JP2012189326A - Interpolation probe for eddy current flaw detection for ferromagnetic steel pipe - Google Patents

Interpolation probe for eddy current flaw detection for ferromagnetic steel pipe Download PDF

Info

Publication number
JP2012189326A
JP2012189326A JP2011050512A JP2011050512A JP2012189326A JP 2012189326 A JP2012189326 A JP 2012189326A JP 2011050512 A JP2011050512 A JP 2011050512A JP 2011050512 A JP2011050512 A JP 2011050512A JP 2012189326 A JP2012189326 A JP 2012189326A
Authority
JP
Japan
Prior art keywords
eddy current
flaw detection
current flaw
permanent magnet
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011050512A
Other languages
Japanese (ja)
Other versions
JP5721475B2 (en
Inventor
Takahide Sakamoto
隆秀 坂本
Osamu Keyakida
理 欅田
Yoshitaka Murase
義隆 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2011050512A priority Critical patent/JP5721475B2/en
Publication of JP2012189326A publication Critical patent/JP2012189326A/en
Application granted granted Critical
Publication of JP5721475B2 publication Critical patent/JP5721475B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an interpolation probe for eddy current flaw detection which detects a flaw of a steel pipe caused by an eddy current by magnetizing a ferromagnetic steel pipe in a circumferential direction, and in which noise variation is reduced.SOLUTION: An interpolation probe 1 for eddy current flaw detection comprises: a rectangular parallelepiped permanent magnet 10 of which the cross section provided in the center is rectangular and which is magnetized in a counter side direction; a yoke 20 of which the cross section is arc-shaped coupled to both magnetic pole planes of the rectangular parallelepiped permanent magnet; and a coil holder of which the cross section is arc-shaped coupled to different planes from both the magnetic pole planes. In the interpolation probe for eddy current flaw detection, a void 30 is provided in a portion in contact with each of both the magnetic pole planes of the permanent magnet, in the yoke near the center in the length direction of the interpolation probe. Two inspection coils 40a and 40b are wound around linearly in the void and along the arc shape in the coil holder, thereby obtaining differential output of the two inspection coils.

Description

本発明は、化学プラント等で使用される強磁性伝熱管の内部の損傷の程度を渦流探傷で測定するための内挿プローブに関するものである。 The present invention relates to an insertion probe for measuring the degree of damage inside a ferromagnetic heat transfer tube used in a chemical plant or the like by eddy current flaw detection.

化学プラント等で使用される伝熱管は、外面からの探傷検査は困難であるため、通常内挿プローブを用いて内外面の傷の検出を行っている。内挿プローブとして、超音波探傷方式と渦流探傷方式があるが、超音波探傷方式は、接触媒体である水や油で探傷部分を満たす必要があり、精度は良いが余分の工数が掛かる。渦流探傷方式は、接触媒体が不要で効率的に探傷が可能である。 Since heat transfer tubes used in chemical plants and the like are difficult to detect flaws from the outside, they usually detect internal and external flaws using an insertion probe. As an insertion probe, there are an ultrasonic flaw detection method and an eddy current flaw detection method. However, the ultrasonic flaw detection method needs to fill a flaw detection portion with water or oil as a contact medium, and has high accuracy but takes extra man-hours. The eddy current flaw detection method does not require a contact medium and can perform flaw detection efficiently.

一方、渦流探傷方式は、試験材が強磁性体の場合には透磁率の影響を受ける。伝熱管が非磁性体である場合には問題はないが、伝熱管が強磁性体である場合には、透磁率の部分的なばらつきがあるとノイズを生じ、渦流探傷の精度が低下する。この問題の解決法として従来では、図5に示す渦流探傷用内挿プローブ5が用いられていた。 On the other hand, the eddy current flaw detection method is affected by the magnetic permeability when the test material is a ferromagnetic material. There is no problem when the heat transfer tube is made of a non-magnetic material. However, when the heat transfer tube is made of a ferromagnetic material, if there is a partial variation in the magnetic permeability, noise is generated and the accuracy of eddy current flaws is lowered. Conventionally, an eddy current flaw detection probe 5 shown in FIG. 5 has been used as a solution to this problem.

この渦流探傷用内挿プローブ5は、円柱状の継鉄20の両端部に円筒状の永久磁石10を嵌着しており、継鉄20の中央部には絶縁材35を介して検査コイル45を取り付けている。円筒状の永久磁石10の磁化方向は継鉄20の軸心線と直交する方向であり、一端部の永久磁石10は外周がN極、内周がS極、他端部の永久磁石10は外周がS極、内周がN極の着磁になっており、図に一点鎖線で示すような磁路が形成され、強磁性鋼管Tを管軸方向に飽和磁化することになる。これにより、強磁性鋼管Tの残留歪や材質の局部的なばらつきによる透磁率の変化が抑制され、検査コイル45に与える影響が解消される。 The eddy current flaw detection probe 5 has cylindrical permanent magnets 10 fitted to both ends of a columnar yoke 20, and an inspection coil 45 via an insulating material 35 at the center of the yoke 20. Is attached. The direction of magnetization of the cylindrical permanent magnet 10 is perpendicular to the axis of the yoke 20. The permanent magnet 10 at one end has an N pole on the outer periphery, an S pole on the inner periphery, and the permanent magnet 10 on the other end. The outer circumference is S pole and the inner circumference is N pole, and a magnetic path as shown by a one-dot chain line in the figure is formed, and the ferromagnetic steel tube T is saturated and magnetized in the tube axis direction. Thereby, the change of the magnetic permeability by the residual distortion of the ferromagnetic steel tube T and the local dispersion | variation in material is suppressed, and the influence which it has on the test | inspection coil 45 is eliminated.

しかしながら、上記方法でも鋼管の肉厚が厚くなると強磁性鋼管Tを飽和磁化することができず、透磁率がばらついて、渦流探傷の精度が低下すると言う問題があった。この対策として、特許文献1には、図6に示すように円柱状の継鉄20の外周部に断面が扇形状の永久磁石10を接合して強磁性鋼管Tを円周方向に飽和磁化し、更に周方向の分解能を上げるために継鉄20の永久磁石10と結合していない部分に円筒状の検査コイル48を配設した発明が開示されている。 However, even with the above method, there is a problem that when the thickness of the steel pipe is increased, the ferromagnetic steel pipe T cannot be saturated and magnetized, the magnetic permeability varies, and the accuracy of eddy current flaw detection is lowered. As a countermeasure against this, in Patent Document 1, as shown in FIG. 6, a permanent magnet 10 having a fan-shaped cross section is joined to the outer periphery of a columnar yoke 20 to saturate and magnetize the ferromagnetic steel tube T in the circumferential direction. Further, an invention is disclosed in which a cylindrical inspection coil 48 is disposed in a portion of the yoke 20 that is not coupled to the permanent magnet 10 in order to further increase the circumferential resolution.

特開昭63−24152号公報JP-A-63-24152

特許文献1の発明では、円周方向の磁場強度は従来法より強くなったが、継鉄20の永久磁石10と結合していない部分に絶縁材35を介して円筒状の検査コイル48を配設したため、検査コイル48と強磁性鋼管Tの内面との距離が変動(リフトオフ)した場合に、検出信号の変動が生じて、渦流探傷の精度が低下すると言う問題が生ずる。 In the invention of Patent Document 1, the magnetic field strength in the circumferential direction is stronger than that in the conventional method. However, a cylindrical inspection coil 48 is arranged through an insulating material 35 on the portion of the yoke 20 that is not coupled to the permanent magnet 10. Therefore, when the distance between the inspection coil 48 and the inner surface of the ferromagnetic steel tube T is changed (lifted off), the detection signal is changed and the accuracy of eddy current flaws is lowered.

上記問題を解決すべく、鋭意研究を行った結果、永久磁石と継鉄で円周方向に強磁性鋼管を飽和磁化し、2つの検査コイルを継鉄のある部分では強磁性鋼管から離れるように、継鉄のない部分では強磁性鋼管に近づくように円周方向に巻回し、更に2つの検査コイルの差動出力をとることにより、リフトオフの変動に対応でき、検出精度の高い内挿プローブを見出し本発明を完成させた。 As a result of earnest research to solve the above problems, the ferromagnetic steel pipe is saturated and magnetized in the circumferential direction with a permanent magnet and a yoke, and the two test coils are separated from the ferromagnetic steel pipe at the part where the yoke is located. In the part without the yoke, it is wound in the circumferential direction so as to approach the ferromagnetic steel pipe, and furthermore, by taking the differential output of the two inspection coils, it is possible to cope with fluctuations in lift-off and to provide an insertion probe with high detection accuracy. Heading The present invention has been completed.

前記課題を解決するべく、本発明の請求項1に記載の渦流探傷用内挿プローブは、中心部に設けた断面が矩形で、対辺方向に磁化された直方体状の永久磁石と、前記直方体状の永久磁石の両磁極面に断面が弓形状の継鉄と、前記両磁極面と異なる面に断面が弓形状のコイル保持体を結合した渦流探傷用内挿プローブであって、前記渦流探傷用内挿プローブの長さ方向中央付近の前記継鉄の前記永久磁石の前記両磁極面と接する部分に空隙を設け、2つの検査コイルを、前記空隙では直線状、前記コイル保持体では弓形状に沿って巻回し、前記2つの検査コイルの差動出力を得るようにしたことを特徴とする渦流探傷用内挿プローブである。 In order to solve the above-mentioned problem, an eddy current flaw detection insertion probe according to claim 1 of the present invention is a rectangular parallelepiped permanent magnet having a rectangular cross section provided in the center and magnetized in the opposite direction, and the rectangular parallelepiped shape. An eddy current flaw detection insertion probe in which a yoke having a bow shape in cross section on both magnetic pole surfaces of a permanent magnet and a coil holder having a bow shape in cross section on a different surface from both magnetic pole surfaces, A gap is provided in a portion of the yoke in contact with the both magnetic pole surfaces of the yoke near the center in the length direction of the insertion probe, and two inspection coils are formed in a straight line in the gap and in a bow shape in the coil holder. An eddy current flaw detection probe characterized in that it is wound along and a differential output of the two inspection coils is obtained.

本発明によれば、渦流探傷用内挿プローブは、中心部に設けた断面が矩形で、対辺方向に磁化された直方体状の永久磁石と、直方体状の永久磁石の両磁極面に断面が弓形状の継鉄と両磁極面と異なる面に断面が弓形状のコイル保持体を結合したものであるため、強磁性鋼管に内挿されると強磁性鋼管の円周方向に磁束密度の高い磁路が形成される。また渦流探傷用内挿プローブの長さ方向中央付近の継鉄の永久磁石の両磁極面と接する部分に貫通用の空隙を設け、2つの検査コイルが空隙では強磁性鋼管から離れるように直線状で、コイル保持体では弓形状に沿って強磁性鋼管に近づくように巻回されているため強磁性鋼管の磁束密度の高い部分からの渦電流の検出が可能となっている。そのため透磁率のばらつきが減少した部分からの渦電流の検出が主になり、ノイズが減少する。更に前記2つの検査コイルの差動出力を得るようにしたことで、プローブの中心が強磁性鋼管の中心からずれた場合でも、リフトオフによる信号の変動の問題を解消することができる。 According to the present invention, the eddy current flaw detection insertion probe has a rectangular cross section provided at the center thereof, and a cross section is provided on both magnetic pole surfaces of the rectangular parallelepiped permanent magnet magnetized in the opposite direction and the rectangular parallelepiped permanent magnet. Because the shape of the yoke is combined with a coil holder having a bow-shaped cross section on a surface different from both magnetic pole faces, a magnetic path with high magnetic flux density in the circumferential direction of the ferromagnetic steel pipe when inserted into the ferromagnetic steel pipe Is formed. In addition, a through-hole is provided in the portion in contact with both magnetic pole faces of the yoke permanent magnet near the center in the length direction of the eddy current flaw detection insertion probe, and the two inspection coils are linear so that they are separated from the ferromagnetic steel tube in the gap. Since the coil holder is wound so as to approach the ferromagnetic steel pipe along the bow shape, it is possible to detect eddy current from a portion of the ferromagnetic steel pipe having a high magnetic flux density. For this reason, detection of eddy current is mainly performed from a portion where variation in magnetic permeability is reduced, and noise is reduced. Further, by obtaining the differential output of the two inspection coils, the problem of signal fluctuation due to lift-off can be solved even when the center of the probe is deviated from the center of the ferromagnetic steel tube.

請求項2に記載の渦流探傷用内挿プローブは、前記コイル保持体が非磁性且つ非導電体であることを特徴とする請求項1に記載の渦流探傷用内挿プローブである。 The eddy current flaw detection probe according to claim 2, wherein the coil holder is nonmagnetic and nonconductive.

斯かる発明によれば、コイル保持体が非磁性且つ非導電体であるため、コイルの交流電圧からの渦電流損失がない。 According to such an invention, since the coil holder is non-magnetic and non-conductive, there is no eddy current loss from the AC voltage of the coil.

請求項3に記載の発明は、前記永久磁石と前記継鉄と前記コイル保持体とを結合した前記渦流探傷用内挿プローブの断面が略円形であることを特徴とする請求項1又は2に記載の渦流探傷用内挿プローブである。 The invention according to claim 3 is characterized in that a cross section of the eddy current flaw detection insertion probe in which the permanent magnet, the yoke, and the coil holder are combined is substantially circular. It is an insertion probe for eddy current flaws described.

斯かる発明によれば、永久磁石と継鉄とコイル保持体とを結合した渦流探傷用内挿プローブの断面が略円形であるため、強磁性鋼管に内挿した際に強磁性鋼管の内面との距離が一定の部分が多くなり、出力が向上する。 According to such an invention, since the cross section of the eddy current flaw detection insertion probe in which the permanent magnet, the yoke, and the coil holder are combined is substantially circular, the inner surface of the ferromagnetic steel tube when inserted into the ferromagnetic steel tube The part where the distance is constant increases and the output improves.

請求項4に記載の発明は、前記コイル保持体に溝が形成されて、前記2つの検査コイルが、前記溝に巻回されていることを特徴とする請求項1乃至3のいずれかに記載の渦流探傷用内挿プローブである。 According to a fourth aspect of the present invention, a groove is formed in the coil holder, and the two inspection coils are wound around the groove. This is an eddy current flaw detection probe.

斯かる発明によれば、2つの検査コイルが、コイル保持体の溝に沿って巻回されているため、コイルが強磁性鋼管の内面に直接接触することがなく、コイルの切断や接触による変形が減少して耐久性が向上し、また接触によるノイズが減少する。 According to such an invention, since the two inspection coils are wound along the groove of the coil holder, the coil does not directly contact the inner surface of the ferromagnetic steel tube, and the coil is deformed by cutting or contact. Decreases, durability is improved, and noise due to contact decreases.

本発明の渦流探傷用内挿プローブによれば、永久磁石と継鉄で強磁性鋼管を円周方向に磁化し、2つの検査コイルを強磁性鋼管の磁束密度の高い部分で強磁性鋼管側に近づけ、磁束密度の低い部分で、強磁性鋼管側から遠ざかり、且つ、強磁性鋼管とコイル間に存在する継鉄で磁気シールドされるように巻回しているので、磁束密度の高い部分からの渦電流の検出が可能となっている。そのため透磁率のばらつきが減少した部分からの渦電流の検出が主になり、ノイズが減少する。更に2つの検査コイルの差動出力を得るようにしたので、プローブの中心が強磁性鋼管の中心からずれた場合でも、リフトオフによる信号の変動の問題を解消することができる。 According to the eddy current flaw detection probe of the present invention, a ferromagnetic steel pipe is magnetized in the circumferential direction by a permanent magnet and a yoke, and two inspection coils are placed on the ferromagnetic steel pipe side at a portion where the magnetic flux density of the ferromagnetic steel pipe is high. The coil is wound close to the part where the magnetic flux density is low, away from the ferromagnetic steel pipe side, and magnetically shielded by the yoke existing between the ferromagnetic steel pipe and the coil. The current can be detected. For this reason, detection of eddy current is mainly performed from a portion where variation in magnetic permeability is reduced, and noise is reduced. Further, since the differential outputs of the two inspection coils are obtained, the problem of signal fluctuation due to lift-off can be solved even when the center of the probe is deviated from the center of the ferromagnetic steel tube.

本発明の渦流探傷用内挿プローブの断面を示す図である。 (a)管軸方向の断面図 (b)A−A断面図 (c)B−B断面図It is a figure which shows the cross section of the insertion probe for eddy current flaw detection of this invention. (a) Cross section in the tube axis direction (b) AA cross section (c) BB cross section 本発明の信号検出回路のブロック図の一例である。It is an example of the block diagram of the signal detection circuit of this invention. 管内部磁束密度の管軸方向と管周方向の計算結果を示す図である。It is a figure which shows the calculation result of a pipe axial direction of a pipe | tube internal magnetic flux density, and a pipe peripheral direction. 従来法の円筒状コイルを用いた渦流探傷用内挿プローブと本発明の渦流探傷用内挿プローブとのリフトオフの影響を示す図である。It is a figure which shows the influence of the lift-off of the eddy current test insertion probe using the cylindrical coil of the conventional method, and the eddy current test insertion probe of this invention. 従来の渦流探傷用内挿プローブの図である。It is a figure of the conventional insertion probe for eddy current flaw detection. 円筒状の検査コイルを用いた従来の渦流探傷用内挿プローブを示す図である。 (a)渦流探傷用内挿プローブの概略図 (b)C−C断面図It is a figure which shows the conventional insertion probe for eddy current flaws using a cylindrical test | inspection coil. (a) Schematic diagram of eddy current flaw detection probe (b) CC cross section

以下、本発明の実施の形態を説明する。 Embodiments of the present invention will be described below.

図1に本発明の渦流探傷用内挿プローブの実施形態を示す。図1(a)は、管軸方向の断面図、図1(b)はA-A断面図、図1(c)は、B-B断面図を示す。 FIG. 1 shows an embodiment of an insertion probe for eddy current flaw detection according to the present invention. 1A is a sectional view in the tube axis direction, FIG. 1B is an AA sectional view, and FIG. 1C is a BB sectional view.

渦流探傷用内挿プローブ1は、中心部に設けた断面が矩形で、対辺方向に磁化された直方体状の永久磁石10と、直方体状の永久磁石10の両磁極面に断面が弓形状の継鉄20と、両磁極面と異なる面に断面が弓形状のコイル保持体50を結合している。磁力線は永久磁石10の内部ではN極から出てS極に向かうが、永久磁石10の外部では、磁路長が短くなるようにN極から出て強磁性鋼管Tの円周方向を通りS極に戻るため、図1(b)に示すように強磁性鋼管Tの円周方向の一部を磁化することになる。永久磁石10として、NdFeB系、又はSmCo系の希土類磁石が、飽和磁化が高く、保磁力が大きいので望ましい。 The eddy current flaw detection probe 1 has a rectangular cross section provided at the center, and has a rectangular parallelepiped shape on both magnetic pole surfaces of a rectangular parallelepiped permanent magnet 10 magnetized in the opposite direction and a rectangular parallelepiped permanent magnet 10. A coil holder 50 having a bow-shaped cross section is coupled to the iron 20 and a surface different from both magnetic pole surfaces. The magnetic lines of force exit from the N pole toward the S pole inside the permanent magnet 10, but outside the permanent magnet 10, exit from the N pole so that the magnetic path length is shortened and pass through the circumferential direction of the ferromagnetic steel tube T. In order to return to the pole, a part of the circumferential direction of the ferromagnetic steel tube T is magnetized as shown in FIG. As the permanent magnet 10, an NdFeB-based or SmCo-based rare earth magnet is desirable because of its high saturation magnetization and large coercive force.

また、永久磁石10の断面形状として、磁化方向の辺を長さ、磁化方向と垂直の辺を幅とすると長さ対幅の比率は、0.5(比で1:2)から2.0(比で2:1)程度が望ましい。長さ対幅の比率が0.5未満になると磁極面積は増えるが、反磁場係数が大きくなり動作磁場が小さくなり全体の磁束が減少し、長さ対幅の比率が2.0超になると反磁場係数は小さくなり動作磁場は大きくなるが、磁極面積が減少して、全体の磁束が減少するからである。なお、本実施例では、長さ対幅の比率が0.8のNdFeB磁石を用いている。 Further, as the cross-sectional shape of the permanent magnet 10, if the side in the magnetization direction is the length and the side perpendicular to the magnetization direction is the width, the ratio of the length to the width is 0.5 (ratio 1: 2) to 2.0. A ratio of about 2: 1 is desirable. When the length-to-width ratio is less than 0.5, the magnetic pole area increases, but the demagnetizing factor increases, the operating magnetic field decreases, the overall magnetic flux decreases, and the length-to-width ratio exceeds 2.0. This is because the demagnetizing factor is reduced and the operating magnetic field is increased, but the magnetic pole area is reduced and the overall magnetic flux is reduced. In this embodiment, an NdFeB magnet having a length to width ratio of 0.8 is used.

更に、渦流探傷用内挿プローブ1の長さ方向中央付近の継鉄20の永久磁石10の両磁極面と接する部分に空隙30を設け、2つの検査コイル40a、40bを、空隙30では直線状、コイル保持体50では弓形状に沿って巻回し、2つの検査コイル40a、40bの差動出力を得るようにしている。なお、検査コイル40a、40bは、80μmの被覆銅線を60回巻いたものである。 Further, a gap 30 is provided in a portion of the yoke 20 in contact with both magnetic pole surfaces of the yoke 20 near the center in the length direction of the eddy current flaw detection probe 1. Two inspection coils 40a and 40b are linearly formed in the gap 30. The coil holder 50 is wound along a bow shape so as to obtain a differential output of the two inspection coils 40a and 40b. The inspection coils 40a and 40b are obtained by winding an 80 μm coated copper wire 60 times.

検査コイル40a部分での断面図を図1(c)に示すが、強磁性鋼管Tが飽和磁化される部分では、検査コイル40aはコイル保持体50に沿って弓形状に張り出し、強磁性鋼管Tとの距離が近くなりこの部分から寄与する信号強度は大きくなるが、磁場が弱く、飽和磁化に不十分な部分では、検査コイル40aは継鉄20と永久磁石10の両磁極面と接する部分の空隙30を直線状に通るので、強磁性鋼管Tとの距離が遠く、継鉄20で磁気シールドされるため、この部分から寄与する信号強度は微弱となる。 A cross-sectional view of the inspection coil 40a is shown in FIG. 1 (c). In the portion where the ferromagnetic steel tube T is saturated and magnetized, the inspection coil 40a projects in a bow shape along the coil holder 50, and the ferromagnetic steel tube T However, in the portion where the magnetic field is weak and insufficient for saturation magnetization, the inspection coil 40a is the portion of the portion in contact with both the magnetic pole surfaces of the yoke 20 and the permanent magnet 10. Since the gap 30 is linearly passed, the distance from the ferromagnetic steel pipe T is long, and the shield 20 is magnetically shielded. Therefore, the signal intensity contributing from this portion is weak.

なお、本発明の渦流探傷では、コイル保持体50に沿って弓形状に張り出した部分からの検査コイル40a、40bの信号で探傷を行うので、強磁性鋼管Tの円周方向全面の探傷を行うには、渦流探傷用内挿プローブ1を所定速度で回転させるか、複数の渦流探傷用内挿プローブ1を所定角度をつけて、シリーズに接続することで対応することができる。 In the eddy current flaw detection according to the present invention, the flaw detection is performed by the signals of the inspection coils 40a and 40b from the portion projecting in a bow shape along the coil holder 50, and therefore the flaw detection of the entire surface of the ferromagnetic steel tube T in the circumferential direction is performed. This can be dealt with by rotating the eddy current flaw detection probe 1 at a predetermined speed or connecting a plurality of eddy current flaw detection probes 1 at a predetermined angle and connecting them in series.

また、2つの検査コイル40a、40bの差動出力を得るには、例えば、検査コイル40a、40bの信号を渦流探傷用内挿プローブ1の吊垂用索条を兼ねるケーブル60から取り出し、ブリッジ回路で差動出力を得ることができる。更には、渦流探傷用内挿プローブ1にブリッジ回路等を搭載する基板を組み込むことも可能である。 In order to obtain the differential outputs of the two inspection coils 40a and 40b, for example, the signals of the inspection coils 40a and 40b are taken out from the cable 60 that also serves as the suspension cable of the eddy current flaw detection insertion probe 1, and a bridge circuit is obtained. A differential output can be obtained. Furthermore, it is possible to incorporate a substrate on which a bridge circuit or the like is mounted in the eddy current flaw detection insertion probe 1.

コイル保持体50は、例えば、ベークライト、ナイロン、ポリアセタールのような非磁性且つ非導電体で作られている。これにより、コイル保持体50からの残留磁化の影響や渦電流の発生を抑制することができ、強磁性鋼管Tの信号へのノイズを減らすことができる。 The coil holder 50 is made of, for example, a nonmagnetic and nonconductive material such as bakelite, nylon, or polyacetal. Thereby, the influence of the residual magnetization from the coil holder 50 and the generation of eddy current can be suppressed, and the noise to the signal of the ferromagnetic steel tube T can be reduced.

また、永久磁石10と継鉄20とコイル保持体50とを結合した渦流探傷用内挿プローブ1の断面は略円形になっている。これにより、強磁性鋼管Tに内挿した際に強磁性鋼管Tの内面と信号検出に寄与する弓形状に張り出した検査コイル40a、40bとの距離が一定の部分が多くなり、出力が向上する。 Moreover, the cross section of the eddy current flaw detection insertion probe 1 in which the permanent magnet 10, the yoke 20, and the coil holder 50 are combined is substantially circular. Thereby, when inserted into the ferromagnetic steel tube T, the distance between the inner surface of the ferromagnetic steel tube T and the inspection coils 40a and 40b projecting in a bow shape contributing to signal detection increases, and the output is improved. .

コイル保持体50には深さ1mm、幅2mmの凹溝を2つ形成し、それぞれ2つの検査コイル40a、40bは、凹溝に巻回して、検査コイル40a、40bの切断や接触による変形がないようにしている。 Two concave grooves having a depth of 1 mm and a width of 2 mm are formed in the coil holder 50, and each of the two inspection coils 40a and 40b is wound around the concave groove so that the inspection coils 40a and 40b are deformed by cutting or contact. I am trying not to.

図2には、本発明の信号検出回路のブロック図を示す。発振器からの高周波信号を電力増幅器で増幅して、検査コイル40a、40bに送信し、ブリッジ回路で検査コイル40a、40bの差動出力を検出して、増幅器で増幅する。増幅された信号と発振器からの信号は同期検波器1に送信してX成分を検出する。増幅された信号と発振器の信号を移相器で90度位相シフトした信号は同期検波器2に送信してY成分を検出する。 FIG. 2 shows a block diagram of the signal detection circuit of the present invention. The high-frequency signal from the oscillator is amplified by the power amplifier and transmitted to the inspection coils 40a and 40b. The differential output of the inspection coils 40a and 40b is detected by the bridge circuit and amplified by the amplifier. The amplified signal and the signal from the oscillator are transmitted to the synchronous detector 1 to detect the X component. A signal obtained by phase-shifting the amplified signal and the oscillator signal by 90 degrees with a phase shifter is transmitted to the synchronous detector 2 to detect the Y component.

図3には、管内部磁束密度の管軸方向磁化と管周方向磁化の計算結果を示す。計算結果は、管外径25.4mmの場合の鋼管肉厚中央部の磁束密度を、鋼管肉厚の関数として3次元有限要素解析によって求めたものである。なお、プローブ外径は鋼管内径より1mm小さい場合について、永久磁石10はNdFeB磁石、継鉄20は純鉄の磁気特性を用いて計算した結果である。この結果から鋼管の周方向に磁化する方が、従来の鋼管の軸方向に磁化する方より鋼管を強く磁化できることが言える。 FIG. 3 shows the calculation results of the tube axis direction magnetization and tube circumferential direction magnetization of the tube internal magnetic flux density. The calculation results are obtained by three-dimensional finite element analysis of the magnetic flux density at the center of the steel pipe thickness when the pipe outer diameter is 25.4 mm as a function of the steel pipe thickness. In the case where the outer diameter of the probe is 1 mm smaller than the inner diameter of the steel pipe, the permanent magnet 10 is calculated using the magnetic characteristics of the NdFeB magnet, and the yoke 20 is calculated using the magnetic characteristics of pure iron. From this result, it can be said that the direction of magnetization in the circumferential direction of the steel pipe can magnetize the steel pipe more strongly than the direction of magnetization in the axial direction of the conventional steel pipe.

従来法の円筒状コイルを用いた渦流探傷用内挿プローブと本発明の渦流探傷用内挿プローブとのリフトオフの影響を調査するため探傷試験を行った。探傷試験に用いた強磁性鋼管Tは、外径が19mm、肉厚2.3mmの炭素鋼鋼管で、鋼管外面に表1で示すような外径と深さの傷を人工的に作成したものである。 A flaw detection test was conducted to investigate the effect of lift-off between the eddy current flaw detection probe using a conventional cylindrical coil and the eddy current flaw detection probe of the present invention. The ferromagnetic steel pipe T used for the flaw detection test is a carbon steel pipe having an outer diameter of 19 mm and a wall thickness of 2.3 mm, and has an outer diameter and a depth as shown in Table 1 artificially created on the outer surface of the steel pipe. It is.

Figure 2012189326
Figure 2012189326

図4(a)には、従来法の円筒状コイルを用いた渦流探傷用内挿プローブのリフトオフの影響、図4(b)には本発明の渦流探傷用内挿プローブとのリフトオフの影響を示す。なお渦流探傷用内挿プローブの外径は双方とも12mm、永久磁石10はNdFeB磁石、継鉄20は軟鉄を用いたもので発振器の周波数は50kHzであった。従来法の継鉄20の永久磁石10と結合していない部分に円筒状の検査コイル48を配設した渦流探傷用内挿プローブ8では、円筒状の検査コイル48のリフトオフが変動すると鋼管に誘起される渦電流が大きく変動する。すなわち図6(b)で3時位置の円筒状の検査コイル48が鋼管に接近すると9時位置の円筒状の検査コイル48が鋼管から遠ざかり、検出される信号も大きく変動する。更に隣接配置した2個の検査コイルの差動をとっても、ヨー角度揺動に伴うリフトオフ変動を抑制することができない。そのため零点レベルの変動が大きく微小な欠陥(例えば傷D、F)が検出できない。 FIG. 4A shows the effect of lift-off of the eddy current flaw detection probe using a conventional cylindrical coil, and FIG. 4B shows the effect of lift-off with the eddy current flaw detection probe of the present invention. Show. The outer diameter of the eddy current flaw detection probe was 12 mm, the permanent magnet 10 was made of NdFeB magnet, the yoke 20 was made of soft iron, and the frequency of the oscillator was 50 kHz. In the eddy current flaw detection probe 8 in which the cylindrical inspection coil 48 is disposed in the portion of the conventional yoke 20 that is not coupled to the permanent magnet 10, when the lift-off of the cylindrical inspection coil 48 fluctuates, the steel pipe is induced. The eddy current generated varies greatly. That is, in FIG. 6B, when the cylindrical inspection coil 48 at 3 o'clock approaches the steel pipe, the cylindrical inspection coil 48 at 9 o'clock moves away from the steel pipe, and the detected signal varies greatly. Furthermore, even if the differential of two inspection coils arranged adjacent to each other is taken, it is not possible to suppress lift-off fluctuations accompanying yaw angle fluctuation. For this reason, it is impossible to detect minute defects (for example, scratches D and F) having a large variation in the zero point level.

一方、本発明の渦流探傷用内挿プローブ1では、検査コイル40a、40bを継鉄20のある部分では鋼管から離れるように直線状に、継鉄20のない部分では鋼管に近づくように円周方向に巻回しているので、プローブの揺動に伴うリフトオフ変動の影響が小さい。すなわち図1(c)で3時位置の弓形状部が鋼管に接近すると9時位置の弓形状部が鋼管から遠ざかり鋼管に誘導される渦電流の総和はあまり変化せず、検査コイル自身にリフトオフ変動補償機能を有する。更に2つの検査コイル40a、40bの差動出力を得るようにしているので、鋼管に接近した場合、鋼管から遠ざかった場合、ヨー角度揺動がある場合でも零点変動が少なく、微小な欠陥を良好に検出することが可能である。 On the other hand, in the eddy current flaw detection probe 1 according to the present invention, the inspection coils 40a and 40b are arranged in a straight line so as to be separated from the steel pipe in a portion where the yoke 20 is present, and in a portion so as to approach the steel pipe in a portion where the yoke 20 is not present. Since it is wound in the direction, the influence of the lift-off fluctuation accompanying the probe swing is small. In other words, when the bow shape at 3 o'clock approaches the steel pipe in Fig. 1 (c), the bow shape at 9 o'clock moves away from the steel pipe and the sum of eddy currents induced in the steel pipe does not change so much, and the lift off to the inspection coil itself It has a fluctuation compensation function. Furthermore, since the differential outputs of the two inspection coils 40a and 40b are obtained, there is little fluctuation in the zero point even when there is a yaw angle fluctuation when the steel pipe is approached, away from the steel pipe, and fine defects are good. Can be detected.

以上説明したように、本発明の渦流探傷用内挿プローブは永久磁石と継鉄で円周方向に強磁性鋼管を飽和磁化し、2つの検査コイルを継鉄のある部分では強磁性鋼管から離れるように、継鉄のない部分では強磁性鋼管に近づくように円周方向に巻回し、更に2つの検査コイルの差動をとるように構成したので、リフトオフによる信号の変動がなく、検出精度の高い渦流探傷用内挿プローブを提供できるものである。 As described above, the eddy current flaw detection probe according to the present invention saturation-magnetizes the ferromagnetic steel pipe in the circumferential direction with the permanent magnet and the yoke, and separates the two inspection coils from the ferromagnetic steel pipe in the portion with the yoke. As described above, since the coil is wound in the circumferential direction so as to approach the ferromagnetic steel pipe in the portion without the yoke, and the differential of the two inspection coils is taken, there is no signal fluctuation due to lift-off, and the detection accuracy is improved. A high eddy current flaw detection probe can be provided.

1 渦流探傷用内挿プローブ
10 永久磁石
20 継鉄
30 空隙
40a、40b 検査コイル
50 コイル保持体
60 ケーブル
T 強磁性鋼管
DESCRIPTION OF SYMBOLS 1 Insertion probe for eddy current flaw detection 10 Permanent magnet 20 yoke 30 Air gap 40a, 40b Inspection coil 50 Coil holder 60 Cable T Ferromagnetic steel pipe

Claims (4)

中心部に設けた断面が矩形で、対辺方向に磁化された直方体状の永久磁石と、前記直方体状の永久磁石の両磁極面に断面が弓形状の継鉄と、前記両磁極面と異なる面に断面が弓形状のコイル保持体を結合した渦流探傷用内挿プローブであって、前記渦流探傷用内挿プローブの長さ方向中央付近の前記継鉄の前記永久磁石の前記両磁極面と接する部分に空隙を設け、2つの検査コイルを、前記空隙では直線状、前記コイル保持体では弓形状に沿って巻回し、前記2つの検査コイルの差動出力を得るようにしたことを特徴とする渦流探傷用内挿プローブ。 A rectangular permanent magnet magnetized in the opposite direction in the central portion, a yoke with a bow cross section on both magnetic pole surfaces of the rectangular permanent magnet, and a surface different from the two magnetic pole surfaces An eddy current flaw detection probe having a bow-shaped cross section coupled to a coil holder, which is in contact with both magnetic pole surfaces of the permanent magnet of the yoke near the longitudinal center of the eddy current flaw detection probe. A gap is provided in the portion, and two inspection coils are wound along a straight line in the gap and along a bow shape in the coil holder, so that a differential output of the two inspection coils is obtained. Interpolation probe for eddy current testing. 前記コイル保持体が非磁性且つ非導電体であることを特徴とする請求項1に記載の渦流探傷用内挿プローブ。 The eddy current flaw detection insertion probe according to claim 1, wherein the coil holder is nonmagnetic and nonconductive. 前記永久磁石と前記継鉄と前記コイル保持体とを結合した前記渦流探傷用内挿プローブの断面が略円形であることを特徴とする請求項1又は2に記載の渦流探傷用内挿プローブ。 The eddy current flaw detection insertion probe according to claim 1 or 2, wherein a cross section of the eddy current flaw detection insertion probe in which the permanent magnet, the yoke and the coil holder are combined is substantially circular. 前記コイル保持体に溝が形成されて、前記2つの検査コイルが、前記溝に巻回されていることを特徴とする請求項1乃至3のいずれかに記載の渦流探傷用内挿プローブ。 The eddy current flaw detection insertion probe according to any one of claims 1 to 3, wherein a groove is formed in the coil holding body, and the two inspection coils are wound around the groove.
JP2011050512A 2011-03-08 2011-03-08 Interpolation probe for eddy current testing of ferromagnetic steel tubes Expired - Fee Related JP5721475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011050512A JP5721475B2 (en) 2011-03-08 2011-03-08 Interpolation probe for eddy current testing of ferromagnetic steel tubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011050512A JP5721475B2 (en) 2011-03-08 2011-03-08 Interpolation probe for eddy current testing of ferromagnetic steel tubes

Publications (2)

Publication Number Publication Date
JP2012189326A true JP2012189326A (en) 2012-10-04
JP5721475B2 JP5721475B2 (en) 2015-05-20

Family

ID=47082690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011050512A Expired - Fee Related JP5721475B2 (en) 2011-03-08 2011-03-08 Interpolation probe for eddy current testing of ferromagnetic steel tubes

Country Status (1)

Country Link
JP (1) JP5721475B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108535353A (en) * 2018-03-14 2018-09-14 西南石油大学 A kind of pipeline crack detection device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3438657A1 (en) * 2017-08-02 2019-02-06 Eddyfi NDT Inc. Device for pulsed eddy current testing of ferromagnetic structures covered with ferromagnetic protective jacket

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6298251A (en) * 1985-10-25 1987-05-07 Sumitomo Metal Ind Ltd Method and device for detecting corrosion of pipe
JPS637895Y2 (en) * 1981-12-15 1988-03-08
JPH04340462A (en) * 1991-05-17 1992-11-26 Asahi Chem Ind Co Ltd Insert type eddy current flaw detector for magnetic pipe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637895Y2 (en) * 1981-12-15 1988-03-08
JPS6298251A (en) * 1985-10-25 1987-05-07 Sumitomo Metal Ind Ltd Method and device for detecting corrosion of pipe
JPH04340462A (en) * 1991-05-17 1992-11-26 Asahi Chem Ind Co Ltd Insert type eddy current flaw detector for magnetic pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108535353A (en) * 2018-03-14 2018-09-14 西南石油大学 A kind of pipeline crack detection device

Also Published As

Publication number Publication date
JP5721475B2 (en) 2015-05-20

Similar Documents

Publication Publication Date Title
US10677755B2 (en) Apparatus and method for detecting inner defects of steel plate
US8928315B2 (en) Eddy current flaw detection probe
KR102055034B1 (en) Eddy current flaw detection probe and eddy current flaw inspection apparatus
JP5201495B2 (en) Magnetic flaw detection method and magnetic flaw detection apparatus
JP2639264B2 (en) Steel body inspection equipment
US8970212B2 (en) Eddy current probe
JP2011047736A (en) Method of inspecting austenite-based stainless steel welding section
JP5721475B2 (en) Interpolation probe for eddy current testing of ferromagnetic steel tubes
JP2008241685A (en) Eddy current flaw detection method and device
JP4732705B2 (en) Magnetic field sensor
JP2014066688A (en) Eddy current flaw detection probe, and eddy current flaw detection device
JP5233835B2 (en) Eddy current flaw detection probe
JP4627499B2 (en) Eddy current flaw detection sensor
JP2010266277A (en) Eddy-current flaw detection system
JPS63124957A (en) Method and probe for eddy current flaw detection
CN113777154B (en) Method for enhancing coil sensitivity of eddy current sensor
JP2011053160A (en) Magnetic detection sensor
JP4004878B2 (en) Electromagnetic flow meter
JP2008096290A (en) Method for inspecting defect of ferromagnetic heat exchanger tube
JP2006053053A (en) Probe device for eddy current flaw detection
JP2005055325A (en) Eddy current flaw detecting probe
JP2010107287A (en) Metal detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150324

R150 Certificate of patent or registration of utility model

Ref document number: 5721475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees