / lithium ions, storage batteries such as Ni-HM and electric double layer capacitors into single-phase AC A simple matrix converter was used (see, for example, Patent Document 1).



特開2005−333783号公報(第4−9頁、図6)Japanese Patent Laying-Open No. 2005-333783 (page 4-9, FIG. 6)

しかしながら、上記電源装置は、降圧動作の状態でバッテリの一端に直列接続されたリアクトルL1のスイッチ側は開放となり、リアクトルL1に流れていた電流の経路を確保できないので、リアクトルL1にサージ電圧が発生しスイッチを破壊する恐れがある。
本発明は、このような問題点に鑑みてなされたものであり、蓄電池などの直流電圧から交流電圧へ電源形態と電圧の大きさを直接変換し、インダクタの電流経路を確保して安全性を向上し、また電流経路のスイッチ数を低減することで電力変換効率を向上し、更に容易に直流電源の電圧から低電圧を出力できる電源装置を提供することを目的とする。
However, in the above power supply device, the switch side of the reactor L1 connected in series with one end of the battery in the step-down operation state is opened, and a current path flowing through the reactor L1 cannot be secured, so a surge voltage is generated in the reactor L1. The switch may be destroyed.
The present invention has been made in view of such problems, and directly converts a power source form and a voltage level from a DC voltage such as a storage battery to an AC voltage, and secures a current path of the inductor to improve safety. An object of the present invention is to provide a power supply apparatus that can improve power conversion efficiency by reducing the number of switches in the current path, and can easily output a low voltage from the voltage of a DC power supply.

上記問題を解決するため、本発明の一の観点によれば、次のような電源装置が適用される。
電源装置は、直流電源を単相交流電圧に変換して出力する電源装置であって、第1の双方向スイッチの一端と第3の双方向スイッチの一端とを接続し、第2の双方向スイッチの一端と第4の双方向スイッチの一端とを接続し、第1の双方向スイッチの他端と第2の双方向スイッチの他端とを接続し、第3の双方向スイッチの他端と第4の双方向スイッチの他端とを接続し、第4の双方向スイッチの一端と直流電源の負極側とを接続した、半導体スイッチング素子を有する片方向スイッチを2つ逆並列に接続した第1〜第4の双方向スイッチと、一端を直流電源の正極側に接続し、他端を第1の双方向スイッチの一端に接続したインダクタと、第1の双方向スイッチの他端と第4の双方向スイッチの他端とに接続したコンデンサおよび出力フィルタと、直流電源の電圧を検出して直流電源電圧検出信号を出力する入力電圧検出部と、単相交流電圧を検出して出力電圧検出信号を出力する出力電圧検出部と、出力電圧指令信号、直流電源電圧検出信号、出力電圧検出信号を入力し、出力電圧指令信号と出力電圧検出信号とが一致するようにPWM制御演算して、第1〜第4の双方向スイッチを駆動するオンオフ信号を出力するPWM制御部と、を備え、PWM制御部が、前記出力電圧指令信号の絶対値が直流電源電圧検出信号より大きい場合は昇圧動作、前記出力電圧指令信号の絶対値が直流電源電圧検出信号以下の場合は降圧動作させるオンオフ信号を出力する、ことを特徴とするものである。

In order to solve the above problem, according to one aspect of the present invention, the following power supply device is applied.
The power supply device is a power supply device that converts a DC power supply into a single-phase AC voltage and outputs the same, and connects one end of the first bidirectional switch and one end of the third bidirectional switch to provide a second bidirectional power supply. One end of the switch is connected to one end of the fourth bidirectional switch, the other end of the first bidirectional switch is connected to the other end of the second bidirectional switch, and the other end of the third bidirectional switch And two other one-way switches having a semiconductor switching element connected to one end of the fourth bidirectional switch and the negative electrode side of the DC power source. A first to fourth bidirectional switch; an inductor having one end connected to the positive side of the DC power supply and the other end connected to one end of the first bidirectional switch; the other end of the first bidirectional switch; 4 and a capacitor connected to the other end of the bidirectional switch. An input voltage detection unit that detects a DC power supply voltage and outputs a DC power supply voltage detection signal, an output voltage detection unit that detects a single-phase AC voltage and outputs an output voltage detection signal, and an output voltage command signal An on / off signal for driving the first to fourth bidirectional switches by inputting a DC power supply voltage detection signal and an output voltage detection signal, performing PWM control calculation so that the output voltage command signal and the output voltage detection signal match. A PWM controller that outputs a voltage when the absolute value of the output voltage command signal is greater than the DC power supply voltage detection signal, and the absolute value of the output voltage command signal is detected by the DC power supply voltage. When the signal is equal to or lower than the signal, an on / off signal for performing a step-down operation is output.

また、本発明の他の観点によれば、次のような電源装置が適用される。
電源装置は、直流電源を単相交流電圧に変換して出力する電源装置であって、第1の片方向スイッチの電流流出端と第3の片方向スイッチの電流流入端とを接続し、第2の片方向スイッチの電流流出端と第4の片方向スイッチの電流流入端とを接続し、第1の片方向スイッチの電流流入端と第2の片方向スイッチの電流流入端とを接続し、第3の片方向スイッチと第4の片方向スイッチの電流流出端とを接続し、第4の片方向スイッチの電流流出端と直流電源の負極側とを接続した、半導体スイッチング素子を有する第1〜第4の片方向スイッチと、一端を直流電源の正極側に接続し、他端を第1の片方向スイッチの電流流入端に接続したインダクタと、第1の片方向スイッチの電流流出端と第2の片方向スイッチの電流流流入端とに接続したコンデンサおよび出力フィルタと、直流電源の電圧を検出して直流電源電圧検出信号を出力する入力電圧検出部と、単相交流電圧を検出して出力電圧検出信号を出力する出力電圧検出部と、出力電圧指令信号、前記直流電源電圧検出信号、前記出力電圧検出信号を入力し、出力電圧指令信号と出力電圧検出信号とが一致するようにPWM制御演算して、第1〜第4の片方向スイッチを駆動するオンオフ信号を出力するPWM制御部と、を備え、PWM制御部が、前記出力電圧指令信号の絶対値が直流電源電圧検出信号より大きい場合は昇圧動作、前記出力電圧指令信号の絶対値が直流電源電圧検出信号以下の場合は降圧動作させるオンオフ信号を出力する、ことを特徴とするものである。







Moreover, according to the other viewpoint of this invention, the following power supply devices are applied.
The power supply device is a power supply device that converts a DC power supply into a single-phase AC voltage and outputs the same, and connects a current outflow end of the first unidirectional switch and a current inflow end of the third unidirectional switch, The current outflow end of the two unidirectional switches is connected to the current inflow end of the fourth unidirectional switch, and the current inflow end of the first unidirectional switch is connected to the current inflow end of the second unidirectional switch. The third unidirectional switch is connected to the current outflow end of the fourth unidirectional switch, and the current outflow end of the fourth unidirectional switch is connected to the negative electrode side of the DC power supply. 1 to 4 unidirectional switches, an inductor having one end connected to the positive side of the DC power source and the other end connected to the current inflow end of the first unidirectional switch, and the current outflow end of the first unidirectional switch And the current flow inflow end of the second unidirectional switch A capacitor and an output filter; an input voltage detector that detects a DC power supply voltage and outputs a DC power supply voltage detection signal; an output voltage detector that detects a single-phase AC voltage and outputs an output voltage detection signal; The voltage command signal, the DC power supply voltage detection signal, and the output voltage detection signal are input, PWM control calculation is performed so that the output voltage command signal and the output voltage detection signal match, and the first to fourth one-way switches A PWM control unit that outputs an on / off signal for driving the output voltage command signal when the absolute value of the output voltage command signal is larger than the DC power supply voltage detection signal, and the absolute value of the output voltage command signal When is less than or equal to the DC power supply voltage detection signal, an on / off signal for performing a step-down operation is output.







本発明によれば、蓄電池などの直流電圧から交流電圧へ電源形態と電圧の大きさを直接変換し、インダクタの電流経路を確保して安全性を向上し、電流経路のスイッチ数を低減することで電力変換効率を向上し、容易に低電圧を出力できる。

According to the present invention, it is possible to directly convert the power source form and voltage magnitude from a DC voltage such as a storage battery to an AC voltage, to secure the current path of the inductor, to improve safety, and to reduce the number of switches in the current path. Can improve the power conversion efficiency and easily output a low voltage.

本発明の実施例1における電源装置の全体構成図1 is an overall configuration diagram of a power supply device according to a first embodiment of the present invention. PWM制御回路1の詳細構成図Detailed configuration diagram of PWM control circuit 1 降圧モードでのスイッチング状態の正接続状態を示す図Diagram showing the positive connection state of the switching state in step-down mode 降圧モードでのスイッチング状態の負接続状態を示す図The figure which shows the negative connection state of the switching state in step-down mode 出力電圧Vrsの平均電圧(端子R−S間電圧平均値)が0となる場合のインダクタLに流れる電流波形および端子R1−S1間の電圧波形を示す図The figure which shows the current waveform which flows into the inductor L in case the average voltage (voltage value between terminal RSs) of the output voltage Vrs is 0, and the voltage waveform between terminals R1-S1 出力電圧Vrsの平均電圧(端子R−S間電圧平均値)が正、かつ蓄電池電圧Vbat以下となる場合のインダクタLに流れる電流波形および端子R1−S1間の電圧波形を示す図The figure which shows the current waveform which flows into the inductor L in case the average voltage (voltage average value between terminal RSs) of output voltage Vrs is positive and it is below storage battery voltage Vbat, and the voltage waveform between terminals R1-S1. 出力電圧Vrsの平均電圧(端子R−S間電圧平均値)が負、かつ蓄電池電圧−Vbat以上となる場合のインダクタLに流れる電流波形および端子R1−S1間の電圧波形を示す図The figure which shows the current waveform which flows into the inductor L in case the average voltage (voltage average value between terminal RS) is more than the storage battery voltage -Vbat, and the voltage waveform between terminals R1-S1 of the output voltage Vrs. 本発明の実施例2における電源装置の全体構成図Overall configuration diagram of a power supply device in Embodiment 2 of the present invention

以下、本発明の実施の形態について図面を参照して説明する。なお、同一の構成については同一の符号を付することにより、適宜説明を省略又は簡略化する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, about the same structure, description is abbreviate | omitted or simplified suitably by attaching | subjecting the same code | symbol.

図1は、本発明の実施例1における電源装置の全体構成図を示したものである。図において、電源装置は、蓄電池6、インダクタL、双方向スイッチ10〜13、平滑用のコンデンサC、出力フィルタ18(例えば、コンデンサCoとインダクタLo1,Lo2とで構成)、入力電圧検出回路8、出力電圧検出回路9、PWM制御回路1を備える。 FIG. 1 is an overall configuration diagram of a power supply device according to Embodiment 1 of the present invention. In the figure, the power supply device includes a storage battery 6, an inductor L, bidirectional switches 10 to 13, a smoothing capacitor C, an output filter 18 (for example, composed of a capacitor Co and inductors Lo1 and Lo2), an input voltage detection circuit 8, An output voltage detection circuit 9 and a PWM control circuit 1 are provided.

双方向スイッチ10〜13は、半導体スイッチング素子であるIGBT(Insulated Gate Bipolar Transistor)(Srp,Spr,Snr,Srn,Ssp,Sps,Ssn,Sns)とダイオード(D1〜D8)から成る片方向スイッチを2つ逆並列に接続したものである。
双方向スイッチ10の一端と双方向スイッチ13の一端とを接続し、双方向スイッチ12の一端と双方向スイッチ11の一端とを接続し、双方向スイッチ10の他端と双方向スイッチ12の他端とを接続し、双方向スイッチ13の他端と双方向スイッチ11の他端とを接続し、双方向スイッチ10の一端と蓄電池6の正極側とを接続し、双方向スイッチ11の一端と蓄電池6の負極側とを接続している。
The bidirectional switches 10 to 13 are unidirectional switches composed of IGBTs (Srp, Spr, Snr, Sn, Srn, Ssp, Sps, Ssn, Sns) and diodes (D1 to D8), which are semiconductor switching elements. Two are connected in reverse parallel.
One end of the bidirectional switch 10 and one end of the bidirectional switch 13 are connected, one end of the bidirectional switch 12 and one end of the bidirectional switch 11 are connected, and the other end of the bidirectional switch 10 and the other of the bidirectional switch 12 are connected. The other end of the bidirectional switch 13 and the other end of the bidirectional switch 11, one end of the bidirectional switch 10 and the positive electrode side of the storage battery 6 are connected, and one end of the bidirectional switch 11 The negative electrode side of the storage battery 6 is connected.

インダクタLは、その一端を蓄電池6の正極側に接続し、その他端を双方向スイッチ10の一端に接続している。
コンデンサCおよび出力フィルタ18は、双方向スイッチ10の他端と双方向スイッチ11の他端とに接続している。
The inductor L has one end connected to the positive electrode side of the storage battery 6 and the other end connected to one end of the bidirectional switch 10.
The capacitor C and the output filter 18 are connected to the other end of the bidirectional switch 10 and the other end of the bidirectional switch 11.

入力電圧検出回路8は、蓄電池6の電圧を蓄電池電圧検出信号VbatとしてPWM制御回路1へ出力する。
出力電圧検出回路9は、電源装置の出力である単相交流電圧を検出して出力電圧検出信号VrsとしてPWM制御回路1へ出力する。
PWM制御回路1は、出力電圧指令信号Voref、直流電源電圧検出信号Vbat、出力電圧検出信号Vrsを入力し、出力電圧指令信号Vorefと出力電圧検出信号Vrsとが一致するようにPWM制御演算して、双方向スイッチ10〜13を駆動するゲート信号(オンオフ信号)を出力する。
The input voltage detection circuit 8 outputs the voltage of the storage battery 6 to the PWM control circuit 1 as a storage battery voltage detection signal Vbat.
The output voltage detection circuit 9 detects a single-phase AC voltage that is an output of the power supply device, and outputs it to the PWM control circuit 1 as an output voltage detection signal Vrs.
The PWM control circuit 1 receives the output voltage command signal Voref, the DC power supply voltage detection signal Vbat, and the output voltage detection signal Vrs, and performs PWM control calculation so that the output voltage command signal Voref and the output voltage detection signal Vrs match. A gate signal (on / off signal) for driving the bidirectional switches 10 to 13 is output.

なお、上記蓄電池6は、請求項1,2記載の、直流電源を構成している。また、上記双方向スイッチ10〜13は、第1〜第4の双方向スイッチを構成し、インダクタLは、インダクタを構成している。また、コンデンサCは平滑用のコンデンサである。出力フィルタ18は、例えば、コンデンサCoとインダクタLo1,Lo2とで構成している。また、入力電圧検出回路8は、入力電圧検出部を構成し、出力電圧検出回路9は、出力電圧検出部を構成している。また、PWM制御回路1は、PWM制御部を構成している。

The storage battery 6 constitutes a DC power supply according to claims 1 and 2. The bidirectional switches 10 to 13 constitute first to fourth bidirectional switches, and the inductor L constitutes an inductor. Capacitor C is a smoothing capacitor. The output filter 18 includes, for example, a capacitor Co and inductors Lo1 and Lo2. The input voltage detection circuit 8 constitutes an input voltage detection unit, and the output voltage detection circuit 9 constitutes an output voltage detection unit. The PWM control circuit 1 constitutes a PWM control unit.

PWM制御回路1は、出力電圧指令Vorefと、入力電圧検出回路8で検出する蓄電池電圧Vbat及び出力電圧検出回路9で検出する出力電圧検出信号Vrsを入力し、出力電圧指令Vorefと出力電圧検出信号Vrsとが一致するようにPWM制御演算し、双方向スイッチ10〜13がスイッチングするためのゲート信号(オンオフ信号)を出力する。ここで、出力電圧指令Vorefが正弦波のときは、単相交流電圧が出力される。 The PWM control circuit 1 receives the output voltage command Voref, the storage battery voltage Vbat detected by the input voltage detection circuit 8, and the output voltage detection signal Vrs detected by the output voltage detection circuit 9, and outputs the output voltage command Voref and the output voltage detection signal. PWM control calculation is performed so that Vrs matches, and a gate signal (ON / OFF signal) for switching the bidirectional switches 10 to 13 is output. Here, when the output voltage command Voref is a sine wave, a single-phase AC voltage is output.

電源装置は、蓄電池6とインダクタLが直列接続されており、昇圧機能を持つ電力回生(蓄電池への充電)可能な電流形インバータ(CSI)と等価である。出力電圧検出信号Vrsの絶対値が蓄電池電圧Vbatよりも高い場合は、昇圧動作を行う。回生時は出力端子R−S間に単相交流電源を接続し、交流電源電圧Vrsの絶対値が、蓄電池電圧Vbatよりも高くなった場合に、降圧動作を行って単相交流電源から蓄電池6へ回生(充電)を行う。
The power supply device has a storage battery 6 and an inductor L connected in series, and is equivalent to a current source inverter (CSI) capable of power regeneration (charging the storage battery) having a boosting function. When the absolute value of the output voltage detection signal Vrs is higher than the storage battery voltage Vbat, a boosting operation is performed. During regeneration, a single-phase AC power supply is connected between the output terminals RS, and when the absolute value of the AC power supply voltage Vrs becomes higher than the storage battery voltage Vbat, a step-down operation is performed to convert the storage battery 6 from the single-phase AC power supply. Regeneration (charging) is performed.

図2は、PWM制御回路1の詳細構成図である。図において、PWM制御回路1は、電圧レギュレータ2、モード判定器3、PWM演算器4、ゲートドライバ5を備える。 FIG. 2 is a detailed configuration diagram of the PWM control circuit 1. In the figure, the PWM control circuit 1 includes a voltage regulator 2, a mode determiner 3, a PWM calculator 4, and a gate driver 5.

電圧レギュレータ2は、出力電圧指令Vorefと出力電圧検出回路9で検出した出力電圧検出信号Vrsとを比較して、出力電圧検出信号Vrsを上げるか下げるか(昇圧するか降圧するか)を決定する。すなわち、出力電圧検出信号Vrsが出力電圧指令Vorefより低い場合は出力電圧検出信号Vrsを上げるように、一方、出力電圧検出信号Vrsが出力電圧指令Vorefより高い場合は出力電圧検出信号Vrsを下げるように決定し、PWM演算器4に昇圧するか降圧するかを出力する。 The voltage regulator 2 compares the output voltage command Voref and the output voltage detection signal Vrs detected by the output voltage detection circuit 9, and determines whether the output voltage detection signal Vrs is to be increased or decreased (stepped up or stepped down). . That is, when the output voltage detection signal Vrs is lower than the output voltage command Voref, the output voltage detection signal Vrs is increased. On the other hand, when the output voltage detection signal Vrs is higher than the output voltage command Voref, the output voltage detection signal Vrs is decreased. And outputs to the PWM calculator 4 whether to step up or step down.

モード判定器3は、出力電圧指令Vorefの絶対値|Voref|と入力電圧検出回路8で検出した蓄電池電圧Vbatとを比較して、昇圧モードまたは降圧モードの動作判定を行う。すなわち、出力電圧指令Vorefの絶対値|Voref|が蓄電池電圧Vbatより高い場合は昇圧動作(昇圧モード)を行い、出力電圧指令Vorefの絶対値|Voref|が蓄電池電圧Vbat以下の場合は降圧動作(降圧モード)を行うように動作判定し、PWM演算器4にその動作判定内容を出力する。 The mode determiner 3 compares the absolute value | Voref | of the output voltage command Voref with the storage battery voltage Vbat detected by the input voltage detection circuit 8, and determines the operation in the step-up mode or the step-down mode. That is, when the absolute value | Voref | of the output voltage command Voref is higher than the storage battery voltage Vbat, a boosting operation (boost mode) is performed, and when the absolute value | Voref | of the output voltage command Voref is equal to or lower than the storage battery voltage Vbat, The operation is determined so that the step-down mode is performed, and the operation determination content is output to the PWM calculator 4.

PWM演算器4は、電圧レギュレータ2からの上記決定およびにモード判定器3からの上記動作判定内容に基づいて、双方向スイッチ10〜13のスイッチングするためのゲート信号(オンオフ信号)であるPWMパルスの時間を各双方向スイッチ毎に演算しゲートドライバ5へ出力する。この演算方法については後述する。 The PWM calculator 4 is a PWM pulse that is a gate signal (on / off signal) for switching the bidirectional switches 10 to 13 based on the determination from the voltage regulator 2 and the operation determination content from the mode determination unit 3. Is calculated for each bidirectional switch and output to the gate driver 5. This calculation method will be described later.

ゲートドライバ5は、PWM演算器4が演算したPWMパルスの時間に応じたゲート信号(オンオフ信号)を対応する双方向スイッチ10〜13のIGBT(Srp,Spr,Snr,Srn,Ssp,Sps,Ssn,Sns)に出力する。

The gate driver 5 uses the IGBTs (Srp, Spr, Snr, Srn, Ssp, Sps, Ssn) of the bidirectional switches 10-13 corresponding to the gate signals (ON / OFF signals) corresponding to the time of the PWM pulse calculated by the PWM calculator 4. , Sns).

先ず、PWM制御回路1は、昇圧モードでは、次のように動作する。
出力端子RおよびSの電位がR>Sの場合、
(A1)Spr,Snrのみをオンし、インダクタLを短絡状態として、インダクタLに電流を流す。
(A2)次にSsnをオンする。(ただし、D7は逆バイアスなので導通しない)
(A3)次にSnrをオフし、D7がオンとなりSsnを導通させることで、電流を出力端子R−Sに流す(開放状態)。このときの電流の流れはR→Sの方向となる。
(A4)(A1)から(A3)を繰り返して、蓄電池電圧Vbatを昇圧させる。
First, the PWM control circuit 1 operates as follows in the boost mode.
When the potentials of the output terminals R and S are R> S,
(A1) Only Spr and Snr are turned on, the inductor L is short-circuited, and a current is passed through the inductor L.
(A2) Next, Ssn is turned on. (However, since D7 is reverse bias, it does not conduct)
(A3) Next, Snr is turned off, D7 is turned on, and Ssn is turned on, so that a current flows through the output terminal RS (open state). The current flow at this time is in the direction of R → S.
(A4) (A1) to (A3) are repeated to boost the storage battery voltage Vbat.

一方、端子RおよびSの電位がR<Sの場合、
(A5)Sps,Ssnのみをオンし、インダクタLを短絡状態として、インダクタLに電流を流す。
(A6)次にSnrをオンする。(ただし、D3は逆バイアスなので導通しない)
(A7)次にSsnをオフし、D3がオンとなりSnrが導通すると、電流を出力端子R−Sに流す(開放状態)。このときの電流の流れはS→Rの方向となる。
(A8)(A5)から(A7)を繰り返して、蓄電池電圧Vbatを昇圧する。
On the other hand, when the potentials of the terminals R and S are R <S,
(A5) Only Sps and Ssn are turned on, the inductor L is short-circuited, and a current is passed through the inductor L.
(A6) Next, Snr is turned on. (However, since D3 is reverse bias, it does not conduct)
(A7) Next, when Ssn is turned off and D3 is turned on and Snr is turned on, a current is supplied to the output terminal RS (open state). The current flow at this time is in the direction of S → R.
(A8) (A5) to (A7) are repeated to boost the storage battery voltage Vbat.

インダクタLの短絡状態の時間をTs、開放状態の時間をToとすると、出力電圧検出信号Vrsの平均値(端子R−S間の電圧平均値)avr(Vrs)は、式(1)で算出できる。
avr(Vrs)=Vbat×(To+Ts)/To (1)
When the time of the short-circuit state of the inductor L is Ts and the time of the open state is To, the average value of the output voltage detection signal Vrs (voltage average value between the terminals RS) avr (Vrs) is calculated by the equation (1). it can.
avr (Vrs) = Vbat × (To + Ts) / To (1)

このような昇圧動作のみでは、蓄電池電圧Vbatよりも高い電圧しか出力できないので、出力電圧指令Vorefが正弦波であっても単相の出力電圧検出信号Vrsは正弦波ではなく大きく歪む(高調波成分を含む)。一般的な整流形(コンデンサインプット形)の負荷では問題ないが、モータなどの誘導性負荷の場合では、出力電圧検出信号Vrsの歪(高調波成分)によって、負荷の動作が不安定になる恐れがあるため、次の降圧モードでの降圧動作も必要となる。 Since only a voltage higher than the storage battery voltage Vbat can be output only by such a boosting operation, even if the output voltage command Voref is a sine wave, the single-phase output voltage detection signal Vrs is not a sine wave but greatly distorted (harmonic component) including). There is no problem with a general rectification type (capacitor input type) load, but in the case of an inductive load such as a motor, the operation of the load may become unstable due to distortion (harmonic component) of the output voltage detection signal Vrs. Therefore, the step-down operation in the next step-down mode is also required.

次に、PWM制御回路1での降圧モードについて説明する。
図3Aは降圧モードでのスイッチング状態の正接続状態を示す図、図3Bは降圧モードでのスイッチング状態の負接続状態を示す図である。
Next, the step-down mode in the PWM control circuit 1 will be described.
FIG. 3A is a diagram illustrating a positive connection state in a switching state in the step-down mode, and FIG. 3B is a diagram illustrating a negative connection state in a switching state in the step-down mode.

降圧モードでは、スイッチのオンオフ状態を図3Aに示す正接続状態と、図3Bに示す負接続状態の2つの状態を一定周期中に交互に切替えるように動作する。図3A,BではIGBTである各スイッチ(Srp,Spr,Snr,Srn,Ssp,Sps,Ssn,Sns)のオンオフ状態を分かり易く表現するために、メカニカルスイッチで記載している。
In the step-down mode, the switch is operated so that the on / off state of the switch is alternately switched between a positive connection state shown in FIG. 3A and a negative connection state shown in FIG. In FIGS. 3A and 3B, the switches (Srp, Spr, Snr, Srn, Ssp, Sps, Ssn, Sns) that are IGBTs are described as mechanical switches for easy understanding.

(B1)図3Aに示す正接続状態においては、Spr,Ssnをオンし、R1に正、S1に負電圧を出力する。
(B2)次に正接続状態から、図3Bに示す負接続状態への切替え動作を行うために、先ず、Spsをオンとして、D6-Sps-D7-Ssnの経路でインダクタLを短絡状態とする。このときD2は逆バイアス状態となるので、Sprの通電もオフ状態となる。
(B3)次にSprをオフ、Snrをオンして、D7を逆バイアス状態とするとSsnの通電もオフ状態となる。
(B4)次にSsnをオフすると図3Bに示す負接続状態となり、コンデンサCの電圧極性が反転し、R1に負、S1に正電圧が出力される。
(B5)次に図3Bに示す負接続状態から、図3Aに示す正接続状態への切替え動作を行うために、先ず、Sprをオンとして、D2-Spr-D3-Snrの経路でインダクタLを短絡状態とする。このときD6は逆バイアス状態となるので、Spsの通電もオフ状態となる。
(B6)次にSpsをオフ、Ssnをオンして、D3を逆バイアス状態とするとSnrの通電もオフ状態となる。
(B7)次にSnrをオフすると図3Aに示す正接続状態となり、コンデンサCの電圧極性が反転し、R1に正、S1に負電圧が出力される。
(B8)(B1)から(B7)を繰り返、蓄電池電圧Vbatを降圧する。。
(B1) In the positive connection state shown in FIG. 3A, Spr and Ssn are turned on, and a positive voltage is output to R1 and a negative voltage to S1.
(B2) Next, in order to perform the switching operation from the positive connection state to the negative connection state shown in FIG. 3B, first, Sps is turned on, and the inductor L is short-circuited along the path D6-Sps-D7-Ssn. . At this time, since D2 is in a reverse bias state, energization of Spr is also turned off.
(B3) Next, when Spr is turned off, Snr is turned on, and D7 is set in the reverse bias state, the energization of Ssn is also turned off.
(B4) Next, when Ssn is turned off, the negative connection state shown in FIG. 3B is established, the voltage polarity of the capacitor C is inverted, and a negative voltage is output to R1 and a positive voltage is output to S1.
(B5) Next, in order to perform the switching operation from the negative connection state shown in FIG. 3B to the positive connection state shown in FIG. 3A, first, Spr is turned on, and the inductor L is connected along the path D2-Spr-D3-Snr. Short circuit. At this time, since D6 is in the reverse bias state, the power supply to Sps is also turned off.
(B6) Next, when Sps is turned off, Ssn is turned on, and D3 is set in the reverse bias state, the Snr energization is also turned off.
(B7) Next, when Snr is turned off, the positive connection state shown in FIG. 3A is established, the voltage polarity of the capacitor C is inverted, and a positive voltage is output to R1 and a negative voltage is output to S1.
(B8) (B1) to (B7) are repeated to step down the storage battery voltage Vbat. .

(B2)、(B5)のインダクタLの短絡状態は、数マイクロ秒程度のきわめて短い時間とする。これにより、上記2つの状態の切替り時のインダクタLの電流の経路を確保し、サージ電圧の発生を抑制する。 The short-circuit state of the inductor L in (B2) and (B5) is an extremely short time of about several microseconds. As a result, a current path of the inductor L at the time of switching between the two states is secured, and the occurrence of a surge voltage is suppressed.

図4〜6は、正接続状態の時間(蓄電池電圧Vbatの出力時間)T1、負接続状態の時間(蓄電池電圧−Vbatの出力時間)T2を調整することにより、所望の出力電圧検出信号Vrsの平均電圧(端子R−S間電圧平均値)が得られる様子を表している。
図4は、T1=T2とした出力電圧検出信号Vrsの平均電圧(端子R−S間電圧平均値)が0となる場合のインダクタLに流れる電流波形および端子R1−S1間の電圧波形を示す図である。
図5は、T1>T2とした出力電圧検出信号Vrsの平均電圧(端子R−S間電圧平均値)が正、かつ蓄電池電圧Vbat以下となる場合のインダクタLに流れる電流波形および端子R1−S1間の電圧波形を示す図である。
図6は、T1<T2とした出力電圧検出信号Vrsの平均電圧(端子R−S間電圧平均値)が負、かつ蓄電池電圧−Vbat以上となる場合のインダクタLに流れる電流波形および端子R1−S1間の電圧波形を示す図である。
FIGS. 4 to 6 show the desired output voltage detection signal Vrs by adjusting the time of positive connection state (output time of storage battery voltage Vbat) T1 and the time of negative connection state (output time of storage battery voltage−Vbat) T2. It shows how the average voltage (the average value of the voltage between terminals RS) is obtained.
FIG. 4 shows a current waveform flowing through the inductor L and a voltage waveform between the terminals R1 and S1 when the average voltage (voltage average value between the terminals RS) of the output voltage detection signal Vrs with T1 = T2 becomes zero. FIG.
FIG. 5 shows the waveform of the current flowing through the inductor L and the terminals R1-S1 when the average voltage (voltage average between terminals RS) of the output voltage detection signal Vrs satisfying T1> T2 is positive and less than or equal to the storage battery voltage Vbat. It is a figure which shows the voltage waveform between.
FIG. 6 shows the current waveform flowing through the inductor L and the terminal R1- when the average voltage (voltage average between terminals RS) of the output voltage detection signal Vrs with T1 <T2 is negative and equal to or higher than the storage battery voltage -Vbat. It is a figure which shows the voltage waveform between S1.

PWM制御回路1は、上記(B1)の図3Aに示す正接続状態の時間(蓄電池電圧Vbatの出力時間)をT1、上記(B4)の図3Bに示す負接続状態の時間(蓄電池電圧−Vbatの出力時間)をT2とすれば、これら時間T1,T2を調整し、PWMキャリア周波数は出力する単相交流電圧の周波数よりも十分高い値を用いる。
端子R1−S1間には、図4乃至6に図示した矩形波電圧が印加される。出力フィルタ18であるローパスフィルタLo1,Lo2,Coの定数をPWMキャリア周波数成分が取り除かれるように設定し、T1,T2の時間比率を調整することで、蓄電池電圧Vbatよりも低い平均電圧を出力することが可能となる。



The PWM control circuit 1 sets the time of the positive connection state (output time of the storage battery voltage Vbat) shown in FIG. 3A of (B1) to T1, and the time of the negative connection state (storage battery voltage −Vbat) shown in FIG. 3B of (B4). If the output time is T2, these times T1 and T2 are adjusted, and the PWM carrier frequency is sufficiently higher than the frequency of the single-phase AC voltage to be output.
The rectangular wave voltage shown in FIGS. 4 to 6 is applied between the terminals R1 and S1. The constants of the low-pass filters Lo1, Lo2, and Co, which are output filters 18, are set so that the PWM carrier frequency component is removed, and the average voltage lower than the storage battery voltage Vbat is output by adjusting the time ratio of T1 and T2. It becomes possible.



上述の(B1)から(B4)へ切り替わった瞬間(図3Aに示す正接続状態から図3Bに示す負接続状態への切替)、インダクタLには蓄電池電圧Vbatの2倍の電圧がかかり、インダクタLとコンデンサCの共振動作によって、コンデンサCの電荷は放電され、次に蓄電池電圧Vbatまで充電される。 At the moment of switching from (B1) to (B4) described above (switching from the positive connection state shown in FIG. 3A to the negative connection state shown in FIG. 3B), a voltage twice as much as the storage battery voltage Vbat is applied to the inductor L. By the resonant operation of L and the capacitor C, the charge of the capacitor C is discharged and then charged to the storage battery voltage Vbat.

T1とT2が等しい場合、端子R1−S1間の電圧波形は、出力電圧検出信号Vrsの平均電圧(端子R−S間電圧平均値)はほぼ零となる(図4参照)。
また、T1>T2の場合、出力電圧検出信号Vrsの平均電圧(端子R−S間電圧平均値)は正、かつ蓄電池電圧Vbat以下となる(図5参照)。
一方、T1<T2の場合、出力電圧検出信号Vrsの平均電圧(端子R−S間電圧平均値)は負、かつ蓄電池電圧−Vbat以上となる(図6参照)。
When T1 and T2 are equal, the voltage waveform between the terminals R1-S1 has an average voltage of the output voltage detection signal Vrs (voltage average value between the terminals R-S) substantially zero (see FIG. 4).
When T1> T2, the average voltage of the output voltage detection signal Vrs (the voltage average value between the terminals RS) is positive and equal to or less than the storage battery voltage Vbat (see FIG. 5).
On the other hand, when T1 <T2, the average voltage of the output voltage detection signal Vrs (the voltage average value between the terminals RS) is negative and equal to or higher than the storage battery voltage −Vbat (see FIG. 6).

インダクタLに流れる平均電流Ioffは負荷電力Poに応じて変化し、おおよそIoff ≒ Po/Vbatの式で示される。ただし、この式(Ioff ≒ Po/Vbat)には共振電流による電力分は含まれない。
また、出力電圧検出信号Vrsの平均電圧値は(2)式で与えられる。
Vrs=Vbat×(T1−T2)/(T1+T2) (2)
なお、Vrs=Vbatの際はT2=0、Vrs=−Vbatの際はT1=0、
Vrs=0の際はT1=T2、である。
The average current Ioff flowing through the inductor L changes in accordance with the load power Po, and is approximately expressed by an expression of Ioff≈Po / Vbat. However, this equation (Ioff≈Po / Vbat) does not include the power due to the resonance current.
Further, the average voltage value of the output voltage detection signal Vrs is given by equation (2).
Vrs = Vbat × (T1-T2) / (T1 + T2) (2)
When Vrs = Vbat, T2 = 0, and when Vrs = −Vbat, T1 = 0.
When Vrs = 0, T1 = T2.

キャリア周波数の逆数であるキャリア周期をTcとするとT1+T2=Tcなので、
降圧された所望の出力電圧Vrs*を得るには,(2)式より、
T1=(Vrs*+Vbat)×Tc/(2×Vbat) (3)
T2=Tc−T1 (4)
のように演算しT1、T2を設定すればよい。
Since T1 + T2 = Tc, where Tc is the carrier period that is the reciprocal of the carrier frequency,
In order to obtain the desired output voltage Vrs * that has been stepped down,
T1 = (Vrs * + Vbat) × Tc / (2 × Vbat) (3)
T2 = Tc−T1 (4)
Thus, T1 and T2 may be set by calculating as follows.

このように、本発明の実施例1は実施されるので、蓄電池電圧Vbat以下の電圧を出力することができる。また、図3Aに示す正接続状態から図3Bに示す負接続状態への切替りの際においても、過電圧の発生を抑制し安全性を向上することができる。更に、直流電源から直接電力を変換するので、直流母線用の電解コンデンサが不要となり、電流経路上のスイッチ数が少ないので、導通損失を低減することができる。
Thus, since Example 1 of this invention is implemented, the voltage below storage battery voltage Vbat can be output. Further, even when switching from the positive connection state shown in FIG. 3A to the negative connection state shown in FIG. 3B, the occurrence of overvoltage can be suppressed and the safety can be improved. Furthermore, since power is directly converted from the DC power source, an electrolytic capacitor for the DC bus is not required, and the number of switches on the current path is small, so that conduction loss can be reduced.



図7は、本発明の実施例2における電源装置の全体構成図である。図において、電源装置は、直流電源7、インダクタL、片方向スイッチ14〜17、コンデンサC、出力フィルタ18(例えば、コンデンサCoとインダクタLo1,Lo2とで構成)、PWM制御回路1a(PWM制御回路1と同等)と、図示しない直流電源電圧検出回路、出力電圧検出回路、を備える。なお、図1乃至6と同等の部分には同一の符号を付し、適宜説明を省略又は簡略化する。


FIG. 7 is an overall configuration diagram of a power supply device according to the second embodiment of the present invention. In the figure, the power supply device includes a DC power supply 7, an inductor L, unidirectional switches 14 to 17, a capacitor C, an output filter 18 (for example, a capacitor Co and inductors Lo1 and Lo2), a PWM control circuit 1a (a PWM control circuit). 1) and a DC power supply voltage detection circuit and an output voltage detection circuit (not shown). 1 to 6 are denoted by the same reference numerals, and description thereof will be omitted or simplified as appropriate.

片方向スイッチ14〜17は、半導体スイッチング素子とダイオードから成るものであり、片方向スイッチ14と片方向スイッチ16とを直列に接続し、片方向スイッチ17と片方向スイッチ15とを直列に接続している。片方向スイッチがオンしたときに、電流が流れ込む片方向スイッチの一端を電流流入端、片方向スイッチの他端を電流流出端と定義すると、片方向スイッチ15の電流流出端と直流電源7の負極側とを接続している。 The one-way switches 14 to 17 are each composed of a semiconductor switching element and a diode. The one-way switch 14 and the one-way switch 16 are connected in series, and the one-way switch 17 and the one-way switch 15 are connected in series. ing. When one end of a unidirectional switch into which current flows when the unidirectional switch is turned on is defined as a current inflow end, and the other end of the unidirectional switch is defined as a current outflow end, the current outflow end of the unidirectional switch 15 and the negative electrode of the DC power source 7 are defined. Is connected to the side.

インダクタLは、その一端を直流電源7の正極側に接続し、その他端を片方向スイッチ14の電流流入端に接続している。
コンデンサCおよび出力フィルタ18は、片方向スイッチ14と片方向スイッチ16の接続点と片方向スイッチ17と片方向スイッチ15の接続点とに接続している。
One end of the inductor L is connected to the positive side of the DC power source 7, and the other end is connected to the current inflow end of the unidirectional switch 14.
The capacitor C and the output filter 18 are connected to a connection point between the one-way switch 14 and the one-way switch 16 and a connection point between the one-way switch 17 and the one-way switch 15.

図示しない直流電源電圧検出回路は、直流電源7の電圧を検出して直流電源電圧検出信号を出力する。
図示しない出力電圧検出回路は、電源装置の出力である単相交流電圧を検出して出力電圧検出信号を出力する。
PWM制御回路1aは、図1に示したPWM制御回路1と同等の機能を有し、出力電圧指令信号Voref、直流電源電圧検出信号Vbat、出力電圧検出信号Vrsを入力し、出力電圧指令信号Vorefと出力電圧検出信号Vrsとが一致するようにPWM制御演算して、片方向スイッチ14〜17を駆動するゲート信号(オンオフ信号)を出力する。PWM制御回路1aは駆動するIGBTを8個から4個にした点が図1のPWM制御回路1と相違するが同様の働きをする。
A DC power supply voltage detection circuit (not shown) detects the voltage of the DC power supply 7 and outputs a DC power supply voltage detection signal.
An output voltage detection circuit (not shown) detects a single-phase AC voltage that is an output of the power supply device and outputs an output voltage detection signal.
The PWM control circuit 1a has a function equivalent to that of the PWM control circuit 1 shown in FIG. 1, and receives the output voltage command signal Voref, the DC power supply voltage detection signal Vbat, and the output voltage detection signal Vrs, and outputs the output voltage command signal Voref. PWM control calculation is performed so that the output voltage detection signal Vrs and the output voltage detection signal Vrs coincide with each other, and a gate signal (on / off signal) for driving the one-way switches 14 to 17 is output. Although the PWM control circuit 1a is different from the PWM control circuit 1 of FIG. 1 in that the number of IGBTs to be driven is changed from eight to four, the same function is performed.

なお、上記直流電源7は、請求項3及び4記載の、直流電源を構成している。また、上記片方向スイッチ14〜17は、第1〜第4の片方向スイッチを構成し、インダクタLは、インダクタを構成している。また、コンデンサCは平滑用のコンデンサである。出力フィルタ18は、例えば、コンデンサCoとインダクタLo1,Lo2とで構成している。また、図示しない直流電源電圧検出回路は、入力電圧検出部を構成し、図示しない出力電圧検出回路は、出力電圧検出部を構成している。また、PWM制御回路1aは、PWM制御部を構成している。 The DC power supply 7 constitutes a DC power supply according to claims 3 and 4. The unidirectional switches 14 to 17 constitute first to fourth unidirectional switches, and the inductor L constitutes an inductor. Capacitor C is a smoothing capacitor. The output filter 18 includes, for example, a capacitor Co and inductors Lo1 and Lo2. A DC power supply voltage detection circuit (not shown) constitutes an input voltage detection unit, and an output voltage detection circuit (not shown) constitutes an output voltage detection unit. The PWM control circuit 1a constitutes a PWM control unit.

このような構成の場合、電源装置は、部品点数を大幅に削減することができる。また、昇圧モードと降圧モードの動作については、実施例1と同様に行ない片方向スイッチ14〜17のオンオフ制御を行う。

なお、本発明の実施例1及び2では、片方向スイッチ素子としてIGBTとダイオードを直列接続したものを用いて説明したが、片方向スイッチ素子として逆導通阻止形のIGBT(RB-IGBT:Reverse Blocking-Insulated Gate Bipolar Transistor)を用いダイオードを省略しても良い。このRB-IGBTは、IGBTが持ち得なかった逆耐圧を有する新しいデバイスである。このRB-IGBTを双方向性スイッチに適用すると、IGBTでは必要不可欠な逆耐圧保護用のダイオードを用いずに双方向のモジュールを構成できる。
In such a configuration, the power supply device can significantly reduce the number of parts. Further, the operations in the step-up mode and the step-down mode are performed in the same manner as in the first embodiment, and ON / OFF control of the one-way switches 14 to 17 is performed.

In the first and second embodiments of the present invention, a description has been given using an IGBT and a diode connected in series as a unidirectional switch element. However, a reverse conduction blocking IGBT (RB-IGBT: Reverse Blocking) is used as the unidirectional switch element. -Insulated Gate Bipolar Transistor) may be used to omit the diode. This RB-IGBT is a new device having a reverse breakdown voltage that the IGBT could not have. When this RB-IGBT is applied to a bidirectional switch, a bidirectional module can be configured without using a diode for reverse voltage protection that is essential for the IGBT.

蓄電池6の充電動作が必要な場合、電源装置の出力に単相交流電源を接続し、交流電位が蓄電池電圧Vbatよりも高くなった状態で、インダクタLとダイオードD1,D4,D5,D8とIGBT(Srp,Srn,Ssp,Sns)のスイッチ動作を用いて交流電源から蓄電池6への降圧動作によって充電を行う。 When the storage battery 6 needs to be charged, a single-phase AC power supply is connected to the output of the power supply device, and the inductor L, the diodes D1, D4, D5, D8, and IGBT are connected with the AC potential higher than the storage battery voltage Vbat. Charging is performed by the step-down operation from the AC power source to the storage battery 6 using the switch operation of (Srp, Srn, Ssp, Sns).

一方、蓄電池6への充電動作が不要の場合、あるいは蓄電池6の代わりに直流電源を用いる回生(充電)動作が不要の場合は、ダイオードD1,D4,D5,D8とIGBT(Srp,Srn,Ssp,Sns)と、これらの駆動用回路および制御回路を削除した回路とすることができる。
本実施の形態で説明した電源装置は、直流電源を単相交流へ変換するポータブル電源装置や、系統補償装置(パワーコンディショナ)、無停電電源(UPS)などの電力変換装置に適用することができる。
On the other hand, when the charging operation to the storage battery 6 is unnecessary, or when the regenerative (charging) operation using a DC power supply is unnecessary instead of the storage battery 6, the diodes D1, D4, D5, D8 and the IGBTs (Srp, Srn, Ssp) , Sns), and a circuit in which these driving circuit and control circuit are deleted.
The power supply apparatus described in the present embodiment can be applied to a power conversion apparatus such as a portable power supply apparatus that converts a DC power supply into a single-phase AC, a system compensation apparatus (power conditioner), and an uninterruptible power supply (UPS). it can.

1、1a PWM制御回路
2 電圧レギュレータ
3 モード判定器
4 PWM演算器
5 ゲートドライバ
6 蓄電池
7 直流電源
8 入力電圧検出回路
9 出力電圧検出回路
10〜13 双方向スイッチ
14〜17 片方向スイッチ
18 出力フィルタ
Srp,Spr,Snr,Srn,Ssp,Sps,Ssn,Sns 半導体スイッチング素子(IGBT)
D1〜D8 ダイオード
L,Lo1,Lo2 インダクタ
C,Co コンデンサ
DESCRIPTION OF SYMBOLS 1, 1a PWM control circuit 2 Voltage regulator 3 Mode determination device 4 PWM calculator 5 Gate driver 6 Storage battery 7 DC power supply 8 Input voltage detection circuit 9 Output voltage detection circuit 10-13 Bidirectional switch 14-17 Unidirectional switch 18 Output filter Srp, Spr, Snr, Srn, Ssp, Sps, Ssn, Sns Semiconductor switching element (IGBT)
D1 to D8 Diode L, Lo1, Lo2 Inductor C, Co Capacitor

Claims (4)

直流電源を単相交流電圧に変換して出力する電源装置であって、
第1の双方向スイッチの一端と第3の双方向スイッチの一端とを接続し、第2の双方向スイッチの一端と第4の双方向スイッチの一端とを接続し、前記第1の双方向スイッチの他端と前記第2の双方向スイッチの他端とを接続し、前記第3の双方向スイッチの他端と前記第4の双方向スイッチの他端とを接続し、前記第4の双方向スイッチの一端と前記直流電源の負極側とを接続した、半導体スイッチング素子を有する片方向スイッチを2つ逆並列に接続した前記第1〜第4の双方向スイッチと、
一端を前記直流電源の正極側に接続し、他端を前記第1の双方向スイッチの一端に接続したインダクタと、
前記第1の双方向スイッチの他端と前記第4の双方向スイッチの他端とに接続したコンデンサおよび出力フィルタと、
前記直流電源の電圧を検出して直流電源電圧検出信号を出力する入力電圧検出部と、
前記単相交流電圧を検出して出力電圧検出信号を出力する出力電圧検出部と、
出力電圧指令信号、前記直流電源電圧検出信号、前記出力電圧検出信号を入力し、前記出力電圧指令信号と前記出力電圧検出信号とが一致するようにPWM制御演算して、前記第1〜第4の双方向スイッチを駆動するオンオフ信号を出力するPWM制御部と、を備え、
前記PWM制御部が、前記出力電圧指令信号の絶対値が前記直流電源電圧検出信号より大きい場合は昇圧動作、前記出力電圧指令信号の絶対値が前記直流電源電圧検出信号以下の場合は降圧動作させる前記オンオフ信号を出力する、ことを特徴とする電源装置。
A power supply device that converts a DC power supply into a single-phase AC voltage and outputs it,
One end of the first bidirectional switch and one end of the third bidirectional switch are connected, one end of the second bidirectional switch and one end of the fourth bidirectional switch are connected, and the first bidirectional switch Connecting the other end of the switch and the other end of the second bidirectional switch, connecting the other end of the third bidirectional switch and the other end of the fourth bidirectional switch, The first to fourth bidirectional switches in which two one-way switches having semiconductor switching elements connected in reverse parallel to each other and one end of the bidirectional switch connected to the negative electrode side of the DC power supply;
An inductor having one end connected to the positive side of the DC power supply and the other end connected to one end of the first bidirectional switch;
A capacitor and an output filter connected to the other end of the first bidirectional switch and the other end of the fourth bidirectional switch;
An input voltage detector that detects a voltage of the DC power supply and outputs a DC power supply voltage detection signal;
An output voltage detector that detects the single-phase AC voltage and outputs an output voltage detection signal;
An output voltage command signal, the DC power supply voltage detection signal, and the output voltage detection signal are input, and PWM control calculation is performed so that the output voltage command signal and the output voltage detection signal coincide with each other. A PWM control unit that outputs an on / off signal for driving the bidirectional switch of
The PWM control unit performs a step-up operation when the absolute value of the output voltage command signal is larger than the DC power supply voltage detection signal, and performs a step-down operation when the absolute value of the output voltage command signal is equal to or less than the DC power supply voltage detection signal. A power supply device that outputs the on / off signal.
前記PWM制御部が、前記昇圧動作は、前記インダクタを短絡状態もしくは開放状態にするように前記オンオフ信号を出力し、
前記降圧動作は、前記コンデンサ両端の電圧が正電圧となる正接続状態と、負電圧となる負接続状態との2つの状態の出力時間比率を調整するように前記オンオフ信号を出力する、ことを特徴とする請求項1に記載の電源装置。
The PWM control unit outputs the on / off signal so that the boosting operation causes the inductor to be in a short circuit state or an open state,
The step-down operation outputs the on / off signal so as to adjust an output time ratio between two states of a positive connection state where the voltage across the capacitor is a positive voltage and a negative connection state where the voltage is a negative voltage. The power supply device according to claim 1.
直流電源を単相交流電圧に変換して出力する電源装置であって、
第1の片方向スイッチの電流流出端と第3の片方向スイッチの一電流流入端とを接続し、第2の片方向スイッチの電流流出端と第4の片方向スイッチの電流流入端とを接続し、前記第1の片方向スイッチの電流流入端と前記第2のスイッチの電流流入端とを接続し、前記第3の片方向スイッチの電流流出端と前記第4のスイッチの電流流出端とを接続し、前記第4の片方向スイッチの電流流入端と前記直流電源の負極側とを接続した、半導体スイッチング素子を有する前記第1〜第4の片方向スイッチと、
一端を前記直流電源の正極側に接続し、他端を前記第1の片方向スイッチの一端に接続したインダクタと、
前記第1の片方向スイッチの他端と前記第4の片方向スイッチの他端とに接続したコンデンサおよび出力フィルタと、
前記直流電源の電圧を検出して直流電源電圧検出信号を出力する入力電圧検出部と、
前記単相交流電圧を検出して出力電圧検出信号を出力する出力電圧検出部と、
出力電圧指令信号、前記直流電源電圧検出信号、前記出力電圧検出信号を入力し、前記出力電圧指令信号と前記出力電圧検出信号とが一致するようにPWM制御演算して、前記第1〜第4の片方向スイッチを駆動するオンオフ信号を出力するPWM制御部と、を備え、
前記PWM制御部が、前記出力電圧指令信号の絶対値が前記直流電源電圧検出信号より大きい場合は昇圧動作、前記出力電圧指令信号の絶対値が前記直流電源電圧検出信号以下の場合は降圧動作させる前記オンオフ信号を出力する、ことを特徴とする電源装置。
A power supply device that converts a DC power supply into a single-phase AC voltage and outputs it,
The current outflow end of the first unidirectional switch is connected to the current inflow end of the third unidirectional switch, and the current outflow end of the second unidirectional switch and the current inflow end of the fourth unidirectional switch are connected to each other. A current inflow end of the first unidirectional switch and a current inflow end of the second switch, and a current outflow end of the third unidirectional switch and a current outflow end of the fourth switch. The first to fourth unidirectional switches having a semiconductor switching element, wherein the current inflow end of the fourth unidirectional switch and the negative electrode side of the DC power source are connected,
An inductor having one end connected to the positive side of the DC power source and the other end connected to one end of the first one-way switch;
A capacitor and an output filter connected to the other end of the first unidirectional switch and the other end of the fourth unidirectional switch;
An input voltage detector that detects a voltage of the DC power supply and outputs a DC power supply voltage detection signal;
An output voltage detector that detects the single-phase AC voltage and outputs an output voltage detection signal;
An output voltage command signal, the DC power supply voltage detection signal, and the output voltage detection signal are input, and PWM control calculation is performed so that the output voltage command signal and the output voltage detection signal coincide with each other. A PWM control unit that outputs an on / off signal for driving the one-way switch of
The PWM control unit performs a step-up operation when the absolute value of the output voltage command signal is larger than the DC power supply voltage detection signal, and performs a step-down operation when the absolute value of the output voltage command signal is equal to or less than the DC power supply voltage detection signal. A power supply device that outputs the on / off signal.
前記PWM制御部が、前記昇圧動作は、前記インダクタを短絡状態もしくは開放状態にするように前記オンオフ信号を出力し、
前記降圧動作は、前記コンデンサ両端の電圧が正電圧となる正接続状態と、負電圧となる負接続状態との2つの状態の出力時間比率を調整するように前記オンオフ信号を出力する、ことを特徴とする請求項3に記載の電源装置。
The PWM control unit outputs the on / off signal so that the boosting operation causes the inductor to be in a short circuit state or an open state,
The step-down operation outputs the on / off signal so as to adjust an output time ratio between two states of a positive connection state where the voltage across the capacitor is a positive voltage and a negative connection state where the voltage is a negative voltage. The power supply device according to claim 3.
JP2010119961A 2009-05-26 2010-05-26 Power supply Expired - Fee Related JP5310648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010119961A JP5310648B2 (en) 2009-05-26 2010-05-26 Power supply

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009126315 2009-05-26
JP2009126315 2009-05-26
JP2010119961A JP5310648B2 (en) 2009-05-26 2010-05-26 Power supply

Publications (2)

Publication Number Publication Date
JP2011010540A true JP2011010540A (en) 2011-01-13
JP5310648B2 JP5310648B2 (en) 2013-10-09

Family

ID=43566513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010119961A Expired - Fee Related JP5310648B2 (en) 2009-05-26 2010-05-26 Power supply

Country Status (1)

Country Link
JP (1) JP5310648B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011041457A (en) * 2009-07-14 2011-02-24 Yaskawa Electric Corp Dc-ac power converter and power conversion circuit thereof
JP2012010428A (en) * 2010-06-22 2012-01-12 Yaskawa Electric Corp Dc-ac power converter
CN105468079A (en) * 2015-12-30 2016-04-06 沈阳东软医疗系统有限公司 Two-path symmetrical-output adjustable power source

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333783A (en) * 2004-05-21 2005-12-02 Toyota Motor Corp Electric power output device and vehicle equipped with the same
JP2006271062A (en) * 2005-03-23 2006-10-05 Advantest Corp Power supply circuit and testing device
JP2008283819A (en) * 2007-05-11 2008-11-20 Denso Corp Power conversion circuit, and driving method and drive unit therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333783A (en) * 2004-05-21 2005-12-02 Toyota Motor Corp Electric power output device and vehicle equipped with the same
JP2006271062A (en) * 2005-03-23 2006-10-05 Advantest Corp Power supply circuit and testing device
JP2008283819A (en) * 2007-05-11 2008-11-20 Denso Corp Power conversion circuit, and driving method and drive unit therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011041457A (en) * 2009-07-14 2011-02-24 Yaskawa Electric Corp Dc-ac power converter and power conversion circuit thereof
JP2012010428A (en) * 2010-06-22 2012-01-12 Yaskawa Electric Corp Dc-ac power converter
CN105468079A (en) * 2015-12-30 2016-04-06 沈阳东软医疗系统有限公司 Two-path symmetrical-output adjustable power source
US10270340B2 (en) 2015-12-30 2019-04-23 Shenyang Neusoft Medical Systems Co., Ltd. Two-path symmetrical-output adjustable power supply

Also Published As

Publication number Publication date
JP5310648B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
US8811048B2 (en) Medium voltage variable frequency driving system
Grbovic et al. The ultracapacitor-based regenerative controlled electric drives with power-smoothing capability
JP5788017B2 (en) Power converter
KR101583881B1 (en) Apparatus and Method for controlling charge for battery
WO2012090237A1 (en) Electric power converter
US20120155141A1 (en) Power converting apparatus, grid interconnection apparatus and grid interconnection system
WO2012167691A1 (en) Inverter device and solar grid-connected photovoltaic system using same
JP2007166783A (en) Power transforming apparatus
JP5132797B2 (en) Power converter
US9692321B2 (en) Five level inverter
WO2016086456A1 (en) Traction converter main circuit in high-speed motor train unit bogie power supply mode
JP5522265B2 (en) Filter circuit and bidirectional power conversion device including the same
Liu et al. A single phase AC/DC/AC converter with unified ripple power decoupling
JP2016059132A (en) Power conversion device
TW200522492A (en) Method of starting power-converting apparatus
JP5362657B2 (en) Power converter
JP5310648B2 (en) Power supply
JP5734083B2 (en) Power converter
CN100377481C (en) Integration converton with three phase power factor correction
US20220173652A1 (en) Power conversion system and virtual dc voltage generator circuit
CN116057825A (en) Multi-level bidirectional electric AC/DC converter
JP2015057040A (en) Photovoltaic inverter
JP5701595B2 (en) Grid connection device
JP2014107931A (en) Method for operating inverter device, and inverter device
US20220200480A1 (en) Power conversion system, method for controlling the power conversion system, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120307

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120316

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees