JP2011007488A - Refrigerating air conditioner - Google Patents

Refrigerating air conditioner Download PDF

Info

Publication number
JP2011007488A
JP2011007488A JP2010189447A JP2010189447A JP2011007488A JP 2011007488 A JP2011007488 A JP 2011007488A JP 2010189447 A JP2010189447 A JP 2010189447A JP 2010189447 A JP2010189447 A JP 2010189447A JP 2011007488 A JP2011007488 A JP 2011007488A
Authority
JP
Japan
Prior art keywords
heat source
refrigerant
compressor
heat exchanger
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010189447A
Other languages
Japanese (ja)
Other versions
JP5168327B2 (en
Inventor
Fumitake Unezaki
史武 畝崎
Takashi Okazaki
多佳志 岡崎
Hirokuni Shiba
広有 柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010189447A priority Critical patent/JP5168327B2/en
Publication of JP2011007488A publication Critical patent/JP2011007488A/en
Application granted granted Critical
Publication of JP5168327B2 publication Critical patent/JP5168327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To avoid the deterioration of reliability caused by the start of a compressor when starting and stopping an individual heat source machine, in a refrigerating air conditioner handling one load by a plurality of the heat source machines.SOLUTION: The refrigerating air conditioner includes scroll compressors 3a, 3b inverter-driven to compress a coolant, air heat exchangers 5a, 5b for exchanging heat between the coolant and air, a pressure reducing device for reducing the pressure of the coolant, and a plurality of the heat source machines 1a, 1b each of which has a load-side heat exchanger which supplies cold to a heat load by exchanging heat between a liquid medium and the coolant. The liquid medium is made to serially flow in the heat source machines.

Description

この発明は、冷凍空調装置に関するものであり、特に水・ブラインなどの液媒体を加熱・冷却することで、冷温熱を負荷側に供給する冷凍空調装置に関するものである。   The present invention relates to a refrigeration air conditioner, and more particularly to a refrigeration air conditioner that supplies cold and hot heat to a load side by heating and cooling a liquid medium such as water and brine.

大規模ビルの空調など、大容量の空調負荷に対しては、熱源機において冷温水をつくり、その冷温水を各負荷側に供給して空調を行うことが一般に行われている。これらの装置において、蒸気圧縮式の熱源機を用いる場合は、比較的大容量の圧縮機を構成しやすいスクリュー圧縮機を用いることが多い。   For large-capacity air conditioning loads such as air conditioning in large-scale buildings, it is common practice to produce cold / hot water in a heat source unit and supply the cold / hot water to each load side for air conditioning. In these apparatuses, when a vapor compression heat source machine is used, a screw compressor that easily constitutes a relatively large capacity compressor is often used.

ビルなどに設けられた熱源機が更新時期を迎え交換される場合には、設備搬入を容易にするため、大容量で1台の熱源機から小型で小容量の複数台の熱源機への更新が求められる。こうした複数台の熱源機から構成される冷凍空調装置として特許文献1に示されるものがある。
この従来例では、スクリュー圧縮機を用いた熱源機を複数台で構成し、運転効率が最大となるように熱源機の運転台数を決定している。
When a heat source unit installed in a building or the like is replaced at the time of renewal, in order to make it easy to carry in the equipment, it is updated from a single large-capacity heat source unit to multiple small, small-capacity heat source units. Is required. There exists a thing shown by patent document 1 as a refrigeration air conditioner comprised from such a several heat source machine.
In this conventional example, a plurality of heat source units using a screw compressor are configured, and the number of operating heat source units is determined so that the operating efficiency is maximized.

特開平9−145176号公報(第1−4頁、図2)Japanese Patent Laid-Open No. 9-145176 (page 1-4, FIG. 2)

しかし、従来の冷凍空調装置の場合には以下のような問題があった。熱源機1台の場合は該当熱源機の発停が行われるほど負荷が低減しない限り、熱源機が連続運転されたのに対し、複数台数の熱源機で構成される場合は、ある一定量負荷が低減した場合に、熱源機の台数切換による容量制御が行われるので、熱源機の発停回数が増加する。熱源機の発停に応じて圧縮機も発停される。この際、圧縮機起動時に液冷媒が吸入される液バックや、起動時の軸トルク急増による軸受け負荷増大や振動が発生しやすくなり、圧縮機の運転信頼性が低下するという問題があった。   However, the conventional refrigeration and air-conditioning apparatus has the following problems. In the case of one heat source unit, unless the load is reduced so that the corresponding heat source unit is started and stopped, the heat source unit is operated continuously, whereas when it is composed of a plurality of heat source units, a certain amount of load is applied. Since the capacity control is performed by switching the number of heat source units when the number of heat source units decreases, the number of times of starting and stopping the heat source units increases. The compressor is also started and stopped in response to the start and stop of the heat source machine. At this time, there has been a problem that the operation reliability of the compressor is lowered because the liquid back into which the liquid refrigerant is sucked at the time of starting the compressor and the bearing load and vibration due to the sudden increase of the shaft torque at the time of starting are likely to occur.

この発明は以上の課題に鑑み、複数台の熱源機で構成される冷凍空調装置において、圧縮機の発停回数を減少させるとともに、圧縮機起動時の信頼性低下要因を回避することで、高信頼性の冷凍空調装置を得ることを目的とする。   In view of the above-described problems, the present invention reduces the number of times the compressor is started and stopped in the refrigeration air-conditioning apparatus including a plurality of heat source units, and avoids a factor of lowering reliability when starting the compressor. An object is to obtain a reliable refrigeration air conditioner.

本発明に係る冷凍空調装置は、インバータ駆動されて冷媒を圧縮するスクロール圧縮機と、前記冷媒と空気との熱交換を行う空気熱交換器と、この空気熱交換器と接続され前記冷媒の圧力を減圧する減圧装置と、この減圧回路と接続され、液媒体と前記冷媒との熱交換を行うことで熱負荷に対し冷熱もしくは温熱を供給する負荷側熱交換器と、熱負荷に対し冷熱を供給する際、前記スクロール圧縮機の吐出側と前記空気熱交換器とを接続するとともに、前記スクロール圧縮機の吸入側と前記負荷側熱交換器とを接続し、熱負荷に対し温熱を供給する際、前記スクロール圧縮機の吐出側と前記負荷側熱交換器とを接続するとともに、前記スクロール圧縮機の吸入側と前記空気熱交換器と接続する四方弁とを有する熱源機を複数台備え、前記液媒体が前記各熱源機を直列に流れることを特徴とするものである。   A refrigerating and air-conditioning apparatus according to the present invention includes a scroll compressor that is driven by an inverter to compress refrigerant, an air heat exchanger that performs heat exchange between the refrigerant and air, and a pressure of the refrigerant that is connected to the air heat exchanger. A pressure reducing device for reducing the pressure, a load side heat exchanger connected to the pressure reducing circuit for supplying cold heat or heat to the heat load by exchanging heat between the liquid medium and the refrigerant, and cooling the heat load. When supplying, the discharge side of the scroll compressor and the air heat exchanger are connected, and the suction side of the scroll compressor and the load side heat exchanger are connected to supply heat to the heat load. At the time, the discharge side of the scroll compressor and the load side heat exchanger are connected, and a plurality of heat source machines including a four-way valve connected to the suction side of the scroll compressor and the air heat exchanger are provided, The liquid medium There is characterized in that the flow through the respective heat source apparatuses in series.

本発明に係る冷凍空調装置は、インバータ駆動されて冷媒を圧縮するスクロール圧縮機と、前記冷媒と空気との熱交換を行う空気熱交換器と、この空気熱交換器と接続され前記冷媒の圧力を減圧する減圧装置と、この減圧回路と接続され、液媒体と前記冷媒との熱交換を行うことで熱負荷に対し冷熱もしくは温熱を供給する負荷側熱交換器と、熱負荷に対し冷熱を供給する際、前記スクロール圧縮機の吐出側と前記空気熱交換器とを接続するとともに、前記スクロール圧縮機の吸入側と前記負荷側熱交換器とを接続し、熱負荷に対し温熱を供給する際、前記スクロール圧縮機の吐出側と前記負荷側熱交換器とを接続するとともに、前記スクロール圧縮機の吸入側と前記空気熱交換器と接続する四方弁とを有する熱源機を複数台備え、前記液媒体が前記各熱源機を直列に流れるようにした為、各熱源機の容量制御を個別に行え、冷凍空調装置の信頼性の向上、及び負荷追随性の向上が実現できる。   A refrigerating and air-conditioning apparatus according to the present invention includes a scroll compressor that is driven by an inverter to compress refrigerant, an air heat exchanger that performs heat exchange between the refrigerant and air, and a pressure of the refrigerant that is connected to the air heat exchanger. A pressure reducing device for reducing the pressure, a load side heat exchanger connected to the pressure reducing circuit for supplying cold heat or heat to the heat load by exchanging heat between the liquid medium and the refrigerant, and cooling the heat load. When supplying, the discharge side of the scroll compressor and the air heat exchanger are connected, and the suction side of the scroll compressor and the load side heat exchanger are connected to supply heat to the heat load. At the time, the discharge side of the scroll compressor and the load side heat exchanger are connected, and a plurality of heat source machines including a four-way valve connected to the suction side of the scroll compressor and the air heat exchanger are provided, The liquid medium There for you to flow the respective heat source apparatuses in series, performing the capacity control of the heat source apparatus individually, improve the reliability of the refrigeration air conditioning system, and improvement of the load tracking ability can be realized.

この発明の実施の形態1を示す冷凍空調装置の回路図である。1 is a circuit diagram of a refrigerating and air-conditioning apparatus showing Embodiment 1 of the present invention. この発明の実施の形態1に係わる冷凍空調装置の圧力とエンタルピの相関を示す図である。It is a figure which shows the correlation of the pressure and enthalpy of the refrigerating air-conditioning apparatus concerning Embodiment 1 of this invention. この発明の実施の形態1に係わる冷却運転での冷凍空調装置の制御動作を示す図である。It is a figure which shows the control action of the refrigerating air conditioner in the cooling operation concerning Embodiment 1 of this invention. この発明の実施の形態1に係わる冷却運転での冷凍空調装置の制御動作を示す図である。It is a figure which shows the control action of the refrigerating air conditioner in the cooling operation concerning Embodiment 1 of this invention. この発明の実施の形態1に係わる冷却運転での熱源機の制御動作を示す図である。It is a figure which shows the control operation of the heat-source equipment in the cooling operation concerning Embodiment 1 of this invention. この発明の実施の形態1に係わる加熱運転での冷凍空調装置の制御動作を示す図である。It is a figure which shows the control action of the refrigerating air-conditioning apparatus in the heating operation concerning Embodiment 1 of this invention. この発明の実施の形態1に係わる加熱運転での冷凍空調装置の制御動作を示す図である。It is a figure which shows the control action of the refrigerating air-conditioning apparatus in the heating operation concerning Embodiment 1 of this invention. この発明の実施の形態1に係わる加熱運転での熱源機の制御動作を示す図である。It is a figure which shows the control operation of the heat source machine in the heating operation concerning Embodiment 1 of this invention. この発明の実施の形態1に係わるスクロール圧縮機の圧縮室の断面図である。It is sectional drawing of the compression chamber of the scroll compressor concerning Embodiment 1 of this invention. この発明の実施の形態1に係わる各圧縮機の圧縮トルク変動を示す図である。It is a figure which shows the compression torque fluctuation | variation of each compressor concerning Embodiment 1 of this invention. この発明の実施の形態1に係わるスクリュー圧縮機の圧縮行程を示す図である。It is a figure which shows the compression stroke of the screw compressor concerning Embodiment 1 of this invention. この発明の実施の形態2を示す冷凍空調装置の回路図である。It is a circuit diagram of the refrigerating and air-conditioning apparatus which shows Embodiment 2 of this invention. この発明の実施の形態2に係わる冷凍空調装置の圧力とエンタルピの相関を示す図である。It is a figure which shows the correlation of the pressure and enthalpy of the refrigerating air-conditioning apparatus concerning Embodiment 2 of this invention. この発明の実施の形態1に係わる冷却運転での熱源機の制御動作を示す図である。It is a figure which shows the control operation of the heat-source equipment in the cooling operation concerning Embodiment 1 of this invention. この発明の実施の形態3を示す冷凍空調装置の回路図である。It is a circuit diagram of the refrigerating and air-conditioning apparatus which shows Embodiment 3 of this invention. この発明の実施の形態4を示す冷凍空調装置の回路図である。It is a circuit diagram of the refrigerating and air-conditioning apparatus which shows Embodiment 4 of this invention. この発明の実施の形態4に係わるスクロール圧縮機の圧縮室の断面図である。It is sectional drawing of the compression chamber of the scroll compressor concerning Embodiment 4 of this invention.

実施の形態1.
以下本発明の実施の形態1を図1に示す。図1は本発明の冷凍空調装置の回路図である。熱源機1a、1bは同じ冷媒回路を搭載した同一構成のものであり、本実施の形態では直列に接続している。熱源機1a、1b内には圧縮機3、四方弁4、空気熱交換器5、逆止弁6、過冷却熱交換器7、減圧装置である主膨張弁8、負荷側熱交換器である水熱交換器9、バイパス膨張弁10が内蔵され図示されるように環状に接続され冷媒回路を構成する。室内空間など負荷側に配置される室内機2内には室内熱交換器11が内蔵される。
ポンプ12は熱源機1と室内機2間を流れる液媒体である冷温水を搬送し、貯水槽13は冷温水をバッファーとして貯留する。
圧縮機3はスクロール圧縮機であり、インバータにより回転数が制御され容量制御されるタイプである。空気熱交換器5はプレートフィン熱交換器であり、送風機によって搬送される熱源機1周囲の空気と熱交換を行う。過冷却熱交換器7は冷媒・冷媒熱交換器であり、プレート熱交換器で構成される。主膨張弁8、バイパス膨張弁10は開度が可変に制御される電子膨張弁である。水熱交換器9はプレート熱交換器であり、搬送される冷温水などの液媒体と冷媒との間で熱交換を行う。この冷凍空調装置の冷媒としては例えばR410Aが用いられる。
室内機2では、熱源機1で冷却・加熱される冷温水などの液媒体がポンプ12により搬送され、室内機2内の室内熱交換器11で室内機2周囲の空気と熱交換を行うことにより冷却・加熱運転を行う。
冷媒回路は環状に接続され、水熱交換器7で冷水をつくる冷却運転では、圧縮機3、四方弁4、空気熱交換器5、逆止弁6a(6e)、過冷却熱交換器7の一方の流路、主膨張弁8、逆止弁6d(6h)、水熱交換器9、四方弁4、圧縮機3が環状に接続され、この順で冷媒が流れる。また過冷却熱交換器7を出た冷媒の一部が分岐され、バイパス膨張弁10、過冷却熱交換器7のもう一方の流路を経て圧縮機3の圧縮室にインジェクションされる。
水熱交換器7で温水をつくる加熱運転では、圧縮機3、四方弁4、水熱交換器7、逆止弁6b(6f)、過冷却熱交換器7の一方の流路、主膨張弁8、逆止弁6c(6g)、空気熱交換器5、四方弁4、圧縮機3が環状に接続され、この順で冷媒が流れる。また加熱運転においても過冷却熱交換器7を出た冷媒の一部が分岐され、上記冷却運転時と同様にバイパス膨張弁10、過冷却熱交換器7のもう一方の流路を経て圧縮機3の圧縮室にインジェクションされる。
このように冷却、加熱運転において過冷却熱交換器7から分岐後、バイパス膨張弁10、過冷却熱交換器7を経て圧縮機3にインジェクションされる回路にてエコノマイザ回路を構成する。
液媒体はポンプ12により搬送され、ポンプ12、室内熱交換器11、熱源機1aの水熱交換器9a、熱源機1bの水熱交換器9b、貯水槽13、ポンプ12と環状に接続された流路を、この順で搬送される。
Embodiment 1 FIG.
Embodiment 1 of the present invention is shown in FIG. FIG. 1 is a circuit diagram of a refrigerating and air-conditioning apparatus according to the present invention. The heat source units 1a and 1b have the same configuration equipped with the same refrigerant circuit, and are connected in series in the present embodiment. In the heat source units 1a and 1b, there are a compressor 3, a four-way valve 4, an air heat exchanger 5, a check valve 6, a supercooling heat exchanger 7, a main expansion valve 8 which is a decompression device, and a load side heat exchanger. A water heat exchanger 9 and a bypass expansion valve 10 are built in and connected in an annular shape as shown in the figure to constitute a refrigerant circuit. An indoor heat exchanger 11 is built in the indoor unit 2 arranged on the load side such as an indoor space.
The pump 12 conveys cold / hot water that is a liquid medium flowing between the heat source unit 1 and the indoor unit 2, and the water storage tank 13 stores the cold / hot water as a buffer.
The compressor 3 is a scroll compressor, and is a type in which the rotation speed is controlled by an inverter and the capacity is controlled. The air heat exchanger 5 is a plate fin heat exchanger, and exchanges heat with the air around the heat source unit 1 conveyed by a blower. The supercooling heat exchanger 7 is a refrigerant / refrigerant heat exchanger, and is composed of a plate heat exchanger. The main expansion valve 8 and the bypass expansion valve 10 are electronic expansion valves whose opening degree is variably controlled. The water heat exchanger 9 is a plate heat exchanger, and performs heat exchange between a liquid medium such as cold / hot water being conveyed and the refrigerant. For example, R410A is used as the refrigerant of the refrigeration air conditioner.
In the indoor unit 2, a liquid medium such as cold / hot water that is cooled and heated by the heat source unit 1 is conveyed by the pump 12, and heat is exchanged with the air around the indoor unit 2 by the indoor heat exchanger 11 in the indoor unit 2. Cooling and heating operation is performed by
In the cooling operation in which the refrigerant circuit is connected in a ring shape and chilled water is produced by the water heat exchanger 7, the compressor 3, the four-way valve 4, the air heat exchanger 5, the check valve 6a (6e), and the supercooling heat exchanger 7 One flow path, the main expansion valve 8, the check valve 6d (6h), the water heat exchanger 9, the four-way valve 4, and the compressor 3 are connected in an annular shape, and the refrigerant flows in this order. Further, a part of the refrigerant exiting the supercooling heat exchanger 7 is branched and injected into the compression chamber of the compressor 3 through the bypass expansion valve 10 and the other flow path of the supercooling heat exchanger 7.
In the heating operation in which hot water is generated by the water heat exchanger 7, the compressor 3, the four-way valve 4, the water heat exchanger 7, the check valve 6b (6f), one flow path of the supercooling heat exchanger 7, the main expansion valve 8, the check valve 6c (6g), the air heat exchanger 5, the four-way valve 4, and the compressor 3 are connected in an annular shape, and the refrigerant flows in this order. In the heating operation, a part of the refrigerant exiting the supercooling heat exchanger 7 is branched, and the compressor is passed through the bypass expansion valve 10 and the other flow path of the supercooling heat exchanger 7 as in the cooling operation. 3 compression chambers.
In this way, an economizer circuit is constituted by a circuit that is branched from the supercooling heat exchanger 7 in the cooling and heating operation and then injected into the compressor 3 through the bypass expansion valve 10 and the supercooling heat exchanger 7.
The liquid medium is conveyed by the pump 12 and connected to the pump 12, the indoor heat exchanger 11, the water heat exchanger 9 a of the heat source machine 1 a, the water heat exchanger 9 b of the heat source machine 1 b, the water storage tank 13, and the pump 12. The flow path is conveyed in this order.

熱源機1a、1b内には圧力センサ14a、14cが圧縮機3吸入側、圧力センサ14b、14dが圧縮機3吐出側に設けられており、それぞれ設置場所の冷媒圧力を計測する。また温度センサ15a、15iが圧縮機3吸入側、温度センサ15b、15jが圧縮機3吐出側、温度センサ15c、15kが空気熱交換器5の冷却運転時の出口側、温度センサ15d、15lが水熱交換器7の冷却運転時の入口側、温度センサ15e、15mがエコノマイザ回路上の過冷却熱交換器7流路の入口側、温度センサ15f、15nがエコノマイザ回路上の過冷却熱交換器7流路の出口側に設けられており、それぞれ設置場所の冷媒温度を計測する。また温度センサ15g、15oが水熱交換器7での水など液媒体の流入部、温度センサ15h、15pが水熱交換器7での水など液媒体の流出部に設けられており、それぞれ設置場所の液媒体の温度を計測する。
温度センサ15qは室内機2への液媒体流入側に、温度センサ15rは室内機2への液媒体流入側に設けられ、それぞれ設置場所の液媒体の温度を計測する。
温度センサ15s、温度センサ15tは熱源機1周囲の空気温度を計測するために設けられる。温度センサ15uは室内機2周囲の室内空気温度を計測するために設けられる。
計測制御装置16は圧力センサ14、温度センサ15などの熱源機1、室内機2の計測・運転情報や冷凍空調装置使用者から指示される運転内容に基づいて、圧縮機3の運転・停止や回転数、空気熱交換器5の送風機送風量、主膨張弁8、バイパス膨張弁10の開度、ポンプ12の搬送量など各アクチュエータを制御する。
In the heat source devices 1a and 1b, pressure sensors 14a and 14c are provided on the suction side of the compressor 3, and pressure sensors 14b and 14d are provided on the discharge side of the compressor 3, and measure the refrigerant pressure at the installation location. Further, the temperature sensors 15a and 15i are the suction side of the compressor 3, the temperature sensors 15b and 15j are the discharge side of the compressor 3, the temperature sensors 15c and 15k are the outlet side during the cooling operation of the air heat exchanger 5, and the temperature sensors 15d and 15l are In the cooling operation of the water heat exchanger 7, the temperature sensors 15e and 15m are the inlet side of the flow path of the supercooling heat exchanger 7 on the economizer circuit, and the temperature sensors 15f and 15n are the supercooling heat exchanger on the economizer circuit. It is provided on the outlet side of the seven flow paths, and measures the refrigerant temperature at each installation location. Further, temperature sensors 15g and 15o are provided at the inflow portion of the liquid medium such as water in the water heat exchanger 7, and temperature sensors 15h and 15p are provided at the outflow portion of the liquid medium such as water in the water heat exchanger 7. Measure the temperature of the liquid medium at the location.
The temperature sensor 15q is provided on the liquid medium inflow side to the indoor unit 2, and the temperature sensor 15r is provided on the liquid medium inflow side to the indoor unit 2, and measures the temperature of the liquid medium at the installation location.
The temperature sensor 15s and the temperature sensor 15t are provided for measuring the air temperature around the heat source unit 1. The temperature sensor 15u is provided for measuring the indoor air temperature around the indoor unit 2.
The measurement control device 16 operates / stops the compressor 3 based on the measurement / operation information of the heat source unit 1 and the indoor unit 2 such as the pressure sensor 14 and the temperature sensor 15 and the operation content instructed by the refrigeration / air-conditioning device user. Each actuator is controlled such as the rotational speed, the blower air flow rate of the air heat exchanger 5, the opening of the main expansion valve 8 and the bypass expansion valve 10, and the transport amount of the pump 12.

次に、この冷凍空調装置での運転動作について図1、図2に基づいて説明する。図2は、この発明の実施の形態1における冷凍空調装置の圧力とエンタルピの関係を表した図であり、横軸はエンタルピを表し、縦軸は圧力を表している。熱源機の運転動作は熱源機1a、1bとも同様となるので、代表して熱源機1aにおける動作を説明する。
まず冷却運転における冷媒回路の動作について説明する。冷却運転においては、四方弁4aの流路は図1の実線方向に設定される。圧縮機3aから吐出された高温高圧(Ph)のガス冷媒(図2点A)は、四方弁4aを経て空気熱交換器5aに流入し、凝縮器となる空気熱交換器5aで放熱しながら凝縮・液化する(図2点B)。空気熱交換器5aを出た高圧の液冷媒は逆止弁6aを経て、過冷却熱交換器7aで、エコノマイザ回路を流れる冷媒によりさらに冷却され(図2点C)、温度低下し主膨張弁8aに流入する。主膨張弁8aにて低圧(Pl)に減圧された二相状態の冷媒は(図2点D)、逆止弁6dを経て蒸発器となる水熱交換器9aにて、蒸発ガス化しながら吸熱し、液媒体である水を冷却し冷水を生成する。水熱交換器9aを出た冷媒は、四方弁4aを経て圧縮機3aに吸入される(図2点E)。過冷却熱交換器7aを出た高圧の液冷媒の一部はエコノマイザ回路にバイパスされ、バイパス膨張弁10aにて、中間圧(Pm)まで減圧された後(図2点F)、過冷却熱交換器7aのもう一方の流路に流入し、空気熱交換器5aを出た高圧液冷媒と熱交換し加熱蒸発される(図2点G)。エコノマイザ回路を流れる冷媒は、その後圧縮機3a内の圧縮途中の圧縮室にインジェクションされ、吸入状態(図2点E)から圧縮された冷媒(図2点H)と混合した後(図2点I)、高圧(Ph)まで圧縮され、高温高圧のガス冷媒(図2点A)となる。
次に冷却運転における液媒体の動作について説明する。貯水槽13内の低温、例えば7℃の冷水は液ポンプ12で吸引、搬送され、室内機2内の室内熱交換器11に流入し、周囲空気を冷却しながら温度上昇し、例えば12℃となって室内熱交換器11、室内機2を流出する。その後熱源機1aに流入した冷水は水熱交換器9aにて冷媒により冷却され温度低下し、例えば9.5℃となって、水熱交換器9a、熱源機1aを流出する。その後冷水は熱源機1bに流入し、水熱交換器9bに冷媒によりさらに冷却され温度低下し、例えば7℃となって、水熱交換器9b、熱源機1bを流出し、貯水槽13に流入する。熱源機1bの各構成の作用、動作は上記熱源機1aと同様である。
Next, the operation | movement operation | movement in this refrigeration air conditioner is demonstrated based on FIG. 1, FIG. FIG. 2 is a diagram showing the relationship between the pressure and enthalpy of the refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention, in which the horizontal axis represents enthalpy and the vertical axis represents pressure. Since the operation of the heat source machine is the same for both the heat source machines 1a and 1b, the operation of the heat source machine 1a will be described as a representative.
First, the operation of the refrigerant circuit in the cooling operation will be described. In the cooling operation, the flow path of the four-way valve 4a is set in the direction of the solid line in FIG. The high-temperature and high-pressure (Ph) gas refrigerant (point A in FIG. 2) discharged from the compressor 3a flows into the air heat exchanger 5a through the four-way valve 4a and dissipates heat in the air heat exchanger 5a serving as a condenser. It condenses and liquefies (Fig. 2, point B). The high-pressure liquid refrigerant exiting the air heat exchanger 5a passes through the check valve 6a, and is further cooled by the refrigerant flowing through the economizer circuit in the supercooling heat exchanger 7a (point C in FIG. 2). It flows into 8a. The refrigerant in the two-phase state decompressed to a low pressure (Pl) by the main expansion valve 8a (D in FIG. 2) absorbs heat while evaporating and gasifying in the water heat exchanger 9a that becomes the evaporator through the check valve 6d. Then, the liquid medium is cooled to produce cold water. The refrigerant exiting the water heat exchanger 9a is sucked into the compressor 3a through the four-way valve 4a (point E in FIG. 2). A part of the high-pressure liquid refrigerant exiting the supercooling heat exchanger 7a is bypassed to the economizer circuit, and is depressurized to the intermediate pressure (Pm) by the bypass expansion valve 10a (point F in FIG. 2). The refrigerant flows into the other flow path of the exchanger 7a, exchanges heat with the high-pressure liquid refrigerant discharged from the air heat exchanger 5a, and is evaporated by heating (point G in FIG. 2). The refrigerant flowing through the economizer circuit is then injected into the compression chamber in the compressor 3a in the middle of compression and mixed with the refrigerant (point H in FIG. 2) from the suction state (point E in FIG. 2) (point I in FIG. 2). ), Compressed to a high pressure (Ph), and becomes a high-temperature and high-pressure gas refrigerant (point A in FIG. 2).
Next, the operation of the liquid medium in the cooling operation will be described. Cold water in the water storage tank 13, for example, cold water of 7 ° C. is sucked and conveyed by the liquid pump 12, flows into the indoor heat exchanger 11 in the indoor unit 2, and rises in temperature while cooling the ambient air, for example, 12 ° C. It flows out the indoor heat exchanger 11 and the indoor unit 2. Thereafter, the cold water that has flowed into the heat source unit 1a is cooled by the refrigerant in the water heat exchanger 9a and decreases in temperature, for example, becomes 9.5 ° C., and flows out of the water heat exchanger 9a and the heat source unit 1a. Thereafter, the cold water flows into the heat source unit 1b, is further cooled by the refrigerant in the water heat exchanger 9b and decreases in temperature, for example, reaches 7 ° C., flows out of the water heat exchanger 9b and the heat source unit 1b, and flows into the water storage tank 13 To do. The operation and operation of each component of the heat source unit 1b are the same as those of the heat source unit 1a.

次に加熱運転における冷媒回路の動作について説明する。加熱運転においても、熱源機1a、1bの動作は同様となるので、代表して熱源機1aにおける動作を説明する。加熱運転では四方弁4aの流路は図1の点線方向に設定される。加熱運転における冷媒の状態変化も冷却運転とほぼ同様であり、図2に示される状態変化となる。圧縮機3aから吐出された高温高圧(Ph)のガス冷媒(図2点A)は、四方弁4aを経て水熱交換器9aに流入し、凝縮器となる水熱交換器9aで放熱しながら凝縮・液化する(図2点B)。この際、液媒体である水を加熱し温水を生成する。水熱交換器9aを出た高圧の液冷媒は逆止弁6bを経て、過冷却熱交換器7aで、エコノマイザ回路を流れる冷媒によりさらに冷却され(図2点C)、温度低下し主膨張弁8aに流入する。主膨張弁8aにて低圧(Pl)に減圧され二相状態の冷媒となり(図2点D)、逆止弁6cを経て蒸発器となる空気熱交換器5aに流入し、空気熱交換器5aにて、蒸発ガス化され、四方弁4aを経て圧縮機3aに吸入される(図2点E)。過冷却熱交換器7aを出た高圧の液冷媒の一部はエコノマイザ回路にバイパスされ、バイパス膨張弁10aにて、中間圧(Pm)まで減圧された後、過冷却熱交換器7aのもう一方の流路に流入し、水熱交換器9aを出た高圧液冷媒と熱交換し加熱蒸発される(図2点G)。エコノマイザ回路を流れる冷媒は、その後圧縮機3a内の圧縮途中の圧縮室にインジェクションされ、吸入状態(図2点E)から圧縮された冷媒(図2点H)と混合した後(図2点I)、高圧(Ph)まで圧縮され、高温高圧のガス冷媒(図2点A)となる。
次に加熱運転における液媒体の動作について説明する。貯水槽13内の高温、例えば45℃の温水は液ポンプ12で吸引、搬送され、室内機2内の室内熱交換器11に流入し、周囲空気を加熱しながら温度低下し、例えば40℃となって室内熱交換器11、室内機2を流出する。その後熱源機1aに流入した温水は水熱交換器9aにて冷媒により加熱され温度上昇し、例えば42.5℃となって、水熱交換器9a、熱源機1aを流出する。その後温水は熱源機1bに流入し、水熱交換器9bに冷媒によりさらに加熱され温度上昇し、例えば45℃となって、水熱交換器9b、熱源機1bを流出し、貯水槽13に流入する。
Next, the operation of the refrigerant circuit in the heating operation will be described. Since the operations of the heat source units 1a and 1b are the same in the heating operation, the operation of the heat source unit 1a will be described as a representative. In the heating operation, the flow path of the four-way valve 4a is set in the direction of the dotted line in FIG. The state change of the refrigerant in the heating operation is almost the same as that in the cooling operation, and the state change shown in FIG. The high-temperature and high-pressure (Ph) gas refrigerant (point A in FIG. 2) discharged from the compressor 3a flows into the hydrothermal exchanger 9a via the four-way valve 4a, and dissipates heat in the hydrothermal exchanger 9a serving as a condenser. It condenses and liquefies (Fig. 2, point B). At this time, water as a liquid medium is heated to generate hot water. The high-pressure liquid refrigerant exiting the water heat exchanger 9a passes through the check valve 6b, and is further cooled by the refrigerant flowing through the economizer circuit in the supercooling heat exchanger 7a (point C in FIG. 2). It flows into 8a. The refrigerant is reduced to a low pressure (Pl) by the main expansion valve 8a to be a two-phase refrigerant (point D in FIG. 2), flows into the air heat exchanger 5a serving as an evaporator through the check valve 6c, and then flows into the air heat exchanger 5a. The gas is evaporated and is sucked into the compressor 3a through the four-way valve 4a (point E in FIG. 2). A part of the high-pressure liquid refrigerant exiting the supercooling heat exchanger 7a is bypassed to the economizer circuit, and after being depressurized to an intermediate pressure (Pm) by the bypass expansion valve 10a, the other side of the supercooling heat exchanger 7a. The heat is exchanged with the high-pressure liquid refrigerant exiting the water heat exchanger 9a and evaporated by heating (point G in FIG. 2). The refrigerant flowing through the economizer circuit is then injected into the compression chamber in the compressor 3a in the middle of compression and mixed with the refrigerant (point H in FIG. 2) from the suction state (point E in FIG. 2) (point I in FIG. 2). ), Compressed to a high pressure (Ph), and becomes a high-temperature and high-pressure gas refrigerant (point A in FIG. 2).
Next, the operation of the liquid medium in the heating operation will be described. High temperature in the water storage tank 13, for example, 45 ° C. hot water is sucked and conveyed by the liquid pump 12, flows into the indoor heat exchanger 11 in the indoor unit 2, and decreases in temperature while heating the ambient air, for example, 40 ° C. It flows out the indoor heat exchanger 11 and the indoor unit 2. Thereafter, the hot water flowing into the heat source unit 1a is heated by the refrigerant in the water heat exchanger 9a and rises in temperature, for example, reaches 42.5 ° C., and flows out of the water heat exchanger 9a and the heat source unit 1a. Thereafter, the hot water flows into the heat source unit 1b, further heated by the refrigerant to the water heat exchanger 9b and rises in temperature, for example, 45 ° C., flows out of the water heat exchanger 9b and the heat source unit 1b, and flows into the water storage tank 13 To do.

冷却、加熱運転において、貯水槽13に多量の水を保持しておくことにより、室内機2に送水される水温を安定させることができる。熱源機1a、1bの冷却・加熱能力は、流入する冷温水温度や外気条件、熱源機1の運転制御に応じて変動が発生し、これにより、熱源機1を流出する冷温水温度も変動する。この冷温水をそのまま室内機2に送水すると、室内機での冷却・加熱能力も変動し、空調を行う場合は使用者に不快間を与えるなどの問題が発生し、また冷却目的などで所定の空気状態に制御させたい場合は、状態が不安定となり、所定の状態を実現できないと問題が発生する。貯水槽13に多量の水を保持しておくと、熱源機1の能力変動が発生しても、貯水槽13の温度変動は小さく、従って、室内機2に送水される水温の変動も抑制される。従って、前記の問題が解消され、より快適な空調や、安定した空気状態に制御することができる。   In the cooling and heating operation, the water temperature supplied to the indoor unit 2 can be stabilized by holding a large amount of water in the water storage tank 13. The cooling / heating capacity of the heat source units 1a and 1b varies depending on the inflowing hot / cold water temperature, the outside air conditions, and the operation control of the heat source unit 1, and thus the cold / hot water temperature flowing out of the heat source unit 1 also varies. . If this cold / warm water is supplied to the indoor unit 2 as it is, the cooling / heating capacity of the indoor unit will also fluctuate, causing problems such as discomfort to the user when performing air conditioning, and for cooling purposes, etc. When it is desired to control the air state, the state becomes unstable, and a problem occurs if the predetermined state cannot be realized. If a large amount of water is retained in the water storage tank 13, even if the capacity fluctuation of the heat source device 1 occurs, the temperature fluctuation of the water storage tank 13 is small, and therefore the temperature fluctuation of the water supplied to the indoor unit 2 is also suppressed. The Therefore, the above-mentioned problem can be solved, and more comfortable air conditioning and stable air condition can be controlled.

次に、この冷凍空調装置での制御動作について説明する。始めに冷却運転について図3.1、図3.2に基づいて説明する。まず冷凍空調装置使用者が室内機2における空調温度の目標値を設定する(ST101)。そしてこの目標値と温度センサ15uで計測される室内空気温度がこの目標値より所定値、例えば1℃以上高い場合には、冷凍空調装置の運転を開始する(ST102)。冷凍空調装置の運転開始に伴い、ポンプ12が所定の初期容量で始動し(ST103)、熱源機1a、1bの運転が指示される(ST104)。
そしてこの状態で運転した後、装置運転状態に応じて制御を行う。
Next, the control operation in this refrigeration air conditioner will be described. First, the cooling operation will be described with reference to FIGS. 3.1 and 3.2. First, the user of the refrigeration air conditioner sets a target value of the air conditioning temperature in the indoor unit 2 (ST101). When the target value and the indoor air temperature measured by the temperature sensor 15u are higher than the target value by a predetermined value, for example, 1 ° C., the operation of the refrigeration air conditioner is started (ST102). With the start of operation of the refrigeration air conditioner, the pump 12 starts with a predetermined initial capacity (ST103), and the operation of the heat source units 1a and 1b is instructed (ST104).
And after driving | running in this state, it controls according to an apparatus operating state.

初期状態では熱源機1a、1bとも運転される。熱源機1全体では冷水温度を所定の温度、例えば7℃に冷却することが目標とされる(ST105)。ポンプ12の容量制御(送水量制御)については、温度センサ15rで検知される室内機2を流出する冷水温度が予め設定された目標値、例えば12℃となるように制御される(ST106)。ポンプ12の容量が高いと、冷水流量が増加するため、水温変化が小さくなり、室内熱交換器11出口の水温は上昇しにくくなり、低下する。逆に、ポンプ12の容量が低いと、冷水流量が減少するため、水温変化が大きくなり、室内熱交換器11出口の水温は上昇する。そこで室内熱交換器11出口の水温と目標値とを比較し、水温が高い場合はポンプ12の容量を増加させ、水温が低い場合はポンプ12の容量を減少させる(ST107)。
2台の熱源機1a、1bが運転される場合は、2台分で所定の冷水温度まで冷却するようにし、例えばポンプ12の容量制御により熱源機1に流入する水温が12℃に制御される場合には、熱源機1aで9.5℃、熱源機1bで7℃まで冷却されるように熱源機1内の冷水の冷却目標温度が設定され、それに応じて圧縮機3の容量が制御される。1台の熱源機1が運転される場合には、運転している熱源機1が前記の熱源機1全体での目標冷却温度を実現するように冷水冷却目標温度が設定され、圧縮機3の容量が制御される。圧縮機3の容量制御方法については後述する。
In the initial state, both the heat source units 1a and 1b are operated. In the heat source apparatus 1 as a whole, the target is to cool the cold water temperature to a predetermined temperature, for example, 7 ° C. (ST105). The capacity control (water supply amount control) of the pump 12 is controlled so that the temperature of the cold water flowing out of the indoor unit 2 detected by the temperature sensor 15r becomes a preset target value, for example, 12 ° C. (ST106). When the capacity of the pump 12 is high, the flow rate of the cold water increases, so that the change in the water temperature becomes small, and the water temperature at the outlet of the indoor heat exchanger 11 becomes difficult to rise and falls. On the other hand, when the capacity of the pump 12 is low, the flow rate of the cold water decreases, so the change in the water temperature increases and the water temperature at the outlet of the indoor heat exchanger 11 rises. Therefore, the water temperature at the outlet of the indoor heat exchanger 11 is compared with the target value. When the water temperature is high, the capacity of the pump 12 is increased, and when the water temperature is low, the capacity of the pump 12 is decreased (ST107).
When the two heat source units 1a and 1b are operated, the two units are cooled to a predetermined cold water temperature, and the water temperature flowing into the heat source unit 1 is controlled to 12 ° C. by controlling the capacity of the pump 12, for example. In this case, the cooling target temperature of the cold water in the heat source unit 1 is set so that the heat source unit 1a is cooled to 9.5 ° C. and the heat source unit 1b is cooled to 7 ° C., and the capacity of the compressor 3 is controlled accordingly. The When one heat source unit 1 is operated, the chilled water cooling target temperature is set so that the operating heat source unit 1 realizes the target cooling temperature of the entire heat source unit 1, and the compressor 3 The capacity is controlled. A capacity control method of the compressor 3 will be described later.

熱源機1の運転台数は、熱源機1a、1bの圧縮機3容量に応じて制御される(図3.2のST108)。熱源機1a、1bとも運転され、前記のような圧縮機容量制御がなされている場合に、熱源機1a、1bの圧縮機3の合計容量が所定値以下となった場合、例えば、合計容量が最大容量の30%以下となった場合(ST109)には、熱源機2台で運転していても、冷却負荷に対して、熱源機1の冷却能力が過大と判断し、熱源機1の運転台数を減少させ、熱源機1a、1bのどちらか一方の運転を停止する(ST110)。
逆に熱源機1の運転台数が1台の場合に、運転している熱源機1の圧縮機3の容量が所定値以上となった場合、例えば、熱源機1の最大容量の90%以上となった場合(ST111)には、熱源機1台の運転では、冷却負荷に対して、熱源機1の冷却能力が不足と判断し、熱源機1の運転台数を増加させ、停止している熱源機1の運転を開始する(ST112)。
The number of operating heat source units 1 is controlled according to the capacity of the compressor 3 of the heat source units 1a and 1b (ST108 in FIG. 3.2). When both the heat source units 1a and 1b are operated and the compressor capacity control is performed as described above, if the total capacity of the compressors 3 of the heat source units 1a and 1b is less than a predetermined value, for example, the total capacity is When the maximum capacity is 30% or less (ST109), it is determined that the cooling capacity of the heat source unit 1 is excessive with respect to the cooling load even if the two heat source units are operating, and the heat source unit 1 is operated. The number of units is decreased, and the operation of either one of the heat source units 1a and 1b is stopped (ST110).
Conversely, when the number of operating heat source units 1 is one and the capacity of the compressor 3 of the operating heat source unit 1 exceeds a predetermined value, for example, 90% or more of the maximum capacity of the heat source unit 1 If it becomes (ST111), in the operation of one heat source unit, it is determined that the cooling capacity of the heat source unit 1 is insufficient with respect to the cooling load, and the number of operating heat source units 1 is increased and stopped. The operation of the machine 1 is started (ST112).

また貯水槽13から室内機2に送水される水温によっても熱源機の運転台数を制御する。貯水槽13から室内機2に送水される水の温度は温度センサ15qによって検知され、この温度が目標温度か否かを判定し(ST113)、水温が所定値より高い場合、例えば目標とする水温が7℃でありそれより1℃高い8℃となった場合には、熱源機1の冷却能力が冷却負荷に対し不足と判断し、熱源機1の運転台数を増加させ、停止している熱源機1の運転を開始する。逆に貯水槽13から室内機2に送水される水温が所定値より低い場合、例えば目標とする水温が7℃でありそれより1℃低い6℃となった場合には、熱源機1の冷却能力が冷却負荷に対して過剰と判断し、熱源機1の運転台数を減少させる(ST114)。このとき熱源機1が2台とも運転している場合には1台運転とするが、1台しか運転していない場合には、熱源機1の運転を全数停止する。
また温度センサ15uにより検知される室内空気温度が目標値より所定値、例えば2℃以上低い場合(ST115)も、熱源機1の冷却能力が冷却負荷に対して過剰と判断し、熱源機1の運転台数を減少させる、もしくは熱源機を全て停止し、ポンプ12の送水も停止する制御を行う(ST116)。その後、再びステップST105に戻って温度設定を確認し、上記のステップST105〜ST116のサイクルを繰り返す(図3.1のAから図3.2のAへ)。
Further, the number of operating heat source units is also controlled by the temperature of water sent from the water storage tank 13 to the indoor unit 2. The temperature of the water fed from the water storage tank 13 to the indoor unit 2 is detected by the temperature sensor 15q, and it is determined whether this temperature is the target temperature (ST113). If the water temperature is higher than the predetermined value, for example, the target water temperature Is 8 ° C, which is 1 ° C higher than 7 ° C, it is determined that the cooling capacity of the heat source device 1 is insufficient with respect to the cooling load, the number of operating heat source devices 1 is increased, and the heat source is stopped. The operation of the machine 1 is started. On the contrary, when the temperature of the water sent from the water storage tank 13 to the indoor unit 2 is lower than a predetermined value, for example, when the target water temperature is 7 ° C. and 6 ° C. lower by 1 ° C., the heat source device 1 is cooled. It is determined that the capacity is excessive with respect to the cooling load, and the number of operating heat source units 1 is decreased (ST114). At this time, when both of the heat source devices 1 are operating, one unit is operated. However, when only one unit is operating, all the operations of the heat source units 1 are stopped.
Also, when the indoor air temperature detected by the temperature sensor 15u is lower than a target value by a predetermined value, for example, 2 ° C. (ST115), it is determined that the cooling capacity of the heat source unit 1 is excessive with respect to the cooling load, and the heat source unit 1 Control is performed to reduce the number of operating units or to stop all the heat source units and stop the water supply of the pump 12 (ST116). Thereafter, the process returns to step ST105 to confirm the temperature setting, and the above-described steps ST105 to ST116 are repeated (from A in FIG. 3.1 to A in FIG. 3.2).

次に冷却運転時の熱源機1内の制御動作について図4に基づいて説明する。制御動作においても、熱源機1a、1bとも同様の動作が実施されるので、代表として熱源機1aの運転制御について説明する。
まず、熱源機1aを起動(ST201)すると、圧縮機3aの回転数、空気熱交換器5aへ送風量、主膨張弁8aの開度、バイパス膨張弁10aの開度を初期値に設定して運転を行う(ST202)。空気熱交換器5aの送風量の初期設定値は温度センサ15sで検知される外気温度およびあらかじめ計測制御装置16に記憶された所定値とを比較して決定される。ここで外気温度と比較する所定値は圧縮機の運転容量、熱交換器性能など機器性能に基づいて定められ、冷凍サイクルの高圧(圧縮機3a吐出冷媒の圧力)が低下しすぎないようにするため、外気温度が高い場合は高風量、低い場合は低風量に設定される。
Next, the control operation in the heat source unit 1 during the cooling operation will be described with reference to FIG. Also in the control operation, the same operation is performed for the heat source devices 1a and 1b. Therefore, the operation control of the heat source device 1a will be described as a representative.
First, when the heat source unit 1a is activated (ST201), the rotation speed of the compressor 3a, the amount of air blown to the air heat exchanger 5a, the opening of the main expansion valve 8a, and the opening of the bypass expansion valve 10a are set to initial values. Operation is performed (ST202). The initial setting value of the air flow rate of the air heat exchanger 5a is determined by comparing the outside air temperature detected by the temperature sensor 15s and a predetermined value stored in the measurement control device 16 in advance. Here, the predetermined value to be compared with the outside air temperature is determined based on equipment performance such as the operating capacity of the compressor and heat exchanger performance, so that the high pressure of the refrigeration cycle (pressure of the refrigerant discharged from the compressor 3a) does not decrease too much. Therefore, the high air volume is set when the outside air temperature is high, and the low air volume is set when it is low.

そして、この状態で運転した後、装置運転状態に応じて各アクチュエータを制御する。まず圧縮機3の回転数は、温度センサ15hで検知される水熱交機9出口の冷水温度が予め設定された目標値となるように制御される(ST203)。目標温度は前述したように熱源機1a、1bで異なり、例えば熱源機1aでは9.5℃、熱源機1bでは7℃に設定される。圧縮機3の回転数が高いと、冷媒流量が増加するため装置の冷却能力が増加し、水がより冷却されるため、水熱交換器9出口の水温は低下する。逆に、圧縮機3の回転数が低いと、水熱交換器9出口の水温は上昇する。そこで水熱交換器9出口の水温と目標値とを比較し、水温が高い場合は圧縮機3の回転数を増加させ、水温が低い場合は圧縮機3の回転数を減少させる(ST204)。   And after driving | running in this state, each actuator is controlled according to an apparatus operating state. First, the rotation speed of the compressor 3 is controlled so that the cold water temperature at the outlet of the hydrothermal exchanger 9 detected by the temperature sensor 15h becomes a preset target value (ST203). As described above, the target temperature differs between the heat source devices 1a and 1b. For example, the target temperature is set to 9.5 ° C. for the heat source device 1a and 7 ° C. for the heat source device 1b. If the rotation speed of the compressor 3 is high, the refrigerant flow rate increases, the cooling capacity of the apparatus increases, and the water is further cooled, so the water temperature at the outlet of the water heat exchanger 9 decreases. Conversely, when the rotation speed of the compressor 3 is low, the water temperature at the outlet of the water heat exchanger 9 rises. Therefore, the water temperature at the outlet of the water heat exchanger 9 is compared with the target value. When the water temperature is high, the rotational speed of the compressor 3 is increased, and when the water temperature is low, the rotational speed of the compressor 3 is decreased (ST204).

次に、空気熱交換器5の送風量であるが、この送風量は基本的に初期設定値にて運転を行う。ただし、運転条件によって、圧力センサ14bで検知される高圧が所定範囲内からはずれるような場合には、高圧が所定範囲内であるかを確認し(ST205)、高圧が、過度に上昇した場合は圧縮機3a保護のために風量を増加させる制御を行う。また、高圧が過度に低下した場合は、主膨張弁8の開度制御を行っても低圧(圧縮機3a吸入冷媒の圧力)が大きく低下し、冷媒蒸発温度が氷点下以下に低下し、冷水が凍結する恐れが出てくるので、高圧の過度の低下を抑制するように風量を減少させる制御を行う(ST206)。   Next, although it is the air flow rate of the air heat exchanger 5, this air flow rate is basically operated at an initial set value. However, if the high pressure detected by the pressure sensor 14b deviates from the predetermined range depending on the operating conditions, check whether the high pressure is within the predetermined range (ST205), and if the high pressure has increased excessively In order to protect the compressor 3a, control is performed to increase the air volume. If the high pressure is excessively reduced, the low pressure (pressure of the refrigerant sucked by the compressor 3a) is greatly reduced even if the opening degree of the main expansion valve 8 is controlled, the refrigerant evaporation temperature is lowered below the freezing point, Since there is a risk of freezing, control is performed to reduce the air volume so as to suppress an excessive decrease in high pressure (ST206).

次に、主膨張弁8aの開度であるが、蒸発器となる水熱交換器9aの出口であり、圧縮機3a吸入の状態(図2点E)の冷媒過熱度SHを演算し(ST208)、この冷媒過熱度SHが、予め設定された目標値、例えば2℃となるように制御される(ST209)。ここで水熱交換器9aの出口であり圧縮機3a吸入の冷媒過熱度SHは、(温度センサ15a検知温度(圧縮機3の吸入温度))−(圧力センサ14aから換算される冷媒飽和温度)で演算される値を用いる。
主膨張弁8aの開度が小さくなると、水熱交換器9aを流れる冷媒流量は減少し、水熱交換器9a出口の冷媒過熱度SHは大きくなり、逆に主膨張弁8aの開度を大きくすると水熱交換器9aの冷媒過熱度SHは小さくなる。そこで、圧縮機3a吸入(水熱交換器9a出口)の冷媒過熱度SHと目標値とを比較し、冷媒過熱度SHが目標値より大きい場合には、主膨張弁8aの開度を大きく制御し、冷媒過熱度SHが目標値より小さい場合には主膨張弁8aの開度を小さく制御する(ST210)。
Next, the opening degree of the main expansion valve 8a, which is the outlet of the water heat exchanger 9a serving as an evaporator, calculates the refrigerant superheat degree SH in the state of suction of the compressor 3a (point E in FIG. 2) (ST208). ), The refrigerant superheat degree SH is controlled to be a preset target value, for example, 2 ° C. (ST209). Here, the refrigerant superheat degree SH at the outlet of the water heat exchanger 9a and sucked into the compressor 3a is (temperature sensor 15a detected temperature (intake temperature of the compressor 3)) − (refrigerant saturation temperature converted from the pressure sensor 14a). Use the value calculated in.
When the opening of the main expansion valve 8a decreases, the flow rate of the refrigerant flowing through the water heat exchanger 9a decreases, the refrigerant superheat degree SH at the outlet of the water heat exchanger 9a increases, and conversely, the opening of the main expansion valve 8a increases. Then, the refrigerant superheat degree SH of the water heat exchanger 9a becomes small. Therefore, the refrigerant superheat degree SH of the compressor 3a suction (water heat exchanger 9a outlet) is compared with the target value, and when the refrigerant superheat degree SH is larger than the target value, the opening degree of the main expansion valve 8a is largely controlled. When the refrigerant superheat degree SH is smaller than the target value, the opening degree of the main expansion valve 8a is controlled to be small (ST210).

次に、バイパス膨張弁10aの開度であるが、エコノマイザ回路上の過冷却熱交換器7a出口(図2点G)の冷媒過熱度SHecoを演算し(ST211)、この冷媒過熱度SHecoが、予め設定された目標値、例えば2℃となるように制御される(ST212)。ここで過冷却熱交換器7出口の冷媒過熱度SHecoは、温度センサ15f検知温度−温度センサ15e検知温度で演算される値を用いる。
バイパス膨張弁10aの開度が小さくなると、エコノマイザ回路を流れる冷媒流量は減少し、エコノマイザ回路上の過冷却熱交換器7a出口の冷媒過熱度SHは大きくなり、逆にバイパス膨張弁10aの開度を大きくすると過冷却熱交換器7a出口の冷媒過熱度SHは小さくなる。そこで、過冷却熱交換器7a出口の冷媒過熱度SHecoと目標値とを比較し、冷媒過熱度SHecoが目標値より大きい場合には、バイパス膨張弁10aの開度を大きく制御し、冷媒過熱度SHecoが目標値より小さい場合にはバイパス膨張弁10aの開度を小さく制御する(ST213)。
その後、再びステップST203に戻り、水熱交換器9の出口水温が目標値になっているか否かを検出し、検出結果に応じてステップST204〜ST213の処理を繰り返す。
Next, the opening degree of the bypass expansion valve 10a, the refrigerant superheat degree Sheco at the outlet of the supercooling heat exchanger 7a on the economizer circuit (point G in FIG. 2) is calculated (ST211), and the refrigerant superheat degree Sheco is Control is performed so that the target value is set in advance, for example, 2 ° C. (ST212). Here, the refrigerant superheat degree SHeco at the outlet of the supercooling heat exchanger 7 uses a value calculated from the temperature sensor 15f detected temperature-temperature sensor 15e detected temperature.
When the opening degree of the bypass expansion valve 10a is reduced, the flow rate of the refrigerant flowing through the economizer circuit is decreased, the refrigerant superheat degree SH at the outlet of the supercooling heat exchanger 7a on the economizer circuit is increased, and conversely, the opening degree of the bypass expansion valve 10a. Is increased, the refrigerant superheat degree SH at the outlet of the supercooling heat exchanger 7a is decreased. Therefore, the refrigerant superheat degree Sheco at the outlet of the supercooling heat exchanger 7a is compared with the target value, and when the refrigerant superheat degree SHeco is larger than the target value, the opening degree of the bypass expansion valve 10a is controlled to be large, and the refrigerant superheat degree is determined. When the Sheco is smaller than the target value, the opening degree of the bypass expansion valve 10a is controlled to be small (ST213).
Then, it returns to step ST203 again, it is detected whether the outlet water temperature of the water heat exchanger 9 has become target value, and the process of step ST204-ST213 is repeated according to a detection result.

次に加熱運転における冷凍空調装置の制御方法について図5に基づいて説明する。まず冷凍空調装置使用者が室内機2における空調温度の目標値を設定する(ST301)。そしてこの目標値と温度センサ15uで計測される室内空気温度がこの目標値より所定値、例えば1℃以上低い場合には、冷凍空調装置の運転を開始する(ST302)。冷凍空調装置の運転開始に伴い、ポンプ12が所定の初期容量で始動し(ST303)、熱源機1a、1bの運転が指示される(ST304)。初期状態では熱源機1a、1bとも運転される。
そしてこの状態で運転した後、装置運転状態に応じて制御を行う。
Next, a control method of the refrigeration air conditioner in the heating operation will be described with reference to FIG. First, the user of the refrigeration air conditioner sets a target value of the air conditioning temperature in the indoor unit 2 (ST301). When the target value and the indoor air temperature measured by the temperature sensor 15u are lower than the target value by a predetermined value, for example, 1 ° C., the operation of the refrigeration air conditioner is started (ST302). With the start of operation of the refrigeration air conditioner, the pump 12 starts with a predetermined initial capacity (ST303), and the operation of the heat source units 1a and 1b is instructed (ST304). In the initial state, both the heat source units 1a and 1b are operated.
And after driving | running in this state, it controls according to an apparatus operating state.

ポンプ12の容量制御(送水量制御)については、温度センサ15rで検知される室内機2を流出する温水温度が予め設定された目標値、例えば40℃となるように制御される(ST305)。ポンプ12の容量が高いと、温水流量が増加するため、水温変化が小さくなり、室内熱交換器11出口の水温は低下しにくくなり、上昇する。逆に、ポンプ12の容量が低いと、温水流量が減少するため、水温変化が大きくなり、室内熱交換器11出口の水温は低下する。そこで室内熱交換器11出口の水温と目標値とを比較し(ST306)、水温が低い場合はポンプ12の容量を増加させ、水温が高い場合はポンプ12の容量を減少させる。熱源機1全体では温水温度を所定の温度、例えば45℃に加熱することが目標とされる(ST307)。   The capacity control (water supply amount control) of the pump 12 is controlled such that the temperature of the hot water flowing out of the indoor unit 2 detected by the temperature sensor 15r becomes a preset target value, for example, 40 ° C. (ST305). When the capacity of the pump 12 is high, the hot water flow rate increases, so that the change in the water temperature becomes small, and the water temperature at the outlet of the indoor heat exchanger 11 becomes difficult to decrease and rises. On the other hand, when the capacity of the pump 12 is low, the flow rate of the hot water decreases, so that the change in the water temperature increases, and the water temperature at the outlet of the indoor heat exchanger 11 decreases. Therefore, the water temperature at the outlet of the indoor heat exchanger 11 is compared with the target value (ST306). When the water temperature is low, the capacity of the pump 12 is increased, and when the water temperature is high, the capacity of the pump 12 is decreased. In the heat source apparatus 1 as a whole, the target is to heat the hot water temperature to a predetermined temperature, for example, 45 ° C. (ST307).

2台の熱源機1が運転される場合は、2台分で所定の温水温度まで加熱するようにし、例えばポンプ12の容量制御により熱源機1に流入する水温が40℃に制御される場合には、熱源機1aで42.5℃、熱源機1bで45℃まで加熱されるように熱源機1内の温水の加熱目標温度が設定され、圧縮機3の容量が制御される。1台の熱源機1が運転される場合には、運転している熱源機1が前記の熱源機1全体での目標加熱温度を実現するように温水加熱目標温度が設定され、圧縮機3の容量が制御される(図5.2のST308)。圧縮機3の容量制御方法については後述する。 When two heat source units 1 are operated, heating is performed up to a predetermined hot water temperature for two units. For example, when the water temperature flowing into the heat source unit 1 is controlled to 40 ° C. by the capacity control of the pump 12. The heating target temperature of the hot water in the heat source unit 1 is set so that the heat source unit 1a is heated to 42.5 ° C. and the heat source unit 1b is heated to 45 ° C., and the capacity of the compressor 3 is controlled. When one heat source unit 1 is operated, the hot water heating target temperature is set so that the operating heat source unit 1 realizes the target heating temperature of the entire heat source unit 1, and the compressor 3 The capacity is controlled (ST308 in FIG. 5.2). A capacity control method of the compressor 3 will be described later.

熱源機1の運転台数は、熱源機1a、1bの圧縮機3容量に応じて制御される。熱源機1a、1bとも運転され、前記のような圧縮機容量制御がなされている場合に、熱源機1a、1bの圧縮機3の合計容量が所定値以下となった場合、例えば、合計容量が最大容量の30%以下となった場合(ST309)には、熱源機2台で運転していても、加熱負荷に対して、熱源機1の加熱能力が過大と判断し、熱源機1の運転台数を減少させ、熱源機1a、1bのどちらか一方の運転を停止する(ST310)。
逆に熱源機1の運転台数が1台の場合に、運転している熱源機1の圧縮機3の容量が所定値以上となった場合、例えば、熱源機1の最大容量の90%以上となった場合(ST311)には、熱源機1台の運転では、加熱負荷に対して、熱源機1の加熱能力が不足と判断し、熱源機1の運転台数を増加させ、停止している熱源機1の運転を開始する(ST312)。
The number of operating heat source units 1 is controlled according to the capacity of the compressor 3 of the heat source units 1a and 1b. When both the heat source units 1a and 1b are operated and the compressor capacity control is performed as described above, if the total capacity of the compressors 3 of the heat source units 1a and 1b is less than a predetermined value, for example, the total capacity is When it becomes 30% or less of the maximum capacity (ST309), it is judged that the heating capacity of the heat source unit 1 is excessive with respect to the heating load even if it is operated with two heat source units. The number is reduced, and the operation of either one of the heat source units 1a and 1b is stopped (ST310).
Conversely, when the number of operating heat source units 1 is one and the capacity of the compressor 3 of the operating heat source unit 1 exceeds a predetermined value, for example, 90% or more of the maximum capacity of the heat source unit 1 If it becomes (ST311), in the operation of one heat source unit, it is determined that the heating capacity of the heat source unit 1 is insufficient with respect to the heating load, the number of operating heat source units 1 is increased, and the heat source is stopped. The operation of the machine 1 is started (ST312).

また貯水槽13から室内機2に送水される水温によっても熱源機の運転台数を制御する。貯水槽13から室内機2に送水される水温と冷水冷却目標温度とを比較し(ST313)、水温が目標値より低い場合、例えば目標とする水温が45℃でありそれより1℃低い44℃となった場合には、熱源機1の加熱能力が加熱負荷に対し不足と判断し、熱源機1の運転台数を増加させ、停止している熱源機1の運転を開始する。逆に貯水槽13から室内機2に送水される水温が所定値より高い場合、例えば目標とする水温が45℃でありそれより1℃高い46℃となった場合には、熱源機1の加熱能力が加熱負荷に対して過剰と判断し、熱源機1の運転台数を減少させる。このとき熱源機1が2台とも運転している場合には1台運転とするが、1台しか運転していない場合には、熱源機1の運転を全数停止する(ST314)。
また室内空気温度が目標値より所定値、例えば2℃以上高い場合(ST315)も、熱源機1の加熱能力が加熱負荷に対して過剰と判断し、熱源機1の運転台数を減少させる、もしくは熱源機を全て停止し、ポンプ12の送水も停止する制御を行う(ST316)。
その後、再びステップST305に戻って温度設定を確認し、上記のステップST305〜ST316のサイクルを繰り返す。
Further, the number of operating heat source units is also controlled by the temperature of water sent from the water storage tank 13 to the indoor unit 2. The water temperature sent from the water storage tank 13 to the indoor unit 2 is compared with the cold water cooling target temperature (ST313), and when the water temperature is lower than the target value, for example, the target water temperature is 45 ° C and 44 ° C lower by 1 ° C. In such a case, it is determined that the heating capacity of the heat source unit 1 is insufficient with respect to the heating load, the number of operating heat source units 1 is increased, and the operation of the stopped heat source unit 1 is started. On the contrary, when the temperature of the water sent from the water storage tank 13 to the indoor unit 2 is higher than a predetermined value, for example, when the target water temperature is 45 ° C. and becomes 1 ° C. higher than 46 ° C., the heat source device 1 is heated. The capacity is judged to be excessive with respect to the heating load, and the number of operating heat source units 1 is decreased. At this time, when both the heat source devices 1 are operating, one unit is operated. However, when only one unit is operating, the operation of the heat source devices 1 is completely stopped (ST314).
Further, when the indoor air temperature is higher than a target value by a predetermined value, for example, 2 ° C. or more (ST315), it is determined that the heating capacity of the heat source unit 1 is excessive with respect to the heating load, and the number of operating heat source units 1 is decreased. Control is performed to stop all the heat source devices and stop water supply of the pump 12 (ST316).
Then, it returns to step ST305 again, temperature setting is confirmed, and the cycle of said step ST305-ST316 is repeated.

次に加熱運転時の熱源機1内の制御動作について図6に基づいて説明する。制御動作においても、熱源機1a、1bとも同様の動作が実施されるので、代表として熱源機1aの運転制御について説明する。
まず、圧縮機3aの回転数、空気熱交換器5aの送風量、主膨張弁8aの開度、バイパス膨張弁10aの開度を初期値に設定して運転を行う(ST402)。ここで空気熱交換器5送風量の初期設定値は温度センサ15sで検知される外気温度およびあらかじめ計測制御装置16に記憶された所定値とを比較して決定され、外気温度が低い場合は高風量、高い場合は低風量に設定される。
Next, the control operation in the heat source unit 1 during the heating operation will be described with reference to FIG. Also in the control operation, the same operation is performed for the heat source units 1a and 1b, and therefore, the operation control of the heat source unit 1a will be described as a representative.
First, operation is performed by setting the number of rotations of the compressor 3a, the amount of air blown from the air heat exchanger 5a, the opening of the main expansion valve 8a, and the opening of the bypass expansion valve 10a to initial values (ST402). Here, the initial setting value of the air heat exchanger 5 is determined by comparing the outside air temperature detected by the temperature sensor 15s with a predetermined value stored in advance in the measurement control device 16, and is high when the outside air temperature is low. If the air volume is high, the air volume is set low.

そして、この状態で運転した後、装置運転状態に応じて各アクチュエータを制御する。まず圧縮機3の回転数は、温度センサ15hで検知される水熱交機9出口の温水温度が予め設定された目標値となるように制御される(ST403)。目標温度は前述したように熱源機1a、1bで異なり、例えば熱源機1aでは42.5℃、熱源機1bでは45℃に設定される。圧縮機3の回転数が高いと、冷媒流量が増加するため装置の冷却能力が増加し、水がより加熱されるため、水熱交換器9出口の水温は上昇する。逆に、圧縮機3の回転数が低いと、水熱交換器9出口の水温は低下する。そこで水熱交換器9出口の水温と目標値とを比較し、水温が低い場合は圧縮機3の回転数を増加させ、水温が高い場合は圧縮機3の回転数を減少させる(ST404)。   And after driving | running in this state, each actuator is controlled according to an apparatus operating state. First, the rotational speed of the compressor 3 is controlled so that the hot water temperature at the outlet of the hydrothermal exchanger 9 detected by the temperature sensor 15h becomes a preset target value (ST403). As described above, the target temperature differs between the heat source devices 1a and 1b. For example, the target temperature is set to 42.5 ° C. for the heat source device 1a and 45 ° C. for the heat source device 1b. If the rotation speed of the compressor 3 is high, the refrigerant flow rate increases, the cooling capacity of the apparatus increases, and the water is further heated, so the water temperature at the outlet of the water heat exchanger 9 rises. On the contrary, when the rotation speed of the compressor 3 is low, the water temperature at the outlet of the water heat exchanger 9 is lowered. Therefore, the water temperature at the outlet of the water heat exchanger 9 is compared with the target value. When the water temperature is low, the rotational speed of the compressor 3 is increased, and when the water temperature is high, the rotational speed of the compressor 3 is decreased (ST404).

次に、空気熱交換器5の送風量であるが、この送風量は基本的に初期設定値にて運転を行う。状況として高外気温(たとえば15℃くらい)に、加温運転を行った場合に、圧縮機の負荷が過大となるのを防止するため風量を低下させ、冷凍サイクルの低圧を低下し、圧縮機の搬送流量を低下することで、圧縮機駆動の負荷を低減する場合があるが、本発明が対象とする冷凍空調装置が用いられるビル用空調などの場合、高外気温時に暖房負荷が発生することはほとんどないため、上記の通り初期設定値にて運転を行う。   Next, although it is the air flow rate of the air heat exchanger 5, this air flow rate is basically operated at an initial set value. As a situation, when heating operation is performed at a high outside air temperature (for example, about 15 ° C.), the air volume is reduced to prevent the load on the compressor from becoming excessive, the low pressure of the refrigeration cycle is reduced, and the compressor Although the compressor drive load may be reduced by reducing the transport flow rate of the building, in the case of a building air conditioner or the like in which the refrigeration air conditioner targeted by the present invention is used, a heating load is generated at a high outside temperature. Since there is almost nothing, operation is performed at the initial set value as described above.

次に、主膨張弁8aの開度であるが、蒸発器となる空気熱交換器5aの出口であり、圧縮機3a吸入の状態(図2点E)の冷媒過熱度SHが、予め設定された目標値、例えば2℃となるように制御される(ST406)。ここで空気熱交換器5aの出口であり圧縮機3a吸入の冷媒過熱度SHは、(温度センサ15a検知温度(圧縮機3の吸入温度))−(圧力センサ14aから換算される冷媒飽和温度)で演算される値を用いる。
主膨張弁8aの開度が小さくなると、空気熱交換器5aを流れる冷媒流量は減少し、空気熱交換器5a出口の冷媒過熱度SHは大きくなり、逆に主膨張弁8aの開度を大きくすると空気熱交換器5aの冷媒過熱度SHは小さくなる。そこで、圧縮機3a吸入(空気熱交換器5a出口)の冷媒過熱度SHと目標値とを比較し、冷媒過熱度SHが目標値より大きい場合には、主膨張弁8aの開度を大きく制御し、冷媒過熱度SHが目標値より小さい場合には主膨張弁8aの開度を小さく制御する(ST407)。
Next, the opening degree of the main expansion valve 8a, which is the outlet of the air heat exchanger 5a serving as an evaporator, and the refrigerant superheat degree SH in the state of suction of the compressor 3a (point E in FIG. 2) is set in advance. The target value is controlled to be, for example, 2 ° C. (ST406). Here, the refrigerant superheat degree SH at the outlet of the air heat exchanger 5a and sucked into the compressor 3a is (temperature sensor 15a detected temperature (intake temperature of the compressor 3)) − (refrigerant saturation temperature converted from the pressure sensor 14a). Use the value calculated in.
When the opening of the main expansion valve 8a decreases, the flow rate of the refrigerant flowing through the air heat exchanger 5a decreases, the refrigerant superheat degree SH at the outlet of the air heat exchanger 5a increases, and conversely, the opening of the main expansion valve 8a increases. Then, the refrigerant superheat degree SH of the air heat exchanger 5a becomes small. Therefore, the refrigerant superheat degree SH of the compressor 3a intake (air heat exchanger 5a outlet) is compared with the target value, and when the refrigerant superheat degree SH is larger than the target value, the opening degree of the main expansion valve 8a is largely controlled. When the refrigerant superheat degree SH is smaller than the target value, the opening degree of the main expansion valve 8a is controlled to be small (ST407).

次に、バイパス膨張弁10aの開度であるが、冷却運転と同様に行い、過冷却熱交換器7a出口の冷媒過熱度SHecoを演算し(ST408)、この冷媒過熱度SHecoと目標値とを比較し(ST409)、冷媒過熱度SHecoが目標値より大きい場合には、バイパス膨張弁10aの開度を大きく制御し、冷媒過熱度SHecoが目標値より小さい場合にはバイパス膨張弁10aの開度を小さく制御する(ST410)。   Next, the opening of the bypass expansion valve 10a is performed in the same manner as the cooling operation, and the refrigerant superheat degree Sheco at the outlet of the supercooling heat exchanger 7a is calculated (ST408), and the refrigerant superheat degree Sheco and the target value are calculated. In comparison (ST409), when the refrigerant superheat degree SHeco is larger than the target value, the opening degree of the bypass expansion valve 10a is controlled to be large, and when the refrigerant superheat degree SHeco is smaller than the target value, the opening degree of the bypass expansion valve 10a. Is controlled to be small (ST410).

なお、冷却・加熱運転におけるこれらの圧縮機3の回転数制御や、主膨張弁8、バイパス膨張弁10の開度、ポンプ12の容量制御においては、目標値との偏差に基づくPID制御法などにより、制御量が決定される。   In the cooling speed / heating operation, the rotational speed control of the compressor 3, the opening of the main expansion valve 8 and the bypass expansion valve 10, and the capacity control of the pump 12, the PID control method based on the deviation from the target value, etc. Thus, the control amount is determined.

次に熱源機1の圧縮機3として用いられるスクロール圧縮機の特性について説明する。図7はスクロール圧縮機の圧縮室の断面を表した図である。スクロール圧縮機では、揺動スクロール17と固定スクロール18との間の空間に圧縮室19a、19b、19cが形成され、揺動スクロール17が揺動運動を行うことにより、圧縮室19が旋回しながら中心位置に移動し、それとともに圧縮室容積が減少し圧縮室内の冷媒が圧縮される。最外周の圧縮室19a内の冷媒は、圧縮室への吸入が完了し圧縮開始される状態であり、揺動スクロールが1回転後に圧縮室19bの位置に、2回転後に圧縮室19cの位置に移動し、圧縮完了しスクロール中心の吐出ポート20から吐出される。   Next, characteristics of the scroll compressor used as the compressor 3 of the heat source unit 1 will be described. FIG. 7 is a view showing a cross section of the compression chamber of the scroll compressor. In the scroll compressor, compression chambers 19a, 19b, and 19c are formed in the space between the orbiting scroll 17 and the fixed scroll 18, and the orbiting scroll 17 performs an orbiting motion, so that the compression chamber 19 rotates. At the same time, the compression chamber volume decreases and the refrigerant in the compression chamber is compressed. The refrigerant in the outermost compression chamber 19a is in a state where the suction into the compression chamber is completed and compression is started, and the swing scroll is moved to the position of the compression chamber 19b after one rotation and to the position of the compression chamber 19c after two rotations. It moves, completes compression, and is discharged from the discharge port 20 at the center of the scroll.

このようにスクロール圧縮機では、圧縮開始から2回転以上して圧縮完了するので、圧縮過程で必要となる圧縮トルクの変動が小さくなる。図8はレシプロ圧縮機、ロータリー圧縮機、スクロール圧縮機の圧縮トルクの変動を表したものであり、他の形式に比較して、スクロール圧縮機の圧縮トルク変動が1/10以上小さいことがわかる。   As described above, in the scroll compressor, since the compression is completed after two or more rotations from the start of compression, fluctuations in the compression torque required in the compression process are reduced. FIG. 8 shows fluctuations in the compression torque of the reciprocating compressor, rotary compressor, and scroll compressor. It can be seen that the fluctuation in the compression torque of the scroll compressor is 1/10 or more smaller than other types. .

このように、圧縮トルクが小さいことで、スクロール圧縮機を適用することにより以下の効果を得ることができる。本発明のように複数台の熱源機を適用する場合、特にこれまで1台のものを複数に分割するようにすると、それに伴い熱源機の発停の回数が増大し、熱源機の発停に応じて圧縮機も発停される。圧縮機起動時は圧縮トルクの変動が大きく、その分圧縮機軸受けに大きな負荷がかかる。スクロール圧縮機を適用すると、圧縮トルク変動そのものが小さいため、起動時の圧縮トルクの変動が小さく、圧縮機軸受けにかかる軸受け負荷を低減でき、圧縮機運転時の信頼性を高くすることができる。また圧縮トルクの変動が小さい分、起動時の振動も抑制することができ、この点でも装置の信頼を高くすることができる。   Thus, the following effects can be acquired by applying a scroll compressor because compression torque is small. When applying a plurality of heat source units as in the present invention, especially when one unit is divided into a plurality of units so far, the number of times the heat source unit is started and stopped increases accordingly, and the heat source unit is started and stopped. In response, the compressor is also started and stopped. When the compressor is started, the fluctuation of the compression torque is large, and a large load is applied to the compressor bearing. When the scroll compressor is applied, since the fluctuation of the compression torque itself is small, the fluctuation of the compression torque at the start-up is small, the bearing load applied to the compressor bearing can be reduced, and the reliability during the operation of the compressor can be increased. Further, since the fluctuation of the compression torque is small, the vibration at the time of starting can be suppressed, and the reliability of the apparatus can be increased also in this respect.

また従来例にあるスクリュー圧縮機では以下のような問題があった。図9はスクリュー圧縮機の圧縮行程を表すものである。図9に示されるように、スクリュー圧縮機では、スクリュー部22とゲートローター部23に挟まれた空間で圧縮室19を形成する。この形状は3次元形状であるため加工が難しく、スクロール圧縮機より大きいすき間が圧縮室に生じる。圧縮室に生じるすき間から圧縮中の冷媒がリークするのを防ぐために、スクリュー圧縮機では多量の冷凍機油を用いており、そのため圧縮機吐出部の冷媒にも多量の冷凍機油が含まれる。この冷凍機油が回路中に流出すると、空気熱交換器5、水熱交換器9における冷媒の熱交換を阻害するため、伝熱効率化が低下し、装置の運転効率が低下するという問題があった。またこの問題を回避するため、圧縮機吐出部に油分離器を設ける場合もあるが、熱源機1台を複数台に分割してリニューアルするような場合では、複数台の熱源機全てに油分離器が必要となり、装置のコストが上昇するという問題があった。
またスクリュー圧縮機では小容量化した場合、加工精度の問題から圧縮される容積に対しすき間の比率が大きくなり、効率が低下するという問題があった。その効率が低下する容量は冷却能力100〜150kW程度の範囲にあり、特にビルのエレベータや小型のクレーンで搬入するときに目安となる50kW程度の能力の機種を構成しようとした場合の性能低下が著しくなるという問題があった。
Further, the conventional screw compressor has the following problems. FIG. 9 shows the compression stroke of the screw compressor. As shown in FIG. 9, in the screw compressor, the compression chamber 19 is formed in a space sandwiched between the screw portion 22 and the gate rotor portion 23. Since this shape is a three-dimensional shape, it is difficult to process, and a gap larger than the scroll compressor is generated in the compression chamber. In order to prevent the refrigerant being compressed from leaking from the gap generated in the compression chamber, a large amount of refrigerating machine oil is used in the screw compressor. Therefore, a large amount of refrigerating machine oil is also contained in the refrigerant in the compressor discharge section. When this refrigerating machine oil flows out into the circuit, the heat exchange of the refrigerant in the air heat exchanger 5 and the water heat exchanger 9 is hindered, so that there is a problem that the heat transfer efficiency is lowered and the operation efficiency of the apparatus is lowered. . In order to avoid this problem, an oil separator may be provided at the compressor discharge section. However, when one heat source unit is divided into a plurality of units and renewed, the oil separation is performed on all of the plurality of heat source units. There is a problem that the cost of the apparatus rises.
Further, when the capacity of the screw compressor is reduced, there is a problem that the ratio of the gap to the volume to be compressed is increased due to the problem of processing accuracy, and the efficiency is lowered. The capacity for which the efficiency is reduced is in the range of cooling capacity of about 100 to 150 kW, especially when trying to construct a model with a capacity of about 50 kW, which is a guide when carrying in with a building elevator or a small crane. There was a problem of becoming significant.

スクロール圧縮機では、形状が2次元的であるため、加工精度がスクリュー圧縮機よりも高くでき、吐出冷媒に含まれる冷凍機油量を少なくできる。そのため油分離器が不要となり、熱源機1台を複数台に分割してリニューアルするような場合に、低コストに装置を構成できる効果がある。
また直膨システムにて、熱源機と室内機を冷媒配管で接続するようなシステムでは、冷媒配管中に滞留する油が発生し、その量が多大になり冷凍機油の枯渇を引き起こす可能性があるため、油分離器の設置が不可欠となるが、本発明のように、冷温水などの液媒体を負荷側に供給するチラーの場合では、前述した配管中の冷凍機油の滞留もなく、この点からも油分離器の設置が不要とでき、低コストに装置を構成できる。
またスクロール圧縮機では、小容量機種を構成しようとした場合、比較的圧縮室のすき間を小さくできるので、3kW程度の能力までは高効率を維持できる。従って、現在1台のスクリュー圧縮機で構成されている能力100kW程度以上の熱源機を複数台に分割した熱源機構成としても、高効率とすることができる。
Since the scroll compressor has a two-dimensional shape, the processing accuracy can be higher than that of the screw compressor, and the amount of refrigeration oil contained in the discharged refrigerant can be reduced. This eliminates the need for an oil separator, and is advantageous in that the apparatus can be configured at low cost when one heat source unit is divided into a plurality of units and renewed.
Further, in a system in which a heat source unit and an indoor unit are connected by a refrigerant pipe in a direct expansion system, oil stagnating in the refrigerant pipe is generated, and the amount of the oil may increase and cause the exhaustion of refrigerating machine oil. Therefore, the installation of an oil separator is indispensable. However, in the case of a chiller that supplies a liquid medium such as cold / hot water to the load side as in the present invention, there is no stagnation of refrigerating machine oil in the above-mentioned piping. Therefore, it is not necessary to install an oil separator, and the apparatus can be configured at low cost.
Further, in the case of a scroll compressor, when a small-capacity model is to be constructed, since the gap of the compression chamber can be made relatively small, high efficiency can be maintained up to a capacity of about 3 kW. Therefore, even a heat source device configuration in which a heat source device having a capacity of about 100 kW or more, which is currently configured with one screw compressor, is divided into a plurality of units can be highly efficient.

また冷温水などの液媒体を負荷側に供給するチラーの場合、負荷側に供給する冷温水などの液媒体の温度が固定となるため、負荷が低下しても、冷凍サイクルの低圧(冷却運転時)、もしくは高圧(加熱運転時)が固定される運転となり、比較的高圧縮比で運転される。レシプロ圧縮機、ロータリー圧縮機など内部容積比を持たず、吐出部と吸入部が隣接する圧縮機では、低圧縮比では、高効率運転を行えるが、高圧縮比では圧縮機内の冷媒漏れが大きく運転効率が大きく低下する。スクロール圧縮機の場合、図7に示されるように吐出部と吸入部の圧縮室が隣接しないので、高圧縮比でも、高効率運転を行える。
またスクロール圧縮機の場合、内部容積比があり、それより低い圧縮比の運転では過圧縮状態となり、運転効率が大きく低下するが、チラーの場合、冷凍サイクルの低圧(冷却運転時)、もしくは高圧(加熱運転時)が固定される運転となるので、運転状態に合致するような内部容積を選定することで、内部容積比と圧縮比との乖離を小さくでき、どのような負荷に対しても高効率で運転することができる。
In the case of a chiller that supplies liquid medium such as cold / hot water to the load side, the temperature of the liquid medium such as cold / hot water supplied to the load side is fixed. Operation) or high pressure (during heating operation) is fixed, and operation is performed at a relatively high compression ratio. A compressor with no internal volume ratio such as a reciprocating compressor and a rotary compressor, where the discharge part and the suction part are adjacent to each other, can be operated efficiently at a low compression ratio, but at a high compression ratio, refrigerant leakage in the compressor is large. Operating efficiency is greatly reduced. In the case of a scroll compressor, as shown in FIG. 7, since the compression chambers of the discharge part and the suction part are not adjacent to each other, high efficiency operation can be performed even at a high compression ratio.
In the case of a scroll compressor, there is an internal volume ratio, and operation at a lower compression ratio results in an overcompressed state and the operation efficiency is greatly reduced. In the case of a chiller, the refrigeration cycle has a low pressure (during cooling operation) or a high pressure. Since the operation is fixed (heating operation), the difference between the internal volume ratio and the compression ratio can be reduced by selecting an internal volume that matches the operating state. It can be operated with high efficiency.

また本発明では圧縮機3の回転数をインバータで制御しており、これにより以下のような効果を得ることができる。まず熱源機1が複数台でされる場合に、全ての熱源機の圧縮機がインバータ制御されることにより、各熱源機台数における容量制御幅が拡大される。例えば熱源機2台同一容量の構成で、全ての圧縮機が一定速で運転される場合は、熱源機2台で運転される場合の容量は200%(100%は熱源機1台あたりの容量)、熱源機1台で運転される場合の容量は100%である。この場合、連続的な容量制御が行えないため、どの容量でも熱源機の発停が不可避となり、圧縮機の発停回数が増加し、信頼性が低下する。
また1台の熱源機がインバータ駆動であり、容量制御幅が50%―150%、1台の熱源機が一定速圧縮機で駆動される場合、熱源機2台で運転される場合の容量は150%―250%、熱源機1台で運転される場合の容量は50−150%である。この場合、連続的な容量制御が行えるが、150%近辺の負荷の場合、一定速圧縮機で構成される熱源機のみが発停を繰り返すことになり、その熱源機の圧縮機運転の信頼性が低下する。
2台の熱源機がインバータ駆動であり、容量制御幅が50%―150%である場合、熱源機2台で運転される場合の容量は100%―300%、熱源機1台で運転される場合の容量は50−150%である。この場合、連続的な容量制御が行えるとともに、熱源機の切換となる容量が、100%、150%近辺にできるが、熱源機運転台数を適切に選択することにより、発停を行わず連続的な容量制御を行うようにできる。従って、熱源機の発停回数を著しく減少でき、信頼性を高めることができる。
In the present invention, the rotation speed of the compressor 3 is controlled by an inverter, and the following effects can be obtained. First, when a plurality of heat source devices 1 are used, the compressors of all the heat source devices are inverter-controlled, so that the capacity control width in each heat source device number is expanded. For example, if all compressors are operated at a constant speed with two heat source units of the same capacity, the capacity when operating with two heat source units is 200% (100% is the capacity per heat source unit) ) The capacity when operated with one heat source unit is 100%. In this case, since continuous capacity control cannot be performed, the start and stop of the heat source unit is inevitable at any capacity, the number of start and stop times of the compressor is increased, and the reliability is lowered.
Also, when one heat source unit is driven by an inverter and the capacity control width is 50% -150%, when one heat source unit is driven by a constant speed compressor, the capacity when operated by two heat source units is The capacity when operated with 150% -250% and one heat source machine is 50-150%. In this case, continuous capacity control can be performed. However, in the case of a load near 150%, only the heat source unit composed of a constant speed compressor will start and stop repeatedly, and the reliability of the compressor operation of the heat source unit Decreases.
When two heat source units are driven by an inverter and the capacity control width is 50% -150%, the capacity when operating with two heat source units is 100% -300% and operated with one heat source unit The capacity of the case is 50-150%. In this case, continuous capacity control can be performed and the capacity for switching the heat source machine can be in the vicinity of 100% and 150%. However, by appropriately selecting the number of operating heat source machines, continuous start and stop can be performed. Capacity control can be performed. Therefore, the number of start / stop times of the heat source device can be significantly reduced, and the reliability can be improved.

またインバータ駆動することにより、圧縮機3起動時の回転数を低速に制御することができる。これにより、起動時初動の圧縮トルクの変動を抑制でき圧縮機軸受け負荷を低減し、信頼性を高めることができる。
また圧縮機3起動時の回転数を低速に制御することで、起動時の圧縮機3への液戻り量を少量にできる。冷温水などの液媒体を負荷側に供給するチラーにおいて、空気熱交換器5を搭載する場合、水熱交換器9と空気熱交換器5の容積差が大きく、空気熱交換器5の容積は水熱交換器9の5倍以上となる。この構成で冷却運転を行う場合、凝縮器となる空気熱交換器5で過冷却度が得られるようにするには、空気熱交換器5の40%程度の冷媒量が必要となる。冷却運転を行っていた熱源機1の運転が停止されたとき、空気熱交換器5に存在していた液冷媒が低圧側である水熱交換器9側に主膨張弁8を通過して流入する。このとき、空気熱交換器5に存在していた冷媒量の多くは液冷媒の形であり、その容積は水熱交換器9の2倍以上となるので、水熱交換器9は液冷媒であふれることになる。この状態で起動運転を行うと圧縮機3への液バックが不可避となる。液バックが発生した場合には、液圧縮による圧縮トルクの増大、および圧縮機3内の油が液冷媒により希釈され、粘度低下することによる潤滑性能低下が発生し、圧縮機運転の信頼性が低下する。
直膨式などでは、前述したように熱源機1と室内機2を接続する配管があるため、空気熱交換器5からあふれる液冷媒を配管の容積部分で吸収し、起動時の液バックを緩和できるが、チラーの場合は、他のバッファー部分がないため、より液バックによる信頼性低下が生じやすくなっている。
Further, by driving the inverter, the rotation speed when the compressor 3 is started can be controlled at a low speed. Thereby, the fluctuation | variation of the initial compression torque at the time of starting can be suppressed, a compressor bearing load can be reduced, and reliability can be improved.
Further, by controlling the rotation speed at the time of starting the compressor 3 to a low speed, the amount of liquid returning to the compressor 3 at the time of starting can be made small. In the chiller that supplies a liquid medium such as cold / hot water to the load side, when the air heat exchanger 5 is mounted, the volume difference between the water heat exchanger 9 and the air heat exchanger 5 is large, and the volume of the air heat exchanger 5 is It becomes 5 times or more of the water heat exchanger 9. When the cooling operation is performed with this configuration, a refrigerant amount of about 40% of the air heat exchanger 5 is required in order to obtain a degree of supercooling in the air heat exchanger 5 serving as a condenser. When the operation of the heat source unit 1 that was performing the cooling operation is stopped, the liquid refrigerant that has been present in the air heat exchanger 5 flows into the low-pressure side of the water heat exchanger 9 through the main expansion valve 8. To do. At this time, most of the refrigerant amount existing in the air heat exchanger 5 is in the form of liquid refrigerant, and its volume is more than twice that of the water heat exchanger 9, so the water heat exchanger 9 is liquid refrigerant. It will overflow. When starting operation is performed in this state, liquid back to the compressor 3 is unavoidable. When the liquid back occurs, the compression torque increases due to the liquid compression, and the oil in the compressor 3 is diluted with the liquid refrigerant, resulting in a decrease in the lubrication performance due to a decrease in the viscosity. descend.
In the direct expansion type and the like, there is a pipe connecting the heat source unit 1 and the indoor unit 2 as described above, so the liquid refrigerant overflowing from the air heat exchanger 5 is absorbed by the volume part of the pipe and the liquid back at start-up is alleviated. However, in the case of a chiller, since there is no other buffer part, the reliability is more likely to deteriorate due to liquid back.

この条件であっても、インバータ駆動で圧縮機3起動時の回転数を低速に制御することがで、起動初動時の圧縮機3の圧縮トルク増大を抑制するとともに、圧縮機3に流入する液冷媒量の絶対値を少なくすることができ、油希釈による粘度低下も抑制することができる。従って高信頼性の運転を行うことができる。
なお、液バックを回避するために圧縮機3吸入にアキュムレータを設けることもできるが、この場合、従来1台の熱源機で1台のアキュムレータで対応できていたものが、複数の熱源機1にそれぞれアキュムレータが必要となり、高コストになり好ましくない。逆に言えば、インバータ駆動により、アキュムレータを不要とすることができ、低コストで装置を構成することができる。
Even under this condition, it is possible to control the rotation speed at the start of the compressor 3 at a low speed by driving the inverter, thereby suppressing an increase in the compression torque of the compressor 3 at the start of the start and a liquid flowing into the compressor 3. The absolute value of the amount of refrigerant can be reduced, and a decrease in viscosity due to oil dilution can also be suppressed. Therefore, highly reliable operation can be performed.
In order to avoid the liquid back, an accumulator can be provided for the suction of the compressor 3, but in this case, a single heat source device that can be handled by a single accumulator in the past is used for a plurality of heat source devices 1. Each of them requires an accumulator, which is not preferable because of high costs. In other words, an accumulator can be eliminated by driving the inverter, and the apparatus can be configured at low cost.

なお、運転中の熱源機1を停止するときは、停止中に、主膨張弁8を閉止するように制御してもよい。これにより、熱源機停止中の空気熱交換器5から水熱交換器9への液冷媒の流入を防止でき、次に熱源機1が起動するときの液バックを抑制でき、より信頼性を高めることができる。   When stopping the heat source machine 1 during operation, the main expansion valve 8 may be controlled to be closed during the stop. Thereby, the inflow of the liquid refrigerant from the air heat exchanger 5 while the heat source unit is stopped to the water heat exchanger 9 can be prevented, and the liquid back when the heat source unit 1 is started next time can be suppressed, thereby further improving the reliability. be able to.

また熱源機が複数台同時運転するときには、水熱交換器9での冷温水の温度差が各熱源機で同程度になるように設定する。これにより、各熱源機の圧縮機3の容量が同程度となり、各熱源機1の空気熱交換器5、水熱交換器9各熱交換器で同程度の冷媒条件で運転できる。特定の熱源機1に偏らせて負荷を担わせると、その熱源機1での熱交換量が過大となり、その熱源機のみ高圧が高く、低圧が低く、効率の低下した運転となり、熱源機全体で見たときの効率も低下する。各熱交換器で満遍なく熱交換でき、効率の極端に低下する熱源機1が存在しないようにすることで、高効率の運転を実現できる。   Further, when a plurality of heat source units are operated simultaneously, the temperature difference of the cold / hot water in the water heat exchanger 9 is set to be approximately the same in each heat source unit. Thereby, the capacity | capacitance of the compressor 3 of each heat source machine becomes comparable, and it can drive | operate on the refrigerant | coolant conditions of the same degree with the air heat exchanger 5 of each heat source machine 1, and the water heat exchanger 9 each heat exchanger. If a specific heat source unit 1 is biased and bears a load, the amount of heat exchange in the heat source unit 1 becomes excessive, and only the heat source unit has a high pressure, a low pressure, and an operation with reduced efficiency. The efficiency when viewed with the. High efficiency operation can be realized by ensuring that there is no heat source unit 1 that can uniformly exchange heat with each heat exchanger and whose efficiency is extremely reduced.

一方、熱源機1が追加運転される場合は、当該熱源機1の起動後の圧縮機3容量ができるだけ少なくなるように運転することが望ましい。前記したように、熱源機1起動時は液バックが発生しやすく、その状況は数分間継続する。起動時は低速で立ち上げるが、起動後すぐに圧縮機3の容量は他の熱源機と同程度にしてしまうと、運転状況によっては多量の液バックが発生し、圧縮機3の運転信頼性が低下する恐れがある。
そこで、起動後数分間、3分〜10分程度は追加運転される熱源機1の圧縮機容量が他の熱源機よりも少なくなるように、最小容量の運転を継続させる、もしくは、冷水冷却温度の目標設定を高くする、温水加熱温度の目標設定を低くするなどの制御を行い、圧縮機3の容量を低下させて、圧縮機3の運転信頼性を確保する。
On the other hand, when the heat source device 1 is additionally operated, it is desirable to operate so that the capacity of the compressor 3 after the heat source device 1 is started is as small as possible. As described above, liquid back is likely to occur when the heat source unit 1 is started, and this situation continues for several minutes. Although it starts at a low speed at the time of startup, if the capacity of the compressor 3 is set to the same level as other heat source machines immediately after startup, a large amount of liquid back is generated depending on the operating conditions, and the operation reliability of the compressor 3 is increased. May decrease.
Therefore, the minimum capacity operation is continued so that the compressor capacity of the heat source machine 1 to be additionally operated is smaller than that of the other heat source machines for a few minutes after startup, or the cooling water cooling temperature The target setting of the hot water heating temperature is controlled to be lowered, and the capacity of the compressor 3 is reduced to ensure the operation reliability of the compressor 3.

この際、追加運転熱源機1以外の熱源機1のインバータによる圧縮機3容量制御により、負荷変動に対し追随した容量制御を行うことで、安定的に負荷に追随する運転を行うこともできる。即ち各熱源機の圧縮機3をインバータ駆動することにより、どの熱源機1が発停するような条件であっても安定的に負荷に追随した運転が行える。
またチラーの場合、貯水槽13に余剰の水など液媒体を貯留することで、熱源機1の発停などによる負荷追随性が低下した場合の、室内機送水温度の変動を抑制する構成としているが、本発明のように、熱源機1の発停を減少させることで、最も負荷追随性が低下する熱源機1の発停の発生頻度を低減させるとともに、各熱源機1でのインバータによる圧縮機3容量制御により、熱源機1発停時なども含めて負荷変動に対応できるので、貯水槽13を不要にする、もしくはその容積を減らし、装置として保持する水量を低減することができる。
従って、装置のコストを低減するとことができるとともに、設置の際の工事性を改善することができる。
At this time, by performing capacity control following the load fluctuation by compressor 3 capacity control by the inverter of the heat source device 1 other than the additional operation heat source device 1, it is possible to perform operation stably following the load. That is, by driving the compressor 3 of each heat source device with an inverter, it is possible to stably follow the load even under the condition that any heat source device 1 starts and stops.
Moreover, in the case of a chiller, it is set as the structure which suppresses the fluctuation | variation of the indoor unit water supply temperature when load followability by the on / off of the heat source machine 1 etc. falls by storing liquid media, such as excess water, in the water storage tank 13. However, as in the present invention, by reducing the on / off state of the heat source unit 1, the frequency of occurrence of on / off of the heat source unit 1 with the lowest load followability is reduced, and compression by the inverter in each heat source unit 1 Since the machine 3 capacity control can cope with load fluctuations including when the heat source machine 1 starts and stops, the water storage tank 13 can be made unnecessary, or its volume can be reduced, and the amount of water retained as a device can be reduced.
Therefore, the cost of the apparatus can be reduced, and the workability at the time of installation can be improved.

また、本発明では、圧縮機3にエコノマイザ回路を介してガスインジェクションを行っている。ガスインジェクションを行ったときの冷凍サイクルは図2に示される形となり、圧縮機3で圧縮される冷媒のうち、一部は中間圧Pmからと高圧Phまで圧縮される。従って全ての冷媒が低圧Plから高圧Phまで圧縮されるのに対し、一部の冷媒の部分について低圧Plから中間圧Pmまで圧縮する仕事を低減することができ、高効率の運転を行うことができる。   Moreover, in this invention, the gas injection is performed to the compressor 3 via the economizer circuit. The refrigeration cycle when the gas injection is performed is as shown in FIG. 2, and some of the refrigerant compressed by the compressor 3 is compressed from the intermediate pressure Pm to the high pressure Ph. Therefore, while all the refrigerant is compressed from the low pressure Pl to the high pressure Ph, the work of compressing a part of the refrigerant from the low pressure Pl to the intermediate pressure Pm can be reduced, and high efficiency operation can be performed. it can.

スクロール圧縮機を適用する場合、インジェクションされるガス冷媒は、図7におけるインジェクションポート21を介して実施される。スクロール圧縮機の場合、図7の外側から2番目の圧縮室19bにインジェクションポート21を設けると、どの回転角でも吸入、吐出どちらにもつながらない状態となる。従ってインジェクションされる冷媒が低圧側に流出したり、高圧の冷媒がインジェクションポートを逆流して流出したりすることがないため、回転角に応じた閉止弁など付属部品が不要となり、安価にインジェクションに対応した圧縮機3を構成できる。   When the scroll compressor is applied, the injected gas refrigerant is carried out via the injection port 21 in FIG. In the case of the scroll compressor, if the injection port 21 is provided in the second compression chamber 19b from the outside in FIG. 7, no rotation angle can be established for either suction or discharge. Therefore, the injected refrigerant does not flow out to the low pressure side, and the high pressure refrigerant does not flow backward through the injection port, so there is no need for an accessory such as a shut-off valve according to the rotation angle. A corresponding compressor 3 can be configured.

またエコノマイザ回路を流れる冷媒流量を変更することで、圧縮機3の容量制御範囲を拡大することもできる。バイパス膨張弁10の開度を小さく制御すると、エコノマイザ回路を流れる冷媒量が減少する。このとき圧縮機3から吐出される冷媒流量が減少するので、凝縮器となる熱交換器を流れる冷媒流量、加熱運転を行う場合は水熱交換器9を流れる冷媒流量が減少するので、熱源機1の加熱能力を低下させることができる。
またエコノマイザ回路を流れる冷媒量が減少すると、過冷却熱交換器7での熱交換量が低下するため、過冷却熱交換器7での高圧液側のエンタルピ変化幅(図2のΔH)が小さくなり、蒸発器入口のエンタルピ(図2点D)が高くなる。そのため、蒸発器でのエンタルピ差(図2のΔHe)が小さくなるので、蒸発器熱交換量が減少する。従って冷却運転においては、蒸発器として作用する水熱交換器9の熱交換量が低下するため、熱源機1の冷却能力を低下させることができる。
エコノマイザ回路を流れる冷媒流量は、圧縮機吸入流量の0%〜20%程度となるので、圧縮機3の下限容量を最大20%程度拡大することができる。
Moreover, the capacity | capacitance control range of the compressor 3 can also be expanded by changing the refrigerant | coolant flow volume which flows through an economizer circuit. When the opening degree of the bypass expansion valve 10 is controlled to be small, the amount of refrigerant flowing through the economizer circuit is reduced. At this time, the flow rate of refrigerant discharged from the compressor 3 decreases, so the flow rate of refrigerant flowing through the heat exchanger serving as a condenser and the flow rate of refrigerant flowing through the water heat exchanger 9 when performing a heating operation are reduced. 1 heating capacity can be reduced.
Further, when the amount of refrigerant flowing through the economizer circuit decreases, the amount of heat exchange in the supercooling heat exchanger 7 decreases, so that the enthalpy change width (ΔH in FIG. 2) on the high pressure liquid side in the supercooling heat exchanger 7 is small. Thus, the enthalpy (point D in FIG. 2) at the inlet of the evaporator is increased. Therefore, the enthalpy difference (ΔHe in FIG. 2) in the evaporator is reduced, and the amount of heat exchange in the evaporator is reduced. Therefore, in the cooling operation, the heat exchange amount of the water heat exchanger 9 acting as an evaporator is reduced, so that the cooling capacity of the heat source device 1 can be reduced.
Since the flow rate of the refrigerant flowing through the economizer circuit is about 0% to 20% of the compressor suction flow rate, the lower limit capacity of the compressor 3 can be increased by about 20% at the maximum.

以上のようにエコノマイザ回路を流れる冷媒流量を変更することで、圧縮機3の容量制御範囲を拡大できるので、熱源機の台数に応じた容量制御範囲が拡大する。この発明ではインバータによる圧縮機起動を行うことで熱源機発停を行わなければならない運転条件、運転範囲を狭めているが、エコノマイザ回路での流量制御を行うことで、さらにその範囲を拡大することができる。従って圧縮機3発停頻度を低減し、信頼性を向上させるとともに、負荷追随性を向上させることができる。   Since the capacity control range of the compressor 3 can be expanded by changing the flow rate of the refrigerant flowing through the economizer circuit as described above, the capacity control range corresponding to the number of heat source machines is expanded. In this invention, the operating condition and operating range in which the heat source machine must be started and stopped by starting the compressor by the inverter is narrowed, but the range is further expanded by performing flow rate control in the economizer circuit. Can do. Therefore, the frequency at which the compressor 3 starts and stops can be reduced, the reliability can be improved, and the load followability can be improved.

また本発明では、室内機2から供給される冷温水など液媒体が各熱源機1を直列に流れるように液媒体流路が構成されている。これにより以下の効果を得ることができる。
仮に、室内機2から供給される冷温水など液媒体が各熱源機1を並列に流れるように構成される場合、貯水槽13から室内機2に送水される冷温水の温度を安定させるには、各熱源機1での冷温水出口温度は各熱源機1で同一となるように制御される必要がある。そのときの各熱源機1への送水量は、熱源機1の外部のポンプ容量で決められるので、運転状況によっては、熱源機起動時に、供給される水量が多く、起動時から高容量運転を行わなければならない状況が発生し、圧縮機3の起動負荷が過大となり、圧縮機3の信頼性が低下する可能性がある。
冷温水など液媒体が各熱源機1を直列に流れるように液媒体流路が構成されていると、前述したように、追加運転される熱源機の容量を低く、継続運転される熱源機の運転容量を高く制御することで、圧縮機3起動時の容量を低くでき、圧縮機3運転の信頼性を向上させることができる。
Moreover, in this invention, the liquid medium flow path is comprised so that liquid media, such as cold / hot water supplied from the indoor unit 2, may flow through each heat source unit 1 in series. As a result, the following effects can be obtained.
If the liquid medium such as cold / hot water supplied from the indoor unit 2 is configured to flow through the heat source units 1 in parallel, the temperature of the cold / warm water fed from the water storage tank 13 to the indoor unit 2 is stabilized. The cold / hot water outlet temperature in each heat source unit 1 needs to be controlled to be the same in each heat source unit 1. Since the amount of water supplied to each heat source unit 1 at that time is determined by the pump capacity outside the heat source unit 1, depending on the operating conditions, the amount of water supplied is large when starting the heat source unit, and high capacity operation is started from the start. The situation that must be performed occurs, the start-up load of the compressor 3 becomes excessive, and the reliability of the compressor 3 may be reduced.
When the liquid medium flow path is configured such that a liquid medium such as cold / hot water flows through each heat source unit 1 in series, as described above, the capacity of the heat source unit to be additionally operated is reduced, and the heat source unit to be continuously operated is reduced. By controlling the operating capacity to be high, the capacity at the time of starting the compressor 3 can be reduced, and the reliability of the operation of the compressor 3 can be improved.

また冷温水など液媒体が各熱源機1を並列に流れるように構成される場合、各熱源機1での冷温水出口温度は各熱源機1で同一となり、例えば冷却運転では7℃、加熱運転では45℃などと設定される。一方、冷温水など液媒体が各熱源機1を直列に流れるように液媒体流路が構成すると、上流側に接続される熱源機1の水温条件が、冷却運転では高く、例えば9.5℃に、加熱運転では低く、例えば42.5℃に設定される。このとき、上流側の熱源機1の冷凍サイクルは、冷却運転時は冷水出口温度が高くなるので、低圧が高くなり、加熱運転時は温水出口温度が低くなるので高圧が低くなり、運転効率が高くなる。そのため装置全体として見ても高効率の運転を行うことができる。   Further, when a liquid medium such as cold / hot water is configured to flow through each heat source unit 1 in parallel, the outlet temperature of the cold / hot water in each heat source unit 1 is the same in each heat source unit 1, for example, 7 ° C. in the cooling operation, heating operation Then, it is set to 45 ° C. or the like. On the other hand, when the liquid medium flow path is configured such that a liquid medium such as cold / hot water flows through each heat source apparatus 1 in series, the water temperature condition of the heat source apparatus 1 connected to the upstream side is high in the cooling operation, for example, 9.5 ° C. Furthermore, it is low in the heating operation, for example, set to 42.5 ° C. At this time, the refrigeration cycle of the heat source unit 1 on the upstream side has a high cold water outlet temperature during the cooling operation, so that the low pressure is high, and during the heating operation, the hot water outlet temperature is low, so the high pressure is low and the operating efficiency is low. Get higher. Therefore, highly efficient operation can be performed even if it sees as the whole apparatus.

なお、室内機2から供給される冷温水など液媒体が各熱源機1を並列に流れるように構成される場合、熱源機1を並列に液媒体が流れるため、ポンプ12が送水に要する揚程が低くてすみ、安価な構成とできるので、コスト面を重視する場合は、液媒体が各熱源機1を並列に流す構成としてもよい。   In addition, when a liquid medium such as cold / hot water supplied from the indoor unit 2 is configured to flow through the heat source units 1 in parallel, the liquid medium flows through the heat source unit 1 in parallel. Since the configuration can be low and inexpensive, when the cost is important, the configuration may be such that the liquid medium flows through the heat source units 1 in parallel.

なお本実施の形態では、負荷側に冷温水を供給する空調装置の例を説明したが、負荷側に給湯用の温水を供給する給湯機、負荷側に低温倉庫などを冷却する低温のブラインを供給する冷凍装置であっても、冷却・加熱のいずれかの運転を行うことで同様の効果を得ることができる。   In this embodiment, an example of an air conditioner that supplies cold / hot water to the load side has been described. However, a water heater that supplies hot water for hot water supply to the load side, and a low-temperature brine that cools a cold warehouse or the like to the load side. Even if it is the refrigeration apparatus to supply, the same effect can be acquired by performing either cooling and heating operation.

なお、本実施の形態では熱源機1の台数を2台としたが、3台以上で構成してもよく、その場合も同様の効果を得ることができる。   In the present embodiment, the number of heat source devices 1 is two, but may be three or more, and the same effect can be obtained in that case.

また室内機2の台数を1台としたが、2台以上の構成としてもよく、その場合も同様の効果を得ることができる。室内機2が複数台で構成される場合には、各室内機2への冷温水などの液媒体の流入を閉止する弁が設けられる。そして閉止弁の制御として、各室内機2で室内空気温度と設定温度を比較し、冷却運転時に室内空気温度が設定温度より所定値以上高い場合、もしくは加熱運転時に室内空気温度が設定温度より所定値以上低い場合に、閉止弁を開とし、冷却運転時に室内空気温度が設定温度より所定値以上低い場合、もしくは加熱運転時に室内空気温度が設定温度より所定値以上高い場合に、閉止弁をが閉とする制御が行われ、各室内機2で個別に負荷調整が行えるように制御される。
この場合のポンプ12の水量制御は、各室内機2から熱源機1へ流れる流路が一度集約さるように構成され、その部分に温度センサ15rを配置し、ここの温度が目標値となるように制御される。
In addition, although the number of indoor units 2 is one, it may be configured with two or more, and in that case, the same effect can be obtained. When the indoor unit 2 includes a plurality of units, a valve that closes the inflow of a liquid medium such as cold / hot water into each indoor unit 2 is provided. As the control of the shut-off valve, the indoor air temperature is compared with the set temperature in each indoor unit 2, and when the indoor air temperature is higher than the set temperature by a predetermined value during the cooling operation, or the indoor air temperature is predetermined from the set temperature during the heating operation. When the temperature is lower than the specified value, the shut-off valve is opened, and when the indoor air temperature is lower than the set temperature by a predetermined value during the cooling operation, or when the indoor air temperature is higher than the set temperature by the predetermined value during the heating operation, The control is performed so that the load is adjusted individually in each indoor unit 2.
The water amount control of the pump 12 in this case is configured such that the flow paths flowing from the indoor units 2 to the heat source unit 1 are once aggregated, and a temperature sensor 15r is disposed in that portion so that the temperature here becomes the target value. Controlled.

室内機2が複数台ある場合は、室内機2の台数変動により、負荷変動が発生しやすく、それに応じて熱源機1の発停も生じやすくなるが、本発明の構成では、このような状況でも熱源機1の発停が生じにくい運転を行うことができ、より高信頼性の装置とすることができる。   When there are a plurality of indoor units 2, load fluctuations are likely to occur due to fluctuations in the number of indoor units 2, and accordingly the heat source unit 1 is likely to start and stop, but in the configuration of the present invention, such a situation However, it is possible to perform an operation in which the start and stop of the heat source device 1 is unlikely to occur, and a more reliable device can be obtained.

また、適用する冷媒もR410Aに限るものではなく、他のHFC系冷媒や、HC冷媒、CO2、NH3などの自然冷媒に適用することができる。CO2冷媒の場合、圧力が高いため各冷媒回路部品の耐圧を確保する必要があるが、1台の熱源機で構成しようとした場合、各構成部品の容積が大きくなり、容積に見合った耐圧仕様とするため、圧縮機3など各部品の肉厚を多く要し、高価となる。本発明のように小容量の熱源機1を複数台構成とすると、各構成部品の容積を小さくでき、その分耐圧強度が増し、各部品の肉厚が低く抑えられるので、より安価に装置を構成することができる。   Moreover, the refrigerant to be applied is not limited to R410A, and can be applied to other HFC refrigerants, natural refrigerants such as HC refrigerant, CO2, and NH3. In the case of CO2 refrigerant, it is necessary to ensure the pressure resistance of each refrigerant circuit component because the pressure is high. However, if it is configured with one heat source unit, the volume of each component becomes large, and the pressure resistance specification corresponding to the volume Therefore, the parts 3 such as the compressor 3 require a large thickness and are expensive. If a plurality of small-capacity heat source units 1 are configured as in the present invention, the volume of each component can be reduced, the pressure resistance is increased by that amount, and the thickness of each component can be kept low. Can be configured.

実施の形態2.
以下本発明の実施の形態2を図10に示す。図10は実施の形態2における熱源機1aの冷媒回路構成を表したものであり、エコノマイザ回路として、過冷却熱交7aの代わりに気液分離器23aを用いる構成とする。図11は実施の形態2における冷凍空調装置の圧力とエンタルピの関係を表した図である。
なお、実施の形態2において、熱源機1a、1bの冷媒回路以外の構成・制御については、実施の形態1と同様である。
Embodiment 2. FIG.
A second embodiment of the present invention is shown in FIG. FIG. 10 shows a refrigerant circuit configuration of the heat source unit 1a in the second embodiment, and a gas-liquid separator 23a is used instead of the supercooling heat exchanger 7a as an economizer circuit. FIG. 11 is a diagram showing the relationship between the pressure and enthalpy of the refrigeration air conditioner in the second embodiment.
In the second embodiment, the configuration and control other than the refrigerant circuit of the heat source devices 1a and 1b are the same as those in the first embodiment.

冷媒回路は環状に接続され、水熱交換器7aで冷水をつくる冷却運転では、圧縮機3a、四方弁4a、空気熱交換器5a、逆止弁6a、補助膨張弁22a、気液分離器23a、主膨張弁8a、逆止弁6d、水熱交換器9a、四方弁4a、圧縮機3aが環状に接続され、この順で冷媒が流れる。また気液分離器23aで分離されたガス冷媒が分岐され、バイパス膨張弁10a、を経て圧縮機3aの圧縮室にインジェクションされる。
水熱交換器7で温水をつくる加熱運転では、圧縮機3a、四方弁4a、水熱交換器7a、逆止弁6b、補助膨張弁22a、気液分離器23a、主膨張弁8a、逆止弁6c、空気熱交換器5a、四方弁4a、圧縮機3aが環状に接続され、この順で冷媒が流れる。また加熱運転においても気液分離器23aで分離されたガス冷媒が分岐され、バイパス膨張弁10a、を経て圧縮機3aの圧縮室にインジェクションされる。
冷却、加熱運転において気液分離器23aで分離されたガス冷媒が分岐され、バイパス膨張弁10aを経て圧縮機3aの圧縮室にインジェクションされる回路にてエコノマイザ回路を構成する。
In the cooling operation in which the refrigerant circuit is connected in a ring shape and cold water is produced by the water heat exchanger 7a, the compressor 3a, the four-way valve 4a, the air heat exchanger 5a, the check valve 6a, the auxiliary expansion valve 22a, and the gas-liquid separator 23a. The main expansion valve 8a, the check valve 6d, the water heat exchanger 9a, the four-way valve 4a, and the compressor 3a are connected in an annular shape, and the refrigerant flows in this order. The gas refrigerant separated by the gas-liquid separator 23a is branched and injected into the compression chamber of the compressor 3a through the bypass expansion valve 10a.
In the heating operation in which hot water is produced by the water heat exchanger 7, the compressor 3a, the four-way valve 4a, the water heat exchanger 7a, the check valve 6b, the auxiliary expansion valve 22a, the gas-liquid separator 23a, the main expansion valve 8a, the check The valve 6c, the air heat exchanger 5a, the four-way valve 4a, and the compressor 3a are connected in an annular shape, and the refrigerant flows in this order. Also in the heating operation, the gas refrigerant separated by the gas-liquid separator 23a is branched and injected into the compression chamber of the compressor 3a through the bypass expansion valve 10a.
The economizer circuit is configured by a circuit in which the gas refrigerant separated by the gas-liquid separator 23a in the cooling and heating operation is branched and injected into the compression chamber of the compressor 3a through the bypass expansion valve 10a.

冷却運転における冷媒回路の動作を図10、図11に基づいて説明する。四方弁4aの流路は図10の実線方向に設定される。圧縮機3aから吐出された高温高圧(Ph)のガス冷媒(図11点A)は、四方弁4aを経て空気熱交換器5aに流入し、凝縮器となる空気熱交換器5aで放熱しながら凝縮・液化する(11点B)。空気熱交換器5aを出た高圧の液冷媒は逆止弁6aを経て、補助膨張弁22aで中間圧(Pm)まで減圧され、二相冷媒となる(図11点F)。二相冷媒は気液分離器23aに流入し、気液分離され、分離された液冷媒(図11点C)は主膨張弁8aに流入する。主膨張弁8aにて低圧(Pl)に減圧された二相状態の冷媒は(図11点D)、逆止弁6dを経て蒸発器となる水熱交換器9aにて、蒸発ガス化しながら吸熱し、液媒体である水を冷却し冷水を生成する。水熱交換器9aを出た冷媒は、四方弁4aを経て圧縮機3aに吸入される(図11点E)。気液分離器23aで分離されたガス冷媒(図11点G)は、バイパス膨張弁10aを経て、圧縮機3a内の圧縮途中の圧縮室にインジェクションされ、吸入状態(図11点E)から圧縮された冷媒(図11点H)と混合した後(図11点I)、高圧(Ph)まで圧縮され、高温高圧のガス冷媒(図11点A)となる。
次に加熱運転における冷媒回路の動作について説明する。加熱運転では四方弁4aの流路は図10の点線方向に設定される。加熱運転における冷媒の状態変化も冷却運転とほぼ同様であり、図11に示される状態変化となる。圧縮機3aから吐出された高温高圧(Ph)のガス冷媒(図11点A)は、四方弁4aを経て水熱交換器9aに流入し、凝縮器となる水熱交換器9aで放熱しながら凝縮・液化する(図11点B)。この際、液媒体である水を加熱し温水を生成する。水熱交換器9aを出た高圧の液冷媒は逆止弁6bを経て、補助膨張弁22aで中間圧(Pm)まで減圧され、二相冷媒となる(図11点F)。二相冷媒は気液分離器23aに流入し、気液分離され、分離された液冷媒(図11点C)は主膨張弁8aに流入する。主膨張弁8aにて低圧(Pl)に減圧され二相状態の冷媒となり(図11点D)、逆止弁6cを経て蒸発器となる空気熱交換器5aに流入し、空気熱交換器5aにて、蒸発ガス化され、四方弁4aを経て圧縮機3aに吸入される(図11点E)。気液分離器23aで分離されたガス冷媒(図11点G)は、バイパス膨張弁10aを経て、圧縮機3a内の圧縮途中の圧縮室にインジェクションされ、吸入状態(図11点E)から圧縮された冷媒(図11点H)と混合した後(図11点I)、高圧(Ph)まで圧縮され、高温高圧のガス冷媒(図11点A)となる。
The operation of the refrigerant circuit in the cooling operation will be described with reference to FIGS. The flow path of the four-way valve 4a is set in the direction of the solid line in FIG. The high-temperature and high-pressure (Ph) gas refrigerant (point A in FIG. 11) discharged from the compressor 3a flows into the air heat exchanger 5a through the four-way valve 4a and dissipates heat in the air heat exchanger 5a serving as a condenser. It condenses and liquefies (11 points B). The high-pressure liquid refrigerant exiting the air heat exchanger 5a passes through the check valve 6a and is reduced to the intermediate pressure (Pm) by the auxiliary expansion valve 22a to become a two-phase refrigerant (point F in FIG. 11). The two-phase refrigerant flows into the gas-liquid separator 23a, gas-liquid is separated, and the separated liquid refrigerant (point C in FIG. 11) flows into the main expansion valve 8a. The two-phase refrigerant decompressed to a low pressure (Pl) by the main expansion valve 8a (point D in FIG. 11) absorbs heat while evaporating and gasifying in the water heat exchanger 9a that becomes the evaporator through the check valve 6d. Then, the liquid medium is cooled to produce cold water. The refrigerant exiting the water heat exchanger 9a is sucked into the compressor 3a through the four-way valve 4a (point E in FIG. 11). The gas refrigerant (point G in FIG. 11) separated by the gas-liquid separator 23a passes through the bypass expansion valve 10a and is injected into the compression chamber in the middle of compression in the compressor 3a, and compressed from the suction state (point E in FIG. 11). After being mixed with the refrigerant (point H in FIG. 11) (point I in FIG. 11), the refrigerant is compressed to a high pressure (Ph) to become a high-temperature and high-pressure gas refrigerant (point A in FIG. 11).
Next, the operation of the refrigerant circuit in the heating operation will be described. In the heating operation, the flow path of the four-way valve 4a is set in the direction of the dotted line in FIG. The state change of the refrigerant in the heating operation is almost the same as that in the cooling operation, and the state change shown in FIG. The high-temperature and high-pressure (Ph) gas refrigerant (point A in FIG. 11) discharged from the compressor 3a flows into the hydrothermal exchanger 9a via the four-way valve 4a, and dissipates heat in the hydrothermal exchanger 9a serving as a condenser. It condenses and liquefies (point B in FIG. 11). At this time, water as a liquid medium is heated to generate hot water. The high-pressure liquid refrigerant that has exited the water heat exchanger 9a passes through the check valve 6b, and is reduced to the intermediate pressure (Pm) by the auxiliary expansion valve 22a to become a two-phase refrigerant (point F in FIG. 11). The two-phase refrigerant flows into the gas-liquid separator 23a, gas-liquid is separated, and the separated liquid refrigerant (point C in FIG. 11) flows into the main expansion valve 8a. The refrigerant is reduced to a low pressure (Pl) by the main expansion valve 8a to become a two-phase refrigerant (point D in FIG. 11), passes through the check valve 6c, flows into the air heat exchanger 5a serving as an evaporator, and flows into the air heat exchanger 5a. The gas is evaporated and is sucked into the compressor 3a through the four-way valve 4a (point E in FIG. 11). The gas refrigerant (point G in FIG. 11) separated by the gas-liquid separator 23a passes through the bypass expansion valve 10a and is injected into the compression chamber in the middle of compression in the compressor 3a, and compressed from the suction state (point E in FIG. 11). After being mixed with the refrigerant (point H in FIG. 11) (point I in FIG. 11), the refrigerant is compressed to a high pressure (Ph) to become a high-temperature and high-pressure gas refrigerant (point A in FIG. 11).

本実施の形態2の熱源機1内の制御動作については、上記実施の形態1に対して補助膨張弁22の開度を制御するステップが加わっている。以下、冷房運転時の制御動作について図12に基づいて説明する。制御動作においても、熱源機1a、1bとも同様の動作が実施されるので、代表として熱源機1aの運転制御について説明する。
まず、熱源機1aを起動(ST501)すると、圧縮機3aの回転数、空気熱交換器5aへ送風量、主膨張弁8aの開度、バイパス膨張弁10aの開度を初期値に設定して運転を行う(ST502)。空気熱交換器5aの送風量の初期設定値は温度センサ15sで検知される外気温度およびあらかじめ計測制御装置16に記憶された所定値とを比較して決定される。ここで外気温度と比較する所定値は圧縮機の運転容量、熱交換器性能など機器性能に基づいて定められ、冷凍サイクルの高圧(圧縮機3a吐出冷媒の圧力)が低下しすぎないようにするため、外気温度が高い場合は高風量、低い場合は低風量に設定される。
About the control operation in the heat source machine 1 of this Embodiment 2, the step which controls the opening degree of the auxiliary | assistant expansion valve 22 with respect to the said Embodiment 1 is added. Hereinafter, the control operation during the cooling operation will be described with reference to FIG. Also in the control operation, the same operation is performed for the heat source devices 1a and 1b. Therefore, the operation control of the heat source device 1a will be described as a representative.
First, when the heat source unit 1a is activated (ST501), the rotation speed of the compressor 3a, the air flow to the air heat exchanger 5a, the opening of the main expansion valve 8a, and the opening of the bypass expansion valve 10a are set to initial values. Operation is performed (ST502). The initial setting value of the air flow rate of the air heat exchanger 5a is determined by comparing the outside air temperature detected by the temperature sensor 15s and a predetermined value stored in the measurement control device 16 in advance. Here, the predetermined value to be compared with the outside air temperature is determined based on equipment performance such as the operating capacity of the compressor and heat exchanger performance, so that the high pressure of the refrigeration cycle (pressure of the refrigerant discharged from the compressor 3a) does not decrease too much. Therefore, the high air volume is set when the outside air temperature is high, and the low air volume is set when it is low.

そして、この状態で運転した後、装置運転状態に応じて各アクチュエータを制御する。まず圧縮機3の回転数は、温度センサ15hで検知される水熱交機9出口の冷水温度が予め設定された目標値となるように制御される(ST503)。目標温度は前述したように熱源機1a、1bで異なり、例えば熱源機1aでは9.5℃、熱源機1bでは7℃に設定される。圧縮機3の回転数が高いと、冷媒流量が増加するため装置の冷却能力が増加し、水がより冷却されるため、水熱交換器9出口の水温は低下する。逆に、圧縮機3の回転数が低いと、水熱交換器9出口の水温は上昇する。そこで水熱交換器9出口の水温と目標値とを比較し、水温が高い場合は圧縮機3の回転数を増加させ、水温が低い場合は圧縮機3の回転数を減少させる(ST504)。   And after driving | running in this state, each actuator is controlled according to an apparatus operating state. First, the rotation speed of the compressor 3 is controlled so that the cold water temperature at the outlet of the hydrothermal exchanger 9 detected by the temperature sensor 15h becomes a preset target value (ST503). As described above, the target temperature differs between the heat source devices 1a and 1b. For example, the target temperature is set to 9.5 ° C. for the heat source device 1a and 7 ° C. for the heat source device 1b. If the rotation speed of the compressor 3 is high, the refrigerant flow rate increases, the cooling capacity of the apparatus increases, and the water is further cooled, so the water temperature at the outlet of the water heat exchanger 9 decreases. Conversely, when the rotation speed of the compressor 3 is low, the water temperature at the outlet of the water heat exchanger 9 rises. Therefore, the water temperature at the outlet of the water heat exchanger 9 is compared with the target value. When the water temperature is high, the rotational speed of the compressor 3 is increased, and when the water temperature is low, the rotational speed of the compressor 3 is decreased (ST504).

次に、空気熱交換器5の送風量であるが、この送風量は基本的に初期設定値にて運転を行う。ただし、運転条件によって、圧力センサ14bで検知される高圧が所定範囲内からはずれるような場合には、高圧が所定範囲内であるかを確認し(ST505)、高圧が、過度に上昇した場合は圧縮機3a保護のために風量を増加させる制御を行う。また、高圧が過度に低下した場合は、主膨張弁8の開度制御を行っても低圧(圧縮機3a吸入冷媒の圧力)が大きく低下し、冷媒蒸発温度が氷点下以下に低下し、冷水が凍結する恐れが出てくるので、高圧の過度の低下を抑制するように風量を減少させる制御を行う(ST506)。   Next, although it is the air flow rate of the air heat exchanger 5, this air flow rate is basically operated at an initial set value. However, if the high pressure detected by the pressure sensor 14b deviates from the predetermined range depending on the operating conditions, it is confirmed whether the high pressure is within the predetermined range (ST505). In order to protect the compressor 3a, control is performed to increase the air volume. If the high pressure is excessively reduced, the low pressure (pressure of the refrigerant sucked by the compressor 3a) is greatly reduced even if the opening degree of the main expansion valve 8 is controlled, the refrigerant evaporation temperature is lowered below the freezing point, Since there is a risk of freezing, control is performed to reduce the air volume so as to suppress an excessive decrease in high pressure (ST506).

次に、主膨張弁8aの開度であるが、蒸発器となる水熱交換器9aの出口であり、圧縮機3a吸入の状態(図11点E)の冷媒過熱度SHを演算し(ST507)、この冷媒過熱度SHが、予め設定された目標値、例えば2℃となるように制御される(ST508)。ここで水熱交換器9aの出口であり圧縮機3a吸入の冷媒過熱度SHは、(温度センサ15a検知温度(圧縮機3の吸入温度))−(圧力センサ14aから換算される冷媒飽和温度)で演算される値を用いる。
主膨張弁8aの開度が小さくなると、水熱交換器9aを流れる冷媒流量は減少し、水熱交換器9a出口の冷媒過熱度SHは大きくなり、逆に主膨張弁8aの開度を大きくすると水熱交換器9aの冷媒過熱度SHは小さくなる。そこで、圧縮機3a吸入(水熱交換器9a出口)の冷媒過熱度SHと目標値とを比較し、冷媒過熱度SHが目標値より大きい場合には、主膨張弁8aの開度を大きく制御し、冷媒過熱度SHが目標値より小さい場合には主膨張弁8aの開度を小さく制御する(ST509)。
Next, the opening degree of the main expansion valve 8a, which is the outlet of the water heat exchanger 9a serving as an evaporator, calculates the refrigerant superheat degree SH in the state of suction of the compressor 3a (point E in FIG. 11) (ST507). ), The refrigerant superheat degree SH is controlled to be a preset target value, for example, 2 ° C. (ST508). Here, the refrigerant superheat degree SH at the outlet of the water heat exchanger 9a and sucked into the compressor 3a is (temperature sensor 15a detected temperature (intake temperature of the compressor 3)) − (refrigerant saturation temperature converted from the pressure sensor 14a). Use the value calculated in.
When the opening of the main expansion valve 8a decreases, the flow rate of the refrigerant flowing through the water heat exchanger 9a decreases, the refrigerant superheat degree SH at the outlet of the water heat exchanger 9a increases, and conversely, the opening of the main expansion valve 8a increases. Then, the refrigerant superheat degree SH of the water heat exchanger 9a becomes small. Therefore, the refrigerant superheat degree SH of the compressor 3a suction (water heat exchanger 9a outlet) is compared with the target value, and when the refrigerant superheat degree SH is larger than the target value, the opening degree of the main expansion valve 8a is largely controlled. When the refrigerant superheat degree SH is smaller than the target value, the opening degree of the main expansion valve 8a is controlled to be small (ST509).

次に、補助膨張弁22aの開度であるが、まず、凝縮器となる空気熱交換器5aの出口の過冷却度SCを演算する(ST510)。具体的には、(圧力センサ14bの検知した値から換算される冷媒飽和温度)−(温度センサ15c検知温度)で演算される。この過冷却度SCが、予め設定された目標値、例えば5℃となるように補助膨張弁22aの開度を制御する(ST511)。
補助膨張弁22aの開度が小さくなると、空気熱交換器5aを流れる冷媒流量は減少し、空気熱交換器5a出口の過冷却度SCは大きくなり、逆に補助膨張弁22aの開度が大きくなると、空気熱交換器22aの過冷却度SCは小さくなる。したがって、過冷却度SCが目標値より大きい場合は、補助膨張弁22aの開度を大きくし、逆に過冷却度SCが目標値より小さい場合は、補助膨張弁22aの開度を小さくする(ST512)。
Next, regarding the opening of the auxiliary expansion valve 22a, first, the degree of supercooling SC at the outlet of the air heat exchanger 5a serving as a condenser is calculated (ST510). Specifically, it is calculated by (refrigerant saturation temperature converted from the value detected by the pressure sensor 14b) − (temperature sensor 15c detected temperature). The opening degree of the auxiliary expansion valve 22a is controlled so that the degree of supercooling SC becomes a preset target value, for example, 5 ° C. (ST511).
When the opening degree of the auxiliary expansion valve 22a decreases, the refrigerant flow rate flowing through the air heat exchanger 5a decreases, the degree of supercooling SC at the outlet of the air heat exchanger 5a increases, and conversely the opening degree of the auxiliary expansion valve 22a increases. Then, the degree of supercooling SC of the air heat exchanger 22a becomes small. Therefore, when the degree of supercooling SC is larger than the target value, the opening degree of the auxiliary expansion valve 22a is increased. Conversely, when the degree of supercooling SC is smaller than the target value, the opening degree of the auxiliary expansion valve 22a is decreased ( ST512).

次に、バイパス膨張弁10aの開度であるが、圧縮機3aの出口(図11点A)の冷媒過熱度SHdを演算し(ST513)、この冷媒過熱度SHdが、予め設定された目標値、例えば2℃となるように制御される(ST514)。ここで圧縮機3aの吐出の冷媒過熱度SHdは、(温度センサ15b検知温度)−(圧力センサ14bの検知した値から換算される冷媒飽和温度)で演算される値を用いる。
バイパス膨張弁10aの開度が小さくなると、エコノマイザ回路を流れる冷媒流量は減少し、圧縮機3a吐出の冷媒過熱度SHdは大きくなり(図11の点Aが右に移動しAB間が長くなる)、逆にバイパス膨張弁10aの開度を大きくすると圧縮機3a出口の冷媒過熱度SHdは小さくなる(図11の点Aが左に移動し、AB間が短くなる)。そこで、圧縮機3a出口の冷媒過熱度SHdと目標値とを比較し、冷媒過熱度SHdが目標値より大きい場合には、バイパス膨張弁10aの開度を大きく制御し、冷媒過熱度SHdが目標値より小さい場合にはバイパス膨張弁10aの開度を小さく制御する(ST515)。
その後、再びステップST503に戻り、水熱交換器9の出口水温が目標値になっているか否かを検出し、検出結果に応じてステップST503〜ST515の処理を繰り返す。
Next, the opening degree of the bypass expansion valve 10a, the refrigerant superheat degree SHd at the outlet of the compressor 3a (point A in FIG. 11) is calculated (ST513), and this refrigerant superheat degree SHd is set to a preset target value. For example, the temperature is controlled to be 2 ° C. (ST514). Here, the refrigerant superheat degree SHd discharged from the compressor 3a uses a value calculated by (temperature sensor 15b detected temperature) − (refrigerant saturation temperature converted from the value detected by the pressure sensor 14b).
When the opening degree of the bypass expansion valve 10a is reduced, the flow rate of the refrigerant flowing through the economizer circuit is reduced, and the refrigerant superheat degree SHd discharged from the compressor 3a is increased (the point A in FIG. 11 moves to the right and the distance between AB is increased). Conversely, when the opening degree of the bypass expansion valve 10a is increased, the refrigerant superheat degree SHd at the outlet of the compressor 3a decreases (the point A in FIG. 11 moves to the left, and the distance between AB decreases). Therefore, the refrigerant superheat degree SHd at the outlet of the compressor 3a is compared with the target value. If the refrigerant superheat degree SHd is larger than the target value, the opening degree of the bypass expansion valve 10a is controlled to be large, and the refrigerant superheat degree SHd is set to the target value. When the value is smaller than the value, the opening degree of the bypass expansion valve 10a is controlled to be small (ST515).
Then, it returns to step ST503 again, it is detected whether the outlet water temperature of the water heat exchanger 9 has become target value, and the process of step ST503-ST515 is repeated according to a detection result.

実施の形態2においても、冷凍サイクルはガスインジェクションサイクルとなり、実施の形態1と同様に高効率の運転を行うことができる。またバイパス膨張弁10aの開度制御でインジェクションされる流量を制御することにより、熱源機1の容量制御範囲を拡大でき、熱源機1の発停頻度を低減し、より信頼性の高い装置とすることができる。   Also in the second embodiment, the refrigeration cycle is a gas injection cycle, and high-efficiency operation can be performed as in the first embodiment. Moreover, by controlling the flow rate injected by the opening degree control of the bypass expansion valve 10a, the capacity control range of the heat source unit 1 can be expanded, the frequency of starting and stopping the heat source unit 1 is reduced, and a more reliable device is obtained. be able to.

実施の形態3.
以下本発明の実施の形態3を図13に示す。図13は実施の形態3における熱源機1aの冷媒回路構成を表したものであり、圧縮機3の吐出側と吸入側を接続するガスバイパス回路24と、ガスパイパス回路24上に流量制御弁25を設けたものである。その他の構成は実施の形態1と同様である。
Embodiment 3 FIG.
A third embodiment of the present invention is shown in FIG. FIG. 13 shows a refrigerant circuit configuration of the heat source unit 1a in the third embodiment. A gas bypass circuit 24 connecting the discharge side and the suction side of the compressor 3 and a flow control valve 25 on the gas bypass circuit 24 are shown. It is provided. Other configurations are the same as those of the first embodiment.

ガスバイパス回路24を設けることで、圧縮機3の容量制御範囲の下限を拡大することができる。通常運転時は、流量制御弁25を閉止することで、実施の形態1と同じ運転を行うが、圧縮機3の容量制御範囲を運転周波数下限より低下させたい場合に、流量制御弁25を開き、圧縮機3aから吐出される冷媒の一部がガスバイパス回路24に流れるようにする。
こうすることで、水熱交換器9aに流入する冷媒流量を低減することができ、熱源機1の冷却・加熱能力を低減できる。圧縮機3の容量制御範囲を拡大することで、熱源機1の発停頻度を低減でき、装置の信頼性をより高めることができる。
By providing the gas bypass circuit 24, the lower limit of the capacity control range of the compressor 3 can be expanded. During normal operation, the flow control valve 25 is closed to perform the same operation as in the first embodiment, but the flow control valve 25 is opened when it is desired to lower the capacity control range of the compressor 3 below the lower limit of the operation frequency. Then, a part of the refrigerant discharged from the compressor 3 a is caused to flow to the gas bypass circuit 24.
By carrying out like this, the refrigerant | coolant flow rate which flows in into the water heat exchanger 9a can be reduced, and the cooling and heating capability of the heat source unit 1 can be reduced. By expanding the capacity control range of the compressor 3, the frequency of starting and stopping the heat source unit 1 can be reduced, and the reliability of the apparatus can be further increased.

また、熱源機1が運転開始し、圧縮機3が起動される場合、起動後所定時間は流量制御弁25を開いてもよい。前述したように、圧縮機3起動時は液バックが発生しやすくなる。このとき、圧縮機3aから吐出される高温の冷媒を、ガスバイパス回路24を介して吸入側に流し、液バックされる冷媒と混合することで、液冷媒を蒸発させ、液バック運転における液冷媒量を減少させる。こうすることで、液バック運転時の液圧縮や冷凍機油希釈を緩和し、より信頼性の高い運転を実現できる。   Further, when the heat source device 1 starts operation and the compressor 3 is activated, the flow control valve 25 may be opened for a predetermined time after activation. As described above, liquid back is likely to occur when the compressor 3 is started. At this time, the high-temperature refrigerant discharged from the compressor 3a is caused to flow to the suction side via the gas bypass circuit 24 and mixed with the liquid-backed refrigerant, thereby evaporating the liquid refrigerant and liquid refrigerant in the liquid-back operation. Reduce the amount. By so doing, liquid compression and refrigeration oil dilution during liquid back operation can be eased, and more reliable operation can be realized.

実施の形態4.
以下本発明の実施の形態4を図14に示す。図14は実施の形態4における熱源機1aの冷媒回路構成を表したものであり、圧縮機3aの容量を制御するガスバイパス回路26を設けている。ガスバイパス回路26は圧縮機3aの吐出、吸入側と圧縮機3a内の圧縮室を接続し、バイパス回路上に流量制御弁25a、25bを設けている。
図15はガスパイバス回路の一端が接続される圧縮室の位置を表しており、スクロール圧縮機の外周側の圧縮室19aに設けられるアンロードポート27にガスパイバス回路の一端が接続される。アンロードポート27は板バネにて閉止可能な構造となっており、ガスパイバス回路26側の圧力が圧縮室19aの圧力より高い場合は、板バネが圧縮室側に押しつけられて閉止、逆に圧縮室19aの圧力が高い場合は、板バネが開き、圧縮室19aとガスバイパス回路26が接続される。
Embodiment 4 FIG.
Embodiment 4 of the present invention is shown in FIG. FIG. 14 shows a refrigerant circuit configuration of the heat source unit 1a in the fourth embodiment, and a gas bypass circuit 26 for controlling the capacity of the compressor 3a is provided. The gas bypass circuit 26 connects the discharge and suction sides of the compressor 3a and the compression chamber in the compressor 3a, and has flow control valves 25a and 25b on the bypass circuit.
FIG. 15 shows the position of the compression chamber to which one end of the gas pie bus circuit is connected, and one end of the gas pie bus circuit is connected to an unload port 27 provided in the compression chamber 19a on the outer peripheral side of the scroll compressor. The unload port 27 has a structure that can be closed by a leaf spring. When the pressure on the gas pipe circuit 26 side is higher than the pressure in the compression chamber 19a, the leaf spring is pressed against the compression chamber side to close and conversely compress. When the pressure in the chamber 19a is high, the leaf spring opens and the compression chamber 19a and the gas bypass circuit 26 are connected.

ガスバイパス回路26を設けることで、圧縮機3の容量制御範囲の下限を拡大することができる。通常運転時は、流量制御弁25aを開、25bを閉とすることで、ガスパイバス回路26の圧力が高圧となり、アンロードポート27が閉止され、実施の形態1と同じ運転が行われる。
圧縮機3の容量制御範囲を運転周波数下限より低下させたい場合に、流量制御弁25aを閉、25bを開とする。このときアンロードポート27が開き、圧縮室19aとガスバイパス回路26と圧縮機3吸入側が接続されるので、アンロードポート27が揺動スクロール17の外周側に位置するまでは、最外周の圧縮室19aは、吸入側と接続されることになり、圧縮されない。アンロードポート27が揺動スクロール17の外周側に位置した時点で、最外周の圧縮室19aの閉じ込みが完了し、この時点から圧縮開始されるので、圧縮機3aのストロークボリュームは低くなり、圧縮機3aの容量制御範囲の下限が拡大される。
こうすることで、水熱交換器9aに流入する冷媒流量を低減することができ、熱源機1の冷却・加熱能力を低減できる。圧縮機3aの容量制御範囲を拡大することで、熱源機1の発停頻度を低減でき、装置の信頼性をより高めることができる。
実施の形態3では、圧縮された冷媒を吸入側にバイパスするため、その分だけ無駄な圧縮仕事をすることになり運転効率が低下するが、このように圧縮室と吸入側を接続して、閉じ込み位置を遅らせる場合は、バイパス回路26を通じて流出する冷媒に対する圧縮仕事が少なく、より高効率に容量制御範囲の下限を拡大することができる。
By providing the gas bypass circuit 26, the lower limit of the capacity control range of the compressor 3 can be expanded. During normal operation, by opening the flow control valve 25a and closing 25b, the pressure of the gas piping circuit 26 becomes high, the unload port 27 is closed, and the same operation as in the first embodiment is performed.
When it is desired to lower the capacity control range of the compressor 3 below the lower limit of the operating frequency, the flow control valve 25a is closed and 25b is opened. At this time, the unload port 27 is opened and the compression chamber 19a, the gas bypass circuit 26, and the compressor 3 suction side are connected. Therefore, until the unload port 27 is positioned on the outer peripheral side of the orbiting scroll 17, the outermost compression is performed. The chamber 19a is connected to the suction side and is not compressed. When the unload port 27 is positioned on the outer peripheral side of the orbiting scroll 17, the compression of the outermost compression chamber 19a is completed, and the compression starts from this point, so the stroke volume of the compressor 3a is reduced, The lower limit of the capacity control range of the compressor 3a is expanded.
By carrying out like this, the refrigerant | coolant flow rate which flows in into the water heat exchanger 9a can be reduced, and the cooling and heating capability of the heat source unit 1 can be reduced. By expanding the capacity control range of the compressor 3a, the frequency of starting and stopping the heat source unit 1 can be reduced, and the reliability of the apparatus can be further increased.
In the third embodiment, since the compressed refrigerant is bypassed to the suction side, the amount of unnecessary compression work is reduced and the operation efficiency is reduced. Thus, the compression chamber and the suction side are connected in this way, When the closing position is delayed, there is little compression work for the refrigerant flowing out through the bypass circuit 26, and the lower limit of the capacity control range can be expanded more efficiently.

1a、1b 熱源機
2 室内機
3a、3b 圧縮機
4a、4b 四方弁
5a、5b 空気熱交換器
6a、6b、6c、6d、6e、6f、6g、6h 逆止弁
7a、7b 過冷却熱交換器
8a、8b 主膨張弁
9a、9b 水熱交換器
10a、10b バイパス膨張弁
11 室内熱交換器
12 ポンプ
13 貯水槽
14a、14b、14c、14d 圧力センサ
15a、15b、15c、15d、15e、15f、15g、15h、15i、15j、15k、15l、15m、15n、15o、15p、15q、15r、15s、15t、15u 温度センサ
16 計測制御装置
17 揺動スクロール
18 固定スクロール
19、19a、19b、19c 圧縮室
20 吐出ポート
21 インジェクションポート
22 補助膨張弁
23 気液分離器
24、26 ガスバイパス回路
25、25a、25b 流量制御弁
27 アンロードポート
1a, 1b Heat source unit 2 Indoor unit 3a, 3b Compressor 4a, 4b Four-way valve 5a, 5b Air heat exchanger 6a, 6b, 6c, 6d, 6e, 6f, 6g, 6h Check valve 7a, 7b Supercooling heat exchange 8a, 8b Main expansion valves 9a, 9b Hydrothermal exchangers 10a, 10b Bypass expansion valve 11 Indoor heat exchanger 12 Pump 13 Water tanks 14a, 14b, 14c, 14d Pressure sensors 15a, 15b, 15c, 15d, 15e, 15f 15g, 15h, 15i, 15j, 15k, 15l, 15m, 15n, 15o, 15p, 15q, 15r, 15s, 15t, 15u Temperature sensor 16 Measurement control device 17 Oscillating scroll 18 Fixed scroll 19, 19a, 19b, 19c Compression chamber 20 Discharge port 21 Injection port 22 Auxiliary expansion valve 23 Gas-liquid separators 24, 26 Gas bypass circuit 25,25a, 25b flow control valve 27 unload port

Claims (11)

インバータ駆動されて冷媒を圧縮するスクロール圧縮機と、
前記スクロール圧縮機と接続され前記冷媒と空気との熱交換を行う空気熱交換器と、
前記空気熱交換器と接続され前記冷媒の圧力を減圧する減圧装置と、
一端を前記減圧回路と接続されるとともに、他端が前記スクロール圧縮機に接続され、液媒体と前記冷媒との熱交換を行うことで熱負荷に対し冷熱を供給する負荷側熱交換器と、を有する熱源機を複数台備え、
前記液媒体が前記各熱源機を直列に流れることを特徴とする冷凍空調装置。
A scroll compressor that is driven by an inverter and compresses the refrigerant;
An air heat exchanger connected to the scroll compressor and performing heat exchange between the refrigerant and air;
A pressure reducing device connected to the air heat exchanger and reducing the pressure of the refrigerant;
A load-side heat exchanger having one end connected to the decompression circuit and the other end connected to the scroll compressor and supplying cold to a heat load by performing heat exchange between the liquid medium and the refrigerant; A plurality of heat source machines having
The refrigerating and air-conditioning apparatus, wherein the liquid medium flows through the heat source devices in series.
前記スクロール圧縮機にガスインジェクションが行われるポートを備えると共に、このポートに前記冷凍空調装置の冷凍サイクルの高圧と低圧の間の圧力のガスを供給するエコノマイザ回路を備えたことを特徴とする請求項1に記載の冷凍空調装置。 The said scroll compressor is provided with the port by which gas injection is performed, and the economizer circuit which supplies the gas of the pressure between the high pressure of the refrigerating cycle of the said refrigerating and air-conditioning apparatus to the port is provided to this port. The refrigeration air conditioner according to 1. 前記圧縮機の吐出側と吸入側とを接続するガスバイパス回路をさらに備え、このガスバイパス回路を流れる前記冷媒の流量を制御する流量制御弁を備えたことを特徴とする請求項1又は2に記載の冷凍空調装置。 3. A gas bypass circuit for connecting a discharge side and a suction side of the compressor, and a flow rate control valve for controlling a flow rate of the refrigerant flowing through the gas bypass circuit. Refrigeration air conditioner of description. 前記圧縮機の圧縮室と圧縮機吸入側とを接続するガスバイパス回路を備え、このガスバイパス回路を流れる前記冷媒の流量を制御する流量制御弁を備えたことを特徴とする請求項1又は2に記載の冷凍空調装置。 3. A gas bypass circuit that connects a compression chamber of the compressor and a compressor suction side, and a flow rate control valve that controls a flow rate of the refrigerant flowing through the gas bypass circuit. The refrigeration air conditioner described in 1. 前記減圧装置が開度調整弁で構成され、前記圧縮機の停止中は、開度調整弁の開度を全閉にする流量制御弁を備えたことを特徴とする請求項1に記載の冷凍空調装置。 2. The refrigeration according to claim 1, wherein the decompression device includes an opening adjustment valve, and includes a flow control valve that fully closes the opening of the opening adjustment valve while the compressor is stopped. Air conditioner. 少なくとも2台以上の前記熱源機を運転時に、この運転を行っている熱源機の各圧縮機の合計容量が、この運転を行っている熱源機の各圧縮機の最大容量の合計の所定割合以下である場合に、少なくとも1台の前記熱源機の運転を停止することを特徴とする請求項1乃至5に記載の冷凍空調装置。 When operating at least two or more of the heat source units, the total capacity of the compressors of the heat source unit performing the operation is equal to or less than a predetermined ratio of the total maximum capacity of the compressors of the heat source unit performing the operation. 6, the refrigeration air conditioner according to claim 1, wherein the operation of at least one of the heat source machines is stopped. 1または複数台の前記熱源機が運転しており、かつ、少なくとも1台の前記熱源機が運転停止時に、前記運転を行っている熱源機の各圧縮機の合計容量が、運転を行っている熱源機の各圧縮機の最大容量の合計の所定割合以上である場合に、前記運転停止していた熱源機の運転を開始することを特徴とする請求項1又は6に記載の冷凍空調装置。 When one or a plurality of the heat source units are operating, and when at least one of the heat source units is stopped, the total capacity of the compressors of the heat source units performing the operation is operating. The refrigerating and air-conditioning apparatus according to claim 1 or 6, wherein the operation of the heat source apparatus that has been stopped is started when the total capacity of the compressors of the heat source apparatus is equal to or greater than a predetermined ratio. 前記運転停止していた熱源機の運転を開始する際、この熱源機の運転起動時から所定期間、この熱源機のスクロール圧縮機の容量がすでに運転を行っていた熱源機の各スクロール圧縮機の容量よりも小さくなるように制御することを特徴とする請求項7に記載の冷凍空調装置。 When starting the operation of the heat source machine that has been stopped, the capacity of the scroll compressor of the heat source machine is already in operation for a predetermined period from the start of operation of the heat source machine. It controls so that it may become smaller than a capacity | capacitance, The refrigeration air conditioner of Claim 7 characterized by the above-mentioned. 前記熱源機を複数台同時に運転する場合に、前記液媒体の前記負荷側熱交換器の出入口での温度差が各熱源機で略同じとなるように制御することを特徴とする請求項1に記載の冷凍空調装置。 2. The control according to claim 1, wherein when operating a plurality of the heat source units at the same time, the temperature difference at the inlet / outlet of the load-side heat exchanger of the liquid medium is controlled to be substantially the same in each heat source unit. Refrigeration air conditioner of description. 前記エコノマイザ回路は、
前記空気熱交換器と前記減圧装置との接続経路から分岐して設けられた前記冷媒の一部を減圧するバイパス膨張弁と、
前記空気熱交換器と前記減圧装置との接続経路を通過する前記冷媒と、前記バイパス膨張弁を通過した冷媒との熱交換を行う過冷却熱交換器と、
前記バイパス膨張弁と前記過冷却熱交換器とを通過した冷媒を前記ポートに導入する配管とで構成されることを特徴とする請求項2に記載の冷凍空調装置。
The economizer circuit is:
A bypass expansion valve that depressurizes a part of the refrigerant provided by branching from a connection path between the air heat exchanger and the pressure reducing device;
A supercooling heat exchanger that performs heat exchange between the refrigerant passing through the connection path between the air heat exchanger and the pressure reducing device, and the refrigerant passing through the bypass expansion valve;
The refrigerating and air-conditioning apparatus according to claim 2, comprising a refrigerant pipe that introduces the refrigerant that has passed through the bypass expansion valve and the supercooling heat exchanger into the port.
前記エコノマイザ回路は、
前記空気熱交換器と前記減圧装置との間に設けられた気液分離装置と、
前記気液分離装置で分離された気体の圧力をさらに減圧するバイパス膨張弁と、
前記バイパス膨張弁と前記スクロール圧縮機の前記ポートとを接続する配管と、
前記気液分離装置で分離された液体を前記減圧装置に導入する配管と、で構成されることを特徴とする請求項2に記載の冷凍空調装置。
The economizer circuit is:
A gas-liquid separation device provided between the air heat exchanger and the decompression device;
A bypass expansion valve for further reducing the pressure of the gas separated by the gas-liquid separator;
Piping connecting the bypass expansion valve and the port of the scroll compressor;
The refrigerating and air-conditioning apparatus according to claim 2, further comprising: a pipe that introduces the liquid separated by the gas-liquid separation apparatus into the decompression apparatus.
JP2010189447A 2010-08-26 2010-08-26 Refrigeration air conditioner Active JP5168327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010189447A JP5168327B2 (en) 2010-08-26 2010-08-26 Refrigeration air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010189447A JP5168327B2 (en) 2010-08-26 2010-08-26 Refrigeration air conditioner

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005374653A Division JP2007178029A (en) 2005-12-27 2005-12-27 Refrigerating air conditioner

Publications (2)

Publication Number Publication Date
JP2011007488A true JP2011007488A (en) 2011-01-13
JP5168327B2 JP5168327B2 (en) 2013-03-21

Family

ID=43564351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010189447A Active JP5168327B2 (en) 2010-08-26 2010-08-26 Refrigeration air conditioner

Country Status (1)

Country Link
JP (1) JP5168327B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002722A (en) * 2011-06-16 2013-01-07 Sanyo Electric Co Ltd Refrigerator
JP2013096602A (en) * 2011-10-28 2013-05-20 Panasonic Corp Refrigeration cycle device
JP2013228132A (en) * 2012-04-25 2013-11-07 Mitsubishi Electric Corp Freezer
JP5730335B2 (en) * 2011-01-31 2015-06-10 三菱電機株式会社 Air conditioner
JP2015518954A (en) * 2012-06-08 2015-07-06 ヤック ソシエテ・パ・アクシオンス・シンプリフィエ Air conditioning system
JP5908177B1 (en) * 2014-06-25 2016-04-26 三菱電機株式会社 Refrigeration cycle apparatus, air conditioner, and control method for refrigeration cycle apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105155A (en) * 1989-09-18 1991-05-01 Daikin Ind Ltd Freezer with economizer
JP2001355934A (en) * 2000-06-12 2001-12-26 Sanyo Electric Co Ltd Heat pump type air conditioner
JP2002013491A (en) * 2000-06-30 2002-01-18 Hitachi Ltd Scroll compressor and air conditioner using the same
JP2004045032A (en) * 2003-09-30 2004-02-12 Sanyo Electric Co Ltd Compressor control device and refrigerating unit having this device
JP2005315431A (en) * 2004-04-26 2005-11-10 Aisin Seiki Co Ltd Composite power source heat pump type air conditioner
JP2005321194A (en) * 2005-08-01 2005-11-17 Daikin Ind Ltd Air conditioner
JP2005337626A (en) * 2004-05-28 2005-12-08 Hitachi Home & Life Solutions Inc Heat pump water heater system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105155A (en) * 1989-09-18 1991-05-01 Daikin Ind Ltd Freezer with economizer
JP2001355934A (en) * 2000-06-12 2001-12-26 Sanyo Electric Co Ltd Heat pump type air conditioner
JP2002013491A (en) * 2000-06-30 2002-01-18 Hitachi Ltd Scroll compressor and air conditioner using the same
JP2004045032A (en) * 2003-09-30 2004-02-12 Sanyo Electric Co Ltd Compressor control device and refrigerating unit having this device
JP2005315431A (en) * 2004-04-26 2005-11-10 Aisin Seiki Co Ltd Composite power source heat pump type air conditioner
JP2005337626A (en) * 2004-05-28 2005-12-08 Hitachi Home & Life Solutions Inc Heat pump water heater system
JP2005321194A (en) * 2005-08-01 2005-11-17 Daikin Ind Ltd Air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5730335B2 (en) * 2011-01-31 2015-06-10 三菱電機株式会社 Air conditioner
JP2013002722A (en) * 2011-06-16 2013-01-07 Sanyo Electric Co Ltd Refrigerator
JP2013096602A (en) * 2011-10-28 2013-05-20 Panasonic Corp Refrigeration cycle device
JP2013228132A (en) * 2012-04-25 2013-11-07 Mitsubishi Electric Corp Freezer
JP2015518954A (en) * 2012-06-08 2015-07-06 ヤック ソシエテ・パ・アクシオンス・シンプリフィエ Air conditioning system
JP5908177B1 (en) * 2014-06-25 2016-04-26 三菱電機株式会社 Refrigeration cycle apparatus, air conditioner, and control method for refrigeration cycle apparatus

Also Published As

Publication number Publication date
JP5168327B2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP2007178029A (en) Refrigerating air conditioner
US10563872B2 (en) Regenerative air conditioner
JP4651627B2 (en) Refrigeration air conditioner
JP5168327B2 (en) Refrigeration air conditioner
JP5710007B2 (en) Refrigeration cycle equipment
JP5132708B2 (en) Refrigeration air conditioner
JP6080939B2 (en) Air conditioner
KR101044464B1 (en) Refrigeration device
JP5328697B2 (en) Two-stage compressor and heat pump device
JP6758506B2 (en) Air conditioner
JP2011133210A (en) Refrigerating apparatus
JP2013164250A (en) Refrigerating apparatus
US11512880B2 (en) Refrigeration cycle device
JP4887929B2 (en) Refrigeration equipment
JP5659909B2 (en) Heat pump equipment
JP5414811B2 (en) Positive displacement expander and refrigeration cycle apparatus using the positive displacement expander
JP2015102319A (en) Refrigeration cycle device
JP5927553B2 (en) Refrigeration equipment
JP6765086B2 (en) Refrigeration equipment
JP2009204304A (en) Refrigeration air conditioner
JP2014159950A (en) Freezer
JP6791234B2 (en) Multi-stage compression system
JP6791233B2 (en) Multi-stage compression system
CN110494702B (en) Refrigeration cycle device
JP6704505B2 (en) Heat pump water heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121210

R151 Written notification of patent or utility model registration

Ref document number: 5168327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250