JP2011009283A - Solar battery inspection device - Google Patents

Solar battery inspection device Download PDF

Info

Publication number
JP2011009283A
JP2011009283A JP2009148710A JP2009148710A JP2011009283A JP 2011009283 A JP2011009283 A JP 2011009283A JP 2009148710 A JP2009148710 A JP 2009148710A JP 2009148710 A JP2009148710 A JP 2009148710A JP 2011009283 A JP2011009283 A JP 2011009283A
Authority
JP
Japan
Prior art keywords
conductive surface
solar cell
electrode
electrode plate
solar battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009148710A
Other languages
Japanese (ja)
Inventor
Yasutaka Suzuki
康孝 鈴木
Takuji Ikeda
卓司 池田
Takami Suzuki
貴己 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2009148710A priority Critical patent/JP2011009283A/en
Publication of JP2011009283A publication Critical patent/JP2011009283A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently and smoothly perform performance inspections by a plurality of inspection methods relating to a solar battery with one device.SOLUTION: A solar battery inspection device 1 for evaluating the performance of a solar battery cell includes: an electrode plate 7 having a conductive surface 7a mounting the solar battery cell; a base 3 supporting the electrode plate 7; and a probe support plate 9 extending in the Y-axis direction along the conductive surface 7a of the electrode plate 7, having a plurality of probe pins 23 in the Y-axis direction where the pins extend while facing the conductive surface 7a, and rotatably supported by a frame section 5 so that the probe support plate can be brought close to and away from the conductive surface 7a of the electrode plate 7. In the electrode plate 7, a plurality of grooves 11 extending in the X-axis direction on the conductive surface 7a are formed in parallel. The probe pins 23 are formed to be located among the plurality of grooves 11 while the probe support plate 9 is brought close to the conductive surface 7a.

Description

本発明は、太陽電池の性能を評価する太陽電池検査装置に関するものである。   The present invention relates to a solar cell inspection apparatus for evaluating the performance of a solar cell.

近年、地球環境保護の観点からクリーンなエネルギー源として太陽エネルギーを使用する太陽電池が広く用いられるようになってきている。このような太陽電池を構成する太陽電池素子はシリコン系半導体、ガリウムヒ素系半導体等の半導体によって形成されており、太陽電池素子の光導電効果および光起電力効果等を評価することは太陽電池の性能評価のために重要である。   In recent years, solar cells that use solar energy as a clean energy source have been widely used from the viewpoint of protecting the global environment. The solar cell element constituting such a solar cell is formed of a semiconductor such as a silicon-based semiconductor or a gallium arsenide-based semiconductor, and evaluating the photoconductive effect and photovoltaic effect of the solar cell element Important for performance evaluation.

例えば、従来の太陽電池素子の評価方法としては、太陽電池素子に対して順方向に直流電流を導入し、その結果太陽電池素子から生じる光の発光特性を検出することにより、太陽電池素子の性能を評価する方法が知られている(下記特許文献1参照)。   For example, as a conventional solar cell element evaluation method, a direct current is introduced in the forward direction with respect to the solar cell element, and as a result, the light emission characteristics of the light generated from the solar cell element are detected, thereby improving the performance of the solar cell element. Is known (see Patent Document 1 below).

また、太陽電池素子に対してLED等の発光素子を用いて光を照射し、その結果生じた太陽電池パネルからの発光をCCDカメラ等の撮像素子によって検出する装置も知られている(下記特許文献2参照)。   An apparatus is also known in which light is emitted to a solar cell element using a light emitting element such as an LED, and the resulting light emission from the solar cell panel is detected by an imaging element such as a CCD camera (the following patent) Reference 2).

国際公開WO2006/059615号International Publication WO2006 / 059615 特開2008−224432号公報JP 2008-224432 A

上述したような従来の太陽電池の評価方法は、対象となる太陽電池素子の組成や、評価の目的等に応じて適宜使い分けられるが、評価方法に応じて検査装置も使い分ける必要があるため、検査工程が複雑化し、検査装置も全体として大規模化してしまう傾向にある。   Conventional solar cell evaluation methods as described above can be properly used depending on the composition of the target solar cell element, the purpose of the evaluation, etc., but it is also necessary to use an inspection device depending on the evaluation method. The process is complicated, and the inspection apparatus tends to be enlarged as a whole.

そこで、本発明は、かかる課題に鑑みて為されたものであり、太陽電池に関する複数の検査手法による性能検査を、1つの装置で効率的かつ円滑に実施することが可能な太陽電池検査装置を提供することを目的とする。   Therefore, the present invention has been made in view of such problems, and a solar cell inspection apparatus capable of efficiently and smoothly performing performance inspection by a plurality of inspection methods relating to solar cells with one apparatus. The purpose is to provide.

上記課題を解決するため、本発明の太陽電池検査装置は、太陽電池の性能を評価する太陽電池検査装置であって、太陽電池を載置する平面状の導電性表面を有する電極板と、電極板を支持する支持部と、電極板の導電性表面に沿った第1の方向に沿って延在しており、導電性表面に対向して伸びる導電性ピンを第1の方向に沿って複数有し、電極板の導電性表面に対して接近及び離脱が可能なように、支持部によって回動自在に支持された電極支持部材とを備え、電極板には、導電性表面上の第1の方向に対して略垂直な第2の方向に沿って延びる第1の溝部が複数並行して形成され、導電性ピンは、電極支持部材が導電性表面に接近した状態で複数の第1の溝部の間に位置するように設けられている。   In order to solve the above problems, a solar cell inspection device of the present invention is a solar cell inspection device for evaluating the performance of a solar cell, and includes an electrode plate having a planar conductive surface on which the solar cell is placed, and an electrode A plurality of conductive pins extending along the first direction along the conductive surface of the electrode plate and the support portion for supporting the plate, and extending along the first direction. And an electrode support member rotatably supported by a support portion so that the electrode plate can be moved toward and away from the conductive surface of the electrode plate. The electrode plate includes a first electrode on the conductive surface. A plurality of first groove portions extending in a second direction substantially perpendicular to the direction of the first groove portion are formed in parallel, and the conductive pin has a plurality of first grooves in a state where the electrode support member is close to the conductive surface. It is provided so as to be positioned between the grooves.

このような太陽電池検査装置によれば、電極板の導電性表面に太陽電池セルが載置されることにより、太陽電池セルの受光面の反対側の裏面に形成された電極が電極板に電気的に接続されると同時に、電極支持部材が電極板の導電性表面に向けて接近するように回動されることにより、電極支持部材に設けられた導電性ピンが、太陽電池セルの受光面上に所定間隔で設けられた電極に電気的に接続される。これにより、1つの装置で、太陽電池セルに順方向電流を供給しながらの受光面からの発光検出と、太陽電池セルの受光面に光を照射しながらの受光面からの発光検出との両方を行うことができる。このとき、電極板の導電性表面に設けられた第1の溝部内が外部から吸引されることにより太陽電池セルの裏面上の電極が導電性表面に安定して吸着されるとともに、導電性ピンが第1の溝部の間に位置することにより、太陽電池セルに対する外力を低減して太陽電池セルの破損を防止することができる。その結果として、2つの検査手法による太陽電池セルの性能検査を、1つの装置で効率的かつ円滑に実施することができる。   According to such a solar cell inspection apparatus, the solar cell is placed on the conductive surface of the electrode plate, so that the electrode formed on the back surface opposite to the light receiving surface of the solar cell is electrically connected to the electrode plate. At the same time as the electrode support member is rotated toward the conductive surface of the electrode plate, the conductive pin provided on the electrode support member becomes the light receiving surface of the solar cell. It is electrically connected to electrodes provided on the top at a predetermined interval. Thereby, in one apparatus, both emission detection from the light receiving surface while supplying a forward current to the solar cell and light emission detection from the light receiving surface while irradiating the light receiving surface of the solar cell. It can be performed. At this time, the inside of the first groove portion provided on the conductive surface of the electrode plate is attracted from the outside, so that the electrode on the back surface of the solar battery cell is stably adsorbed to the conductive surface, and the conductive pin Is located between the first groove portions, it is possible to reduce the external force on the solar battery cell and prevent the solar battery cell from being damaged. As a result, it is possible to efficiently and smoothly perform the performance inspection of the solar battery cell by two inspection methods with one apparatus.

電極支持部材は、さらに、導電性表面上の第2の方向に沿ってスライド可能に設けられていることが好適である。この場合、太陽電池セルの様々な電極の形成パターンに柔軟に対応して性能検査を実行させることができる。   It is preferable that the electrode support member is further provided so as to be slidable along the second direction on the conductive surface. In this case, the performance inspection can be executed flexibly corresponding to the formation pattern of various electrodes of the solar battery cell.

また、電極支持部材は、支持部に対して固定するためのネジ部材を有し、支持部と電極支持部材との間には、電極支持部材を導電性表面から離れる方向に付勢するバネ部材がさらに設けられていることも好適である。かかる構成を採れば、太陽電池セルの電極の形成パターンに対応して電極支持部材の位置を調整する際に、太陽電池セルへの導電性ピンの接触を防止して太陽電池セルの受光面における損傷を防止することができる。   The electrode support member has a screw member for fixing to the support portion, and a spring member that urges the electrode support member in a direction away from the conductive surface between the support portion and the electrode support member. It is also suitable that is further provided. With such a configuration, when adjusting the position of the electrode support member corresponding to the formation pattern of the electrode of the solar battery cell, the contact of the conductive pin to the solar battery cell is prevented and the light receiving surface of the solar battery cell is Damage can be prevented.

また、電極板には、複数の第1の溝部を第1の方向に沿って繋ぐように、第2の溝部がさらに形成されていることも好適である。かかる第2の溝部を有することで、太陽電池セルを電極板の導電性表面に吸引するための吸引孔の数を削減することができ、吸引機構の構成を単純化することができる。   In addition, it is preferable that the electrode plate further includes a second groove portion so as to connect the plurality of first groove portions along the first direction. By having such a second groove portion, the number of suction holes for sucking the solar battery cell to the conductive surface of the electrode plate can be reduced, and the configuration of the suction mechanism can be simplified.

本発明によれば、太陽電池に関する複数の検査手法による性能検査を、1つの装置で効率的かつ円滑に実施することができる。   According to the present invention, it is possible to efficiently and smoothly carry out performance inspection by a plurality of inspection methods relating to solar cells with a single device.

本発明の好適な一実施形態に係る太陽電池検査装置の平面図である。It is a top view of the solar cell inspection apparatus which concerns on suitable one Embodiment of this invention. 図1の太陽電池検査装置の側面図である。It is a side view of the solar cell inspection apparatus of FIG. 一般的な太陽電池セルの構成を示す断面図である。It is sectional drawing which shows the structure of a general photovoltaic cell. (a)は、太陽電池セルの平面図、(b)は、太陽電池セルの裏面図である。(A) is a top view of a photovoltaic cell, (b) is a back view of a photovoltaic cell. 図1のプローブ支持板の取付構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the attachment structure of the probe support plate of FIG. 一般的な太陽電池セルの構成を示す断面図である。It is sectional drawing which shows the structure of a general photovoltaic cell. 図1の太陽電池検査装置1を用いて得られた受光面画像を示す図である。It is a figure which shows the light-receiving surface image obtained using the solar cell test | inspection apparatus 1 of FIG. 本発明の変形例に係る電極板の平面図である。It is a top view of the electrode plate which concerns on the modification of this invention.

以下、図面を参照しつつ本発明に係る太陽電池検査装置の好適な実施形態について詳細に説明する。なお、図面の説明においては同一又は相当部分には同一符号を付し、重複する説明を省略する。また、各図面は説明用のために作成されたものであり、説明の対象部位を特に強調するように描かれている。そのため、図面における各部材の寸法比率は、必ずしも実際のものとは一致しない。   Hereinafter, a preferred embodiment of a solar cell inspection apparatus according to the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted. Each drawing is made for the purpose of explanation, and is drawn so as to particularly emphasize the target portion of the explanation. Therefore, the dimensional ratio of each member in the drawings does not necessarily match the actual one.

図1は、本発明の好適な一実施形態に係る太陽電池検査装置1の平面図、図2は、図1の太陽電池検査装置1の側面図である。     FIG. 1 is a plan view of a solar cell inspection device 1 according to a preferred embodiment of the present invention, and FIG. 2 is a side view of the solar cell inspection device 1 of FIG.

太陽電池検査装置1は、太陽電池モジュールを構成する太陽電池セルの性能を評価するための装置であり、2つの検査手法に対応している。第一の手法は、太陽電池素子に対して順方向にバイアスすることで生じる励起光であるエレクトロルミネッセンス(EL)を検出する手法であり、第二の手法は太陽電池素子に対して光を照射することで生じる励起光であるフォトルミネッセンス(PL)を検出する手法である。   The solar cell inspection device 1 is a device for evaluating the performance of solar cells constituting a solar cell module, and corresponds to two inspection methods. The first method is a method for detecting electroluminescence (EL) that is excitation light generated by biasing the solar cell element in the forward direction, and the second method irradiates the solar cell element with light. This is a technique for detecting photoluminescence (PL), which is excitation light generated by the operation.

ここで、太陽電池検査装置1は、図3,図4に示すような構造を有する一般的な太陽電池セルSを検査対象としている。図3は、太陽電池セルSの断面図、図4(a)は、太陽電池セルSの受光面側から見た平面図、図4は、太陽電池セルSの裏面図である。すなわち、全体として矩形平板状を成す太陽電池セルSは、結晶シリコンにより構成され、P形層101の受光面側にN形層102及び反射防止膜103がこの順で積層され、P形層101の受光面と反対側の裏面側にはP+形層104が形成されている。さらに、裏面には、その全面にわたって裏面電極105が形成され、受光面には、所定の間隔で受光面の縁部に沿って略平行になるように、2本のストライプ状の受光面電極106が形成されている。なお、太陽電池セルSの受光面のサイズや、受光面電極106の本数及び間隔は、太陽電池セルSの種類によって様々なものを検査対象としうる。   Here, the solar cell inspection apparatus 1 has a general solar cell S having a structure as shown in FIGS. 3 and 4 as an inspection target. 3 is a cross-sectional view of the solar battery cell S, FIG. 4A is a plan view seen from the light receiving surface side of the solar battery cell S, and FIG. That is, the solar battery cell S having a rectangular plate shape as a whole is made of crystalline silicon, and the N-type layer 102 and the antireflection film 103 are laminated in this order on the light-receiving surface side of the P-type layer 101. A P + type layer 104 is formed on the back surface side opposite to the light receiving surface. Further, the back surface electrode 105 is formed on the entire back surface, and the two light receiving surface electrodes 106 in the form of stripes are formed on the light receiving surface so as to be substantially parallel along the edge of the light receiving surface at a predetermined interval. Is formed. The size of the light receiving surface of the solar battery cell S and the number and interval of the light receiving surface electrodes 106 can vary depending on the type of the solar battery cell S.

図1及び図2に戻って、太陽電池検査装置1は、略矩形状の基台部(支持部)3と、基台部3に取り付けられた略矩形枠状の枠体部(支持部)5と、基台部3に搭載された略矩形状の電極板7と、枠体部5に支持された長尺状のプローブ支持板(電極支持部材)9とを備えている。   Returning to FIG. 1 and FIG. 2, the solar cell inspection apparatus 1 includes a substantially rectangular base part (support part) 3 and a substantially rectangular frame-like frame part (support part) attached to the base part 3. 5, a substantially rectangular electrode plate 7 mounted on the base portion 3, and a long probe support plate (electrode support member) 9 supported by the frame body portion 5.

電極板7は、基台部3の中央に埋め込まれて固定された銅板等の金属板であり、その表面には平面状の導電性表面7aを有している。この電極板7は、太陽電池セルSをその裏面電極105を導電性表面7aに接した状態で載置するための部材であり、裏面電極105との接続用の電極部材として機能する。この電極板7は、基台部3の内部の配線部材を介して基台部3の側面に設けられた負電極同軸コネクタ17aに電気的に接続されている。   The electrode plate 7 is a metal plate such as a copper plate embedded and fixed in the center of the base portion 3, and has a planar conductive surface 7 a on the surface thereof. The electrode plate 7 is a member for placing the solar battery cell S in a state where the back surface electrode 105 is in contact with the conductive surface 7 a, and functions as an electrode member for connection to the back surface electrode 105. The electrode plate 7 is electrically connected to a negative electrode coaxial connector 17 a provided on the side surface of the base part 3 via a wiring member inside the base part 3.

また、電極板7には、導電性表面7a上の導電性表面7aの縁部に平行なX軸方向に沿って延びるように、略等間隔に複数の直線状の溝部11が並行して形成され、導電性表面7a上のこれらの溝部11の端部の間には、複数の溝部11をX軸方向に対して垂直なY軸方向に沿って繋ぐように、直線状の2本の溝部13がさらに形成されている。言い換えれば、導電性表面7a上には、X軸及びY軸方向に沿った矩形状の溝部が一対の溝部11と一対の溝部13によって形成され、その矩形状の溝部の対向する二辺をX軸方向に沿ってバイパスするように複数の溝部11がさらに形成されている。これらの溝部11,13は、検査対象の太陽電池セルSの裏面の大きさに対応して、太陽電池セルSを電極板7に載置した際に、溝部11,13の形成部位の全体が太陽電池セルSによって覆われるように、その長さおよび位置が設定されている。   In addition, a plurality of linear grooves 11 are formed in parallel at substantially equal intervals on the electrode plate 7 so as to extend along the X-axis direction parallel to the edge of the conductive surface 7a on the conductive surface 7a. Between the ends of these groove portions 11 on the conductive surface 7a, two linear groove portions are connected so as to connect the plurality of groove portions 11 along the Y-axis direction perpendicular to the X-axis direction. 13 is further formed. In other words, a rectangular groove portion along the X-axis and Y-axis directions is formed on the conductive surface 7a by the pair of groove portions 11 and the pair of groove portions 13, and two opposite sides of the rectangular groove portion are defined as X. A plurality of grooves 11 are further formed to bypass along the axial direction. These groove portions 11, 13 correspond to the size of the back surface of the solar cell S to be inspected, and when the solar cell S is placed on the electrode plate 7, the entire portion where the groove portions 11, 13 are formed. The length and the position are set so as to be covered by the solar battery cell S.

さらに、溝部11および溝部13のいずれかの部位には、基台部3の内部に向けて貫通する貫通孔15が形成されている。なお、貫通孔15は、電極板7の中央付近に形成されることが好ましい。電極板7の中央付近に貫通孔15を形成することによって、太陽電池セルSを均一に吸着することができ、太陽電池セルSを吸着により破壊する恐れを低減することができる。この貫通孔15は、基台部3の内部で基台部3の側面に突出して設けられた吸引口18に繋がっており、吸引口18から外部に溝部11,13内の空気を吸引することにより電極板7の導電性表面7aに太陽電池セルSの裏面を吸着させるために設けられる。   Furthermore, a through-hole 15 that penetrates toward the inside of the base portion 3 is formed in any part of the groove portion 11 and the groove portion 13. The through hole 15 is preferably formed near the center of the electrode plate 7. By forming the through hole 15 in the vicinity of the center of the electrode plate 7, the solar cells S can be adsorbed uniformly, and the risk of destroying the solar cells S by adsorption can be reduced. The through-hole 15 is connected to a suction port 18 provided to protrude from the side surface of the base unit 3 inside the base unit 3, and sucks air in the grooves 11 and 13 from the suction port 18 to the outside. Is provided to adsorb the back surface of the solar battery cell S to the conductive surface 7 a of the electrode plate 7.

枠体部5は、Y軸方向における端部が、基台部3に固定されたヒンジ部19によって軸支されており、基台部3に対してX軸に沿った端辺を中心にして回動自在にされている。すなわち、枠体部5を基台部3に向けて接近させることにより、その枠体部5の内側の中空部21に電極板7を収めることができ、逆に枠体部5を基台部3から離脱させることにより、中空部21を電極板7から遠ざけることができる。   The frame body portion 5 has an end portion in the Y-axis direction supported by a hinge portion 19 fixed to the base portion 3, and is centered on an end side along the X axis with respect to the base portion 3. It is made rotatable. That is, by bringing the frame body part 5 closer to the base part 3, the electrode plate 7 can be accommodated in the hollow part 21 inside the frame body part 5, and conversely, the frame body part 5 is placed on the base part. By separating from 3, the hollow portion 21 can be moved away from the electrode plate 7.

この枠体部5には、基台部3に向けて閉じた状態でY軸方向に沿って中空部21に架け渡されるように、プローブ支持板9が複数本、枠体部5の対向する枠体の間に取り付けられている。このプローブ支持板9は、Y軸方向に延在する長尺状の平板部材であり、YZ平面に沿うように取り付けられている。さらに、このプローブ支持板9には、Z軸方向に向けて導電性表面7aに対向して伸びる導電性のプローブピン(導電性ピン)23が、Y軸方向に沿ってほぼ等間隔に複数貫通して固定されている。なお、これらのプローブピン23は、枠体部5を閉じた際にその先端が導電性表面7a上に形成された2つの溝部11の中間点の近傍に位置するように設けられ、金メッキが施されたニッケル等の導電性金属によって形成されている。ここで、枠体部5には、銅板等からなる導通部20が形成されており、この導通部20が枠体部5及び基台部3の内部の配線部材を介して、正電極同軸コネクタ17bと電気的に接続されている。したがって、プローブ支持板9の端に形成された導電部材と導通部20と電気的に接続することで、プローブピン23と正電極同軸コネクタ17bとが電気的に接続可能となり、太陽電池セルSに適切な電圧を印加できる。なお、導通部20はプローブ支持板9が配置可能な範囲にわたって形成されることが好ましい。これにより、プローブ支持板9の数および配置位置にかかわらず、プローブ支持板9との電気的な接続が可能となる。また、導通部20は、枠体部5のプローブ支持板9が取り付けられる箇所に形成されていればよい。   A plurality of probe support plates 9 and the frame body part 5 are opposed to the frame body part 5 so as to be bridged over the hollow part 21 along the Y-axis direction in a state of being closed toward the base part 3. It is attached between the frames. The probe support plate 9 is a long flat plate member extending in the Y-axis direction, and is attached along the YZ plane. Furthermore, a plurality of conductive probe pins (conductive pins) 23 extending in the Z-axis direction so as to face the conductive surface 7a are penetrated through the probe support plate 9 at substantially equal intervals along the Y-axis direction. And fixed. These probe pins 23 are provided so that the ends of the probe pins 23 are located in the vicinity of the midpoint of the two grooves 11 formed on the conductive surface 7a when the frame 5 is closed, and gold plating is applied. It is made of a conductive metal such as nickel. Here, a conducting part 20 made of a copper plate or the like is formed in the frame part 5, and the conducting part 20 is connected to the positive electrode coaxial connector via the wiring members inside the frame part 5 and the base part 3. 17b is electrically connected. Therefore, by electrically connecting the conductive member formed at the end of the probe support plate 9 and the conducting portion 20, the probe pin 23 and the positive electrode coaxial connector 17 b can be electrically connected. Appropriate voltage can be applied. In addition, it is preferable that the conduction | electrical_connection part 20 is formed over the range in which the probe support plate 9 can be arrange | positioned. Thereby, electrical connection with the probe support plate 9 becomes possible irrespective of the number and arrangement positions of the probe support plates 9. Moreover, the conduction | electrical_connection part 20 should just be formed in the location where the probe support plate 9 of the frame part 5 is attached.

このような構成のプローブ支持板9は、プローブピン23の先端が電極板7の導電性表面7aに対して接近及び離脱が可能なように、枠体部5によって回動自在に支持されることになる。また、プローブ支持板9を枠体部5とともに導電性表面7aに接近させた状態では、プローブピン23の先端が導電性表面7a上の溝部11の位置と重なることが防止される。   The probe support plate 9 having such a configuration is rotatably supported by the frame body portion 5 so that the tip of the probe pin 23 can approach and leave the conductive surface 7a of the electrode plate 7. become. Further, when the probe support plate 9 is brought close to the conductive surface 7a together with the frame body portion 5, the tip of the probe pin 23 is prevented from overlapping the position of the groove 11 on the conductive surface 7a.

ここで、枠体部5に対するプローブ支持板9の取付構造の詳細について説明する。図5は、プローブ支持板9の取付構造を示すYZ平面に沿った縦断面図である。同図に示すように、プローブ支持板9を枠体部5に取り付ける際には、プローブ支持板9の端部の枠体部5に向けて(枠体部5を閉じた状態ではZ軸方向に)貫通する貫通孔に、固定ネジ(ネジ部材)27が挿入される。また、枠体部5をZ軸方向から挟むようにネジ受け部25が取り付けられ、このネジ受け部25のネジ穴にプローブ支持板9を貫通する固定ネジ(ネジ部材)27が螺入される(図5(a))。さらに、プローブ支持板9と枠体部5との間には、固定ネジ27を緩めた際にプローブ支持板9を電極板7の導電性表面7aから離れる方向に(枠体部5を閉じた状態では+Z軸方向に)付勢するバネ部材29が内蔵されている。この状態で、固定ネジ27をさらに締め付けていくと、プローブ支持板9が下がりその下端面Aが枠体部5に当接する(図5(b))。さらに、固定ネジ27を締めていくと、ネジ受け部25が持ち上がり、ネジ受け部25の下部の上端面Bが枠体部5に当接することで、プローブ支持板9が枠体部5に対して固定される(図5(c))。このような取付構造により、プローブ支持板9は、その両端における固定ネジ27を緩めて図5(a)のような状態にすることによって、枠体部5を閉じた状態でプローブピン23の向きを保ったままで枠体部5の中空部21の縁部に沿って(X軸方向に沿って)スライド可能にされている。   Here, the detail of the attachment structure of the probe support plate 9 with respect to the frame part 5 is demonstrated. FIG. 5 is a longitudinal sectional view along the YZ plane showing the mounting structure of the probe support plate 9. As shown in the figure, when attaching the probe support plate 9 to the frame body portion 5, it faces the frame body portion 5 at the end of the probe support plate 9 (in the Z-axis direction when the frame body portion 5 is closed). (D) A fixing screw (screw member) 27 is inserted into the through-hole. Further, a screw receiving portion 25 is attached so as to sandwich the frame body portion 5 from the Z-axis direction, and a fixing screw (screw member) 27 penetrating the probe support plate 9 is screwed into the screw hole of the screw receiving portion 25. (FIG. 5 (a)). Further, between the probe support plate 9 and the frame body portion 5, the probe support plate 9 is moved away from the conductive surface 7 a of the electrode plate 7 when the fixing screw 27 is loosened (the frame body portion 5 is closed). In the state, a spring member 29 that urges (in the + Z-axis direction) is incorporated. In this state, when the fixing screw 27 is further tightened, the probe support plate 9 is lowered, and the lower end surface A thereof comes into contact with the frame body portion 5 (FIG. 5B). Further, as the fixing screw 27 is tightened, the screw receiving portion 25 is lifted, and the upper end surface B of the lower portion of the screw receiving portion 25 comes into contact with the frame body portion 5, so that the probe support plate 9 is in contact with the frame body portion 5. (Fig. 5 (c)). With such an attachment structure, the probe support plate 9 can be oriented with the probe pin 23 in a state in which the frame body portion 5 is closed by loosening the fixing screws 27 at both ends to bring the probe support plate 9 into the state shown in FIG. Is maintained slidable along the edge of the hollow portion 21 of the frame body portion 5 (along the X-axis direction).

以上説明した太陽電池検査装置1によれば、電極板7の導電性表面7a上に太陽電池セルSが載置されることにより、太陽電池セルSの裏面電極105が電極板7に電気的に接続されると同時に、プローブ支持板9が電極板7の導電性表面7aに向けて接近するように回動されることにより、プローブ支持板9に設けられた複数のプローブピン23が、太陽電池セルSの受光面電極106の形成パターンに合わせて、受光面電極106の表面全体に均等に接続される。これにより、太陽電池検査装置1の導電性表面7aの斜め上方から励起光を照射する照明装置と、太陽電池検査装置1の上方に太陽電池セルSの受光面からの光を検出するためのCCDカメラやCMOSカメラ等の撮像装置とを準備することで、太陽電池セルSを構成する太陽電池素子全体に順方向電流を供給しながらの受光面からの発光検出(EL検出法)と、太陽電池セルの受光面全体に光を照射しながらの受光面からの発光検出(PL検出法)との両方を行うことができる。   According to the solar cell inspection apparatus 1 described above, the back surface electrode 105 of the solar cell S is electrically connected to the electrode plate 7 by placing the solar cell S on the conductive surface 7 a of the electrode plate 7. Simultaneously with the connection, the probe support plate 9 is rotated so as to approach the conductive surface 7a of the electrode plate 7, whereby a plurality of probe pins 23 provided on the probe support plate 9 become solar cells. In accordance with the formation pattern of the light receiving surface electrode 106 of the cell S, the entire surface of the light receiving surface electrode 106 is evenly connected. Thereby, the illumination device that irradiates the excitation light obliquely above the conductive surface 7a of the solar cell inspection device 1, and the CCD for detecting the light from the light receiving surface of the solar cell S above the solar cell inspection device 1. By preparing an imaging device such as a camera or a CMOS camera, light emission detection (EL detection method) from the light receiving surface while supplying a forward current to the entire solar cell element constituting the solar cell S, and a solar cell Both light emission detection (PL detection method) from the light receiving surface while irradiating the entire light receiving surface of the cell can be performed.

このとき、電極板7の導電性表面7aに設けられた溝部11,13内を外部から吸引することにより、太陽電池セルSの裏面電極105が導電性表面7aに安定して吸着される。さらに、プローブピン23が2つの溝部11の間に位置しているので、プローブピン23と受光面電極106とを接続する際の太陽電池セルSに対する外力を低減して太陽電池セルSの破損を防止することができる。その結果として、2つの検査手法による太陽電池セルの性能検査を、1つの装置で効率的かつ円滑に実施することができる。   At this time, by sucking the inside of the grooves 11 and 13 provided on the conductive surface 7a of the electrode plate 7 from the outside, the back electrode 105 of the solar battery cell S is stably adsorbed on the conductive surface 7a. Furthermore, since the probe pin 23 is located between the two groove portions 11, the external force applied to the solar cell S when connecting the probe pin 23 and the light receiving surface electrode 106 is reduced, and the solar cell S is damaged. Can be prevented. As a result, it is possible to efficiently and smoothly perform the performance inspection of the solar battery cell by two inspection methods with one apparatus.

また、プローブ支持板9は、導電性表面7a上のX軸方向に沿ってスライド可能に設けられているので、太陽電池セルSの様々な受光面電極の形成パターンに柔軟に対応して性能検査を実行させることができる。   In addition, since the probe support plate 9 is provided so as to be slidable along the X-axis direction on the conductive surface 7a, the performance test can be flexibly adapted to the formation patterns of various light receiving surface electrodes of the solar cells S. Can be executed.

さらに、溝部13はプローブピン23の配列方向に対して垂直なX軸方向に形成されているので、太陽電池セルSの裏面電極105と導電性表面7aの接触面積が広がる。これは、一般的な太陽電池セルSは、図6に示すように、受光面電極106の形成方向に対して垂直な方向に湾曲しやすい性質を持っており、溝部13によってこの湾曲を確実に低減できるからである。これにより、接触面積を拡げることができることはもちろん、太陽電池セルSの変形時に加えられるプローブピン23による外力による太陽電池セルSの破損も防ぐことができる。さらに、プローブ支持板9をスライドさせてプローブピン23の位置を調整する際に、溝部11とプローブピン23との位置が重なることがなく、太陽電池セルSの破損をより一層防止できる。   Furthermore, since the groove part 13 is formed in the X-axis direction perpendicular to the arrangement direction of the probe pins 23, the contact area between the back electrode 105 of the solar battery cell S and the conductive surface 7a increases. This is because, as shown in FIG. 6, the general solar battery cell S has a property of being easily bent in a direction perpendicular to the formation direction of the light-receiving surface electrode 106, and the groove 13 reliably ensures this bending. This is because it can be reduced. Thereby, not only the contact area can be expanded, but also damage of the solar battery cell S due to an external force by the probe pin 23 applied when the solar battery cell S is deformed can be prevented. Furthermore, when the probe support plate 9 is slid to adjust the position of the probe pin 23, the positions of the groove 11 and the probe pin 23 do not overlap, and damage to the solar battery cell S can be further prevented.

また、プローブ支持板9の枠体部5に対する取付構造によれば、太陽電池セルSの受光面電極106の形成パターンに対応して、枠体部5を閉じた状態でプローブ支持板9の位置を微調整する際に、太陽電池セルSへのプローブピン23の接触を防止して太陽電池セルSの受光面における損傷を防止することができる。   Moreover, according to the attachment structure with respect to the frame body part 5 of the probe support plate 9, the position of the probe support plate 9 in the state which closed the frame part 5 corresponding to the formation pattern of the light-receiving surface electrode 106 of the photovoltaic cell S. When fine adjustment is performed, contact of the probe pin 23 with the solar battery cell S can be prevented, and damage to the light receiving surface of the solar battery cell S can be prevented.

また、電極板7の導電性表面7aには、溝部11をY軸方向に沿ってバイパスするように溝部13がさらに形成されているので、太陽電池セルSを導電性表面7aに吸引するための貫通孔の数を削減することができ、吸引機構の構成を単純化することができる。   Moreover, since the groove part 13 is further formed in the electroconductive surface 7a of the electrode plate 7 so that the groove part 11 may be bypassed along the Y-axis direction, it is for attracting | sucking the photovoltaic cell S to the electroconductive surface 7a. The number of through holes can be reduced, and the configuration of the suction mechanism can be simplified.

図7には、本実施形態の太陽電池検査装置1を用いて得られた多結晶シリコン太陽電池セルの受光面画像を示しており、(a)は、PL検出法により得られた画像データ、(b)は、EL検出法により得られた画像データである。これらの結果を見てわかるように、画像データ中において太陽電池素子の欠陥部分であるクラックが輝度の低い部分として現れている(丸印で囲んだ部分)。このように太陽電池検査装置1によれば、2つの検査手法による受光面の評価結果を良好に得ることができる。   In FIG. 7, the light-receiving surface image of the polycrystal silicon solar cell obtained using the solar cell inspection apparatus 1 of this embodiment is shown, (a) is the image data obtained by the PL detection method, (B) is image data obtained by the EL detection method. As can be seen from these results, cracks, which are defective portions of the solar cell element, appear as low luminance portions in the image data (portions surrounded by circles). Thus, according to the solar cell inspection apparatus 1, the evaluation result of the light-receiving surface by two inspection methods can be obtained favorably.

なお、本発明は、前述した実施形態に限定されるものではない。例えば、本実施形態の電極板7の構造に関しても様々な変形態様を採ることができ、図8に示す電極板207のように、溝部13Aを、複数の溝部11を蛇行させて繋げるように、すなわち、隣接する2つの溝部11でU字状を成すように形成されてもよい。また、溝部11,13は、必ずしも直線状に形成されている必要は無く、X軸方向またはY軸方向に伸びていればジグザグ状であっても円弧状であってもよい。   In addition, this invention is not limited to embodiment mentioned above. For example, various modifications can be taken with respect to the structure of the electrode plate 7 of the present embodiment, and like the electrode plate 207 shown in FIG. 8, the groove 13 </ b> A is meandered to connect the plurality of grooves 11. That is, the two adjacent groove portions 11 may be formed in a U shape. Further, the grooves 11 and 13 are not necessarily formed in a straight line shape, and may be zigzag or arcuate as long as they extend in the X-axis direction or the Y-axis direction.

1…太陽電池検査装置、3…基台部(支持部)、5…枠体部(支持部)、7,207…電極板、7a…導電性表面、9…プローブ支持板(電極支持部材)、11,13,13A…溝部、23…プローブピン(導電性ピン)、27…固定ネジ(ネジ部材)、29…バネ部材、S…太陽電池セル。   DESCRIPTION OF SYMBOLS 1 ... Solar cell inspection apparatus, 3 ... Base part (support part), 5 ... Frame part (support part), 7,207 ... Electrode plate, 7a ... Conductive surface, 9 ... Probe support plate (electrode support member) 11, 11, 13 A... Groove, 23... Probe pin (conductive pin), 27 .. fixing screw (screw member), 29 .. spring member, S.

Claims (4)

太陽電池の性能を評価する太陽電池検査装置であって、
前記太陽電池を載置する平面状の導電性表面を有する電極板と、
前記電極板を支持する支持部と、
前記電極板の前記導電性表面に沿った第1の方向に沿って延在しており、前記導電性表面に対向して伸びる導電性ピンを前記第1の方向に沿って複数有し、前記電極板の前記導電性表面に対して接近及び離脱が可能なように、前記支持部によって回動自在に支持された電極支持部材とを備え、
前記電極板には、前記導電性表面上の前記第1の方向に対して略垂直な第2の方向に沿って延びる第1の溝部が複数並行して形成され、
前記導電性ピンは、前記電極支持部材が前記導電性表面に接近した状態で複数の前記第1の溝部の間に位置するように設けられている、
ことを特徴とする太陽電池検査装置。
A solar cell inspection device for evaluating the performance of a solar cell,
An electrode plate having a planar conductive surface on which the solar cell is placed;
A support portion for supporting the electrode plate;
Extending along a first direction along the conductive surface of the electrode plate, and having a plurality of conductive pins extending along the first direction facing the conductive surface, An electrode support member rotatably supported by the support portion so as to be able to approach and leave the conductive surface of the electrode plate;
In the electrode plate, a plurality of first groove portions extending in a second direction substantially perpendicular to the first direction on the conductive surface are formed in parallel,
The conductive pin is provided so that the electrode support member is positioned between the plurality of first grooves in a state where the electrode support member is close to the conductive surface.
A solar cell inspection apparatus characterized by that.
前記電極支持部材は、さらに、前記導電性表面上の前記第2の方向に沿ってスライド可能に設けられている、
ことを特徴とする請求項1記載の太陽電池検査装置。
The electrode support member is further provided so as to be slidable along the second direction on the conductive surface.
The solar cell inspection apparatus according to claim 1.
前記電極支持部材は、前記支持部に対して固定するためのネジ部材を有し、
前記支持部と前記電極支持部材との間には、前記電極支持部材を前記導電性表面から離れる方向に付勢するバネ部材がさらに設けられている、
ことを特徴とする請求項2記載の太陽電池検査装置。
The electrode support member has a screw member for fixing to the support portion,
A spring member that urges the electrode support member in a direction away from the conductive surface is further provided between the support portion and the electrode support member.
The solar cell inspection apparatus according to claim 2.
前記電極板には、複数の前記第1の溝部を第1の方向に沿って繋ぐように、第2の溝部がさらに形成されている、
ことを特徴とする請求項1〜3のいずれか1項に記載の太陽電池検査装置。
The electrode plate is further formed with a second groove so as to connect the plurality of first grooves along the first direction.
The solar cell inspection apparatus according to any one of claims 1 to 3, wherein
JP2009148710A 2009-06-23 2009-06-23 Solar battery inspection device Pending JP2011009283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009148710A JP2011009283A (en) 2009-06-23 2009-06-23 Solar battery inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009148710A JP2011009283A (en) 2009-06-23 2009-06-23 Solar battery inspection device

Publications (1)

Publication Number Publication Date
JP2011009283A true JP2011009283A (en) 2011-01-13

Family

ID=43565639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009148710A Pending JP2011009283A (en) 2009-06-23 2009-06-23 Solar battery inspection device

Country Status (1)

Country Link
JP (1) JP2011009283A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749567A (en) * 2012-06-29 2012-10-24 欧贝黎新能源科技股份有限公司 All-back electrode solar battery test platform
JP2013118183A (en) * 2011-12-01 2013-06-13 Charm Engineering Co Ltd Substrate inspection device
CN105665867A (en) * 2014-11-20 2016-06-15 营口金辰机械股份有限公司 Elastic press-holding mechanism
KR101772118B1 (en) 2011-01-28 2017-08-28 엘지전자 주식회사 Measurement equipment of solar cell and measurement method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135839A (en) * 1999-11-08 2001-05-18 Kanegafuchi Chem Ind Co Ltd Manufacturing method of thin film photoelectric conversion module and defect recovery device of thin film photoelectric conversion module
JP2006118983A (en) * 2004-10-21 2006-05-11 Sharp Corp Measurement fixture for solar battery cell
WO2007125778A1 (en) * 2006-04-28 2007-11-08 Sharp Kabushiki Kaisha Solar battery module evaluation device, solar battery module evaluating method, and solar battery module manufacturing method
WO2007129585A1 (en) * 2006-05-02 2007-11-15 National University Corporation NARA Institute of Science and Technology Method and device for evaluating solar cell and use of the solar cell
JP2010537434A (en) * 2007-08-30 2010-12-02 ビーティー イメージング ピーティーワイ リミテッド Photovoltaic manufacturing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135839A (en) * 1999-11-08 2001-05-18 Kanegafuchi Chem Ind Co Ltd Manufacturing method of thin film photoelectric conversion module and defect recovery device of thin film photoelectric conversion module
JP2006118983A (en) * 2004-10-21 2006-05-11 Sharp Corp Measurement fixture for solar battery cell
WO2007125778A1 (en) * 2006-04-28 2007-11-08 Sharp Kabushiki Kaisha Solar battery module evaluation device, solar battery module evaluating method, and solar battery module manufacturing method
WO2007129585A1 (en) * 2006-05-02 2007-11-15 National University Corporation NARA Institute of Science and Technology Method and device for evaluating solar cell and use of the solar cell
JP2010537434A (en) * 2007-08-30 2010-12-02 ビーティー イメージング ピーティーワイ リミテッド Photovoltaic manufacturing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101772118B1 (en) 2011-01-28 2017-08-28 엘지전자 주식회사 Measurement equipment of solar cell and measurement method
JP2013118183A (en) * 2011-12-01 2013-06-13 Charm Engineering Co Ltd Substrate inspection device
CN102749567A (en) * 2012-06-29 2012-10-24 欧贝黎新能源科技股份有限公司 All-back electrode solar battery test platform
CN105665867A (en) * 2014-11-20 2016-06-15 营口金辰机械股份有限公司 Elastic press-holding mechanism
CN105665867B (en) * 2014-11-20 2018-09-28 营口金辰机械股份有限公司 Elasticity pressure holding mechanism

Similar Documents

Publication Publication Date Title
KR102108594B1 (en) Testing device
JP2011009283A (en) Solar battery inspection device
TW201015732A (en) Solar cell module
TW201523002A (en) Probe apparatus
JP6184301B2 (en) Inspection device
KR20140019804A (en) Systems and methods for making atleast a detachable electrical contact with atleast a photovoltaic device
JPWO2013001910A1 (en) Solar cell measurement jig
CN102565720B (en) Test apparatus for power supply unit
KR20160141809A (en) Testing device
TW202035994A (en) Contact terminal, inspection tool, and inspection device
KR101191856B1 (en) LED test system and test method thereof
KR101641571B1 (en) Test device for solar cell performance
JP5345161B2 (en) Wafer carrier for power device and inspection apparatus using this wafer carrier
JP5147192B2 (en) Wafer holding method in prober, prober and high thermal conductive sheet
CN1815263A (en) Two-dimensional image detector
JP5156970B2 (en) Probe unit for electrical inspection, electrical inspection device, and lighting inspection device
TWI613451B (en) Substrate inspecting jig
JP2012084854A (en) Solder ball adsorption jig
JP5242338B2 (en) Solar cell module manufacturing method and solar cell module manufacturing apparatus
CN209729863U (en) A kind of multistation sample stage of scanning electron microscope home position Electrochemical Detection chip
JP2005062076A (en) Electrical connection system
JP2011071185A (en) Device and method for evaluating characteristic of solar cell
TW200619635A (en) Sheet-like probe, its manufacturing method, and its application
KR101969949B1 (en) Test system of bi-facial solar cell
CN116544132B (en) Mini-LED patch detection equipment and detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131105