JP2011007131A - Exhaust gas recirculation control device - Google Patents

Exhaust gas recirculation control device Download PDF

Info

Publication number
JP2011007131A
JP2011007131A JP2009152414A JP2009152414A JP2011007131A JP 2011007131 A JP2011007131 A JP 2011007131A JP 2009152414 A JP2009152414 A JP 2009152414A JP 2009152414 A JP2009152414 A JP 2009152414A JP 2011007131 A JP2011007131 A JP 2011007131A
Authority
JP
Japan
Prior art keywords
cooling
cooling performance
exhaust
amount
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009152414A
Other languages
Japanese (ja)
Other versions
JP5206601B2 (en
Inventor
Dai Okayama
大 岡山
Masahiro Asano
正裕 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009152414A priority Critical patent/JP5206601B2/en
Publication of JP2011007131A publication Critical patent/JP2011007131A/en
Application granted granted Critical
Publication of JP5206601B2 publication Critical patent/JP5206601B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas recirculation control device accurately determining drop of cooling performances of a cooling device cooling recirculation exhaust gas recirculated from an exhaust gas channel to an intake air channel.SOLUTION: The exhaust gas recirculation control device detects EGR gas quantity and cooling water quantity by calculating from a physical model (S400). When the EGR gas quantity is higher than a prescribed quantity and absolute values of change quantities of the EGR gas quantity and the cooling water quantity are smaller than prescribed values respectively (S404:Yes), the exhaust gas recirculation control device detects actual cooling efficiency of an EGR cooler as a cooling performance detection value (S408) and calculates a cooling performance threshold C based on the EGR gas quantity and the cooling water quantity detected in S400 for comparing with the cooling performance detection value (S410). When cooling efficiency which is the cooling performance detection value is lower than the cooling performance threshold C (S412: Yes), the exhaust gas recirculation control device determines that cooling performances of the EGR cooler 22 drop (S414).

Description

本発明は、還流流路を通って排気流路から吸気流路に還流される還流排気ガスを還流流路に設置された冷却装置で冷却する排気再循環システムに適用され、冷却装置の冷却性能の低下を判定する排気還流制御装置に関する。   The present invention is applied to an exhaust gas recirculation system that cools a recirculated exhaust gas that is recirculated from an exhaust flow path to an intake flow path through a recirculation flow path with a cooling device that is installed in the recirculation flow path. The present invention relates to an exhaust gas recirculation control device that determines a decrease in the exhaust gas.

従来、内燃機関の排気流路から吸気流路に排気ガスを還流させる排気再循環(EGR:Exhaust Gas Recirculation)システムにより、内燃機関の気筒内において燃焼を抑制し、NOxの排出量を低減することが知られている。   Conventionally, an exhaust gas recirculation (EGR) system that recirculates exhaust gas from an exhaust flow path of an internal combustion engine to an intake flow path suppresses combustion in a cylinder of the internal combustion engine and reduces NOx emissions. It has been known.

排気流路と吸気流路とを接続する還流流路を通って排気側から吸気側に還流される還流排気ガス(EGRガスとも言う。)はEGRクーラで冷却される(例えば、特許文献1参照)。EGRクーラでEGRガスの温度を低下することにより、気筒内における燃焼温度が低下して燃焼がさらに抑制されるとともに、同じEGRガス量であれば、より多くの質量の排気ガスを排気側から吸気側に還流させることができる。   The recirculated exhaust gas (also referred to as EGR gas) recirculated from the exhaust side to the intake side through the recirculation flow path connecting the exhaust flow path and the intake flow path is cooled by an EGR cooler (see, for example, Patent Document 1). ). By lowering the temperature of the EGR gas with the EGR cooler, the combustion temperature in the cylinder is lowered to further suppress combustion, and if the amount of EGR gas is the same, a larger amount of exhaust gas is sucked from the exhaust side. Can be refluxed to the side.

ところで、EGRクーラを通過するときにEGRガス中のパティキュレートがEGRクーラの冷却フィン等に付着して堆積すると、EGRクーラの冷却性能が低下する。
そこで、特許文献1では、EGRクーラの入口と出口とのEGRガスの温度差、あるいはEGRクーラに冷却水を流す冷却水流路の入口と出口との冷却水の温度差、つまりEGRクーラがEGRガスを冷却したことによりEGRガスの温度がどれだけ低下したか、あるいは冷却水の温度がどれだけ上昇したかというEGRクーラの冷却性能を表す検出温度差と、EGRクーラの冷却性能が低下しているか否かを判定するための閾値である基準温度差との偏差を求めている。この偏差が基準偏差以上に大きいときには、EGRクーラの冷却性能が低下したと判定される。特許文献1では、エンジン回転数と燃料噴射量とから基準温度差を求めている。
By the way, if the particulates in the EGR gas adhere to and accumulate on the cooling fins of the EGR cooler when passing through the EGR cooler, the cooling performance of the EGR cooler deteriorates.
Therefore, in Patent Document 1, the temperature difference of the EGR gas between the inlet and the outlet of the EGR cooler, or the temperature difference of the cooling water between the inlet and the outlet of the cooling water passage for flowing the cooling water to the EGR cooler, that is, the EGR cooler is the EGR gas. The temperature difference of the EGR cooler, which indicates how much the EGR gas temperature has decreased or how much the temperature of the cooling water has increased due to cooling, and whether the cooling performance of the EGR cooler has decreased A deviation from a reference temperature difference, which is a threshold for determining whether or not, is obtained. When this deviation is larger than the standard deviation, it is determined that the cooling performance of the EGR cooler has deteriorated. In Patent Document 1, the reference temperature difference is obtained from the engine speed and the fuel injection amount.

特開2006−300026号公報JP 2006-300026 A

ところで、EGRクーラの入口と出口とのEGRガスの温度差または冷却水の温度差は、EGRクーラ自体の冷却性能だけでなく、EGRクーラを通過するEGRガス量または冷却水量によっても変化する。   By the way, the temperature difference of the EGR gas between the inlet and the outlet of the EGR cooler or the temperature difference of the cooling water varies depending not only on the cooling performance of the EGR cooler itself but also on the amount of EGR gas or cooling water passing through the EGR cooler.

例えば、EGRガス量が多い場合にはEGRガス量が少ない場合よりもEGRガスの温度が下がりにくくなるので、EGRクーラの入口と出口とのEGRガスの温度差は小さくなる。また、冷却水量が少ない場合には、冷却水量が多い場合よりもEGRガスの温度が下がりにくくなるので、EGRクーラの入口と出口とのEGRガスの温度差は小さくなる。   For example, when the amount of EGR gas is large, the temperature of the EGR gas is less likely to decrease than when the amount of EGR gas is small, so the temperature difference between the EGR gas at the inlet and the outlet of the EGR cooler is small. Also, when the amount of cooling water is small, the temperature of the EGR gas is less likely to decrease than when the amount of cooling water is large, so the temperature difference between the EGR gas at the inlet and the outlet of the EGR cooler is small.

このように、EGRクーラ自体の冷却性能だけでなく、EGRガス量または冷却水量によっても変化するEGRクーラの入口と出口とのEGRガスの温度差または冷却水の温度差と、エンジン回転数と燃料噴射量とに基づいて設定される基準温度差とを比較してEGRクーラの冷却性能の低下を判定すると、EGRクーラの冷却性能がパティキュレートの堆積等の経時変化により実際に低下しているのか、EGRガス量または冷却水量の変化のために低下しているのかを区別できない。したがって、EGRクーラの冷却性能の低下原因を誤判定する恐れがある。   Thus, not only the cooling performance of the EGR cooler itself, but also the temperature difference of the EGR gas or the cooling water between the inlet and outlet of the EGR cooler, which varies depending on the amount of EGR gas or the amount of cooling water, the engine speed and the fuel. If the deterioration of the cooling performance of the EGR cooler is determined by comparing the reference temperature difference set based on the injection amount, is the cooling performance of the EGR cooler actually reduced due to changes over time such as particulate accumulation? Therefore, it cannot be distinguished whether it is lowered due to a change in the EGR gas amount or the cooling water amount. Therefore, there is a risk of erroneously determining the cause of the decrease in the cooling performance of the EGR cooler.

本発明は、上記問題を解決するためになされたものであり、排気流路から吸気流路に還流される還流排気ガスを冷却する冷却装置の冷却性能の低下を高精度に判定する排気還流制御装置を提供することを目的とする。   The present invention has been made to solve the above problem, and an exhaust gas recirculation control for accurately determining a decrease in cooling performance of a cooling device that cools a recirculated exhaust gas recirculated from an exhaust flow path to an intake flow path. An object is to provide an apparatus.

請求項1から7に記載の発明によると、冷却性能検出手段は還流排気ガスを冷却する冷却装置の冷却性能を検出し、相関値検出手段は、冷却装置の冷却性能と相関する冷却性能相関値として還流排気ガスのガス量を検出し、閾値算出手段は、相関値検出手段が検出する冷却性能相関値に基づいて冷却性能閾値を算出する。そして、冷却性能判定手段は、冷却性能検出手段が検出する冷却性能検出値と冷却性能閾値とに基づいて冷却性能の低下を判定する。   According to the first to seventh aspects of the present invention, the cooling performance detecting means detects the cooling performance of the cooling device that cools the recirculated exhaust gas, and the correlation value detecting means is a cooling performance correlation value that correlates with the cooling performance of the cooling device. And the threshold value calculation means calculates the cooling performance threshold value based on the cooling performance correlation value detected by the correlation value detection means. Then, the cooling performance determination unit determines a decrease in cooling performance based on the cooling performance detection value detected by the cooling performance detection unit and the cooling performance threshold.

このように、冷却装置の冷却性能と密接に相関する還流排気ガス(EGRガス)のガス量を冷却性能相関値として検出するので、冷却性能相関値であるガス量の増減に応じて冷却性能閾値を算出できる。   In this way, since the gas amount of the recirculated exhaust gas (EGR gas) that is closely correlated with the cooling performance of the cooling device is detected as the cooling performance correlation value, the cooling performance threshold value according to the increase or decrease of the gas amount that is the cooling performance correlation value Can be calculated.

これにより、ガス量の増減による冷却装置の冷却性能の変化を考慮して冷却性能閾値を算出できるので、冷却性能検出値と冷却性能閾値とに基づいて、ガス量の増減による冷却装置の冷却性能の変化を排除した状態で、冷却装置の冷却性能の低下を判定できる。その結果、経時変化等による冷却装置自体の冷却性能の低下を誤判定することなく高精度に判定できる。   As a result, the cooling performance threshold value can be calculated in consideration of the change in the cooling performance of the cooling device due to the increase or decrease of the gas amount, so that the cooling performance of the cooling device due to the increase or decrease of the gas amount based on the detected cooling performance value and the cooling performance threshold value. It is possible to determine a decrease in the cooling performance of the cooling device in a state in which the change is excluded. As a result, it is possible to determine with high accuracy without erroneously determining a decrease in the cooling performance of the cooling device itself due to a change over time or the like.

請求項2に記載の発明によると、冷却性能検出手段は、冷却装置の排気上流側の排気上流温度と排気下流側の排気下流温度と冷却装置を流れる冷却水の水温とに基づいて冷却装置の冷却効率を冷却性能検出値として検出する。   According to the second aspect of the present invention, the cooling performance detecting means is based on the exhaust upstream temperature on the exhaust upstream side of the cooling device, the exhaust downstream temperature on the exhaust downstream side, and the water temperature of the cooling water flowing through the cooling device. The cooling efficiency is detected as a cooling performance detection value.

冷却効率は、冷却装置の排気上流側の排気上流温度と排気下流側の排気下流温度と冷却装置を流れる冷却水の水温とに基づいて、例えば次式から検出できる。
冷却効率=(排気上流温度−排気下流温度)/(排気上流温度−水温) ・・・(1)
これにより、冷却装置の排気上流温度と排気下流温度と冷却装置を流れる冷却水の水温とに基づいて、冷却性能検出値として冷却効率を高精度に検出できる。
The cooling efficiency can be detected from, for example, the following expression based on the exhaust upstream temperature on the exhaust upstream side of the cooling device, the exhaust downstream temperature on the exhaust downstream side, and the temperature of the cooling water flowing through the cooling device.
Cooling efficiency = (exhaust upstream temperature−exhaust downstream temperature) / (exhaust upstream temperature−water temperature) (1)
Thereby, based on the exhaust upstream temperature of the cooling device, the exhaust downstream temperature, and the water temperature of the cooling water flowing through the cooling device, the cooling efficiency can be detected with high accuracy as the cooling performance detection value.

ここで、冷却性能検出値として式(1)から検出される冷却効率は、ガス量が増加し、冷却装置が還流排気ガスを冷却しにくくなるにしたがい小さくなる。
そこで、請求項2に記載の発明によると、閾値算出手段は、ガス量が増加するにしたがい冷却性能閾値を小さくする
このように、高精度に検出された冷却性能検出値と、ガス量の増加により小さくなる冷却効率を考慮した冷却性能閾値とに基づいて、冷却装置の冷却性能の低下を高精度に判定できる。
Here, the cooling efficiency detected from the equation (1) as the cooling performance detection value decreases as the gas amount increases and the cooling device becomes difficult to cool the recirculated exhaust gas.
Therefore, according to the invention described in claim 2, the threshold value calculation means decreases the cooling performance threshold value as the gas amount increases. Thus, the detected cooling performance value detected with high accuracy and the increase in the gas amount. Based on the cooling performance threshold value considering the cooling efficiency that becomes smaller, it is possible to determine the deterioration of the cooling performance of the cooling device with high accuracy.

請求項3に記載の発明によると、冷却性能検出手段は、冷却装置の排気上流温度と排気下流温度との温度差を冷却性能検出値として検出し、閾値算出手段は、ガス量が増加するにしたがい冷却性能閾値を小さくする。   According to the invention described in claim 3, the cooling performance detecting means detects the temperature difference between the exhaust upstream temperature and the exhaust downstream temperature of the cooling device as the cooling performance detection value, and the threshold value calculating means is configured to increase the gas amount. Accordingly, the cooling performance threshold value is reduced.

ここで、冷却装置の排気上流温度と排気下流温度との温度差は、冷却性能検出値として、冷却装置により還流排気ガスの温度が何度冷却されたかを示す低下量を表している。そして、排気上流温度と排気下流温度との温度差は、ガス量の増加により小さくなる。   Here, the temperature difference between the exhaust upstream temperature and the exhaust downstream temperature of the cooling device represents a decrease amount indicating how many times the temperature of the recirculated exhaust gas is cooled by the cooling device as a cooling performance detection value. The temperature difference between the exhaust upstream temperature and the exhaust downstream temperature becomes smaller as the gas amount increases.

このように、冷却装置の排気上流温度と排気下流温度との温度差が表す冷却性能検出値と、ガス量の増加により小さくなる温度差を考慮した冷却性能閾値とに基づいて、冷却装置の冷却性能の低下を高精度に判定できる。   Thus, based on the cooling performance detection value represented by the temperature difference between the exhaust upstream temperature and the exhaust downstream temperature of the cooling device, and the cooling performance threshold value considering the temperature difference that decreases as the gas amount increases, the cooling of the cooling device Degradation of performance can be determined with high accuracy.

請求項4に記載の発明によると、冷却性能検出手段は、冷却装置の排気下流側の排気下流温度を冷却性能検出値として検出し、閾値算出手段は、ガス量が増加するにしたがい冷却性能閾値を大きくする。   According to the fourth aspect of the present invention, the cooling performance detecting means detects the exhaust downstream temperature on the exhaust downstream side of the cooling device as the cooling performance detection value, and the threshold value calculating means is the cooling performance threshold value as the gas amount increases. Increase

ここで、冷却装置の排気下流温度は、冷却性能検出値として、冷却装置により還流排気ガスが何度に冷却されたかを表している。そして、排気下流温度は、ガス量が増加し冷却装置が還流排気ガスを冷却しにくくなるにしたがい高くなる。言い換えれば、排気下流温度に基づいて算出された冷却性能閾値は、ガス量の増加にしたがい大きくなる。   Here, the exhaust downstream temperature of the cooling device represents how many times the recirculated exhaust gas has been cooled by the cooling device as a cooling performance detection value. The exhaust downstream temperature increases as the amount of gas increases and the cooling device becomes difficult to cool the recirculated exhaust gas. In other words, the cooling performance threshold value calculated based on the exhaust downstream temperature increases as the gas amount increases.

このように、冷却装置の排気下流温度が表す冷却性能検出値と、ガス量の増加により高くなる排気下流温度を考慮した冷却性能閾値とに基づいて、冷却装置の冷却性能の低下を高精度に判定できる。   In this way, the deterioration of the cooling performance of the cooling device can be accurately determined based on the cooling performance detection value represented by the exhaust downstream temperature of the cooling device and the cooling performance threshold considering the exhaust downstream temperature that increases as the gas amount increases. Can be judged.

請求項5に記載の発明によると、冷却性能判定手段は、ガス量の変化量の絶対値が所定値よりも小さい場合、ならびにガス量が所定量よりも大きい場合の少なくともいずれかの条件が成立する場合に冷却性能の低下判定を実施する。   According to the fifth aspect of the present invention, the cooling performance determination means satisfies at least one of the conditions when the absolute value of the change amount of the gas amount is smaller than the predetermined value and when the gas amount is larger than the predetermined amount. When it is done, the cooling performance deterioration judgment is performed.

ガス量の変化量の絶対値が所定値よりも小さい場合には、冷却装置の冷却性能の変動は小さい。また、ガス量が所定量よりも大きい場合には、ガス量が所定量以下の場合に比べ、例えば冷却装置を流れる還流排気ガスの流速が変化することにより生じる冷却性能の変動は小さい。   When the absolute value of the change amount of the gas amount is smaller than the predetermined value, the variation in the cooling performance of the cooling device is small. In addition, when the gas amount is larger than the predetermined amount, the variation in cooling performance caused by, for example, the change in the flow rate of the recirculated exhaust gas flowing through the cooling device is smaller than when the gas amount is less than the predetermined amount.

したがって、ガス量の変化量の絶対値が所定値よりも小さい場合、ならびにガス量が所定量よりも大きい場合の少なくともいずれかの条件が成立する場合には、冷却装置の冷却性能を高精度に判定できる。   Therefore, when the absolute value of the change amount of the gas amount is smaller than the predetermined value and when at least one of the conditions when the gas amount is larger than the predetermined amount is satisfied, the cooling performance of the cooling device is highly accurate. Can be judged.

請求項6に記載の発明によると、相関値検出手段は、冷却装置を流れる冷却水の冷却水量を冷却性能相関値としてさらに検出し、閾値算出手段は、相関値検出手段が冷却性能相関値として検出するガス量および冷却水量に基づいて冷却性能閾値を算出する。   According to the sixth aspect of the present invention, the correlation value detecting means further detects the amount of cooling water flowing through the cooling device as the cooling performance correlation value, and the threshold value calculating means is configured such that the correlation value detecting means uses the cooling performance correlation value as the cooling performance correlation value. A cooling performance threshold value is calculated based on the detected gas amount and cooling water amount.

このように、冷却装置の冷却性能と密接に相関するガス量および冷却水量を冷却性能相関値として検出するので、冷却性能相関値であるガス量および冷却水量の増減に応じて冷却性能閾値を算出できる。   In this way, the amount of gas and cooling water that closely correlate with the cooling performance of the cooling device are detected as the cooling performance correlation value, so the cooling performance threshold is calculated according to the increase and decrease of the gas amount and cooling water amount that are the cooling performance correlation value. it can.

これにより、ガス量および冷却水量の増減による冷却装置の冷却性能の変化を考慮して冷却性能閾値を算出できるので、冷却性能検出値と冷却性能閾値とに基づいて、ガス量および冷却水量の増減による冷却装置の冷却性能の変化を排除した状態で、冷却装置の冷却性能の低下を判定できる。その結果、経時変化等による冷却装置自体の冷却性能の低下を高精度に判定できる。   As a result, the cooling performance threshold value can be calculated in consideration of the change in cooling performance of the cooling device due to the increase and decrease in the gas amount and the cooling water amount. It is possible to determine a decrease in the cooling performance of the cooling device in a state in which the change in the cooling performance of the cooling device due to is excluded. As a result, it is possible to determine with high accuracy a decrease in the cooling performance of the cooling device itself due to changes over time.

請求項7に記載の発明によると、冷却性能判定手段は、ガス量の変化量の絶対値が所定値よりも小さい場合、ならびにガス量が所定量よりも大きい場合、ならびに冷却水量の変化量の絶対値が所定値よりも小さい場合の少なくともいずれかの条件が成立する場合に冷却性能の低下判定を実施する。   According to the seventh aspect of the present invention, the cooling performance determining means determines the amount of change in the amount of cooling water when the absolute value of the amount of change in gas amount is smaller than a predetermined value, as well as when the gas amount is larger than a predetermined amount. When at least one of the conditions when the absolute value is smaller than the predetermined value is satisfied, the cooling performance deterioration determination is performed.

ガス量の変化量の絶対値が所定値よりも小さい場合には、冷却装置の冷却性能の変動は小さい。また、ガス量が所定量よりも大きい場合には、ガス量が所定量以下の場合に比べ、例えば冷却装置を流れる還流排気ガスの流速が変化することにより生じる冷却性能の変動は小さい。また、冷却水量の変化量の絶対値が所定値よりも小さい場合には、冷却装置の冷却性能の変動は小さい。   When the absolute value of the change amount of the gas amount is smaller than the predetermined value, the variation in the cooling performance of the cooling device is small. In addition, when the gas amount is larger than the predetermined amount, the variation in cooling performance caused by, for example, the change in the flow rate of the recirculated exhaust gas flowing through the cooling device is smaller than when the gas amount is less than the predetermined amount. Further, when the absolute value of the change amount of the cooling water amount is smaller than the predetermined value, the variation in the cooling performance of the cooling device is small.

したがって、ガス量の変化量の絶対値が所定値よりも小さい場合、ならびにガス量が所定量よりも大きい場合、ならびに冷却水量の変化量の絶対値が所定値よりも小さい場合の少なくともいずれかの条件が成立する場合には、冷却装置の冷却性能を高精度に判定できる。   Therefore, at least one of the case where the absolute value of the change amount of the gas amount is smaller than the predetermined value, the case where the gas amount is larger than the predetermined amount, and the case where the absolute value of the change amount of the cooling water amount is smaller than the predetermined value. When the condition is satisfied, the cooling performance of the cooling device can be determined with high accuracy.

請求項8に記載の発明によると、冷却性能検出手段は還流排気ガスを冷却する冷却装置の冷却性能を検出し、相関値検出手段は、冷却装置の冷却性能と相関する冷却性能相関値として冷却水量を検出し、閾値算出手段は、相関値検出手段が検出する冷却性能相関値に基づいて冷却性能閾値を算出する。そして、冷却性能判定手段は、冷却性能検出手段が検出する冷却性能検出値と冷却性能閾値とに基づいて冷却性能の低下を判定する。   According to the invention described in claim 8, the cooling performance detecting means detects the cooling performance of the cooling device that cools the recirculated exhaust gas, and the correlation value detecting means cools the cooling performance as a cooling performance correlation value that correlates with the cooling performance of the cooling device. The amount of water is detected, and the threshold value calculation means calculates a cooling performance threshold value based on the cooling performance correlation value detected by the correlation value detection means. Then, the cooling performance determination unit determines a decrease in cooling performance based on the cooling performance detection value detected by the cooling performance detection unit and the cooling performance threshold.

このように、冷却装置の冷却性能と密接に相関する冷却水量を冷却性能相関値として検出するので、冷却性能相関値である冷却水量の増減に応じて冷却性能閾値を算出できる。
これにより、冷却水量の増減による冷却装置の冷却性能の変化を考慮して冷却性能閾値を算出できるので、冷却性能検出値と冷却性能閾値とに基づいて、冷却水量の増減による冷却装置の冷却性能の変化を排除した状態で、冷却装置の冷却性能の低下を判定できる。その結果、経時変化等による冷却装置自体の冷却性能の低下を高精度に判定できる。
In this way, the amount of cooling water closely correlated with the cooling performance of the cooling device is detected as the cooling performance correlation value, so the cooling performance threshold value can be calculated according to the increase or decrease of the cooling water amount that is the cooling performance correlation value.
As a result, the cooling performance threshold value can be calculated in consideration of the change in the cooling performance of the cooling device due to the increase or decrease of the cooling water amount. It is possible to determine a decrease in the cooling performance of the cooling device in a state in which the change is excluded. As a result, it is possible to determine with high accuracy a decrease in the cooling performance of the cooling device itself due to changes over time.

請求項9に記載の発明によると、冷却性能検出手段は、冷却装置の排気上流側の排気上流温度と冷却装置の排気下流側の排気下流温度と冷却装置を流れる冷却水の水温とに基づいて冷却装置の冷却効率を冷却性能検出値として検出する。   According to the ninth aspect of the invention, the cooling performance detecting means is based on the exhaust upstream temperature on the exhaust upstream side of the cooling device, the exhaust downstream temperature on the exhaust downstream side of the cooling device, and the water temperature of the cooling water flowing through the cooling device. The cooling efficiency of the cooling device is detected as a cooling performance detection value.

前述したように、冷却効率は、冷却装置の排気上流側の排気上流温度と排気下流側の排気下流温度と冷却装置を流れる冷却水の水温とに基づいて、式(1)から検出できる。これにより、冷却装置の排気上流温度と排気下流温度と冷却装置を流れる冷却水の水温とに基づいて、冷却性能検出値として冷却効率を高精度に検出できる。   As described above, the cooling efficiency can be detected from Equation (1) based on the exhaust upstream temperature on the exhaust upstream side of the cooling device, the exhaust downstream temperature on the exhaust downstream side, and the temperature of the cooling water flowing through the cooling device. Thereby, based on the exhaust upstream temperature of the cooling device, the exhaust downstream temperature, and the water temperature of the cooling water flowing through the cooling device, the cooling efficiency can be detected with high accuracy as the cooling performance detection value.

ここで、冷却性能検出値として式(1)から検出される冷却効率は、冷却水量が増加し、冷却装置が還流排気ガスを冷却し易くなるにしたがい大きくなる。
そこで、請求項9に記載の発明によると、閾値算出手段は、冷却水量が増加するにしたがい冷却性能閾値を大きくする
このように、高精度に検出された冷却性能検出値と、冷却水量の増加により大きくなる冷却効率を考慮した冷却性能閾値とに基づいて、冷却装置の冷却性能の低下を高精度に判定できる。
Here, the cooling efficiency detected from the expression (1) as the cooling performance detection value increases as the amount of cooling water increases and the cooling device easily cools the recirculated exhaust gas.
Therefore, according to the invention described in claim 9, the threshold value calculation means increases the cooling performance threshold value as the cooling water amount increases. Thus, the cooling performance detection value detected with high accuracy and the increase in the cooling water amount are increased. Therefore, it is possible to determine with high accuracy a decrease in the cooling performance of the cooling device on the basis of the cooling performance threshold in consideration of the cooling efficiency that becomes larger.

請求項10に記載の発明によると、冷却性能検出手段は、冷却装置の排気上流側の排気上流温度と冷却装置の排気下流側の排気下流温度との温度差を冷却性能検出値として検出し、閾値算出手段は、冷却水量が増加するにしたがい前記冷却性能閾値を大きくする。
ここで、冷却装置の排気上流温度と排気下流温度との温度差は、冷却性能検出値として、冷却装置により還流排気ガスの温度が何度冷却されたかを示す低下量を表している。そして、排気上流温度と排気下流温度との温度差は、冷却水量の増加により大きくなる。
According to the invention of claim 10, the cooling performance detecting means detects a temperature difference between the exhaust upstream temperature on the exhaust upstream side of the cooling device and the exhaust downstream temperature on the exhaust downstream side of the cooling device as a cooling performance detection value, The threshold value calculation means increases the cooling performance threshold value as the cooling water amount increases.
Here, the temperature difference between the exhaust upstream temperature and the exhaust downstream temperature of the cooling device represents a decrease amount indicating how many times the temperature of the recirculated exhaust gas is cooled by the cooling device as a cooling performance detection value. Then, the temperature difference between the exhaust upstream temperature and the exhaust downstream temperature increases as the cooling water amount increases.

このように、冷却装置の排気上流温度と排気下流温度との温度差が表す冷却性能検出値と、冷却水量の増加により大きくなる温度差を考慮した冷却性能閾値とに基づいて、冷却装置の冷却性能の低下を高精度に判定できる。   Thus, based on the cooling performance detection value represented by the temperature difference between the exhaust upstream temperature and the exhaust downstream temperature of the cooling device and the cooling performance threshold considering the temperature difference that increases as the amount of cooling water increases, the cooling of the cooling device Degradation of performance can be determined with high accuracy.

請求項11に記載の発明によると、冷却性能検出手段は、冷却装置の排気下流側の排気下流温度を冷却性能検出値として検出し、閾値算出手段は、冷却水量が増加するにしたがい冷却性能閾値を小さくする。   According to the eleventh aspect of the invention, the cooling performance detecting means detects the exhaust downstream temperature on the exhaust downstream side of the cooling device as the cooling performance detection value, and the threshold value calculating means is the cooling performance threshold value as the amount of cooling water increases. Make it smaller.

ここで、冷却装置の排気下流温度は、冷却性能検出値として、冷却装置により還流排気ガスが何度に冷却されたかを表している。そして、排気下流温度は、冷却水量が増加し還流排気がスを冷却装置が冷却し易くなるにしたがい低くなる。言い換えれば、排気下流温度に基づいて算出された冷却性能閾値は、冷却水量の増加にしたがい小さくなる。   Here, the exhaust downstream temperature of the cooling device represents how many times the recirculated exhaust gas has been cooled by the cooling device as a cooling performance detection value. The exhaust downstream temperature becomes lower as the amount of cooling water increases and the recirculated exhaust gas becomes easier to cool the cooling device. In other words, the cooling performance threshold value calculated based on the exhaust downstream temperature decreases as the cooling water amount increases.

このように、冷却装置の排気下流温度が表す冷却性能検出値と、冷却水量の増加により低くなる排気下流温度を考慮した冷却性能閾値とに基づいて、冷却装置の冷却性能の低下を高精度に判定できる。   Thus, based on the cooling performance detection value represented by the exhaust downstream temperature of the cooling device and the cooling performance threshold considering the exhaust downstream temperature that becomes lower as the amount of cooling water increases, the deterioration of the cooling performance of the cooling device can be accurately performed. Can be judged.

請求項12に記載の発明によると、冷却性能判定手段は冷却水量の変化量の絶対値が所定値よりも小さい場合に冷却性能の低下判定を実施する。
冷却水量の変化量の絶対値が小さい場合には、冷却装置の冷却性能の変動は小さい。したがって、冷却水量の変化量の絶対値が所定値よりも小さい場合には、冷却装置の冷却性能を高精度に判定できる。
According to the twelfth aspect of the present invention, when the absolute value of the amount of change in the cooling water amount is smaller than a predetermined value, the cooling performance determination unit performs the cooling performance determination.
When the absolute value of the change amount of the cooling water amount is small, the variation in the cooling performance of the cooling device is small. Therefore, when the absolute value of the change amount of the cooling water amount is smaller than the predetermined value, the cooling performance of the cooling device can be determined with high accuracy.

尚、本発明に備わる複数の手段の各機能は、構成自体で機能が特定されるハードウェア資源、プログラムにより機能が特定されるハードウェア資源、またはそれらの組み合わせにより実現される。また、これら複数の手段の各機能は、各々が物理的に互いに独立したハードウェア資源で実現されるものに限定されない。   The functions of the plurality of means provided in the present invention are realized by hardware resources whose functions are specified by the configuration itself, hardware resources whose functions are specified by a program, or a combination thereof. The functions of the plurality of means are not limited to those realized by hardware resources that are physically independent of each other.

本実施形態を適用した排気再循環システムを示すブロック図。The block diagram which shows the exhaust gas recirculation system to which this embodiment is applied. (A)はエンジン回転数と燃料噴射量とから冷却性能の基準閾値を求めるマップ、(B)はEGRガス量に応じて基準閾値を補正する補正係数を求める特性図、(C)は冷却水量に応じて基準閾値を補正する補正係数を求める特性図。(A) is a map for obtaining a reference threshold value for cooling performance from the engine speed and the fuel injection amount, (B) is a characteristic diagram for obtaining a correction coefficient for correcting the reference threshold value according to the EGR gas amount, and (C) is a cooling water amount. The characteristic view which calculates | requires the correction coefficient which correct | amends a reference | standard threshold value according to. 冷却性能の低下判定ルーチンを示すフローチャート。The flowchart which shows the fall determination routine of cooling performance.

以下、本発明の実施の形態を図に基づいて説明する。図1に、本発明の一実施形態による排気還流制御装置としてECU(Electronic Control Unit)60を適用した排気再循環(EGR)システムを示す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an exhaust gas recirculation (EGR) system to which an ECU (Electronic Control Unit) 60 is applied as an exhaust gas recirculation control device according to an embodiment of the present invention.

(EGRシステム20)
燃料噴射弁4から噴射された燃料は内燃機関(以下、「エンジン」とも言う。)2で燃焼し、エンジン2から排気流路210に排気ガスが排出される。EGRシステム20は、エンジン2から排気流路210に排出される排気ガスを、還流流路220を通って排気流路210から吸気流路200に還流するシステムである。エンジン2は、例えば4気筒のディーゼルエンジンである。
(EGR system 20)
The fuel injected from the fuel injection valve 4 burns in an internal combustion engine (hereinafter also referred to as “engine”) 2, and exhaust gas is discharged from the engine 2 to the exhaust passage 210. The EGR system 20 is a system that recirculates exhaust gas discharged from the engine 2 to the exhaust flow path 210 from the exhaust flow path 210 to the intake flow path 200 through the recirculation flow path 220. The engine 2 is, for example, a 4-cylinder diesel engine.

吸気流路200に吸入された吸気はエアクリーナ10で異物を除去され、エアフロメータ12により吸気量を検出される。エアフロメータ12は、還流流路220が吸気流路200に接続する位置よりも吸気上流側に設置されている。つまり、エアフロメータ12が検出する吸気量は、排気側から吸気側に還流排気ガス(EGRガス)が還流される位置よりも吸気上流側の吸気量である。   Foreign matter is removed from the intake air drawn into the intake flow path 200 by the air cleaner 10, and the intake air amount is detected by the air flow meter 12. The air flow meter 12 is installed on the intake upstream side of the position where the recirculation flow path 220 is connected to the intake flow path 200. That is, the intake air amount detected by the air flow meter 12 is the intake air upstream side of the position where the recirculated exhaust gas (EGR gas) is recirculated from the exhaust side to the intake side.

エアクリーナ10で異物を除去された吸気は、スロットル弁14で流量を調整される。スロットル弁14は、軽負荷領域ではEGRガスをより多く入れるために絞られるが、高負荷領域では吸気量増大やポンピングロスの低減等のために、ほぼ全開状態に保持される。スロットル弁14を通過した吸気はエンジン2の各気筒に吸入される。   The flow rate of the intake air from which foreign matter has been removed by the air cleaner 10 is adjusted by the throttle valve 14. The throttle valve 14 is throttled to allow more EGR gas to enter in the light load region, but is maintained in a fully open state in the high load region in order to increase the intake amount and reduce pumping loss. The intake air that has passed through the throttle valve 14 is drawn into each cylinder of the engine 2.

EGRシステム20は、還流流路220、EGRクーラ22、EGR弁24、およびECU60等から構成されている。EGRクーラ22、EGR弁24は、排気側からこの順番で還流流路220に設置されている。   The EGR system 20 includes a reflux flow path 220, an EGR cooler 22, an EGR valve 24, an ECU 60, and the like. The EGR cooler 22 and the EGR valve 24 are installed in the reflux flow path 220 in this order from the exhaust side.

還流流路220は、吸気流路200と排気流路210とを接続しており、還流流路220を通り排気側から吸気側に排気ガスが還流される。還流流路220は、DPF(Diesel Particulate filter)40よりも排気上流側の排気流路210と、スロットル弁14よりも吸気下流側の吸気流路200とを接続している。   The recirculation flow path 220 connects the intake flow path 200 and the exhaust flow path 210, and exhaust gas is recirculated from the exhaust side to the intake side through the recirculation flow path 220. The recirculation flow path 220 connects an exhaust flow path 210 on the exhaust upstream side of the DPF (Diesel Particulate filter) 40 and an intake flow path 200 on the intake downstream side of the throttle valve 14.

EGRクーラ22は、例えば、排気上流側から下流側に向けて延びる薄板が所定の間隔をおいて積層されている積層構造で形成されている。薄板と薄板との間には、冷却水が流れる層と、波状のフィンが設置されている層とが交互に形成されている。フィンが設置されている層は冷却流路を形成している。EGRクーラ22は、冷却流路を流れる冷却水によりEGRガスを冷却する。EGRクーラ22に供給される冷却水は、車両のラジエータ等で冷却される。そして、冷却水は、エンジン2の回転に同期し、エンジントルクにより駆動される機械式のポンプによりEGRクーラ22に供給される。   The EGR cooler 22 is formed, for example, in a laminated structure in which thin plates extending from the exhaust upstream side toward the downstream side are laminated at a predetermined interval. Between the thin plates, layers in which cooling water flows and layers in which wavy fins are installed are alternately formed. The layer in which the fins are installed forms a cooling channel. The EGR cooler 22 cools the EGR gas with the cooling water flowing through the cooling flow path. The cooling water supplied to the EGR cooler 22 is cooled by a vehicle radiator or the like. The cooling water is supplied to the EGR cooler 22 by a mechanical pump driven by engine torque in synchronization with the rotation of the engine 2.

EGR弁24は、デューティ比または供給電力量により開度を制御される電磁弁である。EGR弁24の開度が制御されることにより、還流流路220を通り排気側から吸気側に還流される排気ガスの還流量であるEGRガス量が調整される。   The EGR valve 24 is an electromagnetic valve whose opening degree is controlled by the duty ratio or the amount of supplied power. By controlling the opening degree of the EGR valve 24, the amount of EGR gas that is the amount of exhaust gas recirculated through the recirculation flow path 220 from the exhaust side to the intake side is adjusted.

EGRクーラ22の排気上流側、排気下流側の還流流路220に、排気温センサ30、32がそれぞれ設置されている。また、吸気流路200と還流流路220との接続部よりも吸気下流側の吸気流路200に、吸気圧センサ34および吸気温センサ36が設置されている。   Exhaust temperature sensors 30 and 32 are installed in the recirculation flow path 220 on the exhaust upstream side and the exhaust downstream side of the EGR cooler 22, respectively. An intake pressure sensor 34 and an intake air temperature sensor 36 are installed in the intake flow path 200 on the intake downstream side of the connection portion between the intake flow path 200 and the return flow path 220.

DPF40は、排気流路210と還流流路220との接続部よりも排気下流側に設置されている。DPF40は、多孔質のセラミックに白金等の酸化触媒が担持されたハニカム構造体で形成されている。DPF40のハニカム構造体の排気流れ方向に形成された流路の入口側および出口側は、互い違いに封止されている。排気ガス中の有害成分であるパティキュレートは、入口側が封止されておらず出口側が封止されている流路から流入し、流路を形成するハニカム構造体の隔壁を通過する際に隔壁の細孔に捕集される。そして、排気ガスは、入口側が封止されており出口側が封止されていない流路から流出する。   The DPF 40 is installed on the exhaust downstream side of the connection portion between the exhaust passage 210 and the reflux passage 220. The DPF 40 is formed of a honeycomb structure in which an oxidation catalyst such as platinum is supported on a porous ceramic. The inlet side and the outlet side of the flow path formed in the exhaust flow direction of the honeycomb structure of the DPF 40 are alternately sealed. Particulates, which are harmful components in the exhaust gas, flow in from the flow path in which the inlet side is not sealed and the outlet side is sealed, and pass through the partition walls of the honeycomb structure forming the flow path. It is collected in the pores. Then, the exhaust gas flows out from the flow path in which the inlet side is sealed and the outlet side is not sealed.

ECU60は、図示しないCPU、RAM、ROM、フラッシュメモリ、通信インタフェース等を有するマイクロコンピュータにより主に構成されている。ECU60は、ECU60のROM、フラッシュメモリ等の記憶装置に記憶されている制御プログラムをCPUが実行することにより、エンジン運転状態を制御する。   The ECU 60 is mainly configured by a microcomputer having a CPU, a RAM, a ROM, a flash memory, a communication interface and the like (not shown). The ECU 60 controls the engine operating state by the CPU executing a control program stored in a storage device such as a ROM or a flash memory of the ECU 60.

ECU60は、エアフロメータ12、排気温センサ30、32、吸気圧センサ34、吸気温センサ36、水温センサ50、エンジン回転数(NE)センサ52、アクセル開度センサ54、ならびにその他の各種センサの出力信号からエンジン運転状態を取得する。そして、ECU60は、取得したエンジン運転状態に基づき、燃料噴射弁4の噴射時期および噴射量を制御する。また、ECU60は、エンジン運転状態に基づいて、エンジンの主なトルクを発生するメイン噴射を含み、メイン噴射の前のパイロット噴射、メイン噴射の後のポスト噴射等の多段噴射を実施する。   The ECU 60 outputs the air flow meter 12, the exhaust temperature sensors 30, 32, the intake pressure sensor 34, the intake air temperature sensor 36, the water temperature sensor 50, the engine speed (NE) sensor 52, the accelerator opening sensor 54, and other various sensors. The engine operating state is acquired from the signal. The ECU 60 controls the injection timing and the injection amount of the fuel injection valve 4 based on the acquired engine operating state. The ECU 60 also includes main injection that generates the main torque of the engine based on the engine operating state, and performs multi-stage injection such as pilot injection before the main injection and post injection after the main injection.

パイロット噴射は、メイン噴射による着火の前に空気と微少量の燃料とを予め混合させておくために実施される。ポスト噴射は、微少量の燃料を噴射してDPF40が捕集しているパティキュレートを燃焼するために実施される。   The pilot injection is performed so that air and a small amount of fuel are mixed in advance before ignition by the main injection. The post-injection is performed to inject a minute amount of fuel and burn the particulates collected by the DPF 40.

また、ECU60は、EGR弁24の開度を制御することにより、排気側から吸気側に還流するEGRガス量を調整する。
(EGRクーラ22の冷却性能低下)
排気流路210の排気ガスはEGRクーラ22を通って吸気流路200に還流されるので、排気ガス中のパティキュレートがEGRクーラ22の冷却フィン等に付着することがある。EGRクーラ22にパティキュレートが付着して堆積すると、EGRクーラ22を流れるEGRガスと冷却水との熱交換が妨げられ、EGRクーラ22の冷却効率が低下する。EGRクーラ22の冷却性能検出値としての冷却効率は、例えば、前述したように式(1)により算出して検出される。
Further, the ECU 60 adjusts the amount of EGR gas that recirculates from the exhaust side to the intake side by controlling the opening degree of the EGR valve 24.
(Cooling performance degradation of EGR cooler 22)
Since the exhaust gas in the exhaust passage 210 is recirculated to the intake passage 200 through the EGR cooler 22, particulates in the exhaust gas may adhere to cooling fins or the like of the EGR cooler 22. When particulates adhere to and accumulate on the EGR cooler 22, heat exchange between the EGR gas flowing through the EGR cooler 22 and the cooling water is hindered, and the cooling efficiency of the EGR cooler 22 decreases. The cooling efficiency as the cooling performance detection value of the EGR cooler 22 is calculated and detected by the equation (1) as described above, for example.

式(1)において、排気上流温度、排気下流温度、水温は、それぞれ排気温センサ30、排気温センサ32、水温センサ50の出力信号から検出される。式(1)の分母は、EGRガスが最大で水温まで冷却される場合の低下温度を示し、分子はEGRクーラ22によりEGRガスが実際に冷却される低下温度を表している。つまり、式(1)の冷却効率は、最大冷却性能に対する実際の冷却性能の割合を表している。このように式(1)からEGRクーラ22の冷却効率を算出することにより、EGRクーラ22の実際の冷却性能を高精度に検出できる。   In equation (1), the exhaust upstream temperature, the exhaust downstream temperature, and the water temperature are detected from the output signals of the exhaust temperature sensor 30, the exhaust temperature sensor 32, and the water temperature sensor 50, respectively. The denominator of the formula (1) indicates a decrease temperature when the EGR gas is cooled to the maximum water temperature, and the numerator indicates the decrease temperature at which the EGR gas is actually cooled by the EGR cooler 22. That is, the cooling efficiency of the formula (1) represents the ratio of the actual cooling performance to the maximum cooling performance. Thus, the actual cooling performance of the EGR cooler 22 can be detected with high accuracy by calculating the cooling efficiency of the EGR cooler 22 from the equation (1).

ここで、EGRガスの冷却効率は、パティキュレートの付着等の経時変化により変化するだけでなく、EGRクーラ22を流れるEGRガス量および冷却水量によっても変化する。   Here, the cooling efficiency of the EGR gas not only changes due to changes over time, such as adhesion of particulates, but also changes depending on the amount of EGR gas flowing through the EGR cooler 22 and the amount of cooling water.

例えば、EGRガス量が多い場合にはEGRガス量が少ない場合よりもEGRガスの温度が下がりにくくなるので、EGRクーラ22の入口と出口とのEGRガスの温度差は小さくなる。また、冷却水量が少ない場合には、冷却水量が多い場合よりもEGRガスの温度が下がりにくくなるので、EGRクーラ22の入口と出口とのEGRガスの温度差は小さくなる。つまり、EGRガス量および冷却水量は、EGRクーラ22の冷却性能と密接に相関する冷却性能相関値である。   For example, when the amount of EGR gas is large, the temperature of the EGR gas is less likely to decrease than when the amount of EGR gas is small, and therefore the temperature difference between the EGR gas at the inlet and the outlet of the EGR cooler 22 is small. In addition, when the amount of cooling water is small, the temperature of the EGR gas is less likely to decrease than when the amount of cooling water is large, so the temperature difference between the EGR gas at the inlet and the outlet of the EGR cooler 22 is small. That is, the EGR gas amount and the cooling water amount are cooling performance correlation values that are closely correlated with the cooling performance of the EGR cooler 22.

ここで、エンジン回転数と燃料噴射量とからEGRガス量および冷却水量を推定できる。そして、前述したように、EGRガス量および冷却水量はEGRクーラ22の冷却性能と密接に相関しているので、EGRガス量と冷却水量とに基づいて、言い換えればエンジン回転数と燃料噴射量とのマップに基づいて、図2の(A)に示すように、EGRクーラ22の冷却性能が低下していると判定する場合に基準となる冷却効率を表す基準閾値C0を算出することができる。   Here, the EGR gas amount and the cooling water amount can be estimated from the engine speed and the fuel injection amount. As described above, since the EGR gas amount and the cooling water amount are closely correlated with the cooling performance of the EGR cooler 22, the engine speed and the fuel injection amount are based on the EGR gas amount and the cooling water amount. As shown in FIG. 2A, a reference threshold value C0 that represents a cooling efficiency that serves as a reference when it is determined that the cooling performance of the EGR cooler 22 is deteriorated can be calculated.

ただし、基準閾値C0は、エンジン回転数と燃料噴射量とのマップから算出される値であるから、実際のEGRガス量または冷却水量がエンジン回転数と燃料噴射量とから推定される基準値からずれる場合には、実際のEGRガス量または冷却水量に基づいて基準閾値C0を補正する必要がある。   However, since the reference threshold value C0 is a value calculated from a map of the engine speed and the fuel injection amount, the actual EGR gas amount or the cooling water amount is calculated from a reference value estimated from the engine speed and the fuel injection amount. In the case of deviation, it is necessary to correct the reference threshold value C0 based on the actual EGR gas amount or the cooling water amount.

そこで、図2の(B)、(C)の特性図に基づいて、エンジン回転数と燃料噴射量とから推定されたEGRガス量、冷却水量の基準値における基準閾値C0の補正係数を1とし、推定されたEGRガス量、冷却水量の基準値に対して実際のEGRガス量、冷却水量の検出値における補正係数k1、k2をそれぞれ算出する。   Therefore, based on the characteristic diagrams of FIGS. 2B and 2C, the correction coefficient of the reference threshold C0 in the reference value of the EGR gas amount and the cooling water amount estimated from the engine speed and the fuel injection amount is set to 1. Then, correction coefficients k1 and k2 in the detected values of the actual EGR gas amount and the cooling water amount are calculated with respect to the estimated reference values of the EGR gas amount and the cooling water amount, respectively.

EGRガス量が増加するとEGRクーラ22の冷却性能は低下するので、図2の(B)に示すように補正係数k1は小さくなる。また、冷却水量が増加するとEGRクーラ22の冷却性能は上昇するので、図2の(C)に示すように補正係数k2は大きくなる。   As the amount of EGR gas increases, the cooling performance of the EGR cooler 22 decreases, so that the correction coefficient k1 decreases as shown in FIG. Further, since the cooling performance of the EGR cooler 22 increases as the amount of cooling water increases, the correction coefficient k2 increases as shown in FIG.

これにより、EGRクーラ22の冷却性能が低下していると判定する場合に基準となる冷却性能閾値Cを、次式(2)から算出できる。
C(冷却性能閾値)=C0×k1×k2 ・・・(2)
そして、式(1)から算出したEGRクーラ22の実際の冷却効率と、式(2)から算出した冷却性能閾値とを比較して、EGRクーラ22の冷却性能の低下を高精度に判定できる。
Thereby, the cooling performance threshold value C used as a reference | standard when determining with the cooling performance of the EGR cooler 22 falling can be calculated from following Formula (2).
C (cooling performance threshold) = C0 × k1 × k2 (2)
Then, the actual cooling efficiency of the EGR cooler 22 calculated from the equation (1) is compared with the cooling performance threshold value calculated from the equation (2), so that a decrease in the cooling performance of the EGR cooler 22 can be determined with high accuracy.

(EGRクーラ22の冷却性能判定条件)
EGRガス量の変化量の絶対値が小さい場合には、EGRクーラ22の冷却性能の変化も小さい。また、冷却水量の変化量の絶対値が小さい場合には、EGRクーラ22の冷却性能の変化も小さい。また、EGRガス量が多い場合には、EGRクーラを流れるEGRガスの流速が変化しても、EGRクーラ22の冷却性能の変化は小さい。このように、EGRクーラ22の冷却性能の変化が小さい場合には、EGRクーラ22の実際の冷却効率と冷却性能閾値とを比較して、EGRクーラ22の冷却性能の低下を高精度に判定できる。
(Condition for cooling performance of EGR cooler 22)
When the absolute value of the change amount of the EGR gas amount is small, the change in the cooling performance of the EGR cooler 22 is also small. Further, when the absolute value of the change amount of the cooling water amount is small, the change in the cooling performance of the EGR cooler 22 is also small. Further, when the amount of EGR gas is large, even if the flow rate of the EGR gas flowing through the EGR cooler changes, the change in the cooling performance of the EGR cooler 22 is small. As described above, when the change in the cooling performance of the EGR cooler 22 is small, the actual cooling efficiency of the EGR cooler 22 and the cooling performance threshold value can be compared to determine a decrease in the cooling performance of the EGR cooler 22 with high accuracy. .

そこで、EGRガス量の変化量の絶対値が所定値よりも小さい場合、ならびにEGRガス量が所定量よりも大きい場合、ならびに冷却水量の変化量の絶対値が所定値よりも小さい場合の少なくともいずれかの条件が成立する場合に、EGRクーラ22の冷却性能の低下判定を実施する。尚、上記3個の条件が全て成立しているときに、EGRクーラ22の冷却性能の低下判定を実施することがより望ましい。   Therefore, at least one of the case where the absolute value of the change amount of the EGR gas amount is smaller than the predetermined value, the case where the absolute value of the change amount of the cooling water amount is smaller than the predetermined value, and the case where the absolute value of the change amount of the cooling water amount is smaller than the predetermined value. When such a condition is satisfied, the determination of the cooling performance of the EGR cooler 22 is performed. It should be noted that it is more desirable to perform the determination of the cooling performance of the EGR cooler 22 when all the three conditions are satisfied.

(EGRガス量および冷却水量の検出)
エンジン2に吸入される吸気量は、エアフロメータ12で検出される吸気量と、エアフロメータ12の下流側に還流されるEGRガス量との和である。したがって、還流流路220を流れるEGRガス量は、エンジン2に吸入される吸気量から、エアフロメータ12で検出される吸気量を減算して検出することができる。
(Detection of EGR gas amount and cooling water amount)
The intake air amount sucked into the engine 2 is the sum of the intake air amount detected by the air flow meter 12 and the EGR gas amount recirculated to the downstream side of the air flow meter 12. Therefore, the amount of EGR gas flowing through the recirculation flow path 220 can be detected by subtracting the intake air amount detected by the air flow meter 12 from the intake air amount sucked into the engine 2.

エンジン2に吸入される吸気量は、吸気流路200と還流流路220との接続部よりも吸気下流側の吸気圧と吸気温度とエンジン回転数とに基づいて、気体状態方程式等の物理モデルから算出できる。吸気圧および吸気温は、吸気圧センサ34、吸気温センサ36の出力信号からそれぞれ検出できる。   The amount of intake air sucked into the engine 2 is based on a physical model such as a gas state equation based on the intake pressure, intake air temperature, and engine speed downstream of the connection between the intake passage 200 and the return passage 220. It can be calculated from The intake pressure and the intake temperature can be detected from the output signals of the intake pressure sensor 34 and the intake temperature sensor 36, respectively.

また、前述したように、冷却水はエンジントルクにより駆動される機械式のポンプによりEGRクーラ22に供給される。したがって、EGRクーラ22を流れる冷却水量は、エンジン回転数センサ52の出力信号から検出されるエンジン回転数に基づいて物理モデルから算出して検出できる。そして、EGRガス量および冷却水量の変化量は、微分によって算出される。   Further, as described above, the cooling water is supplied to the EGR cooler 22 by a mechanical pump driven by engine torque. Therefore, the amount of cooling water flowing through the EGR cooler 22 can be detected by calculating from the physical model based on the engine speed detected from the output signal of the engine speed sensor 52. The amount of change in the EGR gas amount and the cooling water amount is calculated by differentiation.

(冷却性能判定ルーチン)
EGRクーラ22の冷却性能の低下判定ルーチンを図3に示す。図3のルーチンは常時実行される。図3において「S」は、ステップを表している。
(Cooling performance judgment routine)
FIG. 3 shows a routine for determining the cooling performance of the EGR cooler 22. The routine of FIG. 3 is always executed. In FIG. 3, “S” represents a step.

図3のS400においてECU60は、前述したようにEGRガス量および冷却水量を物理モデルから算出して検出する。そして、S402においてECU60は、EGRガス量および冷却水量をそれぞれ微分してEGRガス量および冷却水量の変化量の絶対値を算出する。   In S400 of FIG. 3, the ECU 60 calculates and detects the EGR gas amount and the cooling water amount from the physical model as described above. In S402, the ECU 60 differentiates the EGR gas amount and the cooling water amount, respectively, to calculate an absolute value of the change amount of the EGR gas amount and the cooling water amount.

S404においてECU60は、EGRガス量が所定量よりも多く、かつEGRガス量および冷却水量の変化量の絶対値がそれぞれ所定値よりも小さいか否かを判定する。
EGRガス量が所定量以下であるか、あるいはEGRガス量または冷却水量の変化量の絶対値のいずれかが所定値以上の場合には(S404:No)、EGRクーラ22の冷却性能を高精度に判定することが困難であると判断し、ECU60は本ルーチンを終了する。
In S404, the ECU 60 determines whether or not the EGR gas amount is larger than a predetermined amount and the absolute values of the change amounts of the EGR gas amount and the cooling water amount are smaller than predetermined values.
If the EGR gas amount is less than or equal to the predetermined amount, or if either the absolute value of the change amount of the EGR gas amount or the cooling water amount is greater than or equal to the predetermined value (S404: No), the cooling performance of the EGR cooler 22 is highly accurate. The ECU 60 ends this routine.

EGRガス量が所定量よりも多く、かつEGRガス量および冷却水量の変化量の絶対値がそれぞれ所定値よりも小さい場合(S404:Yes)、S406においてECU60は、EGRクーラ22に対する冷却性能の低下判定を許可する。   When the EGR gas amount is larger than the predetermined amount and the absolute values of the change amounts of the EGR gas amount and the cooling water amount are smaller than the predetermined values (S404: Yes), the ECU 60 reduces the cooling performance for the EGR cooler 22 in S406. Allow judgment.

S408においてECU60は、式(1)に基づいてEGRクーラ22の実際の冷却効率を冷却性能検出値として算出して検出する。そして、S410においてECU60は、冷却効率と比較するために、S400において検出したEGRガス量および冷却水量に基づいて、冷却性能閾値Cを式(2)から算出する。   In S408, the ECU 60 calculates and detects the actual cooling efficiency of the EGR cooler 22 as a cooling performance detection value based on the equation (1). In step S410, the ECU 60 calculates the cooling performance threshold value C from the equation (2) based on the EGR gas amount and the cooling water amount detected in step S400 in order to compare with the cooling efficiency.

S412においてECU60は、冷却性能検出値が冷却性能閾値よりも小さいか、つまりEGRクーラ22の冷却性能が低下しているか否かを判定する。冷却性能検出値が冷却性能閾値以上の場合(S412:No)、ECU60はEGRクーラ22の冷却性能は低下していないと判断し、本ルーチンを終了する。   In S412, the ECU 60 determines whether the detected cooling performance value is smaller than the cooling performance threshold value, that is, whether the cooling performance of the EGR cooler 22 is degraded. When the cooling performance detection value is equal to or greater than the cooling performance threshold value (S412: No), the ECU 60 determines that the cooling performance of the EGR cooler 22 has not deteriorated, and ends this routine.

冷却性能検出値が閾値よりも小さい場合(S412:Yes)、S414においてECU60は、EGRクーラ22の冷却性能は低下していると判定し、本ルーチンを終了する。   When the cooling performance detection value is smaller than the threshold value (S412: Yes), in S414, the ECU 60 determines that the cooling performance of the EGR cooler 22 is deteriorated, and ends this routine.

本実施形態において、エンジン2は本発明の内燃機関に相当し、EGRクーラ22は本発明の冷却装置に相当し、ECU60は本発明の排気還流制御装置に相当する。
また、図3のS400、S402は相関値検出手段が実行する機能に相当し、S404、S406、S412、S414は冷却性能判定手段が実行する機能に相当し、S408は冷却性能検出手段が実行する機能に相当し、S410は閾値算出手段が実行する機能に相当する。そして、ECU60は、ROMまたはフラッシュメモリ等の記憶装置に記憶された制御プログラムが図3のS400〜S414の処理を実行することにより、冷却性能検出手段、相関値検出手段、閾値算出手段、および冷却性能判定手段として機能する。
In the present embodiment, the engine 2 corresponds to the internal combustion engine of the present invention, the EGR cooler 22 corresponds to the cooling device of the present invention, and the ECU 60 corresponds to the exhaust gas recirculation control device of the present invention.
Also, S400 and S402 in FIG. 3 correspond to functions executed by the correlation value detecting means, S404, S406, S412, and S414 correspond to functions executed by the cooling performance determining means, and S408 is executed by the cooling performance detecting means. S410 corresponds to a function executed by the threshold value calculation means. The ECU 60 executes a process of S400 to S414 in FIG. 3 by a control program stored in a storage device such as a ROM or a flash memory, so that a cooling performance detecting unit, a correlation value detecting unit, a threshold calculating unit, and a cooling unit It functions as a performance judgment means.

以上説明した本実施形態では、エンジン回転数と燃料噴射量とから算出される基準閾値C0をEGRガス量と冷却水量とに基づいて補正して冷却性能閾値Cを算出した。そして、EGRクーラ22の冷却性能の低下を、EGRクーラ22の実際の冷却性能を表す冷却効率と冷却性能閾値とを比較することにより判定した。   In the present embodiment described above, the cooling performance threshold value C is calculated by correcting the reference threshold value C0 calculated from the engine speed and the fuel injection amount based on the EGR gas amount and the cooling water amount. And the fall of the cooling performance of the EGR cooler 22 was determined by comparing the cooling efficiency representing the actual cooling performance of the EGR cooler 22 with the cooling performance threshold.

これにより、エンジン回転数と燃料噴射量とから算出される基準閾値と冷却効率とを比較する場合に比べ、EGRガス量および冷却水量の変化によるEGRクーラの冷却性能の変動を考慮し、EGRガス量および冷却水量の変化によるEGRクーラの冷却性能の変動を排除した状態で、経時変化等によるEGRクーラ自体の冷却性能の低下を判定できる。   As a result, in comparison with the case where the reference threshold value calculated from the engine speed and the fuel injection amount is compared with the cooling efficiency, the EGR gas is changed in consideration of the change in the cooling performance of the EGR cooler due to the change in the EGR gas amount and the cooling water amount. In the state where the change in the cooling performance of the EGR cooler due to the change in the amount and the amount of the cooling water is excluded, it is possible to determine the decrease in the cooling performance of the EGR cooler itself due to a change with time.

その結果、パティキュレートの堆積等の経時変化等によるEGRクーラ自体の冷却性能の低下を、誤判定することなく高精度に判定できる。
[他の実施形態]
上記実施形態では、エンジン回転数と燃料噴射量とから算出される基準閾値をEGRガス量と冷却水量とに基づいて補正して冷却性能閾値を算出した。これに対し、EGRガス量または冷却水量の一方だけに基づいて基準閾値を補正して冷却性能閾値を算出してもよい。
As a result, the deterioration of the cooling performance of the EGR cooler itself due to a change with time such as particulate deposition can be determined with high accuracy without erroneous determination.
[Other Embodiments]
In the above embodiment, the reference threshold value calculated from the engine speed and the fuel injection amount is corrected based on the EGR gas amount and the cooling water amount to calculate the cooling performance threshold value. On the other hand, the reference threshold value may be corrected based on only one of the EGR gas amount and the cooling water amount to calculate the cooling performance threshold value.

また、EGRクーラ22の冷却性能検出値として、式(1)から算出する冷却効率に代えて、EGRクーラ22の排気上流側のEGRガス温度(排気上流温度)と排気下流側のEGRガス温度(排気下流温度)との温度差、あるいは排気下流側のEGRガス温度をEGRクーラ22の冷却性能検出値として検出し、対応する冷却性能閾値と比較してもよい。   Further, as the cooling performance detection value of the EGR cooler 22, instead of the cooling efficiency calculated from the equation (1), the EGR gas temperature (exhaust upstream temperature) on the exhaust upstream side of the EGR cooler 22 and the EGR gas temperature (exhaust upstream temperature) ( The temperature difference from the exhaust downstream temperature) or the EGR gas temperature on the exhaust downstream side may be detected as a cooling performance detection value of the EGR cooler 22 and compared with a corresponding cooling performance threshold.

また、エンジントルクにより駆動される機械式のポンプに代えて、電動ポンプによりEGRクーラ22に冷却水を供給してもよい。
また、冷却性能相関値としてのEGRガス量および冷却水量を、物理モデルから算出して検出するのではなく、流量センサで直接検出してもよい。
Further, instead of the mechanical pump driven by the engine torque, the cooling water may be supplied to the EGR cooler 22 by an electric pump.
In addition, the EGR gas amount and the cooling water amount as the cooling performance correlation value may be directly detected by a flow rate sensor instead of being calculated from the physical model and detected.

上記実施形態では、ディーゼルエンジンのEGRシステムに本発明を適用した例について説明した。これに対し、排気側から吸気側に還流させる排気ガスをEGRクーラで冷却するのであれば、ディーゼルエンジンに限らず、直噴式のガソリンエンジン等、どのような内燃機関用のEGRシステムにも本発明を適用できる。   In the above embodiment, an example in which the present invention is applied to an EGR system of a diesel engine has been described. On the other hand, as long as the exhaust gas recirculated from the exhaust side to the intake side is cooled by the EGR cooler, the present invention is not limited to a diesel engine, but any EGR system for an internal combustion engine such as a direct injection type gasoline engine. Can be applied.

上記実施形態では、冷却性能検出手段、相関値検出手段、閾値算出手段、および冷却性能判定手段の機能を、制御プログラムにより機能が特定されるECU60により実現している。これに対し、ECU60が実行している機能の少なくとも一部を、回路構成自体で機能が特定されるハードウェアで実現してもよい。   In the above embodiment, the functions of the cooling performance detection means, the correlation value detection means, the threshold value calculation means, and the cooling performance determination means are realized by the ECU 60 whose functions are specified by the control program. On the other hand, at least a part of the functions executed by the ECU 60 may be realized by hardware whose functions are specified by the circuit configuration itself.

このように、本発明は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の実施形態に適用可能である。   As described above, the present invention is not limited to the above-described embodiment, and can be applied to various embodiments without departing from the gist thereof.

2:ディーゼルエンジン(内燃機関機)、20:EGR(排気再循環)システム、22:EGRクーラ(冷却装置)、24:EGR弁、60:ECU(排気還流制御装置、冷却性能検出手段、相関値検出手段、閾値算出手段、冷却性能判定手段)、200:吸気流路、210:排気流路、220:還流流路 2: diesel engine (internal combustion engine), 20: EGR (exhaust gas recirculation) system, 22: EGR cooler (cooling device), 24: EGR valve, 60: ECU (exhaust gas recirculation control device, cooling performance detecting means, correlation value) Detection means, threshold value calculation means, cooling performance determination means), 200: intake flow path, 210: exhaust flow path, 220: recirculation flow path

Claims (12)

内燃機関の排気流路と吸気流路とを還流流路で接続し、前記還流流路を通って前記排気流路から前記吸気流路に還流される還流排気ガスを前記還流流路に設置された冷却装置で冷却する排気再循環システムに適用され、前記冷却装置の冷却性能の低下を判定する排気還流制御装置において、
前記冷却装置の前記冷却性能を検出する冷却性能検出手段と、
前記冷却性能と相関する冷却性能相関値として前記還流排気ガスのガス量を検出する相関値検出手段と、
前記相関値検出手段が検出する前記冷却性能相関値に基づいて冷却性能閾値を算出する閾値算出手段と、
前記冷却性能検出手段が検出する冷却性能検出値と前記閾値算出手段が算出する前記冷却性能閾値とに基づいて前記冷却性能の低下を判定する冷却性能判定手段と、
を備えることを特徴とする排気還流制御装置。
An exhaust flow path and an intake flow path of an internal combustion engine are connected by a recirculation flow path, and a recirculation exhaust gas recirculated from the exhaust flow path to the intake flow path through the recirculation flow path is installed in the recirculation flow path. In an exhaust gas recirculation control apparatus that is applied to an exhaust gas recirculation system that cools by a cooling device that determines a decrease in cooling performance of the cooling device
Cooling performance detecting means for detecting the cooling performance of the cooling device;
Correlation value detecting means for detecting the amount of the recirculated exhaust gas as a cooling performance correlation value correlated with the cooling performance;
Threshold calculation means for calculating a cooling performance threshold based on the cooling performance correlation value detected by the correlation value detection means;
Cooling performance determination means for determining a decrease in the cooling performance based on the cooling performance detection value detected by the cooling performance detection means and the cooling performance threshold value calculated by the threshold value calculation means;
An exhaust gas recirculation control device comprising:
前記冷却性能検出手段は、前記冷却装置の排気上流側の排気上流温度と前記冷却装置の排気下流側の排気下流温度と前記冷却装置を流れる冷却水の水温とに基づいて前記冷却装置の冷却効率を前記冷却性能検出値として検出し、
前記閾値算出手段は、前記ガス量が増加するにしたがい前記冷却性能閾値を小さくする、
ことを特徴とする請求項1に記載の排気還流制御装置。
The cooling performance detection means is configured to determine the cooling efficiency of the cooling device based on the exhaust upstream temperature on the exhaust upstream side of the cooling device, the exhaust downstream temperature on the exhaust downstream side of the cooling device, and the temperature of the cooling water flowing through the cooling device. Is detected as the cooling performance detection value,
The threshold value calculation means decreases the cooling performance threshold value as the gas amount increases.
The exhaust gas recirculation control apparatus according to claim 1.
前記冷却性能検出手段は、前記冷却装置の排気上流側の排気上流温度と前記冷却装置の排気下流側の排気下流温度との温度差を前記冷却性能検出値として検出し、
前記閾値算出手段は、前記ガス量が増加するにしたがい前記冷却性能閾値を小さくする、
ことを特徴とする請求項1に記載の排気還流制御装置。
The cooling performance detection means detects a temperature difference between an exhaust upstream temperature on the exhaust upstream side of the cooling device and an exhaust downstream temperature on the exhaust downstream side of the cooling device as the cooling performance detection value,
The threshold value calculation means decreases the cooling performance threshold value as the gas amount increases.
The exhaust gas recirculation control apparatus according to claim 1.
前記冷却性能検出手段は、前記冷却装置の排気下流側の排気下流温度を前記冷却性能検出値として検出し、
前記閾値算出手段は、前記ガス量が増加するにしたがい前記冷却性能閾値を大きくする、
ことを特徴とする請求項1に記載の排気還流制御装置。
The cooling performance detection means detects the exhaust downstream temperature on the exhaust downstream side of the cooling device as the cooling performance detection value,
The threshold value calculation means increases the cooling performance threshold value as the gas amount increases.
The exhaust gas recirculation control apparatus according to claim 1.
前記冷却性能判定手段は、前記ガス量の変化量の絶対値が所定値よりも小さい場合、ならびに前記ガス量が所定量よりも大きい場合の少なくともいずれかの条件が成立する場合に前記冷却性能の低下判定を実施することを特徴とする請求項1から4のいずれか一項に記載の排気還流制御装置。   The cooling performance determining means determines the cooling performance when the absolute value of the change amount of the gas amount is smaller than a predetermined value and when at least one of the conditions when the gas amount is larger than the predetermined amount is satisfied. The exhaust gas recirculation control apparatus according to any one of claims 1 to 4, wherein a reduction determination is performed. 前記相関値検出手段は、前記冷却装置を流れる冷却水の冷却水量を前記冷却性能相関値としてさらに検出し、
前記閾値算出手段は、前記相関値検出手段が前記冷却性能相関値として検出する前記ガス量および前記冷却水量に基づいて前記冷却性能閾値を算出する、
ことを特徴とする請求項1から5のいずれか一項に記載の排気還流制御装置。
The correlation value detecting means further detects the amount of cooling water flowing through the cooling device as the cooling performance correlation value,
The threshold value calculation means calculates the cooling performance threshold value based on the gas amount and the cooling water amount detected by the correlation value detection means as the cooling performance correlation value.
The exhaust gas recirculation control apparatus according to any one of claims 1 to 5, wherein
前記冷却性能判定手段は、前記ガス量の変化量の絶対値が所定値よりも小さい場合、ならびに前記ガス量が所定量よりも大きい場合、ならびに前記冷却水量の変化量の絶対値が所定値よりも小さい場合の少なくともいずれかの条件が成立する場合に前記冷却性能の低下判定を実施することを特徴とする請求項6に記載の排気還流制御装置。   The cooling performance determination unit is configured to determine whether the absolute value of the change amount of the gas amount is smaller than a predetermined value, when the gas amount is larger than the predetermined amount, and when the absolute value of the change amount of the cooling water amount is larger than a predetermined value. The exhaust gas recirculation control apparatus according to claim 6, wherein the cooling performance reduction determination is performed when at least one of the conditions is satisfied. 内燃機関の排気流路と吸気流路とを還流流路で接続し、前記還流流路を通って前記排気流路から前記吸気流路に還流される還流排気ガスを前記還流流路に設置された冷却装置で冷却する排気再循環システムに適用され、前記冷却装置の冷却性能の低下を判定する排気還流制御装置において、
前記冷却装置の前記冷却性能を検出する冷却性能検出手段と、
前記冷却性能と相関する冷却性能相関値として前記冷却装置を流れる冷却水の冷却水量を検出する相関値検出手段と、
前記相関値検出手段が検出する前記冷却性能相関値に基づいて冷却性能閾値を算出する閾値算出手段と、
前記冷却性能検出手段が検出する冷却性能検出値と前記閾値算出手段が算出する前記冷却性能閾値とに基づいて前記冷却性能の低下を判定する冷却性能判定手段と、
を備えることを特徴とする排気還流制御装置。
An exhaust flow path and an intake flow path of an internal combustion engine are connected by a recirculation flow path, and a recirculation exhaust gas recirculated from the exhaust flow path to the intake flow path through the recirculation flow path is installed in the recirculation flow path. In an exhaust gas recirculation control apparatus that is applied to an exhaust gas recirculation system that cools by a cooling device that determines a decrease in cooling performance of the cooling device
Cooling performance detecting means for detecting the cooling performance of the cooling device;
Correlation value detecting means for detecting a cooling water amount flowing through the cooling device as a cooling performance correlation value correlated with the cooling performance;
Threshold calculation means for calculating a cooling performance threshold based on the cooling performance correlation value detected by the correlation value detection means;
Cooling performance determination means for determining a decrease in the cooling performance based on the cooling performance detection value detected by the cooling performance detection means and the cooling performance threshold value calculated by the threshold value calculation means;
An exhaust gas recirculation control device comprising:
前記冷却性能検出手段は、前記冷却装置の排気上流側の排気上流温度と前記冷却装置の排気下流側の排気下流温度と前記冷却装置を流れる冷却水の水温とに基づいて前記冷却装置の冷却効率を前記冷却性能検出値として検出し、
前記閾値算出手段は、前記冷却水量が増加するにしたがい前記冷却性能閾値を大きくする、
ことを特徴とする請求項7または8に記載の排気還流制御装置。
The cooling performance detection means is configured to determine the cooling efficiency of the cooling device based on the exhaust upstream temperature on the exhaust upstream side of the cooling device, the exhaust downstream temperature on the exhaust downstream side of the cooling device, and the temperature of the cooling water flowing through the cooling device. Is detected as the cooling performance detection value,
The threshold value calculation means increases the cooling performance threshold value as the cooling water amount increases.
The exhaust gas recirculation control apparatus according to claim 7 or 8, wherein
前記冷却性能検出手段は、前記冷却装置の排気上流側の排気上流温度と前記冷却装置の排気下流側の排気下流温度との温度差を前記冷却性能検出値として検出し、
前記閾値算出手段は、前記冷却水量が増加するにしたがい前記冷却性能閾値を大きくする、
ことを特徴とする請求項7または8に記載の排気還流制御装置。
The cooling performance detection means detects a temperature difference between an exhaust upstream temperature on the exhaust upstream side of the cooling device and an exhaust downstream temperature on the exhaust downstream side of the cooling device as the cooling performance detection value,
The threshold value calculation means increases the cooling performance threshold value as the cooling water amount increases.
The exhaust gas recirculation control apparatus according to claim 7 or 8, wherein
前記冷却性能検出手段は、前記冷却装置の排気下流側の排気下流温度を前記冷却性能検出値として検出し、
前記閾値算出手段は、前記冷却水量が増加するにしたがい前記冷却性能閾値を小さくする、
ことを特徴とする請求項7または8に記載の排気還流制御装置。
The cooling performance detection means detects the exhaust downstream temperature on the exhaust downstream side of the cooling device as the cooling performance detection value,
The threshold value calculation means reduces the cooling performance threshold value as the cooling water amount increases.
The exhaust gas recirculation control apparatus according to claim 7 or 8, wherein
前記冷却性能判定手段は前記冷却水量の変化量の絶対値が所定値よりも小さい場合に前記冷却性能の低下判定を実施することを特徴とする請求項7から11のいずれか一項に記載の排気還流制御装置。   12. The cooling performance determination unit according to claim 7, wherein when the absolute value of the amount of change in the cooling water amount is smaller than a predetermined value, the cooling performance determination unit performs the cooling performance decrease determination. Exhaust gas recirculation control device.
JP2009152414A 2009-06-26 2009-06-26 Exhaust gas recirculation control device Expired - Fee Related JP5206601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009152414A JP5206601B2 (en) 2009-06-26 2009-06-26 Exhaust gas recirculation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009152414A JP5206601B2 (en) 2009-06-26 2009-06-26 Exhaust gas recirculation control device

Publications (2)

Publication Number Publication Date
JP2011007131A true JP2011007131A (en) 2011-01-13
JP5206601B2 JP5206601B2 (en) 2013-06-12

Family

ID=43564061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009152414A Expired - Fee Related JP5206601B2 (en) 2009-06-26 2009-06-26 Exhaust gas recirculation control device

Country Status (1)

Country Link
JP (1) JP5206601B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014043816A (en) * 2012-08-27 2014-03-13 Mitsubishi Motors Corp Engine exhaust emission control device
JP2014080925A (en) * 2012-10-17 2014-05-08 Mitsubishi Heavy Ind Ltd Control device of internal combustion engine and control method thereof
WO2015016305A1 (en) * 2013-07-31 2015-02-05 いすゞ自動車株式会社 Exhaust system state detection device
JP2016211409A (en) * 2015-05-07 2016-12-15 株式会社デンソー Low temperature water cooling device for internal combustion engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289125A (en) * 2000-03-31 2001-10-19 Mitsubishi Motors Corp Egr cooler device
JP2002180889A (en) * 2000-12-11 2002-06-26 Toyota Motor Corp Detection method of intake temperature after supercharging, operation controller and cooling abnormality detector for intercooler in supercharging internal combustion engine system
JP2006242080A (en) * 2005-03-02 2006-09-14 Denso Corp Abnormality diagnostic device for exhaust gas recirculating device
JP2006300026A (en) * 2005-04-25 2006-11-02 Isuzu Motors Ltd Egr device
JP2009103089A (en) * 2007-10-25 2009-05-14 Nissan Motor Co Ltd Exhaust emission refluxing device of internal combustion engine
JP2009114871A (en) * 2007-11-02 2009-05-28 Nissan Motor Co Ltd Exhaust gas recirculation control device for internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289125A (en) * 2000-03-31 2001-10-19 Mitsubishi Motors Corp Egr cooler device
JP2002180889A (en) * 2000-12-11 2002-06-26 Toyota Motor Corp Detection method of intake temperature after supercharging, operation controller and cooling abnormality detector for intercooler in supercharging internal combustion engine system
JP2006242080A (en) * 2005-03-02 2006-09-14 Denso Corp Abnormality diagnostic device for exhaust gas recirculating device
JP2006300026A (en) * 2005-04-25 2006-11-02 Isuzu Motors Ltd Egr device
JP2009103089A (en) * 2007-10-25 2009-05-14 Nissan Motor Co Ltd Exhaust emission refluxing device of internal combustion engine
JP2009114871A (en) * 2007-11-02 2009-05-28 Nissan Motor Co Ltd Exhaust gas recirculation control device for internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014043816A (en) * 2012-08-27 2014-03-13 Mitsubishi Motors Corp Engine exhaust emission control device
JP2014080925A (en) * 2012-10-17 2014-05-08 Mitsubishi Heavy Ind Ltd Control device of internal combustion engine and control method thereof
WO2015016305A1 (en) * 2013-07-31 2015-02-05 いすゞ自動車株式会社 Exhaust system state detection device
JP2015031170A (en) * 2013-07-31 2015-02-16 いすゞ自動車株式会社 State detection device for exhaust system
JP2016211409A (en) * 2015-05-07 2016-12-15 株式会社デンソー Low temperature water cooling device for internal combustion engine

Also Published As

Publication number Publication date
JP5206601B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
US20120271529A1 (en) Internal combustion engine control apparatus
JP2007198277A (en) Exhaust gas recirculation device for internal combustion engine
WO2007107865A2 (en) Exhaust gas control system for internal combustion engine
JP6259246B2 (en) Control device for internal combustion engine
JP5376051B2 (en) Abnormality detection apparatus and abnormality detection method for EGR system
JP2015031167A (en) Diagnostic device
JP2011021563A (en) Response sensing device of exhaust gas component concentration sensor
JP2007023959A (en) Pm accumulation-quantity estimation device
JP4967995B2 (en) Exhaust gas recirculation control device for internal combustion engine
JP5206601B2 (en) Exhaust gas recirculation control device
JP6860313B2 (en) Engine control method and engine
JP6252337B2 (en) Engine control device
JP3868926B2 (en) Diesel engine exhaust gas recirculation control device
JP2011001893A (en) Exhaust gas purification system
JP6323140B2 (en) EGR control device
JP2008111409A (en) Failure detection system for differential pressure sensor
JP2007040269A (en) Back pressure control device of engine
WO2013018895A1 (en) Air flow rate sensor calibration device
JP4967994B2 (en) Exhaust gas recirculation control device for internal combustion engine
JP4591319B2 (en) Exhaust purification device for internal combustion engine
JP5004036B2 (en) Exhaust gas purification device for internal combustion engine
JP5111534B2 (en) EGR control device for internal combustion engine
JP4967993B2 (en) Exhaust gas recirculation diagnosis device for internal combustion engine
JP2008121518A (en) Exhaust emission control device of internal combustion engine
JP4737159B2 (en) Exhaust purification device for internal combustion engine and particulate matter emission estimation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5206601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees