JP2011007824A - Optical device - Google Patents
Optical device Download PDFInfo
- Publication number
- JP2011007824A JP2011007824A JP2009148228A JP2009148228A JP2011007824A JP 2011007824 A JP2011007824 A JP 2011007824A JP 2009148228 A JP2009148228 A JP 2009148228A JP 2009148228 A JP2009148228 A JP 2009148228A JP 2011007824 A JP2011007824 A JP 2011007824A
- Authority
- JP
- Japan
- Prior art keywords
- optical system
- lens group
- imaging
- lens
- object side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Lenses (AREA)
Abstract
Description
本発明は、光学装置に関する。 The present invention relates to an optical device.
特許文献1及び2は、レンズ外径を大型化せずに超広角な撮影画角を得るために、2回結像方式の撮影光学系を有する光学装置(撮像装置)を提案している。 Patent Documents 1 and 2 propose an optical device (imaging device) having a photographic optical system of a two-time imaging method in order to obtain a super wide photographic angle of view without increasing the lens outer diameter.
しかしながら、特許文献1及び2の実施例では、専用の2回結像系をカメラ(撮像装置)毎に設計しているので汎用性がなく、また、極至近撮影を行なう手段も開示されていない。 However, in the embodiments of Patent Documents 1 and 2, since a dedicated two-time imaging system is designed for each camera (imaging device), there is no versatility, and no means for performing close-up shooting is disclosed. .
本発明は、レンズ外径を大型化せずに無限から超至近まで汎用性のある光学系でケラレを防止する光学装置を提供することを例示的な目的とする。 An object of the present invention is to provide an optical device that prevents vignetting with a versatile optical system from infinity to very close without increasing the lens outer diameter.
本発明の一側面としての光学装置は、正の屈折力を有する対物光学系と、前記対物光学系の結像面側に配置されて正の屈折力を有するフィールドレンズ群と、前記対物光学系によって結像された光学像を再結像するための正のリレーレンズ群と、を有し、前記フィールドレンズ群は、物体側から順に、物体側に凸形状を有する正レンズと、空気間隔を挟んで物体側に凹形状を有する負レンズで構成され、物体距離が無限遠方状態において、前記対物光学系の入射瞳面を前記第1面としたときに無限物体距離に対する前記対物光学系による結像位置から射出瞳位置までの距離をEp、前記対物光学系の焦点距離をFo、前記リレーレンズ群第1面から入射瞳位置までの距離をIp、前記リレーレンズ群の焦点距離をFmとすると12<Ep/Fo<5.5、1.2<Ip/Fmを満足することを特徴とする。 An optical apparatus according to one aspect of the present invention includes an objective optical system having a positive refractive power, a field lens group having a positive refractive power and disposed on the imaging surface side of the objective optical system, and the objective optical system A positive relay lens group for re-imaging the optical image formed by the step, the field lens group in order from the object side, a positive lens having a convex shape on the object side, and an air gap It is composed of a negative lens having a concave shape on the object side, and the object optical system connects the infinite object distance to the infinite object distance when the entrance pupil plane of the objective optical system is the first surface when the object distance is infinite. If the distance from the image position to the exit pupil position is Ep, the focal length of the objective optical system is Fo, the distance from the first surface of the relay lens group to the entrance pupil position is Ip, and the focal length of the relay lens group is Fm. 12 <Ep / F <And satisfies the 5.5,1.2 <Ip / Fm.
本発明の別の側面としての光学装置は、撮像装置の撮影光学系の物体側に装着され、結像光学系を収納する光学装置であって、前記結像光学系が結像した光学像を前記撮影光学系は再結像し、前記結像光学系は、正の屈折力を有する対物光学系と、前記対物光学系の結像面側に配置されて正の屈折力を有するフィールドレンズ群と、を有し、前記フィールドレンズ群は、物体側から順に、物体側に凸形状を有する正レンズと、空気間隔を挟んで物体側に凹形状を有する負レンズで構成されることを特徴とする。 An optical device according to another aspect of the present invention is an optical device that is mounted on the object side of a photographing optical system of an imaging device and houses an imaging optical system, and an optical image formed by the imaging optical system The imaging optical system re-images, the imaging optical system is an objective optical system having a positive refractive power, and a field lens group having a positive refractive power disposed on the imaging plane side of the objective optical system The field lens group includes, in order from the object side, a positive lens having a convex shape on the object side, and a negative lens having a concave shape on the object side with an air gap in between. To do.
本発明は、レンズ外径を大型化せずに無限から超至近まで汎用性のある光学系でケラレを防止する光学装置を提供することができる。 The present invention can provide an optical device that prevents vignetting with a versatile optical system from infinity to very close without increasing the lens outer diameter.
本実施例は、デジタルコンパクトカメラ(撮像装置又は光学装置)のように、本来備わっている高変倍ズーム撮影光学系を利用して物体側に新しい光学系を配置して2回結像光学系を実現している。専用の再結像系を設計しなくてもよいので汎用性を確保することができる。新しい光学系はアタッチメント光学系であってもよいし、再結像光学系と一体であってもよい。 In this embodiment, a new optical system is arranged on the object side using a high-magnification zoom photographing optical system that is inherently provided, such as a digital compact camera (an imaging device or an optical device), and a two-time imaging optical system Is realized. Since it is not necessary to design a dedicated re-imaging system, versatility can be ensured. The new optical system may be an attachment optical system or may be integrated with the re-imaging optical system.
本実施例の2回結像光学系は、正の屈折力を有する対物光学系と対物光学系による1次結像面位置の近傍(結像面側)に配置される正の屈折力を有するフィールドレンズ群と、対物光学系によって結像された光学像を再結像する正のリレーレンズ群を有する。リレーレンズ群は、後述するように、新しい光学系の一部(フィールドレンズ群を透過した被写体像を撮影光学系に入射させる正の屈折力を有する補助レンズ群)と撮影光学系から構成される。即ち、新しい光学系は、対物光学系、フィールドレンズ群と補助レンズ群からなる。 The twice-imaging optical system of the present embodiment has an objective optical system having a positive refractive power and a positive refractive power disposed in the vicinity of the primary imaging plane position (imaging plane side) by the objective optical system. It has a field lens group and a positive relay lens group that re-images the optical image formed by the objective optical system. As will be described later, the relay lens group includes a part of a new optical system (an auxiliary lens group having a positive refractive power that causes a subject image transmitted through the field lens group to enter the photographing optical system) and the photographing optical system. . That is, the new optical system includes an objective optical system, a field lens group, and an auxiliary lens group.
好ましくは、対物光学系は、物体側から順に互いに像側のレンズ面が強い凹面である2枚の負レンズで構成された負の屈折力を有した前群を有し、各レンズ面の曲率を弱めて非点収差の発生を低減する。また、対物光学系は、物体側から順に空気間隔を挟んで正レンズ負レンズが接合された全体が正の屈折力である接合レンズと凸レンズで構成された正の屈折力を有した後群を有する。 Preferably, the objective optical system has a front group having a negative refractive power, which is composed of two negative lenses each having a strong concave surface on the image side in order from the object side, and the curvature of each lens surface. To reduce the occurrence of astigmatism. In addition, the objective optical system includes a rear lens group having a positive refractive power composed of a cemented lens and a convex lens having a positive refractive power as a whole. Have.
リレーレンズ群は入射瞳が長いため入射する光の主光線の入射角度は平行光線に近い。フィールドレンズ群によって偏向される光線も主光線が平行光線状態に近似したものが望まれ、その状態が崩れると再結像時にケラレを生じる。 Since the relay lens group has a long entrance pupil, the incident angle of the principal ray of incident light is close to parallel rays. It is desirable that the light deflected by the field lens group is one in which the principal ray approximates a parallel ray state. If this state is lost, vignetting occurs during re-imaging.
従来のフィールドレンズ群は正の単レンズまたは複数の正レンズを有するため、通過する光線(主光線)が光軸から離れるに従って屈折作用により、平行に近似した光線を射出することができなくなる。また、非球面を用いた補正手段は、製造の困難性とコストアップを招く。 Since the conventional field lens group has a positive single lens or a plurality of positive lenses, it becomes impossible to emit light rays approximated in parallel due to a refracting action as a passing light beam (principal light beam) moves away from the optical axis. Further, the correction means using an aspheric surface causes manufacturing difficulty and cost increase.
一方、本実施例のフィールドレンズ群は、物体側から順に物体側に凸形状を有した正レンズと空気間隔を挟んで物体側に凹形状を有した負レンズを有する。正レンズにより、入射光線の偏向作用を行なった後に、その像側の負レンズが球面収差の補正を行なう。その結果、フィールドレンズ群から射出される光線は近平行光となり、その後リレーレンズ群を介して再結像される像の周辺ケラレを防止することができる。 On the other hand, the field lens group of the present embodiment includes a positive lens having a convex shape on the object side in order from the object side and a negative lens having a concave shape on the object side with an air gap in between. After the incident light is deflected by the positive lens, the negative lens on the image side corrects the spherical aberration. As a result, the light emitted from the field lens group becomes near-parallel light, and it is possible to prevent peripheral vignetting of an image that is re-imaged through the relay lens group.
本実施例において、対物光学系の入射瞳面をレンズ第1面としたときに物体距離が無限遠方状態の対物光学系の無限物体距離に対する1次結像面位置から射出瞳位置までの距離をEp、対物光学系の焦点距離をFoとする。また、リレーレンズ群第1面から入射瞳位置までの距離をIp、リレーレンズ群の焦点距離をFm(但し、リレーレンズ群が変倍光学系であるときは最も望遠端状態とする)とする。この時、以下の条件式(数式)が満足されることが好ましい。 In this embodiment, the distance from the primary imaging plane position to the exit pupil position with respect to the infinite object distance of the objective optical system in the state where the object distance is infinite when the entrance pupil plane of the objective optical system is the first lens surface. Ep, and Fo is the focal length of the objective optical system. Further, the distance from the first surface of the relay lens group to the entrance pupil position is Ip, and the focal length of the relay lens group is Fm (however, when the relay lens group is a variable power optical system, the telephoto end state is set to the maximum telephoto end state). . At this time, it is preferable that the following conditional expression (formula) is satisfied.
数式1は、対物光学系を小型化しつつ良好な光学性能を得るための条件であり、対物光学系をコンセントリックな光学系として射出瞳距離を最適に規定する。 Formula 1 is a condition for obtaining good optical performance while reducing the size of the objective optical system, and optimally defines the exit pupil distance with the objective optical system as a concentric optical system.
数式1の上限値を越えると射出瞳距離が短くなり、フィールドレンズ群に入射する光線角度がきつくなる。入射角度を適切な射出角度にするためには、フィールドレンズ群のレンズ枚数を増加させる必要があり、また、非点収差が大きくなり、良好な画質を得るのが困難になる。 When the upper limit of Equation 1 is exceeded, the exit pupil distance is shortened, and the angle of light incident on the field lens group becomes tight. In order to set the incident angle to an appropriate exit angle, it is necessary to increase the number of lenses in the field lens group, and astigmatism increases, making it difficult to obtain good image quality.
数式1の下限値を越えると対物光学系のテレセントリック作用が強くなり、周辺光量を確保するために対物光学系の像面側に配置される正レンズ成分のレンズ径が増大する。周辺像高光線がレンズ周辺部を通過するため、コマ収差や非点収差が大きく発生し、これを補正することが困難になる。 When the lower limit of Expression 1 is exceeded, the telecentric action of the objective optical system becomes strong, and the lens diameter of the positive lens component arranged on the image plane side of the objective optical system in order to secure the peripheral light amount increases. Since the peripheral image height rays pass through the lens periphery, coma and astigmatism are greatly generated, and it is difficult to correct them.
数式2は、リレーレンズ群の焦点距離と入射瞳距離の関係を示し、リレーレンズ群(リレーレンズ群が変倍系であるときは望遠端状態)が長い射出瞳距離を有することを示している。 Formula 2 shows the relationship between the focal length of the relay lens group and the entrance pupil distance, and indicates that the relay lens group (the telephoto end state when the relay lens group is a variable power system) has a long exit pupil distance. .
数式2の下限値を下回るとリレーレンズ群の入射瞳距離が短くなる。撮像素子等の撮像媒体上の結像画像に対してケラレを生じないようにするためにはリレーレンズ光学系に導光を行なうフィールドレンズ群の外径を増大しなくてはならなくなり、光学系が大型化してしまう。 If the lower limit of Formula 2 is not reached, the entrance pupil distance of the relay lens group is shortened. In order to prevent vignetting on an image formed on an imaging medium such as an imaging device, the outer diameter of a field lens group that guides light to the relay lens optical system must be increased. Will become larger.
新しい光学系が、撮影光学系の物体側に装着されて、より広角な撮影画角を得るためのアタッチメント光学系である場合、アタッチメント光学系によって結像される光学像は撮影光学系により再結像される。 When the new optical system is attached to the object side of the photographic optical system and is an attachment optical system for obtaining a wider angle of view, the optical image formed by the attachment optical system is reconstructed by the photographic optical system. Imaged.
アタッチメント光学系においては、対物光学系の入射瞳面をレンズ第1面としたときに無限物体距離に対する結像位置から射出瞳位置までの距離をEp、対物光学系の焦点距離をFoとしたとき、以下の条件式を満足することが好ましい。 In the attachment optical system, when the entrance pupil plane of the objective optical system is the first lens surface, the distance from the imaging position to the exit pupil position with respect to the infinite object distance is Ep, and the focal length of the objective optical system is Fo It is preferable that the following conditional expression is satisfied.
数式3は、数式1と同様に対物光学系を小型化しつつ良好な光学性能を得るための条件であり、対物光学系をコンセントリックな光学系として射出瞳距離を最適に規定する。数式1と同様に、数式3の数値範囲を越えると収差が大きく発生してこれを補正することが困難となり高画質な光学系の達成が困難となる。 Equation 3 is a condition for obtaining good optical performance while reducing the size of the objective optical system as in Equation 1, and optimally defines the exit pupil distance with the objective optical system as a concentric optical system. Similar to Equation 1, if the numerical value range of Equation 3 is exceeded, a large amount of aberration occurs, making it difficult to correct it and making it difficult to achieve a high-quality optical system.
また、フィールドレンズ群の焦点距離をFf、フィールドレンズ群の負レンズの焦点距離をFnとすると以下の条件式を満足することが好ましい。 Further, it is preferable that the following conditional expression is satisfied, where Ff is the focal length of the field lens group and Fn is the focal length of the negative lens of the field lens group.
数式4は、フィールドレンズ群の負レンズの屈折力比を示し、対物光学系から入射される光線を撮影媒体の全像高にケラレを生じさせないように射出を行なわせるための条件である。数式4の数値範囲を越えるとフィールドレンズ群の屈折作用で各像高の射出角度を適切に偏向することが困難になり、結果としてケラレを生じてしまう。 Formula 4 shows the refractive power ratio of the negative lens of the field lens group, and is a condition for emitting light incident from the objective optical system so as not to cause vignetting in the entire image height of the imaging medium. If the numerical value range of Expression 4 is exceeded, it becomes difficult to appropriately deflect the exit angle of each image height by the refraction action of the field lens group, resulting in vignetting.
フィールドレンズ群の正レンズと負レンズの物体側のレンズ面の焦点距離をそれぞれFR1、FR2とすると以下の条件式を満足することが好ましい。 When the focal lengths of the object side lens surfaces of the positive lens and negative lens of the field lens group are FR1 and FR2, respectively, it is preferable that the following conditional expressions are satisfied.
数式5は、フィールドレンズ群の正と負の屈折力比を示し、フィールドレンズ群で発生する収差を良好に補正を行なうための条件である。数式5の上限値を越えると負レンズの負の屈折作用が大きくなり、過剰な収差補正作用になる。数式5の下限値を下回ると収差の補正作用が弱くない、画像の周辺でケラレが発生しやすくなる。 Formula 5 shows the positive and negative refractive power ratio of the field lens group, and is a condition for satisfactorily correcting the aberration generated in the field lens group. If the upper limit of Expression 5 is exceeded, the negative refraction action of the negative lens increases, resulting in an excessive aberration correction action. If the lower limit of Expression 5 is not reached, the aberration correction action is not weak, and vignetting is likely to occur around the image.
フィールドレンズ群の正レンズと負レンズの物体側のレンズ面の曲率半径をそれぞれRF1、RF2とすると以下の条件式を満足することが好ましい。 When the radius of curvature of the object side lens surface of the positive lens and the negative lens in the field lens group is RF1 and RF2, respectively, it is preferable that the following conditional expressions are satisfied.
数式6は、フィールドレンズ群で正の屈折力を有する最も物体側のレンズ面(F1面)とそれに対向する負レンズの負の屈折力を有する物体側のレンズ面(F3面)の曲率半径の比を表し、フィールドレンズ群で発生する収差を補正するための条件である。 Formula 6 is the radius of curvature of the most object side lens surface (F1 surface) having positive refractive power in the field lens group and the object side lens surface (F3 surface) having negative refractive power of the negative lens opposite thereto. This is a condition for expressing the ratio and correcting the aberration generated in the field lens group.
数式6の上限値を越えるとF1面とF3面において、相対的に負のレンズ面であるF3面の曲率が緩くなるため、フィールドレンズ群の光軸から離れた位置に入射する光線の発散作用が弱まる。他方、数式6の下限値を下回ると、正のレンズ面であるF1面の曲率がF3面と相対的にきつくなり、収斂作用が強まる。数式6の数値範囲を外れるとフィールドレンズ群に入射される各像高における主光線を全像高範囲に渡って光軸に対して近平行な状態にすることが難しくなる。 If the upper limit of Expression 6 is exceeded, the curvature of the F3 surface, which is a relatively negative lens surface, on the F1 surface and the F3 surface becomes loose, so that the divergence of light incident on a position away from the optical axis of the field lens unit Is weakened. On the other hand, if the lower limit of Expression 6 is not reached, the curvature of the F1 surface, which is a positive lens surface, becomes tighter relative to the F3 surface, and the convergence action is strengthened. If the numerical value range of Expression 6 is deviated, it becomes difficult to make the principal ray at each image height incident on the field lens group almost parallel to the optical axis over the entire image height range.
補助レンズ群は色収差の発生を押えるために正レンズと負レンズを組み合わせたダブレットを有することが好ましい。 The auxiliary lens group preferably has a doublet in which a positive lens and a negative lens are combined in order to suppress the occurrence of chromatic aberration.
撮影光学系は、物体側から順に正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、正の屈折力の第4レンズ群を有する。虹彩絞りが、第2、第3レンズ群間中に配置され、フォーカシング機構は第4レンズ群を光軸方向に移動させる。広角端から望遠端への変倍は第1レンズ群を物体側に移動を行なって第1、第2レンズ群間と第3、第4レンズ群間の空気間隔を広く、第2、第3レンズ群間の空気間隔は狭くなるように各レンズ群を移動することで行なう。撮影光学系の望遠端近傍でアタッチメント光学系を用いて超広角な画角を有したケラレの無い画像の撮影を可能としている。 The photographing optical system includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens group having a positive refractive power. . An iris diaphragm is disposed between the second and third lens groups, and the focusing mechanism moves the fourth lens group in the optical axis direction. For zooming from the wide-angle end to the telephoto end, the first lens unit is moved to the object side, and the air space between the first and second lens units and the third and fourth lens units is widened. This is done by moving each lens group so that the air space between the lens groups becomes narrow. Using an attachment optical system in the vicinity of the telephoto end of the photographing optical system, it is possible to take a vignetting-free image having a super wide angle of view.
数値実施例1は、本実施例の2回光学系のアタッチメント光学系の再結像に用いられるズームタイプの結像光学系に関する。数値実施例2〜4は、本実施例で提案する2回光学系のアタッチメント光学系である。 Numerical Example 1 relates to a zoom type imaging optical system used for re-imaging of the attachment optical system of the two-time optical system of the present example. Numerical examples 2 to 4 are attachment optical systems of the two-time optical system proposed in this embodiment.
各数値実施例においてRiは物体側から順に第i番目のレンズ厚及び空気間隔、Niとνiは各々物体側から順に第i番目に配置されるレンズのガラスの屈折率とアッベ数である。非球面係数K,A,B,C,Dは次式で非球面形状を与える。但し、Xはレンズ頂点光軸から方向への変位量、Hは光軸からの距離、Rは曲率半径である。 In each numerical example, Ri is the i-th lens thickness and air interval in order from the object side, and Ni and νi are the refractive index and Abbe number of the glass of the i-th lens arranged in order from the object side. The aspheric coefficients K, A, B, C, and D give the aspheric shape by the following formula. Where X is the amount of displacement in the direction from the lens apex optical axis, H is the distance from the optical axis, and R is the radius of curvature.
(数値実施例1)
f= 7.62 〜 35.53 Fno= 2.88 〜 4.90 2ω=62.5°〜 14.8°
R 1= 25.758 D 1= 0.97 N 1= 1.84666 ν 1= 23.9
R 2= 18.488 D 2= 3.45 N 2= 1.69680 ν 2= 55.5
R 3= 206.825 D 3= 可変
R 4= 28.479 D 4= 0.70 N 3= 1.88300 ν 3= 40.8
R 5= 6.693 D 5= 3.41
R 6= -21.529 D 6= 0.65 N 4= 1.69680 ν 4= 55.5
R 7= 20.660 D 7= 0.65
R 8= 14.781 D 8= 1.94 N 5= 1.84666 ν 5= 23.9
R 9= -990.152 D 9= 可変
R10= 絞り D10= 0.86
* R11= 7.941 D11= 2.48 N 6= 1.58313 ν 6= 59.4
* R12= -24.952 D12= 0.22
R13= 5.513 D13= 1.72 N 7= 1.48749 ν 7= 70.2
R14= 10.653 D14= 0.86 N 8= 1.84666 ν 8= 23.9
R15= 4.204 D15= 可変
R16= 10.934 D16= 2.15 N 9= 1.58313 ν 9= 59.4
R17= 53.668 D17= 可変
R18= ∞ D18= 2.15 N10= 1.51633 ν10= 64.1
R19= ∞
\焦点距離 7.62 14.84 35.53
可変間隔\
D 3 0.43 10.61 17.51
D 9 14.03 7.60 2.05
D15 7.75 9.62 20.61
D17 2.15 4.63 2.65
非球面係数
第11面 : K=-2.51604e-1 A= 0 B=-9.78818e-5 C=2.38159e-6
D= 2.80967e-7
第12面 : K=9.03719 A=0 B= 2.77596e-4 C= 4.38159e-6
D= 3.26865e-7
図1は、数値実施例1に示すアタッチメント光学系に入射した被写体像の再結像を行なうための撮影光学系の光路図である。撮影光学系は、正の屈折力を有する第1レンズ群MB1、負の屈折力を有する第2レンズ群MB2、正の屈折力を有する第3レンズ群MB3、正の屈折力を有する第4レンズ群MB4、虹彩絞りSPを有し、約4.7倍の変倍比を実現する。FILは赤外カットやローパス等のフィルタ類をIPは結像面である。第4レンズ群MB4を光軸方向に移動を行なうことでフォーカス作用を行なう。虹彩絞りSPは、望遠側に行くに従ってレンズ第1面からの入射瞳旅離が長くなる。
(Numerical example 1)
f = 7.62 to 35.53 Fno = 2.88 to 4.90 2ω = 62.5 ° to 14.8 °
R 1 = 25.758 D 1 = 0.97 N 1 = 1.84666 ν 1 = 23.9
R 2 = 18.488 D 2 = 3.45 N 2 = 1.69680 ν 2 = 55.5
R 3 = 206.825 D 3 = Variable
R 4 = 28.479 D 4 = 0.70 N 3 = 1.88300 ν 3 = 40.8
R 5 = 6.693 D 5 = 3.41
R 6 = -21.529 D 6 = 0.65 N 4 = 1.69680 ν 4 = 55.5
R 7 = 20.660 D 7 = 0.65
R 8 = 14.781 D 8 = 1.94 N 5 = 1.84666 ν 5 = 23.9
R 9 = -990.152 D 9 = variable
R10 = Aperture D10 = 0.86
* R11 = 7.941 D11 = 2.48 N 6 = 1.58313 ν 6 = 59.4
* R12 = -24.952 D12 = 0.22
R13 = 5.513 D13 = 1.72 N7 = 1.48749 ν7 = 70.2
R14 = 10.653 D14 = 0.86 N 8 = 1.84666 ν 8 = 23.9
R15 = 4.204 D15 = Variable
R16 = 10.934 D16 = 2.15 N 9 = 1.58313 ν 9 = 59.4
R17 = 53.668 D17 = variable
R18 = ∞ D18 = 2.15 N10 = 1.51633 ν10 = 64.1
R19 = ∞
\ Focal length 7.62 14.84 35.53
Variable interval \
D 3 0.43 10.61 17.51
D 9 14.03 7.60 2.05
D15 7.75 9.62 20.61
D17 2.15 4.63 2.65
Aspheric coefficient
11th surface: K = -2.51604e-1 A = 0 B = -9.78818e-5 C = 2.38159e-6
D = 2.80967e-7
12th surface: K = 9.03719 A = 0 B = 2.77596e-4 C = 4.38159e-6
D = 3.26865e-7
FIG. 1 is an optical path diagram of a photographing optical system for re-imaging a subject image incident on an attachment optical system shown in Numerical Example 1. The photographing optical system includes a first lens group MB1 having a positive refractive power, a second lens group MB2 having a negative refractive power, a third lens group MB3 having a positive refractive power, and a fourth lens having a positive refractive power. It has a group MB4 and an iris diaphragm SP, and realizes a zoom ratio of about 4.7 times. FIL is a filter such as infrared cut or low-pass, and IP is an image plane. A focusing action is performed by moving the fourth lens group MB4 in the optical axis direction. In the iris diaphragm SP, the distance from the first lens surface to the entrance pupil increases as it goes to the telephoto side.
図2は、数値実施例1の広角端における収差図である。図3は、数値実施例1の中間焦点位置における収差図である。図4は、数値実施例1の望遠端における収差図である。
(数値実施例2)
数値実施例1の撮影光学系を望遠端に設定した時のf=-3.6 Fno= 4.9
R 1= 21.682 D 1= 1.20 N 1= 1.77250 ν 1= 49.6
R 2= 7.982 D 2= 1.91
R 3= 10.616 D 3= 1.00 N 2= 1.69680 ν 2= 55.5
R 4= 6.422 D 4= 18.03
R 5= -28.761 D 5= 4.48 N 3= 1.48749 ν 3= 70.2
R 6= -5.733 D 6= 0.80 N 4= 1.84666 ν 4= 23.9
R 7= -9.144 D 7= 0.20
R 8= 55.949 D 8= 3.80 N 5= 1.48749 ν 5= 70.2
R 9= -16.299 D 9= 30.72
R10= 17.821 D10= 6.00 N 6= 1.60311 ν 6= 60.6
R11= 392.613 D11= 3.01
R12= -22.649 D12= 1.40 N 7= 1.77250 ν 7= 49.6
R13= -59.379 D13= 74.99
R14= 134.266 D14= 2.50 N 8= 1.69680 ν 8= 55.5
R15= -74.279 D15= 1.20 N 9= 1.80518 ν 9= 25.4
R16= -90.727
なお、数値実施例1の撮影光学系を望遠端に設定した時のR1面とR16面との距離は5mmとする。
FIG. 2 is an aberration diagram at the wide-angle end in Numerical Example 1. FIG. 3 is an aberration diagram at the intermediate focal position in the numerical value example 1. FIG. 4 is an aberration diagram for Numerical Example 1 at the telephoto end.
(Numerical example 2)
F = −3.6 Fno = 4.9 when the photographing optical system of Numerical Example 1 is set at the telephoto end.
R 1 = 21.682 D 1 = 1.20 N 1 = 1.77250 ν 1 = 49.6
R 2 = 7.982 D 2 = 1.91
R 3 = 10.616 D 3 = 1.00 N 2 = 1.69680 ν 2 = 55.5
R 4 = 6.422 D 4 = 18.03
R 5 = -28.761 D 5 = 4.48 N 3 = 1.48749 ν 3 = 70.2
R 6 = -5.733 D 6 = 0.80 N 4 = 1.84666 ν 4 = 23.9
R 7 = -9.144 D 7 = 0.20
R 8 = 55.949 D 8 = 3.80 N 5 = 1.48749 ν 5 = 70.2
R 9 = -16.299 D 9 = 30.72
R10 = 17.821 D10 = 6.00 N6 = 1.60311 ν6 = 60.6
R11 = 392.613 D11 = 3.01
R12 = -22.649 D12 = 1.40 N 7 = 1.77250 ν 7 = 49.6
R13 = -59.379 D13 = 74.99
R14 = 134.266 D14 = 2.50 N8 = 1.69680 ν8 = 55.5
R15 = −74.279 D15 = 1.20 N 9 = 1.80518 ν 9 = 25.4
R16 = -90.727
The distance between the R1 surface and the R16 surface when the photographing optical system of Numerical Example 1 is set at the telephoto end is 5 mm.
図5は、数値実施例2の2回結像系のアタッチメント光学系を数値実施例1の撮影光学系の物体側に配置した光路図である。Mは数値実施例1の撮影光学系であり、撮影光学系M内の符号は図1と同様である。Aは本実施例のアタッチメント光学系である。B1は正の屈折力の対物光学系、B2は対物光学系B1の対物光学系の結像位置近傍に配置された正の屈折力のフィールドレンズ群である。B3は正の屈折力を有し、対物光学系B1の結像される空中像を撮影光学系Mの結像面IPの位置に焦点を合わせるための補正レンズ群である。アタッチメント光学系Aと撮影光学系Mを合体した状態で2回結像光学系を形成するが、その場合、撮影光学系Mと補正レンズ群B3を一緒にしたものをリレーレンズ群Lとする。 FIG. 5 is an optical path diagram in which the attachment optical system of the two-time imaging system of Numerical Example 2 is disposed on the object side of the photographing optical system of Numerical Example 1. M is the photographing optical system of Numerical Example 1, and the reference numerals in the photographing optical system M are the same as those in FIG. A is an attachment optical system of the present embodiment. B1 is an objective optical system having a positive refractive power, and B2 is a field lens group having a positive refractive power disposed in the vicinity of the imaging position of the objective optical system of the objective optical system B1. B3 is a correction lens group having a positive refractive power and for focusing the aerial image formed by the objective optical system B1 on the position of the imaging plane IP of the photographing optical system M. The imaging optical system is formed twice with the attachment optical system A and the photographing optical system M combined. In this case, a combination of the photographing optical system M and the correction lens group B3 is referred to as a relay lens group L.
図7は、図5に示す光学系にて物体距離を無限としたときの収差図である。図8は、図5に示す光学系にて物体距離をレンズ第1面から5mmとしたときの収差図である。
(数値実施例3)
数値実施例1の撮影光学系を望遠端に設定した時のf=-3.63 Fno= 4.9
R 1= 23.892 D 1= 1.20 N 1= 1.77250 ν 1= 49.6
R 2= 7.962 D 2= 4.35
R 3= 15.142 D 3= 1.00 N 2= 1.69680 ν 2= 55.5
R 4= 6.637 D 4= 16.78
R 5= -260.364 D 5= 4.70 N 3= 1.48749 ν 3= 70.2
R 6= -5.824 D 6= 0.80 N 4= 1.84666 ν 4= 23.9
R 7= -9.292 D 7= 0.20
R 8= 61.561 D 8= 2.50 N 5= 1.48749 ν 5= 70.2
R 9= -20.900 D 9= 31.63
R10= 18.565 D10= 6.00 N 6= 1.60311 ν 6= 60.6
R11= -64.907 D11= 1.76
R12= -21.247 D12= 1.40 N 7= 1.77250 ν 7= 49.6
R13= -77.020 D13= 65.64
R14= 48.172 D14= 1.50 N 8= 1.84666 ν 8= 23.9
R15= 41.837 D15= 0.81
R16= 101.926 D16= 3.00 N 9= 1.69680 ν 9= 55.5
R17= -70.423
なお、数値実施例1の撮影光学系を望遠端に設定した時のR1面とR17面との距離は5mmとする。
FIG. 7 is an aberration diagram when the object distance is infinite in the optical system shown in FIG. FIG. 8 is an aberration diagram when the object distance is 5 mm from the first lens surface in the optical system shown in FIG.
(Numerical Example 3)
F = -3.63 Fno = 4.9 when the photographing optical system of Numerical Example 1 is set at the telephoto end.
R 1 = 23.892 D 1 = 1.20 N 1 = 1.77250 ν 1 = 49.6
R 2 = 7.962 D 2 = 4.35
R 3 = 15.142 D 3 = 1.00 N 2 = 1.69680 ν 2 = 55.5
R 4 = 6.637 D 4 = 16.78
R 5 = -260.364 D 5 = 4.70 N 3 = 1.48749 ν 3 = 70.2
R 6 = -5.824 D 6 = 0.80 N 4 = 1.84666 ν 4 = 23.9
R 7 = -9.292 D 7 = 0.20
R 8 = 61.561 D 8 = 2.50 N 5 = 1.48749 ν 5 = 70.2
R 9 = -20.900 D 9 = 31.63
R10 = 18.565 D10 = 6.00 N6 = 1.60311 ν6 = 60.6
R11 = −64.907 D11 = 1.76
R12 = -21.247 D12 = 1.40 N 7 = 1.77250 ν 7 = 49.6
R13 = -77.020 D13 = 65.64
R14 = 48.172 D14 = 1.50 N 8 = 1.84666 ν 8 = 23.9
R15 = 41.837 D15 = 0.81
R16 = 101.926 D16 = 3.00 N9 = 1.69680 ν9 = 55.5
R17 = -70.423
The distance between the R1 surface and the R17 surface when the photographing optical system of Numerical Example 1 is set at the telephoto end is 5 mm.
図9は、数値実施例3の2回結像系のアタッチメント光学系を数値実施例1の撮影光学系の物体側に配置した光路図である。図9中の符号は図5と同様である。図11は、図9に示す光学系にて物体距離を無限としたときの収差図である。図12は、図9に示す光学系にて物体距離をレンズ第1面から5mmとしたときの収差図である。
(数値実施例4)
数値実施例1の撮影光学系を望遠端に設定した時のf=-3.78 Fno= 4.9
R 1= 18.411 D 1= 1.20 N 1= 1.77250 ν 1= 49.6
R 2= 7.507 D 2= 1.93
R 3= 9.912 D 3= 1.00 N 2= 1.69680 ν 2= 55.5
R 4= 6.341 D 4= 18.09
R 5= -45.628 D 5= 4.66 N 3= 1.48749 ν 3= 70.2
R 6= -6.179 D 6= 0.80 N 4= 1.84666 ν 4= 23.9
R 7= -9.996 D 7= 0.20
R 8= 55.119 D 8= 3.80 N 5= 1.48749 ν 5= 70.2
R 9= -17.640 D 9= 31.78
R10= 18.236 D10= 7.00 N 6= 1.60311 ν 6= 60.6
R11=-143.156 D11= 2.08
R12= -27.945 D12= 1.40 N 7= 1.77250 ν 7= 49.6
R13= 875.355 D13= 76.65
R14= 143.786 D14= 2.50 N 8= 1.69680 ν 8= 55.5
R15= -57.151 D15= 1.20 N 9= 1.80518 ν 9= 25.4
R16= -85.054
なお、数値実施例1の撮影光学系を望遠端に設定した時のR1面とR16面との距離は5mmとする。
FIG. 9 is an optical path diagram in which the attachment optical system of the double imaging system of Numerical Example 3 is arranged on the object side of the photographing optical system of Numerical Example 1. Reference numerals in FIG. 9 are the same as those in FIG. FIG. 11 is an aberration diagram when the object distance is infinite in the optical system shown in FIG. FIG. 12 is an aberration diagram when the object distance is 5 mm from the first lens surface in the optical system shown in FIG.
(Numerical example 4)
F = −3.78 Fno = 4.9 when the photographing optical system of Numerical Example 1 is set at the telephoto end.
R 1 = 18.411 D 1 = 1.20 N 1 = 1.77250 ν 1 = 49.6
R 2 = 7.507 D 2 = 1.93
R 3 = 9.912 D 3 = 1.00 N 2 = 1.69680 ν 2 = 55.5
R 4 = 6.341 D 4 = 18.09
R 5 = -45.628 D 5 = 4.66 N 3 = 1.48749 ν 3 = 70.2
R 6 = -6.179 D 6 = 0.80 N 4 = 1.84666 ν 4 = 23.9
R 7 = -9.996 D 7 = 0.20
R 8 = 55.119 D 8 = 3.80 N 5 = 1.48749 ν 5 = 70.2
R 9 = -17.640 D 9 = 31.78
R10 = 18.236 D10 = 7.00 N6 = 1.60311 ν6 = 60.6
R11 = -143.156 D11 = 2.08
R12 = -27.945 D12 = 1.40 N 7 = 1.77250 ν 7 = 49.6
R13 = 875.355 D13 = 76.65
R14 = 143.786 D14 = 2.50 N8 = 1.69680 ν8 = 55.5
R15 = −57.151 D15 = 1.20 N 9 = 1.80518 ν 9 = 25.4
R16 = -85.054
The distance between the R1 surface and the R16 surface when the photographing optical system of Numerical Example 1 is set at the telephoto end is 5 mm.
図13は、数値実施例4の2回結像系のアタッチメント光学系を数値実施例1の撮影光学系の物体側に配置した光路図である。図13中の符号は図5と同様である。図15は、図13に示す光学系にて物体距離を無限としたときの収差図である。図16は、図13に示す光学系にて物体距離をレンズ第1面から5mmとしたときの収差図である。 FIG. 13 is an optical path diagram in which the attachment optical system of the double imaging system of Numerical Example 4 is arranged on the object side of the photographing optical system of Numerical Example 1. Reference numerals in FIG. 13 are the same as those in FIG. FIG. 15 is an aberration diagram when the object distance is infinite in the optical system shown in FIG. FIG. 16 is an aberration diagram when the object distance is 5 mm from the first lens surface in the optical system shown in FIG.
図5、9、13において、アタッチメント光学系Aは、物体側から順に対物光学系B1、フィールドレンズ群B2、補助レンズ群B3を有する。対物光学系B1は、全体として正の屈折力を有する。フィールドレンズ群B2は、対物光学系B1の結像位置(1次結像面位置)近傍に配置され対物光学系B1から射出される光線の集光作用を有した正の屈折力を有する。補助レンズ群B3は、フィールドレンズ群B2から射出された光線を撮影光学系Mの撮像面位置に1次結像面の像を再結像させるために焦点位置補正を行なう正の屈折力を有する。補助レンズB3と撮影光学系Mを合成したものが再結像作用を有するリレーレンズ群Lである。撮影光学系Mは何れも望遠端に設定されている。 5, 9, and 13, the attachment optical system A includes an objective optical system B1, a field lens group B2, and an auxiliary lens group B3 in order from the object side. The objective optical system B1 has a positive refractive power as a whole. The field lens group B2 is disposed in the vicinity of the imaging position (primary imaging plane position) of the objective optical system B1, and has a positive refractive power having a condensing function of the light beam emitted from the objective optical system B1. The auxiliary lens group B3 has a positive refractive power that corrects the focal position in order to re-form the image of the primary imaging surface on the imaging surface position of the imaging optical system M with the light beam emitted from the field lens group B2. . A combination of the auxiliary lens B3 and the photographing optical system M is a relay lens group L having a re-imaging function. The photographing optical system M is set at the telephoto end.
図6、10、14は、それぞれ図5、9、13の光学構成にて物体距離が無限状態の光学系の第1レンズ面から5mm離れた超至近の被写体に対して焦点を合わせた状態を示す光路図である。アタッチメント光学系に特別な可動レンズ群を配置しなくても撮影光学系のフォーカス機構で撮像素子に結像した画像の周辺ケラレを防止することができる。なお、図6、10、14において、撮影光学系Mは望遠端に設定されており、第4レンズ群B4を物体側に移動させることによって物体距離が近距離時のフォーカスを行なっている。 6, 10, and 14 show a state in which an object at a very close distance 5 mm away from the first lens surface of the optical system in which the object distance is infinite in the optical configurations of FIGS. FIG. Even if a special movable lens group is not disposed in the attachment optical system, it is possible to prevent peripheral vignetting of an image formed on the image sensor by the focus mechanism of the photographing optical system. 6, 10, and 14, the photographing optical system M is set at the telephoto end, and focusing is performed when the object distance is close by moving the fourth lens unit B <b> 4 to the object side.
デジタルカメラ(撮像装置又は光学装置)は、撮影光学系を収納するコンバータアタッチメントの物体側にアタッチメント光学系を収納する光学装置を交換可能に装着している。コンバータアタッチメントは、デジタルカメラに装着されるアダプターリングであり、アタッチメント光学系を収納する光学装置をデジタルカメラに固定するための中間部材である。 In a digital camera (an imaging device or an optical device), an optical device that houses an attachment optical system is replaceably mounted on the object side of a converter attachment that houses a photographing optical system. The converter attachment is an adapter ring that is attached to the digital camera, and is an intermediate member for fixing the optical device that houses the attachment optical system to the digital camera.
図17は対物レンズ群内に反射部材を配した折り曲げ式光学系の光路図である。図18は対物レンズ群とフィールドレンズ群間に反射部材を配した折り曲げ式光学系の光路図である。図17及び図18は、ローアングル撮影を容易にするために対物光学系からの入射光線を反射部材で偏向している。 FIG. 17 is an optical path diagram of a folding optical system in which a reflecting member is arranged in the objective lens group. FIG. 18 is an optical path diagram of a folding optical system in which a reflecting member is disposed between the objective lens group and the field lens group. In FIGS. 17 and 18, incident light from the objective optical system is deflected by a reflecting member in order to facilitate low-angle imaging.
撮影光学系は、最も物体側のレンズ群が変倍時に移動を行なうような比較的入射瞳位置が長い変倍光学系である。また2回結像時には画像が倒立像となるためカメラ側の電子表示装置に画像を正立させるための電気的な機構を取り入れる。これにより、光学装置の光学像及び電子像を選択的又は同時に共通何接眼光学系を介して観察が可能になるアタッチメント光学装置を低コストにて達成することができる。 The photographing optical system is a variable magnification optical system having a relatively long entrance pupil position in which the lens unit closest to the object moves during zooming. Further, since the image becomes an inverted image at the time of image formation twice, an electric mechanism for erecting the image is incorporated in the electronic display device on the camera side. Thereby, it is possible to achieve an attachment optical device capable of observing an optical image and an electronic image of the optical device selectively or simultaneously through a common eyepiece optical system at a low cost.
光学装置は撮像装置に適用することができる。撮像装置は、被写体の撮像に適用することができる。 The optical device can be applied to an imaging device. The imaging device can be applied to imaging a subject.
A アタッチメント光学系(光学装置)
L リレーレンズ群
B1 対物光学系
B2 フィールドレンズ群
B2a 正レンズ
B2b 負レンズ
B3 補助レンズ群
A Attachment optical system (optical device)
L relay lens group B1 objective optical system B2 field lens group B2a positive lens B2b negative lens B3 auxiliary lens group
Claims (6)
前記フィールドレンズ群は、物体側から順に、物体側に凸形状を有する正レンズと、空気間隔を挟んで物体側に凹形状を有する負レンズで構成され、
物体距離が無限遠方状態において、前記対物光学系の入射瞳面をレンズ第1面としたときに無限物体距離に対する前記対物光学系による結像位置から射出瞳位置までの距離をEp、前記対物光学系の焦点距離をFo、前記第1面から入射瞳位置までの距離をIp、前記リレーレンズ群の焦点距離をFmとすると以下の条件式を満足することを特徴とする光学装置。
12 < Ep/Fo < 5.5
1.2 < Ip/Fm Re-imaging an objective optical system having a positive refractive power, a field lens group having a positive refractive power arranged on the imaging plane side of the objective optical system, and an optical image formed by the objective optical system A positive relay lens group for
The field lens group includes, in order from the object side, a positive lens having a convex shape on the object side and a negative lens having a concave shape on the object side with an air gap in between.
When the object distance is infinitely far and the entrance pupil plane of the objective optical system is the first lens surface, the distance from the imaging position by the objective optical system to the exit pupil position with respect to the infinite object distance is Ep, and the objective optics An optical apparatus satisfying the following conditional expression where Fo is a focal length of the system, Ip is a distance from the first surface to the entrance pupil position, and Fm is a focal length of the relay lens group.
12 <Ep / Fo <5.5
1.2 <Ip / Fm
前記結像光学系が結像した光学像を前記撮影光学系は再結像し、
前記結像光学系は、正の屈折力を有する対物光学系と、前記対物光学系の結像面側に配置されて正の屈折力を有するフィールドレンズ群と、を有し、
前記フィールドレンズ群は、物体側から順に、物体側に凸形状を有する正レンズと、空気間隔を挟んで物体側に凹形状を有する負レンズで構成されることを特徴とする光学装置。 An optical device that is mounted on the object side of the imaging optical system of the imaging device and houses the imaging optical system,
The imaging optical system re-images the optical image formed by the imaging optical system,
The imaging optical system has an objective optical system having a positive refractive power, and a field lens group having a positive refractive power arranged on the imaging surface side of the objective optical system,
The field lens group includes, in order from the object side, a positive lens having a convex shape on the object side and a negative lens having a concave shape on the object side with an air gap in between.
10 < Ep/Fo < 6 When the entrance pupil plane of the objective optical system is the first lens surface, the following conditional expression is satisfied, where Ep is the distance from the imaging position to the exit pupil position with respect to the infinite object distance, and Fo is the focal length of the objective optical system. The optical device according to claim 2.
10 <Ep / Fo <6
0.35 < |Fn/Ff| < 1.0 (Fn<0、Ff>0) 3. The optical apparatus according to claim 1, wherein the following conditional expression is satisfied, where Ff is a focal length of the field lens group and Fn is a focal length of the negative lens of the field lens group.
0.35 <| Fn / Ff | <1.0 (Fn <0, Ff> 0)
1.4< |FR1/FR2| < 0.6 (FR1>0、FR2<0) 5. The optical apparatus according to claim 4, wherein the following conditional expressions are satisfied, where the focal lengths of the lens surfaces on the object side of the positive lens and the negative lens in the field lens group are FR1 and FR2, respectively.
1.4 <| FR1 / FR2 | <0.6 (FR1> 0, FR2 <0)
0.5< |RF1/RF2| < 1.1 (RF1>0、RF2<0) The optical apparatus according to claim 5, wherein the following conditional expressions are satisfied when the curvature radii of the lens surfaces on the object side of the positive lens and the negative lens in the field lens group are RF1 and RF2, respectively.
0.5 <| RF1 / RF2 | <1.1 (RF1> 0, RF2 <0)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009148228A JP2011007824A (en) | 2009-06-23 | 2009-06-23 | Optical device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009148228A JP2011007824A (en) | 2009-06-23 | 2009-06-23 | Optical device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011007824A true JP2011007824A (en) | 2011-01-13 |
Family
ID=43564605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009148228A Pending JP2011007824A (en) | 2009-06-23 | 2009-06-23 | Optical device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011007824A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013129274A1 (en) * | 2012-03-02 | 2013-09-06 | コニカミノルタ株式会社 | Converter lens and imaging optical system |
WO2013133053A1 (en) * | 2012-03-08 | 2013-09-12 | コニカミノルタ株式会社 | Teleconverter lens and imaging optical system |
WO2013154122A1 (en) * | 2012-04-13 | 2013-10-17 | コニカミノルタ株式会社 | Teleconverter lens and imaging device |
WO2014045596A1 (en) * | 2012-09-20 | 2014-03-27 | 日東光学株式会社 | Zoom lens system and image-capturing device |
WO2014125533A1 (en) * | 2013-02-15 | 2014-08-21 | Yabe Akira | Imaging optics |
US9529181B2 (en) | 2013-10-10 | 2016-12-27 | Nittoh Kogaku K.K. | Zoom lens system and imaging apparatus |
US9910251B2 (en) | 2014-03-19 | 2018-03-06 | Nittoh Inc. | Lens system and imaging apparatus having a lens at each side of an intermediate image which move in synchronization during focusing |
-
2009
- 2009-06-23 JP JP2009148228A patent/JP2011007824A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013129274A1 (en) * | 2012-03-02 | 2013-09-06 | コニカミノルタ株式会社 | Converter lens and imaging optical system |
WO2013133053A1 (en) * | 2012-03-08 | 2013-09-12 | コニカミノルタ株式会社 | Teleconverter lens and imaging optical system |
WO2013154122A1 (en) * | 2012-04-13 | 2013-10-17 | コニカミノルタ株式会社 | Teleconverter lens and imaging device |
WO2014045596A1 (en) * | 2012-09-20 | 2014-03-27 | 日東光学株式会社 | Zoom lens system and image-capturing device |
JP2019015987A (en) * | 2012-09-20 | 2019-01-31 | 株式会社nittoh | Zoom lens system and imaging apparatus |
JP2017204011A (en) * | 2012-09-20 | 2017-11-16 | 株式会社nittoh | Zoom lens system and imaging apparatus |
EP2899581A4 (en) * | 2012-09-20 | 2016-04-20 | Nittoh Kogaku Kk | Zoom lens system and image-capturing device |
JPWO2014045596A1 (en) * | 2012-09-20 | 2016-08-18 | 日東光学株式会社 | Zoom lens system and imaging apparatus |
US9488812B2 (en) | 2013-02-15 | 2016-11-08 | Akira Yabe | Imaging optics |
TWI567422B (en) * | 2013-02-15 | 2017-01-21 | ||
JP2014157209A (en) * | 2013-02-15 | 2014-08-28 | Teru Yabe | Imaging optical system |
WO2014125533A1 (en) * | 2013-02-15 | 2014-08-21 | Yabe Akira | Imaging optics |
US9529181B2 (en) | 2013-10-10 | 2016-12-27 | Nittoh Kogaku K.K. | Zoom lens system and imaging apparatus |
US10663702B2 (en) | 2013-10-10 | 2020-05-26 | Nittoh Inc. | Zoom lens system and imaging apparatus |
US9910251B2 (en) | 2014-03-19 | 2018-03-06 | Nittoh Inc. | Lens system and imaging apparatus having a lens at each side of an intermediate image which move in synchronization during focusing |
US10422981B2 (en) | 2014-03-19 | 2019-09-24 | Nittoh Inc. | Lens system and imaging apparatus having adjacent stop and fixed lens system at an output side |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6427241B2 (en) | Zoom lens system and imaging device | |
JP4819414B2 (en) | Zoom lens and imaging apparatus having the same | |
JP4681842B2 (en) | Zoom lens and imaging apparatus having the same | |
US20140055659A1 (en) | Zoom lens and image pickup apparatus | |
JP5893959B2 (en) | Zoom lens | |
JP4323796B2 (en) | Zoom lens and imaging apparatus having the same | |
JP2007286233A (en) | Zoom lens and imaging apparatus having the same | |
JP6882087B2 (en) | Lens device and imaging device | |
JPH10170826A (en) | Variable power optical system | |
JP2011007824A (en) | Optical device | |
JP2013178410A (en) | Zoom lens | |
JP6207164B2 (en) | Zoom lens and imaging apparatus having the same | |
JP6292896B2 (en) | Optical system and imaging apparatus having the same | |
JP3619117B2 (en) | Zoom lens and optical apparatus using the same | |
JP4617128B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5279595B2 (en) | Attachment optics | |
JP3566698B2 (en) | Viewfinder and optical device using the same | |
JP2010256380A5 (en) | ||
JP4585796B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5355270B2 (en) | Imaging device | |
JP6544975B2 (en) | Zoom lens and imaging device | |
JP6716215B2 (en) | Imaging device | |
JP6566708B2 (en) | Optical system and imaging apparatus having the same | |
JP7166980B2 (en) | Optical system and imaging device having the same | |
JP2017211496A (en) | Large-aperture zoom lens with anti-shake feature |