JP2011007182A - SiMo DUCTILE CAST IRON FOR GAS TURBINE - Google Patents

SiMo DUCTILE CAST IRON FOR GAS TURBINE Download PDF

Info

Publication number
JP2011007182A
JP2011007182A JP2010138951A JP2010138951A JP2011007182A JP 2011007182 A JP2011007182 A JP 2011007182A JP 2010138951 A JP2010138951 A JP 2010138951A JP 2010138951 A JP2010138951 A JP 2010138951A JP 2011007182 A JP2011007182 A JP 2011007182A
Authority
JP
Japan
Prior art keywords
less
gas turbine
turbine casing
iron
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010138951A
Other languages
Japanese (ja)
Inventor
Gregory Keith Bouse
グレゴリー・キース・バウス
Joseph J Jackson
ジョセフ・ジェイ・ジャクソン
Jason Robert Parolini
ジェイソン・ロバート・パロリーニ
Subrahmanyam Thangirala
スブラーマニャン・サンギララ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2011007182A publication Critical patent/JP2011007182A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D5/00Heat treatments of cast-iron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/08Making cast-iron alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ductile cast iron suitable for a gas turbine casing application.SOLUTION: The ductile iron includes about 2.8-3.7 wt.% of a carbon, about 3.0-3.5 wt.% of a silicon, 0.8-1.5 wt.% of a molybdenum, about 0.025-0.60 wt.% of a magnesium, less than 0.01 wt.% of a sulfur, about 0.0-1.3 wt.% of a nickel, and an iron for the remainder. Its cast product is suitable for a gas turbine casing. Also provided is a manufacturing method for a cast product.

Description

本発明は、経済性とサプライヤー選択性に優れたガスタービン用ダクタイル鉄に関する。   The present invention relates to a ductile iron for gas turbines that is excellent in economy and supplier selectivity.

現在、高温(370℃超)で作動するガスタービンケーシングは合金鋼の鋳造品又は製品に限られている。ガスタービンは、ピーク負荷をカバーするため非定常運転に耐えなければならない。そのため、ガスタービン部品には熱応力及び機械的応力が加わる。従って、ガスタービンケーシングは高温環境及び繰返し温度サイクルに耐えることができなければならない。高温でのガスタービンケーシング材料の強度は高くなければならない。現在、ガスタービンケーシング用の合金鋼鋳造品はこれらの要件を満足する。しかし、合金鋼製のガスタービンケーシングは製造コストがかかり、サプライヤーの数も限られている。   Currently, gas turbine casings operating at high temperatures (above 370 ° C.) are limited to alloy steel castings or products. Gas turbines must withstand unsteady operation to cover peak loads. Therefore, thermal stress and mechanical stress are applied to the gas turbine component. Therefore, the gas turbine casing must be able to withstand high temperature environments and repeated temperature cycles. The strength of the gas turbine casing material at high temperatures must be high. Currently, alloy steel castings for gas turbine casings meet these requirements. However, alloy steel gas turbine casings are expensive to manufacture and the number of suppliers is limited.

従来のフェライト系ダクタイル鉄は合金鋼よりも安価であるが、特性の組合せが適切でなく、最新ガスタービン圧縮機排気及びタービンシェルケーシングには使用されていない。ケイ素及びモリブデン含有量の高い鉄が、ある種の自動車用途、典型的には排気マニホルドに使用されている。これらの鉄はSiMo鉄と呼ばれる。しかし、これらの鉄は概して低温で脆性であり、割れを起こし易い。さらに、これらの材料は高温で所要の靱性を有していない。かかる材料の具体例は、米国特許出願公開第2008/0092995号、国際公開第2006/121826号、米国特許第6508981号及び欧州特許出願公開第1724370号に記載されている。   Conventional ferritic ductile iron is less expensive than alloy steel, but does not have the right combination of properties and is not used in modern gas turbine compressor exhaust and turbine shell casings. Iron with a high silicon and molybdenum content is used in certain automotive applications, typically in exhaust manifolds. These irons are called SiMo iron. However, these irons are generally brittle at low temperatures and prone to cracking. Furthermore, these materials do not have the required toughness at high temperatures. Specific examples of such materials are described in U.S. Patent Application Publication No. 2008/0092995, International Publication No. 2006/121826, U.S. Patent No. 6,508,981 and European Patent Application No. 1724370.

米国特許出願公開第2008/0092995号明細書US Patent Application Publication No. 2008/0092995 国際公開第2006/121826号International Publication No. 2006/121826 米国特許第6508981号明細書US Pat. No. 6,508,881 欧州特許出願公開第1724370号明細書European Patent Application No. 1724370

ケーシングの大きさが増すと、鋼鋳造物からのガスタービンケーシングの製造コストは増す。さらに、こうした大きな鋼鋳造物を製造できる現在の供給元は小さい。   As the size of the casing increases, the cost of manufacturing a gas turbine casing from a steel casting increases. Furthermore, the current suppliers that can produce such large steel castings are small.

本発明の実施形態には、ダクタイル鉄製のガスタービンケーシングであって、ダクタイル鉄が、約2.8〜3.7重量%の炭素、約3.0〜3.5重量%のケイ素、約0.8〜1.5重量%のモリブデン、約0.025〜0.60重量%のマグネシウム、約0.01重量%未満のイオウ、約0.0〜1.3重量%のニッケル、及び残部の鉄を含むガスタービンケーシングが包含される。   An embodiment of the present invention includes a ductile iron gas turbine casing, wherein the ductile iron is about 2.8-3.7 wt% carbon, about 3.0-3.5 wt% silicon, about 0 .8-1.5 wt.% Molybdenum, about 0.025-0.60 wt.% Magnesium, less than about 0.01 wt.% Sulfur, about 0.0-1.3 wt.% Nickel, and the balance A gas turbine casing comprising iron is included.

本発明の実施形態には、ダクタイル鉄製のガスタービンケーシングであって、ダクタイル鉄が、約2.8〜3.7重量%の炭素、約3.0〜3.5重量%のケイ素、約0.8〜1.5重量%のモリブデン、約0.025〜0.60重量%のマグネシウム、0.01重量%未満のイオウ、約0.0〜1.3重量%のニッケル、0.05重量%未満のリン、0.05重量%未満のチタン、約0.05重量%未満のバナジウム、0.05重量%未満のスズ、約0.10重量%未満のアルミニウム、約0.10重量%未満の銅、約0.10重量%未満のクロム、約0.15重量%未満のマンガン、及び残部の鉄を含むガスタービンケーシングも包含される。   An embodiment of the present invention includes a ductile iron gas turbine casing, wherein the ductile iron is about 2.8-3.7 wt% carbon, about 3.0-3.5 wt% silicon, about 0 .8 to 1.5 wt.% Molybdenum, about 0.025 to 0.60 wt.% Magnesium, less than 0.01 wt.% Sulfur, about 0.0 to 1.3 wt.% Nickel, 0.05 wt. Less than 0.05% phosphorus, less than 0.05% titanium, less than about 0.05% vanadium, less than 0.05% tin, less than about 0.10% aluminum, less than about 0.10% by weight Also included are gas turbine casings that contain less than about 0.10 wt.% Chromium, less than about 0.15 wt.% Manganese, and the balance iron.

また、本発明の実施形態には、部品の製造方法も包含される。本方法は、炭素、ケイ素、マグネシウム、イオウ、ニッケル、及び残部の鉄を含むダクタイル鉄を溶融して溶湯を形成することを含む。溶湯に、接種剤及び処理合金を加える。モリブデンを溶湯に加える。溶湯を鋳造して部品を形成する。部品は、約2.8〜3.7重量%の炭素、約3.0〜3.5重量%のケイ素、約0.8〜1.5重量%のモリブデン、約0.025〜0.60重量%のマグネシウム、約0.01重量%未満のイオウ、約0.0〜1.3重量%のニッケル、及び残部の鉄を含む。   The embodiment of the present invention also includes a method for manufacturing a component. The method includes melting ductile iron including carbon, silicon, magnesium, sulfur, nickel, and the balance iron to form a melt. Inoculum and treated alloy are added to the melt. Add molybdenum to the melt. Casting molten metal to form parts. The component is about 2.8-3.7 wt% carbon, about 3.0-3.5 wt% silicon, about 0.8-1.5 wt% molybdenum, about 0.025-0.60. Contains magnesium by weight, less than about 0.01 weight percent sulfur, about 0.0-1.3 weight percent nickel, and the balance iron.

図1は、本発明の一実施形態を実施するための例示的な方法のブロック図を示す。FIG. 1 shows a block diagram of an exemplary method for implementing an embodiment of the present invention.

本発明の上記その他の特徴、態様及び利点については、図面と併せて以下の詳細な説明を参照することによって理解を深めることができるであろう。   These and other features, aspects and advantages of the present invention may be better understood by reference to the following detailed description taken in conjunction with the drawings in which:

ケイ素及びモリブデンを大量に合金添加することによって、ダクタイル鉄の高温強度、疲労及びクリープ挙動を改良することができる。これらの鉄は一般にSiMo鉄として分類され、ターボチャージャーハウジング及び排気マニホルドのような自動車用途に広く使用されている。   By alloying silicon and molybdenum in large quantities, the high temperature strength, fatigue and creep behavior of ductile iron can be improved. These irons are generally classified as SiMo iron and are widely used in automotive applications such as turbocharger housings and exhaust manifolds.

ダクタイル鉄は、通常は、圧縮機排気ケーシング又はタービンシェルのような高温ガスタービンケーシング用途の設計要件を満足しない。ガスタービンケーシングには一般に合金鋼が使用される。   Ductile iron typically does not meet design requirements for hot gas turbine casing applications such as compressor exhaust casings or turbine shells. Generally, alloy steel is used for the gas turbine casing.

モリブデン及びケイ素の合金添加によって従来のフェライト系ダクタイル鉄よりも高温性能の向上したダクタイル鉄が提供される。ケイ素及びモリブデン添加量は、十分な低温靭性を保持したまま、妥当な高温特性が達成されるように調和される。   The addition of molybdenum and silicon alloys provides ductile iron with improved high temperature performance over conventional ferritic ductile iron. Silicon and molybdenum additions are harmonized to achieve reasonable high temperature properties while maintaining sufficient low temperature toughness.

肉厚ダクタイル鉄における標準的なケイ素レベルは通例2.0〜2.2重量%である。今回、ケイ素含有量を2.8〜3.5重量%に増すと、室温〜約400℃での引張強さが実質的に増大することが判明した。0.5重量%モリブデンのダクタイル鉄の等温クリープ性能は従来のダクタイル鉄よりも実質的に優れている。高温強度はクリープ耐性の指標である。耐クリープ性能の改善は、Mo含有量を0.8〜1.5重量%に増大させたときに最大となる。Si及びMoを上記の重量百分率で使用することによって、ガスタービンケーシングに適した特性を有するダクタイル鉄が得られる。   The standard silicon level in thick ductile iron is typically 2.0-2.2% by weight. This time, it has been found that increasing the silicon content to 2.8-3.5 wt% substantially increases the tensile strength from room temperature to about 400 ° C. The isothermal creep performance of 0.5 wt% molybdenum ductile iron is substantially superior to conventional ductile iron. High temperature strength is an indicator of creep resistance. The improvement in creep resistance is maximized when the Mo content is increased from 0.8 to 1.5% by weight. By using Si and Mo in the above weight percentage, ductile iron having characteristics suitable for a gas turbine casing can be obtained.

本発明の実施形態で使用するダクタイル鉄は、約2.8〜3.7重量%の炭素、約3.0〜3.5重量%のケイ素、約0.8〜1.5重量%のモリブデン及び約0.0〜1.3重量%のニッケルを含んでおり、残部は鉄である。これらの4成分はガスタービンケーシング要件を満足するダクタイル鉄を得るのに臨界的重要性をもつ。高温での引張強さ及び低サイクル疲労(LCF)性能は、高温脆性の発生によって決定される。0.01重量%未満のイオウで適切な特性を有するSiMoダクタイル鉄を得るため、マグネシウムは0.025〜0.60重量%に保たなければならない。この範囲外のマグネシウム添加量では一般に機械的挙動の不適切な鉄が生ずる。上記成分に加えて、以下の微量成分が許容される。すなわち、0.05重量%未満のリン、0.05重量%未満のチタン、0.05重量%未満のバナジウム、0.05重量%未満のスズ、0.10重量%未満のアルミニウム、0.10重量%未満の銅、0.10重量%未満のクロム及び0.15重量%未満のマンガンである。一実施形態では、SiMoダクタイル鉄のタングステン含有量は0.05重量%未満である。   Ductile iron used in embodiments of the present invention comprises about 2.8-3.7 wt% carbon, about 3.0-3.5 wt% silicon, about 0.8-1.5 wt% molybdenum. And about 0.0 to 1.3 weight percent nickel with the balance being iron. These four components are of critical importance in obtaining ductile iron that satisfies the gas turbine casing requirements. High temperature tensile strength and low cycle fatigue (LCF) performance are determined by the occurrence of high temperature brittleness. In order to obtain SiMo ductile iron with suitable properties with less than 0.01% by weight of magnesium, the magnesium must be kept between 0.025 and 0.60% by weight. Magnesium additions outside this range generally result in iron with inadequate mechanical behavior. In addition to the above components, the following trace components are acceptable. Less than 0.05 wt% phosphorus, less than 0.05 wt% titanium, less than 0.05 wt% vanadium, less than 0.05 wt% tin, less than 0.10 wt% aluminum, 0.10 Less than wt% copper, less than 0.10 wt% chromium and less than 0.15 wt% manganese. In one embodiment, the tungsten content of the SiMo ductile iron is less than 0.05% by weight.

モリブデンに富む共晶相は、機械的性質、特に伸び及び靭性を損なうおそれがある。モリブデンが共晶相、金属間化合物相又は金属炭化物相の形態でセル境界に強く分配されるのは避けられない。しかし、これらの相は、適切な接種及びチル処理その他の鋳造における慣用手段を実施することによって許容レベルまで低減させることができる。   The eutectic phase rich in molybdenum can impair mechanical properties, particularly elongation and toughness. It is inevitable that molybdenum is strongly distributed at the cell boundaries in the form of eutectic phase, intermetallic phase or metal carbide phase. However, these phases can be reduced to acceptable levels by implementing appropriate inoculation and chilling and other conventional means in casting.

SiMoダクタイル鉄の製造方法を図1に示す。段階10では、鉄その他の成分を溶融させる。上記の生成物化学組成は溶湯の化学組成とは同一ではない。初期液体溶湯に付随した損失があるので、最終的な溶湯化学組成は初期溶湯化学組成とは異なる。段階11では、通常の接種剤及び処理合金を溶湯に添加する。段階12では、モリブデン合金を溶湯に添加する。段階13では、溶湯を鋳造して部品を形成する。SiMo鉄では高レベルのドロスが付随ので、鋳造に際してそのレベルを見込んでおく必要がある。また、部材の収縮率が高く、供給特性が低いのが典型的である。靭性を向上させ、鋳造時の取扱いの際の割れ中に亀裂が入るのを防ぐために、段階14の熱処理又はフェライト化焼鈍が概して必要とされる。   A method for producing SiMo ductile iron is shown in FIG. In step 10, iron and other components are melted. The product chemical composition described above is not the same as the chemical composition of the melt. Due to the losses associated with the initial liquid melt, the final melt chemical composition is different from the initial melt chemical composition. In step 11, the usual inoculum and treatment alloy are added to the melt. In step 12, a molybdenum alloy is added to the melt. In step 13, the molten metal is cast to form a part. Since SiMo iron is accompanied by a high level of dross, it is necessary to anticipate that level during casting. Also, the member typically has a high shrinkage rate and low supply characteristics. Step 14 heat treatment or ferritization annealing is generally required to improve toughness and prevent cracking during cracking during casting handling.

鋳造材料に対する典型的な熱処理又はフェライト化焼鈍工程は以下の通りである。鋳造部材を少なくとも7時間900℃に保持する。部材を720℃まで冷却して少なくとも2時間保持する。部品を690℃に冷却して少なくとも8時間保持する。   A typical heat treatment or ferritic annealing process for the cast material is as follows. The cast member is held at 900 ° C. for at least 7 hours. The member is cooled to 720 ° C. and held for at least 2 hours. Cool the part to 690 ° C. and hold for at least 8 hours.

フェライト化焼鈍工程ではなく、応力除去焼鈍を鋳造部材に実施することができる。応力除去焼鈍は、約650〜750℃で、肉厚最大の断面の厚さ1インチ当たり1時間行われる。   Instead of the ferritic annealing step, stress relief annealing can be performed on the cast member. The stress relief annealing is performed at about 650 to 750 ° C. for 1 hour per inch of the thickness of the maximum wall thickness.

接種剤は、準安定炭化物の代わりにグラファイトの形成を促進するために必要とされる。接種剤は、グラファイト形成のための不均質核生成部位(種晶)となる。接種剤の主要成分はケイ素である。鋳造グレードのフェロシリコン(75重量%Si)が接種剤として多用される。典型的な市販の接種剤は高レベルのケイ素に加えて様々なレベルのカルシウム、ゲルマニウム、ストロンチウム、及び希土類元素(肉厚の鉄での他の有益な特性のためにセリウムが最も一般的である)を含有する。接種剤は、大型ダクタイル鋳鉄の製造では複数回添加されることが多い。適切な接種剤は多くの供給元から入手可能である。   Inoculum is required to promote the formation of graphite instead of metastable carbides. The inoculum becomes a heterogeneous nucleation site (seed crystal) for the formation of graphite. The main component of the inoculum is silicon. Casting grade ferrosilicon (75 wt% Si) is frequently used as an inoculum. Typical commercial inoculants are the most common for high levels of silicon plus various levels of calcium, germanium, strontium, and rare earth elements (other beneficial properties in thick iron) ). Inoculum is often added multiple times in the production of large ductile cast iron. Suitable inoculants are available from many sources.

図1の段階11で、通常の処理合金が溶湯に添加される。処理(改質ともいう)は、フレークではなく球状グラファイトを生成させるために必要である。処理はほぼ純粋なMgの粉体(George Fischerコンバータ)の形態であってもよいし、多くの場合はMg含有合金(多くの場合ニッケルとの合金)の形態である。   In step 11 of FIG. 1, a normal processing alloy is added to the melt. Treatment (also called modification) is necessary to produce spherical graphite rather than flakes. The treatment may be in the form of a nearly pure Mg powder (George Fischer converter) or in many cases in the form of an Mg-containing alloy (often an alloy with nickel).

凝固中に収縮が起こる。方向性凝固を促進して鋳造物の重要な部分での巨視的な収縮多孔性を制限すべく、チル処理(熱除去用の大きな鋳鉄ブロックの戦略的な配置)を利用する。これらのチルの大きさ、タイプ、数及び配置は、SiMo鉄に付随する低下した供給及び収縮レベルのために、これらの鉄では一段と重要性を増す。   Shrinkage occurs during solidification. Chilling (a strategic arrangement of large cast iron blocks for heat removal) is utilized to promote directional solidification and limit macroscopic shrinkage porosity in critical parts of the casting. The size, type, number and arrangement of these chills are even more important with these irons due to the reduced supply and shrinkage levels associated with SiMo iron.

重要な部分での大きな収縮孔を防ぐように溶融金属を供給するにはライザー(フィーダー)が必要である。これらのライザーは、収縮を起こし易い領域(例えば、厚肉部から薄肉部への形状移行部への供給は困難である)に配置されることが多い。一般的な鋳造慣行では、鋳造性が減少するとライザー間の距離を減少させる必要がある。また、鋳造性が減少したときには、大型のライザー及びライザー首部が使用されることが多い。合金の鋳造性が低下する場合、鋳込温度の調整も一般的である。   A riser (feeder) is required to supply the molten metal to prevent large shrinkage holes in critical areas. These risers are often arranged in a region that tends to shrink (for example, it is difficult to supply the shape transition portion from the thick portion to the thin portion). In general casting practice, it is necessary to reduce the distance between risers as castability decreases. Also, when castability is reduced, large risers and riser necks are often used. When the castability of the alloy is lowered, the adjustment of the casting temperature is also common.

本明細書における「第1」、「第2」などの用語は順序、数量又は重要性を意味するものではなく、ある構成要素を他の構成要素から区別するために用いられる。単数形で記載したものであっても、数を限定するものではなく、そのものが少なくとも1つ存在することを意味する。数量に用いられる「約」という修飾語は、記載の数値を含み、文脈毎に決まる意味をもつ(例えば、特定の数量の測定に付随する誤差範囲を含む)。本明細書に開示した範囲はすべてその上下限を含み、独立に結合可能である(例えば、「約25重量%以下、具体的には約5〜約20重量%」という範囲は、「約5〜25重量%」の上下限とその範囲内のすべての中間値を含む)。   Terms such as “first”, “second”, etc. herein do not imply order, quantity or importance, but are used to distinguish one component from another. Even when described in the singular, the number is not limited, but means that at least one exists. The modifier “about” used in quantities includes the stated numerical value and has a meaning that depends on the context (eg, includes an error range associated with the measurement of a particular quantity). All ranges disclosed herein include upper and lower limits and are independently combinable (eg, a range of “about 25 wt% or less, specifically about 5 to about 20 wt%” Including the upper and lower limits of ˜25 wt% and all intermediate values within that range)

本発明を好ましい実施形態に関して説明してきたが、本発明の範囲を逸脱することなく、その要素を様々に変化させることができ、均等物で置換することができることは当業者には明らかであろう。さらに、特定の状況又は材料に適応させるために、その本質的範囲から逸脱することなく、本発明の教示に多くの修正を行うことができる。したがって、本発明は、本発明を実施するための最良の形態として開示された特定の実施形態に限定されるものではなく、本発明は特許請求の範囲に属するあらゆる実施形態を包含する。   While the invention has been described in terms of a preferred embodiment, it will be apparent to those skilled in the art that the elements can be variously changed and replaced with equivalents without departing from the scope of the invention. . In addition, many modifications may be made to the teachings of the invention to adapt to a particular situation or material without departing from its essential scope. Therefore, the present invention is not limited to the specific embodiment disclosed as the best mode for carrying out the present invention, and the present invention encompasses all embodiments belonging to the claims.

Claims (19)

鋳造ダクタイル鉄を含むガスタービンケーシングであって、ダクタイル鉄が、約2.8〜3.7重量%の炭素、約3.0〜3.5重量%のケイ素、約0.8〜1.5重量%のモリブデン、約0.025〜0.60重量%のマグネシウム、約0.01重量%未満のイオウ、約0.0〜1.3重量%のニッケル、及び残部の鉄を含む、ガスタービンケーシング。 A gas turbine casing comprising cast ductile iron, wherein the ductile iron is about 2.8-3.7 wt% carbon, about 3.0-3.5 wt% silicon, about 0.8-1.5 A gas turbine comprising weight percent molybdenum, about 0.025 to 0.60 weight percent magnesium, less than about 0.01 weight percent sulfur, about 0.0 to 1.3 weight percent nickel, and the balance iron. casing. さらに、各々約0.05重量%未満のリン、チタン、バナジウム及びスズを含む、請求項1記載のガスタービンケーシング。 The gas turbine casing of claim 1, further comprising less than about 0.05% by weight of phosphorus, titanium, vanadium and tin, respectively. さらに、各々約0.1重量%未満のアルミニウム、銅及びクロムを含む、請求項1又は請求項2記載のガスタービンケーシング。 The gas turbine casing of claim 1, further comprising less than about 0.1 wt% aluminum, copper, and chromium each. さらに、約0.15重量%未満のマンガンを含む、請求項1乃至請求項3のいずれか1項記載のガスタービンケーシング。 The gas turbine casing of any one of claims 1 to 3, further comprising less than about 0.15 wt% manganese. さらに、約0.05重量%未満のタングステンを含む、請求項1乃至請求項4のいずれか1項記載のガスタービンケーシング。 The gas turbine casing according to claim 1, further comprising less than about 0.05 wt% tungsten. 鋳造ダクタイル鉄を含むガスタービンケーシングであって、ダクタイル鉄が、約2.8〜3.7重量%の炭素、約3.0〜3.5重量%のケイ素、約0.8〜1.5重量%のモリブデン、約0.025〜0.60重量%のマグネシウム、0.01重量%未満のイオウ、約0.0〜1.3重量%のニッケル、約0.05重量%未満のリン、約0.05重量%未満のチタン、約0.05重量%未満のバナジウム、約0.05重量%未満のスズ、約0.10重量%未満のアルミニウム、約0.10重量%未満の銅、約0.10重量%未満のクロム、約0.15重量%未満のマンガン、約0.05重量%未満のタングステン、及び残部の鉄を含む、ガスタービンケーシング。 A gas turbine casing comprising cast ductile iron, wherein the ductile iron is about 2.8-3.7 wt% carbon, about 3.0-3.5 wt% silicon, about 0.8-1.5 Wt% molybdenum, about 0.025 to 0.60 wt% magnesium, less than 0.01 wt% sulfur, about 0.0 to 1.3 wt% nickel, less than about 0.05 wt% phosphorus, Less than about 0.05 wt% titanium, less than about 0.05 wt% vanadium, less than about 0.05 wt% tin, less than about 0.10 wt% aluminum, less than about 0.10 wt% copper, A gas turbine casing comprising less than about 0.10 wt% chromium, less than about 0.15 wt% manganese, less than about 0.05 wt% tungsten, and the balance iron. 炭素、マグネシウム、イオウ、ニッケル及び残部の鉄を含むダクタイル鉄を溶融して溶湯を形成し、
接種剤及び処理合金を溶湯に添加し、
モリブデンを溶湯に添加し、
溶湯を鋳造して、約2.8〜3.7重量%の炭素、約3.0〜3.5重量%のケイ素、約0.8〜1.5重量%のモリブデン、約0.025〜0.60重量%のマグネシウム、0.01重量%未満のイオウ、約0.0〜1.3重量%のニッケル及び残部の鉄を含む部品を形成する
ことを含む、部品の製造方法。
Melt ductile iron containing carbon, magnesium, sulfur, nickel and the balance iron to form a molten metal,
Add inoculum and processing alloy to molten metal,
Add molybdenum to the melt,
Cast the melt to about 2.8-3.7% carbon, about 3.0-3.5% silicon, about 0.8-1.5% molybdenum, about 0.025% A method of manufacturing a part comprising forming a part comprising 0.60 wt% magnesium, less than 0.01 wt% sulfur, about 0.0-1.3 wt% nickel and the balance iron.
溶湯を鋳造した後、部品を焼鈍することをさらに含む、請求項7記載の方法。 The method of claim 7, further comprising annealing the part after casting the melt. 前記焼鈍が、
部品を900℃に少なくとも7時間保持し、
部品を720℃に冷却して少なくとも2時間保持し、
部品を690℃に冷却して少なくとも8時間保持する
ことを含む、請求項8記載の方法。
The annealing is
Hold the part at 900 ° C. for at least 7 hours,
Cool the part to 720 ° C and hold for at least 2 hours,
The method of claim 8, comprising cooling the part to 690 ° C. and holding for at least 8 hours.
前記部品がガスタービンケーシングをなす、請求項7乃至請求項9のいずれか1項記載の方法。 The method according to claim 7, wherein the component forms a gas turbine casing. 前記部品が、各々約0.05重量%未満のリン、チタン、バナジウム及びスズを含む、請求項7乃至請求項10のいずれか1項記載の方法。 11. A method according to any one of claims 7 to 10, wherein the parts each comprise less than about 0.05% by weight phosphorus, titanium, vanadium and tin. 前記部品が、各々約0.1重量%未満のアルミニウム、銅及びクロムを含む含む、請求項7乃至請求項11のいずれか1項記載の方法。 12. A method according to any one of claims 7 to 11, wherein the parts comprise less than about 0.1 wt% aluminum, copper and chromium, respectively. 前記部品が、約0.15重量%未満のマンガンを含む、請求項7乃至請求項12のいずれか1項記載の方法。 The method of any one of claims 7 to 12, wherein the component comprises less than about 0.15 wt% manganese. 前記部品が、約0.05重量%未満のタングステンを含む、請求項7乃至請求項13のいずれか1項記載の方法。 14. A method according to any one of claims 7 to 13, wherein the part comprises less than about 0.05% by weight tungsten. 前記接種剤がフェロシリコンを含む、請求項7乃至請求項14のいずれか1項記載の方法。 15. A method according to any one of claims 7 to 14, wherein the inoculum comprises ferrosilicon. 前記接種剤がカルシウム、ゲルマニウム、ストロンチウム及び希土類元素をさらに含む、請求項15記載の方法。 16. The method of claim 15, wherein the inoculum further comprises calcium, germanium, strontium and rare earth elements. 前記処理合金がマグネシウム及びニッケルを含む、請求項7乃至請求項16のいずれか1項記載の方法。 The method according to any one of claims 7 to 16, wherein the treatment alloy comprises magnesium and nickel. さらに、約650〜750℃で部品の厚さ1インチ当たり1時間応力除去焼鈍することを含む、請求項7乃至請求項17のいずれか1項記載の方法。 The method of any one of claims 7 to 17, further comprising stress relief annealing at about 650-750 ° C for 1 hour per inch of part thickness. 前記鋳造が、熱を除去するための大型鋳造ブロックを配置することを含む、請求項7乃至請求項18のいずれか1項記載の方法。 19. A method according to any one of claims 7 to 18, wherein the casting comprises placing a large casting block for removing heat.
JP2010138951A 2009-06-23 2010-06-18 SiMo DUCTILE CAST IRON FOR GAS TURBINE Withdrawn JP2011007182A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/489,872 US20100322813A1 (en) 2009-06-23 2009-06-23 SiMo DUCTILE IRON CASTINGS IN GAS TURBINE APPLICATIONS

Publications (1)

Publication Number Publication Date
JP2011007182A true JP2011007182A (en) 2011-01-13

Family

ID=42983747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010138951A Withdrawn JP2011007182A (en) 2009-06-23 2010-06-18 SiMo DUCTILE CAST IRON FOR GAS TURBINE

Country Status (4)

Country Link
US (1) US20100322813A1 (en)
EP (1) EP2267174A3 (en)
JP (1) JP2011007182A (en)
RU (1) RU2010125395A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202405A (en) * 2011-03-23 2012-10-22 General Electric Co <Ge> Cast turbine casing and nozzle diaphragm preform
JP2014105342A (en) * 2012-11-26 2014-06-09 Japan Steel Works Ltd:The Spheroidal graphite cast iron excellent in high temperature ductility and high temperature creep rupture life and production method thereof
CN104313452A (en) * 2014-09-26 2015-01-28 北京工业大学 Carbide-containing austempered wear-resistant ductile iron and preparation method thereof
CN111926240A (en) * 2020-07-26 2020-11-13 湖北星源科技有限公司 High-strength and high-elongation nodular cast iron alloy and preparation method thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10975718B2 (en) 2013-02-12 2021-04-13 Garrett Transportation I Inc Stainless steel alloys, turbocharger turbine housings formed from the stainless steel alloys, and methods for manufacturing the same
CN103820700B (en) * 2014-01-30 2016-09-14 南车戚墅堰机车车辆工艺研究所有限公司 Heat-proof nodular cast iron and preparation method thereof
CN104152795A (en) * 2014-08-29 2014-11-19 太原市明仕达煤炭设计有限公司 Preparation method of high-chrome-nickel-molybdenum abrasion resistant alloy casting of shallow groove sorter slideway
CN104911458A (en) * 2015-04-27 2015-09-16 苏州劲元油压机械有限公司 Hydraulic pump body casting process
CN105002416B (en) * 2015-07-20 2017-02-22 格朗富(苏州)集团有限公司 Automobile brake shell and manufacturing method thereof
US12065723B2 (en) * 2017-10-23 2024-08-20 Verdeloong Enterprises Pty. Ltd. Method for producing an improved ductile iron alloy with pearlitic matrix
CN108034882A (en) * 2017-12-07 2018-05-15 泰州市博世特精密铸造有限公司 A kind of hard, wear-resistant automobile pump precision casting process
CN108103392A (en) * 2018-01-12 2018-06-01 湖北星源科技有限公司 A kind of high-strength ductile cast iron production method
CN109943767A (en) * 2019-03-29 2019-06-28 浙江欧冶达机械制造股份有限公司 Elevator traction sheave casting technique
CN111961954A (en) * 2020-08-26 2020-11-20 上海烟草机械有限责任公司 Preparation method of as-cast mixed matrix QT500-14 nodular cast iron
CN113088804A (en) * 2021-05-19 2021-07-09 太原市三高能源发展有限公司 Cast high-strength ductile iron and manufacturing method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053736B2 (en) * 1981-10-05 1985-11-27 日産自動車株式会社 Heat-resistant spheroidal graphite cast iron
DE3706516C2 (en) * 1987-02-28 1996-05-23 Kuepper August Gmbh & Co Kg Titanium- and aluminum-containing cast iron alloy for the production of highly stressed engine parts
DE4232385A1 (en) * 1992-09-26 1994-03-31 Asea Brown Boveri Gas turbine with flanged exhaust housing
JP3597211B2 (en) * 1993-10-21 2004-12-02 株式会社日本製鋼所 Spheroidal graphite cast iron with excellent high-temperature strength
AUPO978297A0 (en) * 1997-10-14 1997-11-06 Camcast Industries Pty Ltd Iron alloy
JP3582400B2 (en) * 1999-04-20 2004-10-27 Jfeスチール株式会社 Composite roll for centrifugal casting hot-rolling finishing post stand with excellent accident resistance
US6508981B1 (en) * 2001-05-24 2003-01-21 Wescast Industries, Inc. High temperature oxidation resistant ductile iron
JP2002371335A (en) * 2001-06-19 2002-12-26 Aisin Takaoka Ltd Heat-resistant spherical cast graphite iron for exhaust part superior in oxidation resistance
WO2005085488A1 (en) 2004-03-04 2005-09-15 Hitachi Metals, Ltd. Heat resisting cast iron and exhaust system part therefrom
EP1877593A2 (en) 2005-05-05 2008-01-16 Wescast Industries, Inc. Cast iron with improved high temperature properties
EP1808504A1 (en) * 2006-01-16 2007-07-18 Siemens Aktiengesellschaft Cast iron containing cobalt for use in steam turbines
KR20080035160A (en) * 2006-10-18 2008-04-23 현대자동차주식회사 High strength and high oxidation resist hi silicon ferritic cast iron
KR101013843B1 (en) * 2007-11-09 2011-02-14 현대자동차주식회사 High Strength and High Oxidation Resist Hi Silicon Ferritic CGI Cast Iron

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202405A (en) * 2011-03-23 2012-10-22 General Electric Co <Ge> Cast turbine casing and nozzle diaphragm preform
JP2014105342A (en) * 2012-11-26 2014-06-09 Japan Steel Works Ltd:The Spheroidal graphite cast iron excellent in high temperature ductility and high temperature creep rupture life and production method thereof
CN104313452A (en) * 2014-09-26 2015-01-28 北京工业大学 Carbide-containing austempered wear-resistant ductile iron and preparation method thereof
CN111926240A (en) * 2020-07-26 2020-11-13 湖北星源科技有限公司 High-strength and high-elongation nodular cast iron alloy and preparation method thereof

Also Published As

Publication number Publication date
EP2267174A3 (en) 2012-05-02
US20100322813A1 (en) 2010-12-23
EP2267174A2 (en) 2010-12-29
RU2010125395A (en) 2011-12-27

Similar Documents

Publication Publication Date Title
JP2011007182A (en) SiMo DUCTILE CAST IRON FOR GAS TURBINE
CN110512116B (en) Multicomponent high-alloying high Nb-TiAl intermetallic compound
US20130206287A1 (en) Co-based alloy
JP3753143B2 (en) Ni-based super heat-resistant cast alloy and turbine wheel using the same
US8685316B2 (en) Ni-based heat resistant alloy, gas turbine component and gas turbine
JP2009084684A (en) Nickel-based alloy for turbine rotor of steam turbine, and turbine rotor of steam turbine
JP2012092378A (en) FORGING Ni-BASED ALLOY OF STEAM TURBINE, AND FORGED COMPONENT THEREOF
JP2007009279A (en) Ni-Fe-BASE ALLOY, AND METHOD FOR MANUFACTURING Ni-Fe-BASE ALLOY MATERIAL
CN109468476B (en) Method for improving comprehensive performance of copper alloy by adopting magnetic suspension process
JP4768919B2 (en) Ring shape parts for gas turbine blade rings and seal ring retaining rings made of high strength low thermal expansion cast steel and high strength low thermal expansion cast steel
JP5282546B2 (en) High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance
JP5282547B2 (en) High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance
WO2016194377A1 (en) Black heart malleable cast iron and method for manufacturing same
US3740212A (en) Oxidation resistant austenitic ductile nickel chromium iron
JP5475380B2 (en) Austenitic cast iron, its manufacturing method and austenitic cast iron casting
JP2006322025A (en) Heat resistant cast alloy and its manufacturing method
JP2602838B2 (en) High thermal expansion cast iron
CN104451462A (en) High-toughness alloy
JP2014005528A (en) Ni-BASED HEAT-RESISTANT ALLOY AND TURBINE COMPONENT
JP5981251B2 (en) Ni-based alloy and forged parts for forging
JP6238276B2 (en) Method for manufacturing member for steam turbine
KR20190102393A (en) Ni based superalloy with high creep strength and manufacturing method thereof
JP2004332114A (en) Nickel-based superalloy and single crystal cast
JP4296303B2 (en) High Cr ferritic iron alloy with excellent toughness and method for producing the same
JP2017088963A (en) Austenite steel and austenite steel cast using the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130903