JP2011007570A - Leakage flux flaw detector - Google Patents

Leakage flux flaw detector Download PDF

Info

Publication number
JP2011007570A
JP2011007570A JP2009150071A JP2009150071A JP2011007570A JP 2011007570 A JP2011007570 A JP 2011007570A JP 2009150071 A JP2009150071 A JP 2009150071A JP 2009150071 A JP2009150071 A JP 2009150071A JP 2011007570 A JP2011007570 A JP 2011007570A
Authority
JP
Japan
Prior art keywords
magnetizer
subject
permanent magnet
electromagnet
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009150071A
Other languages
Japanese (ja)
Inventor
Shin Manjo
伸 萬城
Tetsuya Amano
哲也 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2009150071A priority Critical patent/JP2011007570A/en
Publication of JP2011007570A publication Critical patent/JP2011007570A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a leakage flux flaw detector facilitating the elimination from a specimen and capable of evaluating the healthiness of the specimen without requiring large power.SOLUTION: In the leakage flux flaw detector equipped with a magnetizer for magnetizing the specimen and a magnetism sensor for detecting the leakage flux from the specimen magnetized by the magnetizer, the magnetizer is constituted by combining a permanent magnet with an electromagnet and is variable in its magnetization properties.

Description

本発明は、漏洩磁束探傷装置に関し、特には、磁化性能を可変可能な磁化器を有する漏洩磁束探傷装置に関する。   The present invention relates to a leakage flux testing apparatus, and more particularly, to a leakage flux testing apparatus having a magnetizer whose magnetization performance can be varied.

従来より、被検体の健全性(被検体の内部欠陥、表面欠陥)を探傷する方法として漏洩磁束探傷方法が知られており、当該方法では磁化器と磁気センサとから構成され、被検体を磁化器により磁化(励磁)させたのち被検体から漏洩する磁束を磁気センサにより検出することで被検体の健全性を探傷可能な漏洩磁束探傷装置が広く用いられている。また、磁化器により被検体を磁化させる方法としては、磁化器として永久磁石を用いて被検体を磁化させる永久磁石方式(例えば、特許文献1)や、磁化器として電磁石を用いて被検体を磁化させる電磁石方式(例えば、特許文献2)が挙げられる。   Conventionally, a leakage magnetic flux flaw detection method is known as a method for flaw detection of a subject's soundness (internal defect and surface defect of the subject). This method includes a magnetizer and a magnetic sensor, and magnetizes the subject. 2. Description of the Related Art Leakage magnetic flux flaw detectors that can flaw detect the health of a subject by detecting the magnetic flux leaking from the subject with a magnetic sensor after being magnetized (excited) by a detector are widely used. In addition, as a method of magnetizing a subject with a magnetizer, a permanent magnet method (for example, Patent Document 1) in which a subject is magnetized using a permanent magnet as a magnetizer, or a subject is magnetized using an electromagnet as a magnetizer. The electromagnet system (for example, patent document 2) to be made is mentioned.

永久磁石方式は、外部電源等を用いることなく予め永久磁石が有する磁化性能により被検体を磁化させることができることから、外部電源等を用いることができない環境において好適に用いることができる。しかしながら、永久磁石は磁化性能の調整ができないことから、磁化性能の強い永久磁石を用いた場合には被検体からの脱離に大規模な脱離装置が必要となる。脱離を容易にするために磁化性能の弱い永久磁石を用いることも考えられるが、被検体の肉厚が厚い場合には、正確に被検体の健全性を評価できない問題が生じてしまう。   The permanent magnet system can be suitably used in an environment where an external power source or the like cannot be used because the subject can be magnetized by the magnetization performance of the permanent magnet without using an external power source or the like. However, since the permanent magnet cannot adjust the magnetization performance, a large-scale desorption device is required for desorption from the subject when a permanent magnet with strong magnetization performance is used. Although it is conceivable to use a permanent magnet with weak magnetizing performance in order to facilitate the desorption, if the thickness of the subject is thick, there arises a problem that the soundness of the subject cannot be accurately evaluated.

一方で、例えば、磁性材料の芯の回りに巻きつけられたコイルに通電することで被検体を磁化させることができる電磁石方式の磁化器では、コイルの巻き数とコイルに流す電流を適宜調整することで被検体の肉厚が厚い場合でも被検体を容易に磁化させることが可能となる。さらには、電磁石方式によれば通電を止めることによって磁力を調節することができることから、永久磁石方式のように脱離装置を用いることなく、被検体から容易に脱離することが可能となる。   On the other hand, for example, in an electromagnet magnetizer that can magnetize a subject by energizing a coil wound around a core of a magnetic material, the number of turns of the coil and the current flowing through the coil are adjusted as appropriate. Thus, even when the subject is thick, the subject can be easily magnetized. Furthermore, since the magnetic force can be adjusted by stopping energization according to the electromagnet system, it is possible to easily desorb from the subject without using a desorption device as in the permanent magnet system.

しかしながら、電磁石方式ではオンオフで脱離が容易であるものの、被検体を磁化させるには大きな電力が必要となり、大きな電力を供給することができない環境(現地計測)には向かない。   However, although the electromagnet system is easily turned on and off, desorption is easy, and a large amount of electric power is required to magnetize the subject, which is not suitable for an environment (local measurement) where large electric power cannot be supplied.

特開2002−156363号公報JP 2002-156363 A 特開2004−279245号公報JP 2004-279245 A

本発明はこのような状況に鑑みてなされたものであり、被検体からの脱離が容易であり、かつ大きな電力を必要とすることなく被検体の健全性を評価することができる漏洩磁束探傷装置を提供することを主たる課題とする。   The present invention has been made in view of such a situation, and leakage magnetic flux flaw detection that can be easily detached from the subject and can evaluate the health of the subject without requiring large electric power. The main object is to provide a device.

上記課題を解決するための本発明は、被検体を磁化する磁化器と、該磁化器によって磁化された被検体からの漏洩磁束を検知する磁気センサとを備えた漏洩磁束探傷装置であって、前記磁化器は、永久磁石と電磁石とが組合されてなり磁化性能を可変可能な磁化器であることを特徴とする。   The present invention for solving the above problems is a leakage flux testing apparatus comprising a magnetizer for magnetizing a subject, and a magnetic sensor for detecting leakage flux from the subject magnetized by the magnetizer, The magnetizer is a magnetizer in which a magnetizing performance is variable by combining a permanent magnet and an electromagnet.

また、前記磁化器は、前記永久磁石と、該永久磁石をコイルで巻きまわした電磁石とからなっていてもよく、前記磁化器は、一対の永久磁石と、該一対の永久磁石を連結するように設けられた電磁石とからなっていてもよい。   The magnetizer may include the permanent magnet and an electromagnet obtained by winding the permanent magnet with a coil, and the magnetizer may connect the pair of permanent magnets to the pair of permanent magnets. It may consist of the electromagnet provided in the.

本発明によれば、被検体からの脱離が容易であり、かつ大きな電力を必要とすることなく被検体の健全性を評価することができる。   According to the present invention, it is easy to desorb from the subject, and the soundness of the subject can be evaluated without requiring large electric power.

本発明の漏洩磁束検出装置の一例を示す概要図ある。It is a schematic diagram which shows an example of the leakage magnetic flux detection apparatus of this invention. 本発明の漏洩磁束検出装置の一例を示す概要図ある。It is a schematic diagram which shows an example of the leakage magnetic flux detection apparatus of this invention.

以下に、本発明の漏洩磁束検出装置について図面を用いて具体的に説明する。図1は、本発明の一実施形態における漏洩磁束検出装置の例を示す概要図である。   Hereinafter, the leakage magnetic flux detection apparatus of the present invention will be specifically described with reference to the drawings. FIG. 1 is a schematic diagram illustrating an example of a leakage magnetic flux detection device according to an embodiment of the present invention.

図1に示すように、本発明の漏洩磁束検出装置10は、被検体を磁化する磁化器20と、該磁化器によって磁化された被検体30からの漏洩磁束を検知する磁気センサ40とから構成される。特に、本発明の漏洩磁束探傷装置10を構成する磁化器20は、永久磁石21と電磁石23とが組合されてなり被検体を磁化させるための磁化性能を可変可能な磁化器であることに特徴を有する。本発明の漏洩磁束探傷装置10はこの要件を具備するものであれば特に限定されるものではなく、磁化器20により磁化させることが可能なあらゆる被検体30に適用することができる。   As shown in FIG. 1, a leakage magnetic flux detection apparatus 10 of the present invention includes a magnetizer 20 that magnetizes a subject, and a magnetic sensor 40 that detects leakage flux from the subject 30 magnetized by the magnetizer. Is done. In particular, the magnetizer 20 constituting the leakage magnetic flux flaw detector 10 of the present invention is a magnetizer in which a permanent magnet 21 and an electromagnet 23 are combined to change the magnetization performance for magnetizing a subject. Have The leakage magnetic flux flaw detector 10 of the present invention is not particularly limited as long as it has this requirement, and can be applied to any subject 30 that can be magnetized by the magnetizer 20.

(磁化器)
磁化器20は本発明の漏洩磁束探傷装置10における必須の構成であり永久磁石21と、電源32と接続された電磁石23とが組合されることで構成されている。まず初めに、磁化器20により被検体30を磁化させる測定時の動作と、測定後に被検体30から磁化器20を脱離するときの動作について具体的に説明する。
(Magnetizer)
The magnetizer 20 is an essential component in the leakage magnetic flux flaw detector 10 of the present invention, and is configured by combining a permanent magnet 21 and an electromagnet 23 connected to a power source 32. First, the measurement operation for magnetizing the subject 30 by the magnetizer 20 and the operation for detaching the magnetizer 20 from the subject 30 after the measurement will be specifically described.

(1)測定時の動作
測定時に電源32がオフである場合には電磁石23には磁力(磁束)が発生しないことから、永久磁石21のみから構成される磁化器と等しくなり永久磁石21が予め有する磁化性能に対応する磁束が被検体30に投入され被検体30は磁化される。このときの磁束の流れは「永久磁石のN極→被検体→永久磁石のS極→永久磁石のN極」・・・となる(以下、永久磁石21による磁束の流れを正方向の磁束の流れ(符号X)という場合がある。)
ここで、永久磁石21が予め有する磁化性能(磁力の強さ)をAとすると、永久磁石21の磁化性能や被検体30の厚さによっては、磁化性能Aの永久磁石21では被検体30を充分に磁化させることができなく場合がある。つまり、検出に必要な磁化レベルまで被検体30を磁化させることができなくなる場合がある。このような問題について鋭意検討した結果なされた磁化器20に特徴を有する漏洩磁束探傷装置10によれば、電磁石23の励磁方向を、永久磁石21による正方向の磁束の流れと同一方向(正方向の磁束の流れ(符号Y))となるように電源32から電流を流すことで被検体30を磁化させるための磁化性能を向上させることが可能となる。
(1) Operation at the time of measurement When the power source 32 is off at the time of measurement, no magnetic force (magnetic flux) is generated in the electromagnet 23. Magnetic flux corresponding to the magnetization performance possessed is input to the subject 30, and the subject 30 is magnetized. The flow of magnetic flux at this time is “N pole of permanent magnet → subject → S pole of permanent magnet → N pole of permanent magnet” (hereinafter, the flow of the magnetic flux by the permanent magnet 21 is changed to the positive magnetic flux. (It may be referred to as a flow (symbol X).)
Here, assuming that the magnetization performance (the strength of the magnetic force) that the permanent magnet 21 has in advance is A, depending on the magnetization performance of the permanent magnet 21 and the thickness of the subject 30, the permanent magnet 21 having the magnetization performance A has the subject 30. In some cases, it cannot be sufficiently magnetized. That is, the subject 30 may not be magnetized to a magnetization level necessary for detection. According to the leakage magnetic flux flaw detector 10 characterized by the magnetizer 20 as a result of intensive studies on such a problem, the excitation direction of the electromagnet 23 is the same direction as the flow of positive magnetic flux by the permanent magnet 21 (positive direction). It is possible to improve the magnetization performance for magnetizing the subject 30 by flowing a current from the power supply 32 so that the magnetic flux flows (Y).

具体的には、電磁石23の磁化性能をBとすると電磁石23の励磁方向を正方向の磁束の流れ(符合Y)となるように電流を流すことで、被検体30を磁化させるための磁化性能は「永久磁石の磁化性能」+「電磁石の磁化性能」=A+Bとなる。なお、電磁石23の磁化性能Bはコイルの巻き数とコイルに流す電流に比例し、電磁石23の磁化性能Bを適宜調整することで被検体30を磁化させるための磁化器20の磁化性能を可変可能とすることができる。つまり、該磁化器20によれば被検体30を磁化させるために永久磁石21の磁化性能Aでは不足する磁化性能分を大きな電力を必要とすることもなく電磁石23の磁化性能Bで適宜補うことができる。   Specifically, assuming that the magnetizing performance of the electromagnet 23 is B, the magnetizing performance for magnetizing the subject 30 by flowing a current so that the excitation direction of the electromagnet 23 is a positive direction magnetic flux flow (symbol Y). Is “magnetization performance of permanent magnet” + “magnetization performance of electromagnet” = A + B. The magnetizing performance B of the electromagnet 23 is proportional to the number of turns of the coil and the current passed through the coil, and the magnetizing performance of the magnetizer 20 for magnetizing the subject 30 can be varied by appropriately adjusting the magnetizing performance B of the electromagnet 23. Can be possible. That is, according to the magnetizer 20, the magnetizing performance A of the permanent magnet 21 for magnetizing the subject 30 is appropriately supplemented by the magnetizing performance B of the electromagnet 23 without requiring a large amount of electric power. Can do.

(2)脱離時の動作
被検体30から磁化器20を脱離させるときに電源32がオフの場合には、永久磁石21の磁化性能Aに応じた磁力で被検体30と磁化器20とは吸着することとなり、強い磁化性能Aの永久磁石21を用いた場合には、被検体30から磁化器20を脱離させることが困難となる場合が生ずる。
(2) Operation at Desorption When the magnetizer 20 is desorbed from the subject 30 and the power source 32 is off, the subject 30 and the magnetizer 20 are magnetized by the magnetic force according to the magnetization performance A of the permanent magnet 21. If the permanent magnet 21 having strong magnetization performance A is used, it may be difficult to detach the magnetizer 20 from the subject 30.

この場合においても、電磁石23の励磁方向を、永久磁石による正方向の磁束の流れと反対方向の流れ(逆方向の磁束の流れ(符号Z))となるように電源32から電流を流すことで磁化器20の磁化性能を低下させることが可能となる。   Even in this case, the current is supplied from the power source 32 so that the excitation direction of the electromagnet 23 is the flow in the direction opposite to the flow of the magnetic flux in the positive direction by the permanent magnet (the flow of the magnetic flux in the reverse direction (symbol Z)). The magnetization performance of the magnetizer 20 can be reduced.

具体的には、電磁石23の磁化性能をBとすると電磁石23の励磁方向を逆方向の磁束の流れ(符合Z)となるように電流を流すことで、被検体30を磁化させるための磁化性能は「永久磁石の磁化性能」−「電磁石の磁化性能」=A−Bとなる。なお、上述したように、電磁石23の磁化性能Bはコイルの巻き数とコイルに流す電流に比例し、電磁石23の磁化性能Bを適宜調整することで被検体30から磁化器20を脱離させるための磁化器20の磁化性能を可変可能とすることができる。つまり、被検体30から磁化器20を脱離させるために永久磁石21の磁化性能Aでは過剰となる磁化性能分を電磁石23の磁化性能Bで弱めることで被検体30から磁化器20を容易に脱離させることができる。   Specifically, when the magnetizing performance of the electromagnet 23 is B, the magnetizing performance for magnetizing the subject 30 by flowing an electric current so that the excitation direction of the electromagnet 23 is the flow of magnetic flux in the opposite direction (sign Z). Is “magnetization performance of permanent magnet” − “magnetization performance of electromagnet” = A−B. As described above, the magnetization performance B of the electromagnet 23 is proportional to the number of turns of the coil and the current flowing through the coil, and the magnetizer 20 is detached from the subject 30 by appropriately adjusting the magnetization performance B of the electromagnet 23. Therefore, the magnetization performance of the magnetizer 20 can be made variable. That is, in order to desorb the magnetizer 20 from the subject 30, the magnetizing performance A of the permanent magnet 21 is weakened by the magnetization performance B of the electromagnet 23, so that the magnetizer 20 can be easily removed from the subject 30. Can be desorbed.

つまり、本発明の漏洩磁束探傷装置10を構成する磁化器20によれば、磁化器20を構成する永久磁石21の磁化性能をA、電磁石23の磁化性能をBとした場合に、磁化器20全体の磁化性能を(A−B)〜(A+B)の範囲に可変させることができる。さらに電磁石23の磁化性能Bは、上述したように適宜設定することができることから、永久磁石21の磁化性能が被検体30を充分に磁化させるのに不足した場合であっても被検体30を充分に磁化させることができ、また、永久磁石21の磁化性能が被検体30から磁化器20を脱離させることが困難な強さであっても容易に脱離させることができる。   That is, according to the magnetizer 20 constituting the leakage magnetic flux flaw detector 10 of the present invention, when the magnetization performance of the permanent magnet 21 constituting the magnetizer 20 is A and the magnetization performance of the electromagnet 23 is B, the magnetizer 20 The overall magnetization performance can be varied in the range of (A−B) to (A + B). Furthermore, since the magnetizing performance B of the electromagnet 23 can be set as described above, the subject 30 can be made sufficiently even when the magnetizing performance of the permanent magnet 21 is insufficient to sufficiently magnetize the subject 30. In addition, the permanent magnet 21 can be easily desorbed even when the magnetization performance of the permanent magnet 21 is difficult to desorb the magnetizer 20 from the subject 30.

磁化器20の構成は、上記のように永久磁石21と電磁石23とが組合されてなり、その磁化性能が可変可能な磁化器20であれば、その構成について特に限定はなく、例えば、図1に示すように、磁化器20は一対の磁極部(21a、21b)とによって形成された略U字形状の1の永久磁石21と、該永久磁石21を直接コイルで巻きまわした電磁石22とが組合される構成してもよい。なお、図1においては、一方の磁極部21aがN極、他方の磁極部21bがS極となり、コイルは電源32と接続される。   The configuration of the magnetizer 20 is not particularly limited as long as it is a magnetizer 20 in which the permanent magnet 21 and the electromagnet 23 are combined as described above and the magnetization performance thereof is variable. For example, FIG. As shown in FIG. 2, the magnetizer 20 includes a substantially U-shaped one permanent magnet 21 formed by a pair of magnetic pole portions (21a, 21b), and an electromagnet 22 in which the permanent magnet 21 is directly wound by a coil. It may be configured to be combined. In FIG. 1, one magnetic pole portion 21 a has an N pole and the other magnetic pole portion 21 b has an S pole, and the coil is connected to a power source 32.

また、図2に示すように、磁化器20が一対の磁極部(21a、21b)とによって形成された棒状の2の永久磁石21と、該2の永久磁石21を連結するように設けられた電磁石23とからなる構成としてもよい。当該構成の電磁石23は、例えば、ヨーク等をコイルで巻きまわすことにより形成することができ、コイルは電源32と接続される。   In addition, as shown in FIG. 2, the magnetizer 20 is provided so as to connect the two permanent magnets 21 formed of a pair of magnetic pole portions (21 a, 21 b) and the two permanent magnets 21. It is good also as a structure which consists of the electromagnet 23. FIG. The electromagnet 23 having the configuration can be formed by, for example, winding a yoke or the like with a coil, and the coil is connected to the power source 32.

また、磁化器20の形状は、図1、図2に示す門型の形状に限定されるものではなく、一対の磁極を有するものであれば磁化器20の形状について特に限定はされない。   Further, the shape of the magnetizer 20 is not limited to the gate shape shown in FIGS. 1 and 2, and the shape of the magnetizer 20 is not particularly limited as long as it has a pair of magnetic poles.

永久磁石21は、予め磁気性能を有する機能を有するものであれば、いずれの材料からなる永久磁石21であってもよく、例えば、アルニコ磁石、フェライト磁石、ネオジム磁石、サマリウムコバルト磁石などが挙げられる。   The permanent magnet 21 may be a permanent magnet 21 made of any material as long as it has a function having magnetic performance in advance. Examples thereof include an alnico magnet, a ferrite magnet, a neodymium magnet, and a samarium cobalt magnet. .

電磁石23は、コイルに流す電流の向きによりその励磁方向を、永久磁石21による正方向の磁束の流れと同一方向及び逆方向に変化可能な機能を有するものであれば特に限定されず、図1に示すように永久磁石にコイルを巻きつけることにより形成してもよく、図2に示すように磁性体であるヨーク等にコイルを巻きつけることにより形成してもよい。なお、コイルの巻き数やコイル線径等は、磁化器20の形状や必要磁化力等によって適宜設定することができコイルの巻き数やコイル線径について限定はされない。また、コイルに電流を流す電源32についても特に限定はなく、従来公知の直流電源等(例えば、菊水電子工業株式会社製:直流安定化電源)を好適に用いることができる。   The electromagnet 23 is not particularly limited as long as the electromagnet 23 has a function capable of changing the excitation direction in the same direction and the reverse direction as the flow of the magnetic flux in the positive direction by the permanent magnet 21 depending on the direction of the current flowing in the coil. As shown in FIG. 2, it may be formed by winding a coil around a permanent magnet, or as shown in FIG. 2 by winding a coil around a yoke or the like that is a magnetic material. Note that the number of turns of the coil, the coil wire diameter, and the like can be appropriately set depending on the shape of the magnetizer 20, the necessary magnetizing force, and the like, and the number of turns of the coil and the coil wire diameter are not limited. Moreover, there is no limitation in particular also about the power supply 32 which sends an electric current to a coil, A conventionally well-known DC power supply etc. (for example, Kikusui Electronics Co., Ltd. product: DC stabilization power supply) can be used suitably.

ヨークの材料についても特に限定はないが、少ない電流で大きな磁束を得ることができる磁気飽和値及び透磁率が高い材料からなることが好ましく、例えば純鉄等を好適に用いることができる。また、コイルに流す電流の向きを変化させる機構等についても特に限定はなく、従来公知のスイッチ等を好適に用いることができる。   There is no particular limitation on the material of the yoke, but it is preferably made of a material having a high magnetic saturation value and high magnetic permeability that can obtain a large magnetic flux with a small current. For example, pure iron or the like can be suitably used. Further, there is no particular limitation on the mechanism for changing the direction of the current flowing through the coil, and a conventionally known switch or the like can be suitably used.

(磁気センサ)
図1に示すように、磁化器20の中心近傍には磁気センサ40が設けられている。磁気センサ40は被検体30からの漏洩磁束を検出するために設けられ、漏洩磁束を検出する機能を有するものであれば従来公知の磁気センサを適宜選択して用いることができる。磁気センサ40の設置位置について特に限定はなく、図1に示すように磁化器20側に設けてもよく、被検体を挟んで磁化器20と対向する位置に設けてもよい。また、複数の磁気センサ40を設けることとしてもよい。
(Magnetic sensor)
As shown in FIG. 1, a magnetic sensor 40 is provided near the center of the magnetizer 20. The magnetic sensor 40 is provided for detecting leakage magnetic flux from the subject 30, and a conventionally known magnetic sensor can be appropriately selected and used as long as it has a function of detecting leakage magnetic flux. The installation position of the magnetic sensor 40 is not particularly limited, and may be provided on the magnetizer 20 side as shown in FIG. 1 or may be provided at a position facing the magnetizer 20 with the subject interposed therebetween. A plurality of magnetic sensors 40 may be provided.

(搬送ローラ)
また、図1に示すように、磁極21a、21bと被検体30との間に、被検体30上に沿って漏洩磁束探傷装置10の搬送を容易にするための搬送ローラ50を設けてもよい。なお、搬送ローラ50は本発明の漏洩磁束探傷装置10における任意の構成である。
(Conveyance roller)
Further, as shown in FIG. 1, a conveyance roller 50 may be provided between the magnetic poles 21 a and 21 b and the subject 30 for facilitating the conveyance of the leakage magnetic flux flaw detector 10 along the subject 30. . The conveyance roller 50 is an arbitrary configuration in the leakage magnetic flux flaw detector 10 of the present invention.

10・・・漏洩磁束探傷装置
20・・・磁化器
21・・・永久磁石
23・・・電磁石
30・・・被検体
40・・・磁気センサ
DESCRIPTION OF SYMBOLS 10 ... Magnetic flux flaw detector 20 ... Magnetizer 21 ... Permanent magnet 23 ... Electromagnet 30 ... Subject 40 ... Magnetic sensor

Claims (3)

被検体を磁化する磁化器と、該磁化器によって磁化された被検体からの漏洩磁束を検知する磁気センサとを備えた漏洩磁束探傷装置であって、
前記磁化器は、永久磁石と電磁石とが組合されてなり、その磁化性能を可変可能な磁化器であることを漏洩磁束探傷装置。
A leakage magnetic flux flaw detector comprising a magnetizer for magnetizing a subject, and a magnetic sensor for detecting leakage magnetic flux from the subject magnetized by the magnetizer,
The leakage magnetic flux flaw detector as described above, wherein the magnetizer is a magnetizer in which a permanent magnet and an electromagnet are combined to change the magnetization performance.
前記磁化器は、前記永久磁石と、該永久磁石をコイルで巻きまわした電磁石とからなることを特徴とする請求項1に記載の漏洩磁束探傷装置。   The leakage magnetic flux flaw detector according to claim 1, wherein the magnetizer includes the permanent magnet and an electromagnet obtained by winding the permanent magnet with a coil. 前記磁化器は、一対の永久磁石と、該一対の永久磁石を連結するように設けられた電磁石とからなることを特徴とする請求項1に記載の漏洩磁束探傷装置。   The leakage magnetic flux flaw detector according to claim 1, wherein the magnetizer includes a pair of permanent magnets and an electromagnet provided so as to connect the pair of permanent magnets.
JP2009150071A 2009-06-24 2009-06-24 Leakage flux flaw detector Pending JP2011007570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009150071A JP2011007570A (en) 2009-06-24 2009-06-24 Leakage flux flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009150071A JP2011007570A (en) 2009-06-24 2009-06-24 Leakage flux flaw detector

Publications (1)

Publication Number Publication Date
JP2011007570A true JP2011007570A (en) 2011-01-13

Family

ID=43564424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009150071A Pending JP2011007570A (en) 2009-06-24 2009-06-24 Leakage flux flaw detector

Country Status (1)

Country Link
JP (1) JP2011007570A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018320A (en) * 2012-11-30 2013-04-03 江苏大学 Resonance-type magnetoelectric sensor for ferromagnetic material defect detection and detection method thereof
CN103048379A (en) * 2013-01-11 2013-04-17 中铁大桥局集团武汉桥梁科学研究院有限公司 Device and method for recognizing damage to bridge stay cable
CN103954684A (en) * 2014-04-23 2014-07-30 厦门大学 Method for nondestructive testing by use of change rate of magnetic flux leakage
WO2021125187A1 (en) 2019-12-20 2021-06-24 Jfeスチール株式会社 Magnetic leakage inspection device and defect inspection method
CN113484408A (en) * 2021-07-06 2021-10-08 兰州空间技术物理研究所 Nondestructive testing device for steel wire rope
CN114019016A (en) * 2021-11-08 2022-02-08 青岛科技大学 Storage tank bottom plate magnetic field stack enhancement mode magnetic leakage detection device
KR102716688B1 (en) 2019-12-20 2024-10-11 제이에프이 스틸 가부시키가이샤 Leakage self-testing device and defect detection method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018320A (en) * 2012-11-30 2013-04-03 江苏大学 Resonance-type magnetoelectric sensor for ferromagnetic material defect detection and detection method thereof
CN103048379A (en) * 2013-01-11 2013-04-17 中铁大桥局集团武汉桥梁科学研究院有限公司 Device and method for recognizing damage to bridge stay cable
CN103954684A (en) * 2014-04-23 2014-07-30 厦门大学 Method for nondestructive testing by use of change rate of magnetic flux leakage
WO2021125187A1 (en) 2019-12-20 2021-06-24 Jfeスチール株式会社 Magnetic leakage inspection device and defect inspection method
JP6908212B1 (en) * 2019-12-20 2021-07-21 Jfeスチール株式会社 Leakage magnetic inspection equipment and defect inspection method
KR20220098020A (en) 2019-12-20 2022-07-08 제이에프이 스틸 가부시키가이샤 Leakage magnetic inspection device and defect inspection method
KR102716688B1 (en) 2019-12-20 2024-10-11 제이에프이 스틸 가부시키가이샤 Leakage self-testing device and defect detection method
CN113484408A (en) * 2021-07-06 2021-10-08 兰州空间技术物理研究所 Nondestructive testing device for steel wire rope
CN114019016A (en) * 2021-11-08 2022-02-08 青岛科技大学 Storage tank bottom plate magnetic field stack enhancement mode magnetic leakage detection device

Similar Documents

Publication Publication Date Title
US8390281B2 (en) Wire rope flaw detector for increasing accuracy independent of speed while conserving detector size
JP2011007570A (en) Leakage flux flaw detector
US9453818B2 (en) Eddy current flaw detection probe and eddy current flaw inspection apparatus
WO2008093410A1 (en) Wire rope flaw detector
JP2011007565A (en) Leakage flux flaw detector
TW200711192A (en) Super-conducting device and axial gap type super-conducting motor
ATE525796T1 (en) SYSTEM FOR DETERMINING THE INITIAL POLE POSITION OF AN ELECTRIC MOTOR ROTator
JP6792323B2 (en) Magnetization control method for engagement system using magnets
JP2013245958A (en) Magnetic flux density distribution measurement apparatus and magnetic flux density measurement method
JP6908212B1 (en) Leakage magnetic inspection equipment and defect inspection method
KR101891443B1 (en) Apparatus for checking safety of electro-permanent magnet of lifter
JP3163378U (en) Rebar break inspection device
JP2005162379A (en) Wire rope severance sensing device
US10088453B2 (en) Apparatus and method of detecting defect of steel plate
JP2008293337A (en) Coin sensor
JP6079648B2 (en) Foreign object detection device and detection method thereof
KR102716688B1 (en) Leakage self-testing device and defect detection method
JP2012189326A (en) Interpolation probe for eddy current flaw detection for ferromagnetic steel pipe
EP3680866A1 (en) Magnetizing device with reduced stray field
JP2010107287A (en) Metal detector
WO2020075302A1 (en) Passenger conveyor handrail tensile body inspection device
JP2006088300A (en) Permanent electromagnetic type magnet chuck
JP2016102660A (en) Apparatus and method for detecting magnetic metal foreign object within insulator
JP5393584B2 (en) Magnetic flaw detector
JP2016061645A (en) Device and method for detecting magnetic foreign metal in insulator