JP2011006728A - Edge part insulating member and method for producing the same - Google Patents

Edge part insulating member and method for producing the same Download PDF

Info

Publication number
JP2011006728A
JP2011006728A JP2009149677A JP2009149677A JP2011006728A JP 2011006728 A JP2011006728 A JP 2011006728A JP 2009149677 A JP2009149677 A JP 2009149677A JP 2009149677 A JP2009149677 A JP 2009149677A JP 2011006728 A JP2011006728 A JP 2011006728A
Authority
JP
Japan
Prior art keywords
insulating member
edge
main body
electrode plate
mounting groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009149677A
Other languages
Japanese (ja)
Other versions
JP5636641B2 (en
Inventor
Hiroshi Tanaka
浩 田中
Akiteru Kaneda
晃輝 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009149677A priority Critical patent/JP5636641B2/en
Publication of JP2011006728A publication Critical patent/JP2011006728A/en
Application granted granted Critical
Publication of JP5636641B2 publication Critical patent/JP5636641B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an edge part insulating member in which an insulating member body and an edge part covering member can be firmly connected, and the infiltration of an electrolytic solution into them is prevented, and which can be stably used in an electrolytic refining process over a long period of time, and to provide a method for producing the edge part insulating member.SOLUTION: The edge part insulating member 10 is fitted to the edge part of an electrode plate 1 used for an electrolytic refining process for metal, and includes: an insulating member body 11 which is formed into a bar shape and has a mounting groove 14 elongate in the longitudinal direction of the insulating member body 11; and an edge part covering member 12 arranged at the longitudinal-direction edge part of the insulating member body 11; wherein a part 16 to be engaged is formed on at least either the outer face in the edge part or the mounting groove 14, in the edge part covering member 12, while a melted resin material is fixed to the edge part so as to be integrally formed, and further, the edge part covering member 12 has an engagement part 17 formed in accordance with the shape of the part 16 to be engaged.

Description

本発明は、金属の電解精製や電解採取などの電解精錬工程において使用される電極板の縁部に取り付ける縁部絶縁部材及びその製造方法に関するものである。   The present invention relates to an edge insulating member attached to an edge of an electrode plate used in an electrolytic refining process such as electrolytic refining or electrowinning of metal, and a method for manufacturing the edge insulating member.

一般に、金属の電解精錬においては、ステンレス鋼等の金属からなる電極板を陰極とし、これを精錬する金属からなる陽極とともに電解槽に収容して電解液に浸漬し、電解を行って電極板の両表面に金属を析出させ、これを剥離することで板状精製物を得る方法が適用されている。   In general, in the electrolytic refining of metal, an electrode plate made of a metal such as stainless steel is used as a cathode, and it is placed in an electrolytic cell together with an anode made of a metal to be refined, immersed in an electrolytic solution, electrolyzed, and subjected to electrolysis. A method has been applied in which a metal is deposited on both surfaces and the plate-like purified product is obtained by peeling the metal.

従来、銅の電解精錬では、例えば、ステンレス鋼からなる電極板を陰極として比較的短時間の電解を行い、厚さ0.5mmから1.0mm程度の銅の種板を得た後、この種板を陰極として再度電解を行い、種板の表面に銅を析出させるコンベンショナル法が用いられていた。   Conventionally, in the electrolytic refining of copper, for example, after performing electrolysis for a relatively short time using an electrode plate made of stainless steel as a cathode, a copper seed plate having a thickness of about 0.5 mm to 1.0 mm is obtained. A conventional method has been used in which electrolysis is performed again using the plate as a cathode, and copper is deposited on the surface of the seed plate.

一方、近年では、ステンレス鋼製の電極板を陰極として長時間の電解を行い、厚さ8mmから10mm程度の銅板を直接得るパーマネントカソード法が導入されている。パーマネントカソード法では、従来の種板を用いる場合に比べて電極板の厚さを確保でき、電極板の懸垂性(垂直性)が改善されるため、陰極と陽極との間の距離を短くして電流密度を上げることができる。これにより、生産性が大きく向上するとともに、不純物が少なく異常析出がない高品質の電気銅を得ることができるものである。   On the other hand, in recent years, a permanent cathode method has been introduced in which long-time electrolysis is performed using a stainless steel electrode plate as a cathode to directly obtain a copper plate having a thickness of about 8 mm to 10 mm. In the permanent cathode method, the thickness of the electrode plate can be secured and the suspension property (verticality) of the electrode plate can be improved compared to the case of using a conventional seed plate, so the distance between the cathode and the anode is shortened. Current density can be increased. As a result, productivity is greatly improved, and high-quality electrolytic copper with few impurities and no abnormal precipitation can be obtained.

上記のような種板や銅板を、ステンレス鋼等で構成された電極板の両面に電着析出させた場合には、電着した金属を剥離する必要があるが、電極板の縁部(特に側縁部)に銅が電着して表裏両面の種板同士又は銅板同士が連結された場合には、種板や銅板を剥ぎ取ることが困難となってしまう。そこで、電極板の縁部への銅の電着を防止するための縁部絶縁部材が提供されている(例えば、特許文献1、2参照)。縁部絶縁部材は、一般に、エンジニアリングプラスチック等の樹脂材料を用いて形成される。   When the seed plate or copper plate as described above is electrodeposited on both surfaces of an electrode plate made of stainless steel or the like, it is necessary to peel off the electrodeposited metal. When copper is electrodeposited on the side edges) and the front and back side seed plates or the copper plates are connected to each other, it is difficult to peel off the seed plate and the copper plate. Therefore, an edge insulating member for preventing the electrodeposition of copper on the edge of the electrode plate is provided (for example, see Patent Documents 1 and 2). The edge insulating member is generally formed using a resin material such as engineering plastic.

特許文献1に示されるエッジストリップ(縁部絶縁部材)は、棒状をなし鉛直方向に延びるとともに断面U字状に形成されたチャネル部材(絶縁部材本体)と、このチャネル部材の下端部に配置されるエンドキャップ(端部被覆部材)と、を有している。チャネル部材には、その長手方向に沿って溝が設けられており、この溝内に陰極板(電極板)の側縁部が嵌入されるようになっている。すなわち、チャネル部材が陰極板の側縁部を被覆するようにして装着されることにより、側縁部に銅が電着されないようになっている。   An edge strip (edge insulating member) shown in Patent Document 1 is arranged in a bar shape (insulating member main body) which is formed in a rod shape and extends in the vertical direction and has a U-shaped cross section, and a lower end portion of the channel member. And an end cap (end covering member). The channel member is provided with a groove along its longitudinal direction, and a side edge portion of a cathode plate (electrode plate) is fitted into the groove. That is, the channel member is mounted so as to cover the side edge of the cathode plate, so that copper is not electrodeposited on the side edge.

また、エンドキャップは、チャネル部材の溝内に収容された前記側縁部の下端面が電解液に露出しないようにするためのものである。すなわち、前記下端面が電解液に露出してこの部分に銅が電着すると、陰極板の表裏両面に電着された種板や銅板が陰極板から剥がれにくくなって製品の品質を低下させたり、エッジストリップが破損したりするので、エンドキャップを設けることによりこのような不具合を防止している。エンドキャップは、一般に、超音波接着や溶媒接着等を用いてチャネル部材に固定されている。   The end cap is for preventing the lower end surface of the side edge portion accommodated in the groove of the channel member from being exposed to the electrolyte. That is, when the lower end surface is exposed to the electrolytic solution and copper is electrodeposited on this part, the seed plate and the copper plate electrodeposited on both the front and back surfaces of the cathode plate are difficult to peel off from the cathode plate and the quality of the product is lowered. Since the edge strip is broken, such an inconvenience is prevented by providing an end cap. The end cap is generally fixed to the channel member using ultrasonic bonding, solvent bonding, or the like.

特表2003−502511号公報Special table 2003-502511 特開2007−2282号公報JP 2007-2282 A

しかしながら、エンドキャップとチャネル部材とが、超音波接着や溶媒接着等を用いて接着されると、互いの接着面積を充分に確保することができず、接着面に隙間が生じることがある。そして、電解の際、この隙間から電解液がエッジストリップの内部に浸入し銅が析出して、エッジストリップが破損してしまうことがあった。また、エンドキャップとチャネル部材との接着強度が充分に確保できないことから、繰り返し使用するうちに接着面が剥離して、エンドキャップがチャネル部材から脱落することがあった。   However, when the end cap and the channel member are bonded using ultrasonic bonding, solvent bonding, or the like, the mutual bonding area cannot be sufficiently secured, and a gap may be formed on the bonding surface. During electrolysis, the electrolyte may enter the inside of the edge strip from this gap, and copper may be deposited, causing the edge strip to break. In addition, since the adhesive strength between the end cap and the channel member cannot be sufficiently secured, the adhesive surface peels off during repeated use, and the end cap may fall off the channel member.

本発明は、このような事情に鑑みてなされたものであって、絶縁部材本体と端部被覆部材とを強固に連結できるとともに、これらの内部に電解液が浸入するようなことが防止され、長期に亘り安定して電解精錬工程に用いることができる縁部絶縁部材及びその製造方法を提供することを目的としている。   The present invention has been made in view of such circumstances, and it is possible to firmly connect the insulating member body and the end covering member, and to prevent the electrolyte from entering into these, An object of the present invention is to provide an edge insulating member that can be stably used for an electrolytic refining process for a long period of time and a method for manufacturing the edge insulating member.

前記目的を達成するために、本発明は以下の手段を提案している。
すなわち、本発明は、金属の電解精錬工程に用いられる電極板の縁部に取り付ける縁部絶縁部材であって、棒状をなし、その長手方向に沿って延びる装着溝を有する絶縁部材本体と、前記絶縁部材本体の長手方向の端部に配置される端部被覆部材と、を備え、前記端部における外面及び前記装着溝のうち少なくとも一方には、被係合部が形成されており、前記端部被覆部材は、溶融した樹脂材料が前記端部に固化し一体に形成されているとともに、前記被係合部の形状に対応して形成された係合部を有することを特徴とする。
In order to achieve the above object, the present invention proposes the following means.
That is, the present invention is an edge insulating member to be attached to an edge of an electrode plate used in a metal electrolytic refining process, which is a rod-shaped insulating member main body having a mounting groove extending along its longitudinal direction, An end covering member disposed at an end in the longitudinal direction of the insulating member main body, and an engaged portion is formed on at least one of the outer surface of the end and the mounting groove, and the end The part covering member is characterized in that the melted resin material is solidified and integrally formed at the end part, and has an engaging part formed corresponding to the shape of the engaged part.

本発明に係る縁部絶縁部材によれば、端部被覆部材は、溶融した樹脂材料が絶縁部材本体の端部において固化し一体に形成されている。すなわち、端部被覆部材は、射出成形等により絶縁部材本体に一体成形されているので、互いの間に隙間を生じさせるようなことがなく、充分に密着性が確保されているとともに、接合面積が確保されている。   According to the edge insulating member according to the present invention, the end covering member is formed integrally with the molten resin material solidified at the end of the insulating member main body. That is, since the end covering member is integrally formed with the insulating member main body by injection molding or the like, there is no gap between them, and sufficient adhesion is secured and the bonding area is secured. Is secured.

従って、これら絶縁部材本体と端部被覆部材との間から電解液が浸入するようなことが確実に防止される。すなわち、従来では、絶縁部材本体と端部被覆部材とを超音波接着や溶剤接着等を用いて接着していたので、互いの接着面に隙間が生じることになり、該隙間から縁部絶縁部材の内部に電解液が浸入するとともに内部で金属が析出し、該縁部絶縁部材を破損させてしまうようなことがあった。一方、本発明によれば、前記隙間が発生しないことから、電解液の浸入を防止でき、前述の破損の虞が生じない。   Therefore, it is possible to reliably prevent the electrolyte from entering between the insulating member main body and the end covering member. That is, conventionally, since the insulating member main body and the end covering member are bonded using ultrasonic bonding, solvent bonding, or the like, a gap is formed between the bonding surfaces, and the edge insulating member is formed from the gap. In some cases, the electrolyte infiltrated into the metal, and the metal was deposited inside, thereby damaging the edge insulating member. On the other hand, according to the present invention, since the gap is not generated, the infiltration of the electrolytic solution can be prevented, and the above-described damage is not caused.

また、一体成形により、絶縁部材本体と端部被覆部材との接合面積が充分に確保されることから、これら絶縁部材本体と端部被覆部材とが強固に連結され、互いの接合強度が大幅に高められている。さらに、この一体成形の際、溶融した樹脂材料が被係合部の形状に対応して固化することで係合部が形成されている。従って、被係合部と係合部との係合が確実になされることになり、かつ、絶縁部材本体と端部被覆部材との接合面積がより増大される。   Also, since the joint area between the insulating member main body and the end covering member is sufficiently secured by the integral molding, the insulating member main body and the end covering member are firmly connected, and the joint strength between them is greatly increased. Has been enhanced. Further, at the time of the integral molding, the engaging portion is formed by solidifying the molten resin material corresponding to the shape of the engaged portion. Therefore, the engaged portion and the engaging portion are reliably engaged, and the joining area between the insulating member main body and the end covering member is further increased.

このような構成により、縁部絶縁部材は、絶縁部材本体と端部被覆部材とを相対的に変位させるような外力に対して、機械的強度が充分に確保される。ここで、被係合部と係合部との係合には、例えば、凹部と凸部による係合や、表面粗さを用いた係合などの3次元的な係合が考えられることから、絶縁部材本体と端部被覆部材とが単に2次元的に平面同士で接合されているような構成に対比して、種々の方向から加えられる前記外力に対する剛性が高められている。   With such a configuration, the edge insulating member has sufficient mechanical strength against an external force that relatively displaces the insulating member main body and the end covering member. Here, for the engagement between the engaged portion and the engaging portion, for example, a three-dimensional engagement such as an engagement by a concave portion and a convex portion or an engagement using surface roughness can be considered. The rigidity against the external force applied from various directions is enhanced as compared with a configuration in which the insulating member main body and the end covering member are simply two-dimensionally joined to each other in a plane.

さらに、これら被係合部と係合部とが形成されていることにより、端部被覆部材を固化させた際の冷却による引け(熱変形)も抑制される。   Furthermore, by forming these engaged parts and engaging parts, shrinkage (thermal deformation) due to cooling when the end covering member is solidified is also suppressed.

また、例えば、銅の電解精錬工程においては、硫酸銅溶液中におけるヒートサイクルが考えられるが、本発明の縁部絶縁部材によれば、前述した一体成形及び係合によって、絶縁部材本体と端部被覆部材との密着性が高められているとともに、熱応力に対する機械的強度も確保されているので、耐蝕性、耐熱性が向上し、長期に亘り安定して電解精錬工程に用いることができる。   Further, for example, in the electrolytic refining process of copper, a heat cycle in a copper sulfate solution can be considered. According to the edge insulating member of the present invention, the insulating member main body and the end portion are formed by the integral molding and engagement described above. Since the adhesiveness with the covering member is enhanced and the mechanical strength against thermal stress is ensured, the corrosion resistance and heat resistance are improved, and it can be used stably in the electrolytic refining process for a long time.

また、本発明に係る縁部絶縁部材において、前記被係合部は、有底穴、貫通孔及び溝のいずれかであることとしてもよい。   In the edge insulating member according to the present invention, the engaged portion may be any one of a bottomed hole, a through hole, and a groove.

本発明に係る縁部絶縁部材によれば、被係合部が、有底穴、貫通孔及び溝のいずれかに形成されているので、被係合部を比較的容易に形成できる。すなわち、例えば、絶縁部材本体を押出し加工により形成した後、この絶縁部材本体の端部に穿設加工や切削加工を行って、簡便に被係合部を形成できる。   According to the edge insulating member according to the present invention, since the engaged portion is formed in any of the bottomed hole, the through hole, and the groove, the engaged portion can be formed relatively easily. That is, for example, after the insulating member main body is formed by extrusion, the engaged portion can be easily formed by drilling or cutting the end portion of the insulating member main body.

また、このように被係合部が形成されていることで、端部被覆部材を成形する際、溶融した樹脂材料が被係合部に充填されやすくなり、精度よく係合部が形成されることから、比較的容易に、かつ、安定して被係合部と係合部との係合が行える。   Further, since the engaged portion is formed in this way, when the end covering member is molded, the melted resin material is easily filled in the engaged portion, and the engaged portion is formed with high accuracy. Therefore, the engaged portion and the engaging portion can be engaged with each other relatively easily and stably.

また、本発明に係る縁部絶縁部材において、前記装着溝には、弾性材料からなるシール膜が形成されており、前記絶縁部材本体と前記シール膜とが、二色成形法により一体成形されていることとしてもよい。   In the edge insulating member according to the present invention, a sealing film made of an elastic material is formed in the mounting groove, and the insulating member body and the sealing film are integrally formed by a two-color molding method. It is good to be.

本発明に係る縁部絶縁部材によれば、装着溝内に嵌入された電極板の縁部は、弾性材料からなるシール膜に密着されて絶縁部材本体に被覆されることになる。従って、縁部絶縁部材が、電極板に対して位置ずれしたり脱落したりすることなく、安定して該電極板に支持されるとともに、電極板の縁部とシール膜との間から装着溝内に電解液が浸入するようなことが防止される。   According to the edge insulating member according to the present invention, the edge of the electrode plate fitted in the mounting groove is in close contact with the sealing film made of an elastic material and is covered with the insulating member body. Therefore, the edge insulating member is stably supported by the electrode plate without being displaced or dropped with respect to the electrode plate, and the mounting groove is provided between the edge of the electrode plate and the seal film. It is possible to prevent the electrolyte from entering the inside.

さらに、絶縁部材本体とシール膜とが二色成形法により一体に成形されているので、これら絶縁部材本体とシール膜との間に電解液が入り込むようなこともない。従って、装着溝の内部に金属が析出して該装着溝が押し広げられ、縁部絶縁部材が電極板から外れたりずれたりするようなことがより確実に防止される。   Furthermore, since the insulating member main body and the seal film are integrally formed by a two-color molding method, the electrolytic solution does not enter between the insulating member main body and the seal film. Accordingly, it is possible to more reliably prevent the metal from depositing inside the mounting groove and expanding the mounting groove, so that the edge insulating member is detached or displaced from the electrode plate.

また、本発明は、金属の電解精錬工程に用いられる電極板の縁部に取り付ける縁部絶縁部材の製造方法であって、押出し成形により、棒状の絶縁部材本体を成形する工程と、前記絶縁部材本体の長手方向の端部に、被係合部を形成する工程と、射出成形により、前記端部に端部被覆部材を一体成形するとともに、前記被係合部に係合する係合部を形成する工程と、を備えることを特徴とする。   The present invention also relates to a method for manufacturing an edge insulating member to be attached to an edge of an electrode plate used in a metal electrolytic refining process, the step of forming a rod-shaped insulating member body by extrusion, and the insulating member A step of forming an engaged portion at an end portion in the longitudinal direction of the main body, and an end covering member is integrally formed at the end portion by injection molding, and an engaging portion that engages with the engaged portion. And a forming step.

本発明に係る縁部絶縁部材の製造方法によれば、絶縁部材本体が押出し成形により成形されているので、該絶縁部材本体の形状や寸法の設定に対する自由度が増し、縁部絶縁部材に対する種々の要求に比較的容易に対応できる。   According to the manufacturing method of the edge insulating member according to the present invention, since the insulating member main body is formed by extrusion molding, the degree of freedom for setting the shape and dimensions of the insulating member main body increases, It is relatively easy to meet this demand.

すなわち、本発明によれば、例えば、縁部絶縁部材の全体を射出成形により形成するような手法に対比して、設備費用が大幅に削減されるとともに、大量生産のみならず多品種少量生産にも柔軟に対応することができる。また、縁部絶縁部材の全体を射出成形により成形しようとした場合には、残留熱応力による変形の虞があるが、本発明によれば、押出し成形を用いて絶縁部材本体を成形することから前述の変形の虞が生じない。   That is, according to the present invention, for example, compared to a method in which the entire edge insulating member is formed by injection molding, the equipment cost is greatly reduced, and not only for mass production but also for high-mix low-volume production. Can also respond flexibly. Further, when the entire edge insulating member is to be molded by injection molding, there is a risk of deformation due to residual thermal stress, but according to the present invention, the insulating member body is molded using extrusion molding. There is no fear of the aforementioned deformation.

また、端部被覆部材が、絶縁部材本体の端部に射出成形により一体成形されているとともに、該端部の被係合部に係合する係合部が形成されるようになっている。従って、端部被覆部材と絶縁部材本体との間に隙間が生じるようなことがなく、充分に密着性が確保されるとともに接合面積が確保される。よって、これら絶縁部材本体と端部被覆部材との間から電解液が浸入するようなことが確実に防止され、内部で金属が析出して縁部絶縁部材を破損させてしまうような虞がない。   Further, the end covering member is integrally formed at the end of the insulating member main body by injection molding, and an engaging portion that engages with the engaged portion of the end is formed. Accordingly, there is no gap between the end covering member and the insulating member main body, and sufficient adhesion is ensured and a bonding area is ensured. Therefore, it is possible to reliably prevent the electrolyte from entering between the insulating member main body and the end covering member, and there is no possibility that the edge insulating member may be damaged due to precipitation of metal inside. .

また、従来の製造方法において、絶縁部材本体と端部被覆部材とを溶媒接着を用いて接着する場合には、有機溶媒による作業環境の不善が考えられたが、本発明では、絶縁部材本体と端部被覆部材とが射出成形を用いて一体とされていることから、前述の作業環境の不善の虞がない。   Further, in the conventional manufacturing method, when the insulating member main body and the end covering member are bonded using solvent bonding, the work environment due to the organic solvent was considered to be poor, but in the present invention, the insulating member main body and Since the end covering member is integrated with the injection molding, there is no fear of the above-described poor working environment.

本発明に係る縁部絶縁部材及びその製造方法によれば、絶縁部材本体と端部被覆部材とを強固に連結できるとともに、これらの内部に電解液が浸入するようなことが防止され、長期に亘り安定して電解精錬工程に用いることができる。   According to the edge insulating member and the manufacturing method thereof according to the present invention, it is possible to firmly connect the insulating member body and the end covering member, and it is possible to prevent the electrolyte from entering the inside of the insulating member main body and the long term. It can be used stably in the electrolytic refining process.

本発明の一実施形態に係る縁部絶縁部材を電極板に装着した状態を示す正面図である。It is a front view which shows the state which mounted | wore the electrode part with the edge part insulation member which concerns on one Embodiment of this invention. 図1の縁部絶縁部材における端部を拡大して示す正面図である。It is a front view which expands and shows the edge part in the edge part insulation member of FIG. 図2の矢視Aを示す底面図である。It is a bottom view which shows arrow A of FIG. 図2のB−B断面を示す図である。It is a figure which shows the BB cross section of FIG. 図2のC−C断面を示す図である。It is a figure which shows CC cross section of FIG. 本発明の一実施形態に係る縁部絶縁部材の製造手順において、絶縁部材本体の製造を説明する図である。It is a figure explaining manufacture of an insulating member main part in a manufacture procedure of an edge insulating member concerning one embodiment of the present invention. 図6のD−D断面を示す図である。It is a figure which shows the DD cross section of FIG. 本発明の一実施形態に係る縁部絶縁部材の製造手順において、端部被覆部材の製造を説明する図である。It is a figure explaining manufacture of an edge covering member in the manufacture procedure of the edge insulating member concerning one embodiment of the present invention. 本発明の一実施形態に係る縁部絶縁部材の製造手順において、端部被覆部材の製造を説明する図である。It is a figure explaining manufacture of an edge covering member in the manufacture procedure of the edge insulating member concerning one embodiment of the present invention. 図9のE−E断面を示す図である。It is a figure which shows the EE cross section of FIG. 本発明の一実施形態に係る縁部絶縁部材を電極板に装着する手順を説明する図である。It is a figure explaining the procedure of mounting | wearing the electrode part with the edge part insulation member which concerns on one Embodiment of this invention. 本発明の一実施形態に係る縁部絶縁部材を電極板に装着する手順を説明する図である。It is a figure explaining the procedure of mounting | wearing the electrode part with the edge part insulation member which concerns on one Embodiment of this invention. 本発明の一実施形態に係る縁部絶縁部材を電極板に装着する手順を説明する図である。It is a figure explaining the procedure of mounting | wearing the electrode part with the edge part insulation member which concerns on one Embodiment of this invention. 本発明の一実施形態に係る縁部絶縁部材における被係合部の変形例を示す(a)断面図、及び、(b)正面図である。It is (a) sectional drawing and (b) front view which show the modification of the to-be-engaged part in the edge part insulation member which concerns on one Embodiment of this invention. 本発明の一実施形態に係る縁部絶縁部材における被係合部の変形例を示す(a)断面図、及び、(b)F−F断面を示す図である。It is the (a) sectional view showing the modification of the to-be-engaged part in the edge insulating member concerning one embodiment of the present invention, and (b) the figure showing the FF section.

本発明の一実施形態に係る縁部絶縁部材は、金属の電解精製や電解採取などの電解精錬工程において使用する電極板の縁部に取り付けられるものであり、本実施形態においては、銅の電解精錬に用いられている。   An edge insulating member according to an embodiment of the present invention is attached to an edge of an electrode plate used in an electrolytic refining process such as electrolytic refining or electrowinning of metal. Used for refining.

図1に示すように、この銅の電解精錬では、電解槽に貯留された硫酸銅溶液からなる電解液S内に、ステンレス鋼製の電極板1を浸漬するとともに、この電極板1を陰極として用いる。そして、この電極板1の表裏両面に銅を電着させて、厚さ8mmから10mm程度の銅板を得るパーマネントカソード法を採用している。   As shown in FIG. 1, in this electrolytic refining of copper, a stainless steel electrode plate 1 is immersed in an electrolytic solution S made of a copper sulfate solution stored in an electrolytic cell, and this electrode plate 1 is used as a cathode. Use. Then, a permanent cathode method is employed in which copper is electrodeposited on both the front and back surfaces of the electrode plate 1 to obtain a copper plate having a thickness of about 8 mm to 10 mm.

電極板1は、矩形板状をなし、その上縁部(図1における上側)に一対の吊り手2が取り付けられている。また、これらの吊り手2は、水平方向に延びる角棒状のハンガーバー3に支持されている。また、電極板1の下縁部には、図示しないV字溝が形成されている。本実施形態の縁部絶縁部材10は、この電極板1の左右の側縁部に着脱可能に取り付けられるものである。   The electrode plate 1 has a rectangular plate shape, and a pair of suspenders 2 are attached to the upper edge portion (the upper side in FIG. 1). Moreover, these suspension hands 2 are supported by a rectangular bar-shaped hanger bar 3 extending in the horizontal direction. A V-shaped groove (not shown) is formed at the lower edge of the electrode plate 1. The edge insulating member 10 of this embodiment is detachably attached to the left and right side edges of the electrode plate 1.

縁部絶縁部材10は、プラスチック等の樹脂材料から形成される。本実施形態では、縁部絶縁部材10を、絶縁性、耐熱性及び耐酸性を有するエンジニアリングプラスチックで構成している。このように、エンジニアリングプラスチックを採用することにより、縁部絶縁部材10が電解液Sに長時間浸漬された場合でも、劣化が防止される。   The edge insulating member 10 is formed from a resin material such as plastic. In the present embodiment, the edge insulating member 10 is made of an engineering plastic having insulating properties, heat resistance, and acid resistance. As described above, by employing the engineering plastic, even when the edge insulating member 10 is immersed in the electrolytic solution S for a long time, deterioration is prevented.

このエンジニアリングプラスチックとしては、例えば、シリコン樹脂(SI)、ポリエチレンテレフタレート(PET)、ポリフッ化ビニリデン(PVDF)、ポリアミド(PA)、ポリオキシメチレン(POM)、ポリカーボネイト(PC)、ポリアリレート(PAR)、ポリフェニレンオキサイド(PPO)、ポリサルフォン(PSF)、ポリフェニルサルフォン(PPSF)、ポリエーテルサルフォン(PES)、ポリエーテルイミド(PEI)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリフェニルエーテル(PPE)等が挙げられる。   Examples of the engineering plastic include silicon resin (SI), polyethylene terephthalate (PET), polyvinylidene fluoride (PVDF), polyamide (PA), polyoxymethylene (POM), polycarbonate (PC), polyarylate (PAR), Polyphenylene oxide (PPO), polysulfone (PSF), polyphenylsulfone (PPSF), polyethersulfone (PES), polyetherimide (PEI), polyphenylene sulfide (PPS), polyetheretherketone (PEEK), polyphenyl An ether (PPE) etc. are mentioned.

ここで、縁部絶縁部材10の材質は、要求される耐熱性、耐酸性、浸漬される電解液等によって異なるため、電解液を構成する酸や温度等を考慮して、好適な材料を選定することが好ましい。例えば、本実施形態における銅の電解精錬では、電解液Sが硫酸で構成されて約60℃に維持されているので、硫酸に対する耐酸性を有するとともに、60℃で軟化や変質が生じない程度の耐熱性を有するポリフェニルエーテル(PPE)を使用することが好ましい。   Here, since the material of the edge insulating member 10 differs depending on required heat resistance, acid resistance, the electrolytic solution to be immersed, etc., a suitable material is selected in consideration of the acid, temperature, etc. constituting the electrolytic solution. It is preferable to do. For example, in the electrolytic refining of copper in the present embodiment, since the electrolytic solution S is composed of sulfuric acid and is maintained at about 60 ° C., it has acid resistance against sulfuric acid and does not soften or deteriorate at 60 ° C. It is preferable to use polyphenyl ether (PPE) having heat resistance.

縁部絶縁部材10は、棒状をなす絶縁部材本体11と、この絶縁部材本体11の長手方向の端部に配置される略直方体状の端部被覆部材12と、絶縁部材本体11に沿うようにして着脱可能に装着される丸棒状の締め付けロッド13と、を備えている。   The edge insulating member 10 is arranged along the insulating member main body 11 having a rod shape, the substantially rectangular parallelepiped end covering member 12 disposed at the end in the longitudinal direction of the insulating member main body 11, and the insulating member main body 11. And a round rod-shaped fastening rod 13 which is detachably mounted.

縁部絶縁部材10は、電極板1の両側縁部に一対設けられており、絶縁部材本体11の長手方向は、鉛直方向に沿うようにして配置されている。また、端部被覆部材12は、絶縁部材本体11の下端部に配置されている。端部被覆部材12の下端面は、電極板1の下端面よりも下方へ突出し配置されている。また、絶縁部材本体11の上端部は、電解液Sの液面よりも上方に配置されている。   A pair of edge insulating members 10 are provided on both side edges of the electrode plate 1, and the longitudinal direction of the insulating member body 11 is arranged along the vertical direction. The end covering member 12 is disposed at the lower end of the insulating member main body 11. The lower end surface of the end covering member 12 is disposed so as to protrude downward from the lower end surface of the electrode plate 1. Further, the upper end portion of the insulating member main body 11 is disposed above the liquid surface of the electrolytic solution S.

図2乃至図5に示すように、絶縁部材本体11において電極板1側を向く側面(以下「一側面」)には、該絶縁部材本体11の長手方向に沿って延びる装着溝14が形成されている。図4において、装着溝14は、その長手方向に直交する断面が略U字状をなしており、前記一側面に開口し形成されている。   As shown in FIGS. 2 to 5, a mounting groove 14 extending along the longitudinal direction of the insulating member body 11 is formed on a side surface (hereinafter referred to as “one side surface”) facing the electrode plate 1 side in the insulating member body 11. ing. In FIG. 4, the mounting groove 14 has a substantially U-shaped cross section perpendicular to the longitudinal direction, and is open and formed on the one side surface.

また、装着溝14の開口幅は、電極板1の厚さ寸法と略同一に設定されており、装着溝14の深さは、例えば18mm程度に設定されている。このような設定により、装着溝14は、ISA法で使用される電極板1の縁部に形成された穴部(不図示)を塞ぐことができるようにされている。   Moreover, the opening width of the mounting groove 14 is set to be substantially the same as the thickness dimension of the electrode plate 1, and the depth of the mounting groove 14 is set to about 18 mm, for example. With this setting, the mounting groove 14 can block a hole (not shown) formed in the edge of the electrode plate 1 used in the ISA method.

また、装着溝14には、熱可塑性エラストマ等の弾性材料からなるシール膜14Aが形成されている。シール膜14Aは、装着溝14に沿うように前記長手方向に沿って延在しており、その前記断面が略U字状に形成されている。   The mounting groove 14 is formed with a seal film 14A made of an elastic material such as thermoplastic elastomer. The sealing film 14 </ b> A extends along the longitudinal direction so as to follow the mounting groove 14, and the cross section thereof is formed in a substantially U shape.

シール膜14Aを構成する熱可塑性エラストマとしては、長時間電解液Sに浸漬されていても劣化することがないものが用いられる。このような熱可塑性エラストマとして、例えば、スチレン系(SBC)、オレフィン系(TPO)、ウレタン系(TPU)、ポリエステル系(TPEE)や、ポリ塩化ビニル(PVC)、ポリアミド(PA)、エチレン酢酸ビニル共重合体(EVA)、フッ素系樹脂などが挙げられる。   As the thermoplastic elastomer constituting the sealing film 14A, a thermoplastic elastomer that does not deteriorate even if immersed in the electrolyte solution S for a long time is used. Examples of such thermoplastic elastomers include styrene (SBC), olefin (TPO), urethane (TPU), polyester (TPEE), polyvinyl chloride (PVC), polyamide (PA), and ethylene vinyl acetate. A copolymer (EVA), a fluorine resin, etc. are mentioned.

詳しくは、スチレン系(SBC)として、スチレンブタジエンスチレンブロック共重合体(SBS)、スチレンイソプレンスチレンブロック共重合体(SIS)、スチレンエチレンブチレンスチレンブロック共重合体(SEBS)、スチレンエチレンプロピレンスチレンブロック共重合体(SEPS)などが挙げられる。   Specifically, as styrene (SBC), styrene butadiene styrene block copolymer (SBS), styrene isoprene styrene block copolymer (SIS), styrene ethylene butylene styrene block copolymer (SEBS), styrene ethylene propylene styrene block copolymer. A polymer (SEPS) etc. are mentioned.

また、オレフィン系(TPO)として、ポリプロピレン(PP)の中に各種ゴム材を微分散させた、PP−EPM、PP−EPDM、PP−NBR、PP−IRや、ポリエチレン(PE)の中にエチレンプロピレンゴムを微分散させたPE−EPDMなどが挙げられる。   Moreover, as olefin type (TPO), various rubber materials are finely dispersed in polypropylene (PP), PP-EPM, PP-EPDM, PP-NBR, PP-IR, and polyethylene (PE) in ethylene. Examples include PE-EPDM in which propylene rubber is finely dispersed.

また、ウレタン系(TPU)として、ポリテトラメチレングリコール(PTMG)、ポリ(ブチレンアジペート)ジオール(PBA)、ポリカプロラクトン(PCL)、ポリ(ヘキサメチレンカーボネート)ジオール(PHC)などが挙げられる。   Examples of the urethane (TPU) include polytetramethylene glycol (PTMG), poly (butylene adipate) diol (PBA), polycaprolactone (PCL), and poly (hexamethylene carbonate) diol (PHC).

また、ポリエステル系(TPEE)として、ポリブチレンテレフタレート−ポリカプロラクトン(PBT−PCL)、ポリブチレンアジテート(PBA)などが挙げられる。   Examples of the polyester (TPEE) include polybutylene terephthalate-polycaprolactone (PBT-PCL) and polybutylene agitate (PBA).

本実施形態では、シール膜14Aとして、スチレン系エラストマの一種であるスチレンエチレンブチレンブロック共重合体(SEBS)が用いられている。そして、このシール膜14Aの硬さは、タイプAデュロメータでA30からA90の範囲内となるように設定されており、本実施形態ではA82とされている。   In this embodiment, a styrene ethylene butylene block copolymer (SEBS), which is a kind of styrene elastomer, is used as the seal film 14A. The hardness of the seal film 14A is set to be within the range of A30 to A90 with a type A durometer, and is set to A82 in this embodiment.

また、絶縁部材本体11とシール膜14Aとは、二色成形法によって一体成形されている。つまり、絶縁部材本体11を構成するポリフェニルエーテルと、シール膜14Aを構成するスチレンエチレンブチレンブロック共重合体とを、同じ金型内に充填して一体に成形している。このような構成により、シール膜14Aと絶縁部材本体11との間には、接着部材などの接合層が形成されていない。   The insulating member main body 11 and the seal film 14A are integrally formed by a two-color molding method. That is, the polyphenyl ether constituting the insulating member body 11 and the styrene ethylene butylene block copolymer constituting the sealing film 14A are filled in the same mold and integrally molded. With such a configuration, a bonding layer such as an adhesive member is not formed between the seal film 14 </ b> A and the insulating member body 11.

また、絶縁部材本体11において、装着溝14の開口する一側面とは反対側を向く側面(以下「他側面」)には、該絶縁部材本体11の長手方向に沿って延びるロッド嵌合溝15が形成されている。ロッド嵌合溝15は、その長手方向に直交する断面が円の一部を切り欠いた円弧状又は略C字状をなしており、前記他側面に開口し形成されている。   Further, in the insulating member main body 11, a rod fitting groove 15 extending along the longitudinal direction of the insulating member main body 11 is formed on a side surface (hereinafter referred to as “other side surface”) facing the side opposite to the one side surface where the mounting groove 14 opens. Is formed. The rod fitting groove 15 has a cross section perpendicular to the longitudinal direction thereof formed in an arc shape or a substantially C shape in which a part of a circle is cut out, and is open to the other side surface.

このロッド嵌合溝15には、締め付けロッド13が嵌合される。締め付けロッド13は、長尺の円柱状をなしており、その外径が、ロッド嵌合溝15の断面がなす円弧の径よりも僅かに大きくなるように形成されている。つまり、ロッド嵌合溝15に締め付けロッド13を嵌合させることによって、該ロッド嵌合溝15が押し広げられるように変形させられるのである。   A tightening rod 13 is fitted into the rod fitting groove 15. The tightening rod 13 has a long cylindrical shape, and is formed so that its outer diameter is slightly larger than the diameter of the arc formed by the cross section of the rod fitting groove 15. That is, by fitting the tightening rod 13 into the rod fitting groove 15, the rod fitting groove 15 is deformed so as to be expanded.

また、絶縁部材本体11の長手方向に沿う下端部には、被係合部16が形成されている。被係合部16は、前記下端部における該絶縁部材本体11の外面及び装着溝14のうち少なくとも一方に形成されている。   Further, an engaged portion 16 is formed at the lower end portion along the longitudinal direction of the insulating member main body 11. The engaged portion 16 is formed on at least one of the outer surface of the insulating member body 11 and the mounting groove 14 at the lower end portion.

図5に示すように、本実施形態では、被係合部16は、絶縁部材本体11をその正面から裏面へ向けた厚さ方向(図5における上下方向)に貫通する円柱孔状の貫通孔に形成されている。すなわち、この被係合部16は、絶縁部材本体11の下端部において、該絶縁部材本体11の外面及び装着溝14を連通させるようにして、両方に形成されている。   As shown in FIG. 5, in this embodiment, the engaged portion 16 has a cylindrical hole-like through hole that penetrates the insulating member main body 11 in the thickness direction (vertical direction in FIG. 5) from the front surface to the back surface. Is formed. That is, the engaged portion 16 is formed at both ends of the lower end portion of the insulating member body 11 so as to communicate the outer surface of the insulating member body 11 and the mounting groove 14.

また、絶縁部材本体11の下端部において、他側面側のロッド嵌合溝15に対応する部分には、絶縁部材本体11の下端部側から上端部側へ向かうに連れ漸次一側面側から他側面側へ向かうように傾斜する面取り部11Bが形成されている。   Further, in the lower end portion of the insulating member main body 11, the portion corresponding to the rod fitting groove 15 on the other side surface is gradually moved from the one side surface side to the other side surface from the lower end portion side to the upper end portion side of the insulating member main body 11. A chamfered portion 11B is formed so as to be inclined toward the side.

また、絶縁部材本体11の長手方向に沿う上端部には、該絶縁部材本体11を前記厚さ方向に貫通する固定孔11Aが形成されている。固定孔11Aは、絶縁部材本体11を電極板1に固定するために設けられるものであり、図1に示すように、電解精錬の際は電解液Sの液面よりも上方に配置される。   A fixing hole 11 </ b> A that penetrates the insulating member body 11 in the thickness direction is formed at the upper end portion along the longitudinal direction of the insulating member body 11. 11 A of fixing holes are provided in order to fix the insulating member main body 11 to the electrode plate 1, and are arrange | positioned above the liquid level of the electrolyte solution S in the case of electrolytic refining, as shown in FIG.

また、端部被覆部材12は、絶縁部材本体11の下端部に、モールド成形(射出成形)を用いて一体成形されている。すなわち、端部被覆部材12は、溶融したエンジニアプラスチック(樹脂材料)が前記下端部において固化することにより一体に形成されている。また、図2及び図3に示すように、端部被覆部材12は、その下端面が絶縁部材本体11の下端面よりも下方に配置されているとともに、該絶縁部材本体11の装着溝14の開口下部を被覆するように形成されている。   Further, the end covering member 12 is integrally formed at the lower end portion of the insulating member main body 11 using molding (injection molding). That is, the end covering member 12 is integrally formed by melting the engineer plastic (resin material) at the lower end. As shown in FIGS. 2 and 3, the end covering member 12 has a lower end surface disposed below the lower end surface of the insulating member main body 11, and the mounting groove 14 of the insulating member main body 11. It is formed so as to cover the lower part of the opening.

また、図5に示すように、端部被覆部材12は、絶縁部材本体11の下端部における外面及び装着溝14内にも形成されている。さらに、端部被覆部材12は、絶縁部材本体11の被係合部16の形状に対応して該被係合部16内にも充填され形成されており、この被係合部16に対応する部分が係合部17とされている。   As shown in FIG. 5, the end covering member 12 is also formed on the outer surface of the lower end portion of the insulating member main body 11 and in the mounting groove 14. Further, the end covering member 12 is filled and formed in the engaged portion 16 corresponding to the shape of the engaged portion 16 of the insulating member main body 11, and corresponds to the engaged portion 16. The portion is an engaging portion 17.

詳しくは、端部被覆部材12は、図2及び図3に示すように、全体の外観としては、略直方体状に形成されている。また、図5に示すように、端部被覆部材12において絶縁部材本体11の外面及び装着溝14内に配置される部分は、夫々矩形板状に形成されているとともに、これらの矩形板状の部分同士は、円柱状の係合部17により互いに連結されている。このように、端部被覆部材12は、絶縁部材本体11に一体とされている。   Specifically, as shown in FIGS. 2 and 3, the end covering member 12 is formed in a substantially rectangular parallelepiped shape as a whole. Further, as shown in FIG. 5, portions of the end covering member 12 that are disposed in the outer surface of the insulating member main body 11 and in the mounting groove 14 are each formed in a rectangular plate shape. The portions are connected to each other by a cylindrical engaging portion 17. Thus, the end covering member 12 is integrated with the insulating member main body 11.

また、端部被覆部材12の材質としては、絶縁部材本体11と同一のエンジニアリングプラスチック等の樹脂材料を用いることができる。本実施形態では、端部被覆部材12として、絶縁部材本体11と同一のポリフェニルエーテルを用いている。   Further, as the material of the end covering member 12, a resin material such as the engineering plastic same as that of the insulating member main body 11 can be used. In the present embodiment, the same polyphenyl ether as the insulating member main body 11 is used as the end covering member 12.

尚、端部被覆部材12として、絶縁部材本体11の材質とは異なる材質の樹脂材料を用いても構わない。この場合、端部被覆部材12に用いる樹脂材料の融点が、絶縁部材本体11を構成する樹脂材料の融点以上に設定されていることが望ましい。これにより、後述のモールド成形の際、溶融した端部被覆部材12により絶縁部材本体11の表面が加熱され溶けるので、互いの接合がより強固になるのである。   Note that a resin material different from the material of the insulating member main body 11 may be used as the end covering member 12. In this case, it is desirable that the melting point of the resin material used for the end covering member 12 is set to be equal to or higher than the melting point of the resin material constituting the insulating member body 11. Thereby, the surface of the insulating member main body 11 is heated and melted by the melted end portion covering member 12 at the time of molding described later, so that the mutual bonding becomes stronger.

さらに、端部被覆部材12の材質として、ポリフェニルエーテル以外のポリフェニルサルフォン(PPSF)などの耐衝撃性に優れる樹脂材料を用いることとしてもよく、この場合、電極板1を床等に載置する際に該縁部絶縁部材10が受ける衝撃に対して、機械的強度が充分に確保されることになる。   Further, as the material of the end covering member 12, a resin material having excellent impact resistance such as polyphenylsulfone (PPSF) other than polyphenyl ether may be used. In this case, the electrode plate 1 is mounted on the floor or the like. The mechanical strength is sufficiently secured against the impact received by the edge insulating member 10 during placement.

次に、縁部絶縁部材10を製造する手順について、図6乃至図10を用いて説明する。   Next, a procedure for manufacturing the edge insulating member 10 will be described with reference to FIGS.

図6及び図7に示すように、まず、押出し成形により、絶縁部材本体11を成形する。詳しくは、二色成形法を用いて、絶縁部材本体11を構成するポリフェニルエーテルと、シール膜14Aを構成するスチレンエチレンブチレンブロック共重合体とを、同じ金型内に充填して一体に押出し成形する。   As shown in FIGS. 6 and 7, first, the insulating member body 11 is formed by extrusion molding. Specifically, by using a two-color molding method, the polyphenyl ether constituting the insulating member body 11 and the styrene ethylene butylene block copolymer constituting the seal film 14A are filled in the same mold and extruded integrally. Mold.

次いで、絶縁部材本体11を前記厚さ方向に貫通するようにして、固定孔11A及び被係合部16を夫々穿設する。これらの固定孔11A及び被係合部16は、装着溝14のシール膜14Aに開口するように夫々形成される。   Next, the fixing hole 11 </ b> A and the engaged portion 16 are formed so as to penetrate the insulating member main body 11 in the thickness direction. The fixing hole 11A and the engaged portion 16 are formed so as to open to the seal film 14A of the mounting groove 14, respectively.

また、切削加工により、図6に示すように、絶縁部材本体11の下端部(図6における左側)における他側面側のロッド嵌合溝15に対応する部分に、面取り部11Bを形成する。   Further, as shown in FIG. 6, the chamfered portion 11 </ b> B is formed in the portion corresponding to the rod fitting groove 15 on the other side surface in the lower end portion (left side in FIG. 6) of the insulating member body 11 by cutting.

次いで、図8乃至図10に示すように、モールド成形(射出成形)により、絶縁部材本体11の下端部に端部被覆部材12を一体成形するとともに、被係合部16に係合する係合部17を形成する。詳しくは、図8に示すように、射出成形装置20を用い、絶縁部材本体11の下端部をこの射出成形装置20の金型内に配置する。そして、金型内を高圧状態として、前記下端部に向けて溶融した樹脂材料を射出するとともに金型内に充填し、端部被覆部材12の形状に固化させる。   Next, as shown in FIGS. 8 to 10, the end covering member 12 is integrally formed at the lower end portion of the insulating member main body 11 and is engaged with the engaged portion 16 by molding (injection molding). A portion 17 is formed. Specifically, as shown in FIG. 8, an injection molding apparatus 20 is used, and the lower end portion of the insulating member main body 11 is disposed in a mold of the injection molding apparatus 20. Then, the mold is placed in a high pressure state, the molten resin material is injected toward the lower end portion, and the mold is filled into the mold to be solidified into the shape of the end covering member 12.

この際、図10に示すように、絶縁部材本体11の下端部に形成された被係合部16内にも溶融した樹脂材料が充填される。詳しくは、金型内において、絶縁部材本体11の下端部のうち、前記厚さ方向の外方を向く両端面、及び、これらの間に配置された装着溝14内に、溶融した樹脂材料が夫々充填されるとともに、これら両端面及び装着溝14に開口された被係合部16内にも、前記樹脂材料が充填される。   At this time, as shown in FIG. 10, the melted resin material is also filled into the engaged portion 16 formed at the lower end portion of the insulating member main body 11. Specifically, in the mold, a melted resin material is placed in both ends of the lower end portion of the insulating member main body 11 facing outward in the thickness direction, and in the mounting grooves 14 disposed therebetween. The resin material is filled in each of the both end faces and the engaged portion 16 opened in the mounting groove 14.

尚、この射出成形の際、絶縁部材本体11において金型内に配置された部分が、加熱により僅かにその表面が溶融される程度の設定(温度、材料選定)である場合、該絶縁部材本体11と端部被覆部材12との接合強度がより高められることから好ましい。また、絶縁部材本体11よりも低融点のシール膜14Aは、その金型内に配置された部分が確実に溶融することになる。これにより、装着溝14内においても、絶縁部材本体11と端部被覆部材12との間に隙間が生じず、密着力のある接合がなされるようになっている。   In this injection molding, if the portion of the insulating member main body 11 that is disposed in the mold is set so that its surface is slightly melted by heating (temperature and material selection), the insulating member main body 11 and the end covering member 12 are preferable because the bonding strength is further increased. Further, the sealing film 14A having a melting point lower than that of the insulating member main body 11 surely melts the portion disposed in the mold. As a result, even in the mounting groove 14, no gap is generated between the insulating member main body 11 and the end cover member 12, and bonding with adhesive force is performed.

また、特に図示しないが、締め付けロッド13は、押出し成形により成形する。締め付けロッド13の材料としては、例えば、絶縁部材本体11に用いられる樹脂材料と同一のものを用いるか、又はそれ以上の硬度を有するものを用いることが好ましい。   Further, although not particularly illustrated, the fastening rod 13 is formed by extrusion molding. As the material of the fastening rod 13, for example, it is preferable to use the same resin material as that used for the insulating member body 11 or a material having a hardness higher than that.

次に、このように製造された縁部絶縁部材10を電極板1に装着する手順について、図11乃至図13を用いて説明する。   Next, a procedure for mounting the edge insulating member 10 thus manufactured to the electrode plate 1 will be described with reference to FIGS. 11 to 13.

まず、図11に示すように、絶縁部材本体11の装着溝14に、電極板1の側縁部を嵌入させることにより、この電極板1に縁部絶縁部材10を装着する。ここで、図中に符号1Aで示すものは、電極板1の側縁部の下端において、端部被覆部材12の装着溝14内の形状に対応して形成された矩形状の切り欠き部であり、前述の装着により、この切り欠き部1Aと端部被覆部材12とが、互いに密着される。   First, as shown in FIG. 11, the edge insulating member 10 is mounted on the electrode plate 1 by fitting the side edge of the electrode plate 1 into the mounting groove 14 of the insulating member body 11. Here, what is indicated by reference numeral 1A in the figure is a rectangular cutout formed at the lower end of the side edge of the electrode plate 1 corresponding to the shape in the mounting groove 14 of the end covering member 12. With this mounting, the notch 1A and the end covering member 12 are brought into close contact with each other.

この際、図4に示すように、電極板1の側縁部の端面は、装着溝14の最奥部の底面(すなわち一側面側を向く面)に突き当てられる。また、電極板1の切り欠き部1Aにおいて、その側方を向く面は、図5に示すように、端部被覆部材12の装着溝14内に配置される部分のうち一側面側を向く端面に当接される。また、電極板1の切り欠き部1Aにおいて、その下方を向く面は、図2に示すように、端部被覆部材12の装着溝14内に配置される部分のうち上端部側を向く端面に当接される。   At this time, as shown in FIG. 4, the end surface of the side edge portion of the electrode plate 1 is abutted against the bottom surface (that is, the surface facing the one side surface) of the mounting groove 14. Further, in the cutout portion 1A of the electrode plate 1, the surface facing the side is an end surface facing the one side surface of the portion disposed in the mounting groove 14 of the end covering member 12, as shown in FIG. Abut. Further, in the cutout portion 1A of the electrode plate 1, the surface facing downward is the end surface facing the upper end portion of the portion disposed in the mounting groove 14 of the end covering member 12, as shown in FIG. Abutted.

次いで、図12及び図13に示すように、絶縁部材本体11のロッド嵌合溝15に、締め付けロッド13を嵌入する。具体的には、締め付けロッド13を、縁部絶縁部材10の長手方向に沿って下端部側から上端部側へ向け、面取り部11Bからロッド嵌合溝15内に挿入していく。このように、締め付けロッド13を絶縁部材本体11の他側面側のロッド嵌合溝15に嵌合することで、一側面側の装着溝14の溝幅(すなわち前記厚さ方向の内寸)が減少されるとともに、シール膜14Aが電極板1に対してより強固に密着されるようになっている。   Next, as shown in FIGS. 12 and 13, the fastening rod 13 is inserted into the rod fitting groove 15 of the insulating member body 11. Specifically, the tightening rod 13 is inserted into the rod fitting groove 15 from the chamfered portion 11 </ b> B from the lower end side toward the upper end side along the longitudinal direction of the edge insulating member 10. Thus, by fitting the fastening rod 13 into the rod fitting groove 15 on the other side surface of the insulating member body 11, the groove width of the mounting groove 14 on one side surface side (that is, the inner dimension in the thickness direction) is increased. In addition to being reduced, the sealing film 14 </ b> A is more firmly attached to the electrode plate 1.

縁部絶縁部材10が電極板1に装着された後は、この電極板1を陰極とし、粗銅からなる陽極とともに電解液S内に浸漬させ、図1に示す状態で、例えば160時間以上の長時間の電解を行う。すると、電極板1の両表面に厚さ8mmから10mmの銅が析出し、これらを剥離することで純度の高い銅板が得られるのである。   After the edge insulating member 10 is mounted on the electrode plate 1, the electrode plate 1 is used as a cathode, and immersed in the electrolyte solution S together with an anode made of crude copper. In the state shown in FIG. Perform electrolysis for hours. As a result, copper having a thickness of 8 mm to 10 mm is deposited on both surfaces of the electrode plate 1, and a high purity copper plate is obtained by peeling them off.

以上説明したように、本実施形態に係る縁部絶縁部材10によれば、端部被覆部材12は、溶融した樹脂材料が絶縁部材本体11の下端部において固化し一体に形成されている。すなわち、端部被覆部材12は、モールド成形により絶縁部材本体11に一体成形されているので、互いの間に隙間を生じさせるようなことがなく、充分に密着性が確保されているとともに、接合面積が確保されている。   As described above, according to the edge insulating member 10 according to the present embodiment, the end covering member 12 is formed integrally with the molten resin material solidified at the lower end portion of the insulating member main body 11. That is, since the end covering member 12 is integrally formed with the insulating member main body 11 by molding, a gap is not generated between the end covering member 12 and sufficient adhesion is secured. Area is secured.

従って、これら絶縁部材本体11と端部被覆部材12との間から電解液Sが浸入するようなことが確実に防止される。すなわち、従来では、絶縁部材本体とキャップ状の端部被覆部材とを超音波接着や溶剤接着等を用いて接着していたので、互いの接着面に隙間が生じることになり、該隙間から縁部絶縁部材の内部に電解液Sが浸入するとともに内部で銅が析出し、該縁部絶縁部材を破損させてしまうようなことがあった。一方、本実施形態の縁部絶縁部材10によれば、前記隙間が発生しないことから、電解液Sの浸入を防止でき、前述の破損の虞が生じない。   Therefore, the electrolyte solution S can be reliably prevented from entering between the insulating member main body 11 and the end covering member 12. That is, conventionally, since the insulating member main body and the cap-shaped end covering member are bonded using ultrasonic bonding, solvent bonding, or the like, a gap is generated between the bonding surfaces. In some cases, the electrolytic solution S permeates into the inside of the part insulating member and copper precipitates inside, thereby damaging the edge insulating member. On the other hand, according to the edge insulating member 10 of the present embodiment, since the gap is not generated, the infiltration of the electrolyte S can be prevented and the above-described damage is not caused.

また、一体成形により、絶縁部材本体11と端部被覆部材12との接合面積が充分に確保されることから、これら絶縁部材本体11と端部被覆部材12とが強固に連結され、互いの接合強度が大幅に高められている。さらに、この一体成形の際、溶融した樹脂材料が被係合部16の形状に対応して固化することで係合部17が形成されている。従って、被係合部16と係合部17との係合が確実になされることになり、かつ、絶縁部材本体11と端部被覆部材12との接合面積がより増大される。   Also, since the joint area between the insulating member main body 11 and the end covering member 12 is sufficiently secured by the integral molding, the insulating member main body 11 and the end covering member 12 are firmly connected to each other and joined together. The strength is greatly increased. Furthermore, the engaging portion 17 is formed by solidifying the melted resin material corresponding to the shape of the engaged portion 16 during the integral molding. Therefore, the engaged portion 16 and the engaging portion 17 are securely engaged, and the joining area between the insulating member main body 11 and the end covering member 12 is further increased.

このような構成により、縁部絶縁部材10は、絶縁部材本体11と端部被覆部材12とを相対的に変位させるような外力に対して、機械的強度が充分に確保される。また、被係合部16と係合部17との係合は、貫通孔とその内部に充填され固化した柱状部材とによる3次元的な係合であることから、絶縁部材本体11と端部被覆部材12とが単に2次元的に平面同士で接合されているような構成に対比して、種々の方向から加えられる前記外力に対する剛性が大幅に高められている。   With such a configuration, the edge insulating member 10 has sufficient mechanical strength against an external force that relatively displaces the insulating member main body 11 and the end covering member 12. Further, since the engagement between the engaged portion 16 and the engaging portion 17 is a three-dimensional engagement with the through hole and the columnar member filled and solidified therein, the insulating member main body 11 and the end portion Compared with the configuration in which the covering member 12 is simply two-dimensionally joined to each other in plane, the rigidity against the external force applied from various directions is greatly enhanced.

さらに、これら被係合部16と係合部17とが形成されていることにより、端部被覆部材12を固化させた際の冷却による引け(熱変形)も抑制される。   Furthermore, the engagement portion 16 and the engagement portion 17 are formed, so that shrinkage (thermal deformation) due to cooling when the end covering member 12 is solidified is also suppressed.

また、本実施形態で説明したような銅の電解精錬工程においては、硫酸銅溶液(電解液S)中におけるヒートサイクルが考えられるが、この縁部絶縁部材10によれば、前述した一体成形及び係合によって、絶縁部材本体11と端部被覆部材12との密着性が高められているとともに、熱応力に対する機械的強度も確保されているので、耐蝕性、耐熱性が向上し、長期に亘り安定して電解精錬工程に用いることができる。   Further, in the copper electrolytic refining process as described in the present embodiment, a heat cycle in the copper sulfate solution (electrolytic solution S) can be considered. According to this edge insulating member 10, the above-described integral molding and Engagement improves the adhesion between the insulating member main body 11 and the end covering member 12 and also ensures the mechanical strength against thermal stress. It can be used stably in the electrolytic refining process.

また、絶縁部材本体11の被係合部16が貫通孔で形成されているので、穿設加工等の簡便な加工によって、該被係合部16を比較的容易に形成できる。   Moreover, since the engaged portion 16 of the insulating member main body 11 is formed of a through hole, the engaged portion 16 can be formed relatively easily by a simple process such as a drilling process.

また、被係合部16が貫通孔で形成されていることで、端部被覆部材12を成形する際、溶融した樹脂材料が被係合部16に充填されやすくなり、精度よく係合部17が形成されることから、比較的容易に、かつ、安定して被係合部16と係合部17との係合が行える。   Further, since the engaged portion 16 is formed of a through hole, when the end covering member 12 is molded, the melted resin material can be easily filled in the engaged portion 16, and the engaging portion 17 can be accurately obtained. Thus, the engaged portion 16 and the engaging portion 17 can be engaged with each other relatively easily and stably.

また、装着溝14には、弾性材料からなるシール膜14Aが形成されており、装着溝14内に嵌入された電極板1の側縁部は、シール膜14Aに密着されて絶縁部材本体11に被覆されることになる。従って、縁部絶縁部材10が、電極板1に対して位置ずれしたり脱落したりすることなく、安定して該電極板1に支持されるとともに、電極板1の側縁部とシール膜14Aとの間から装着溝14内に電解液Sが浸入するようなことが防止される。   In addition, a sealing film 14A made of an elastic material is formed in the mounting groove 14, and the side edge portion of the electrode plate 1 fitted in the mounting groove 14 is brought into close contact with the sealing film 14A to form the insulating member body 11. Will be covered. Therefore, the edge insulating member 10 is stably supported by the electrode plate 1 without being displaced or dropped with respect to the electrode plate 1, and the side edge of the electrode plate 1 and the sealing film 14A. The electrolytic solution S is prevented from entering the mounting groove 14 from between the two.

さらに、絶縁部材本体11とシール膜14Aとが二色成形法により一体に成形されているので、これら絶縁部材本体11とシール膜14Aとの間に電解液Sが入り込むようなこともない。従って、装着溝14の内部に銅が析出して該装着溝14が押し広げられ、縁部絶縁部材10が電極板1から外れたりずれたりするようなことが、より確実に防止される。   Further, since the insulating member main body 11 and the seal film 14A are integrally formed by the two-color molding method, the electrolytic solution S does not enter between the insulating member main body 11 and the seal film 14A. Therefore, it is more reliably prevented that copper is deposited inside the mounting groove 14 and the mounting groove 14 is pushed and widened, and the edge insulating member 10 is detached from or displaced from the electrode plate 1.

また、本実施形態では、シール膜14Aを、熱可塑性エラストマであるスチレンエチレンブチレンブロック共重合体で構成しているので、約60℃に保持された電解液Sの中に長時間浸漬された場合であっても、シール膜14Aが劣化することがなく、電極板1と縁部絶縁部材10とが強固に固定され、電解中に縁部絶縁部材10が電極板1から外れたりずれたりすることを防止できる。   In this embodiment, since the sealing film 14A is composed of a styrene ethylene butylene block copolymer that is a thermoplastic elastomer, the sealing film 14A is immersed in the electrolytic solution S maintained at about 60 ° C. for a long time. Even in this case, the sealing film 14A is not deteriorated, the electrode plate 1 and the edge insulating member 10 are firmly fixed, and the edge insulating member 10 is detached from or shifted from the electrode plate 1 during electrolysis. Can be prevented.

さらに、シール膜14Aの硬さが、タイプAデュロメータでA82とされているので、電極板1とシール膜14Aとの密着性が確実に高められる。また、ISA法に使用されている電極板1のように穴部が形成されている場合には、この穴部にシール膜14Aが弾性変形し入り込んで、穴部に入り込んだシール膜14Aがアンカー効果を奏するので、縁部絶縁部材10を電極板1にさらに強固に固定できる。   Furthermore, since the hardness of the sealing film 14A is set to A82 with a type A durometer, the adhesion between the electrode plate 1 and the sealing film 14A is reliably improved. Further, when a hole is formed like the electrode plate 1 used in the ISA method, the seal film 14A is elastically deformed into the hole, and the seal film 14A entering the hole is anchored. Since the effect is produced, the edge insulating member 10 can be more firmly fixed to the electrode plate 1.

また、絶縁部材本体11及び端部被覆部材12を、絶縁性、耐衝撃性、耐熱性、耐酸性に優れたポリフェニルエーテルで構成することにより、縁部絶縁部材10が硫酸で構成された60℃の電解液Sに長時間浸漬された場合でも、絶縁部材本体11及び端部被覆部材12の劣化を防止することができる。   Further, the insulating member main body 11 and the end covering member 12 are made of polyphenyl ether excellent in insulation, impact resistance, heat resistance, and acid resistance, so that the edge insulating member 10 is made of sulfuric acid 60. Even when immersed in the electrolytic solution S at 0 ° C. for a long time, deterioration of the insulating member main body 11 and the end covering member 12 can be prevented.

また、この縁部絶縁部材10は、締め付けロッド13をロッド嵌合溝15に嵌合したり外したりすることで、電極板1への取り付け及び取り外しが行えるようになっている。従って、縁部絶縁部材10の電極板1への取り付け及び取り外し作業を簡単に行うことができる。また、締め付けロッド13の前述の嵌合により、シール膜14Aが電極板1表面に強く密着するので、電極板1との間に電解液Sが浸入することがなく、電極板1に析出した銅板を簡単に剥離することができる。   Further, the edge insulating member 10 can be attached to and detached from the electrode plate 1 by fitting or removing the tightening rod 13 from the rod fitting groove 15. Therefore, it is possible to easily attach and remove the edge insulating member 10 to and from the electrode plate 1. Further, since the sealing film 14A is tightly adhered to the surface of the electrode plate 1 by the above-described fitting of the clamping rod 13, the electrolytic solution S does not enter between the electrode plate 1 and the copper plate deposited on the electrode plate 1 Can be easily peeled off.

また、前述の縁部絶縁部材10の製造方法によれば、絶縁部材本体11が押出し成形により成形されているので、該絶縁部材本体11の形状や寸法の設定に対する自由度が増し、縁部絶縁部材10に対する種々の要求に比較的容易に対応できる。   Moreover, according to the manufacturing method of the edge insulating member 10 described above, since the insulating member main body 11 is formed by extrusion molding, the degree of freedom for setting the shape and dimensions of the insulating member main body 11 is increased, and the edge insulating body is increased. Various requirements for the member 10 can be handled relatively easily.

すなわち、本実施形態によれば、例えば、縁部絶縁部材10の全体を射出成形により形成するような手法に対比して、設備費用が大幅に削減されるとともに、大量生産のみならず多品種少量生産にも柔軟に対応することができる。また、縁部絶縁部材10の全体を射出成形により成形しようとした場合には、残留熱応力による変形の虞があるが、本実施形態によれば、押出し成形を用いて絶縁部材本体11を成形することから前述の変形の虞が生じない。   That is, according to the present embodiment, for example, compared to a method in which the entire edge insulating member 10 is formed by injection molding, the equipment cost is greatly reduced, and not only mass production but also high-mix low-volume production is possible. It is possible to respond flexibly to production. In addition, when the entire edge insulating member 10 is to be formed by injection molding, there is a risk of deformation due to residual thermal stress. However, according to the present embodiment, the insulating member body 11 is formed using extrusion molding. Therefore, there is no risk of the above-described deformation.

また、従来の製造方法において、例えば、絶縁部材本体11と端部被覆部材12とを溶媒接着を用いて接着する場合には、有機溶媒による作業環境の不善が考えられたが、本実施形態では、絶縁部材本体11と端部被覆部材12とが射出成形を用いて一体とされていることから、前述の作業環境の不善の虞がない。   Further, in the conventional manufacturing method, for example, when the insulating member main body 11 and the end covering member 12 are bonded using solvent bonding, the working environment due to the organic solvent is considered to be inadequate. In addition, since the insulating member main body 11 and the end cover member 12 are integrated using injection molding, there is no fear of the above-described poor working environment.

尚、本発明は前述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

例えば、前述の実施形態においては、絶縁部材本体11の被係合部16が円柱孔状の貫通孔で形成されていることとしたが、これに限定されるものではない。すなわち、被係合部16は、円柱孔状以外の角柱孔状やそれ以外の形状であっても構わない。また、被係合部16に対応し形成される係合部17の形状も、前述の実施形態に限定されるものではない。   For example, in the above-described embodiment, the engaged portion 16 of the insulating member main body 11 is formed by a cylindrical hole-like through hole, but the present invention is not limited to this. That is, the engaged portion 16 may have a prismatic hole shape other than the cylindrical hole shape or other shapes. Further, the shape of the engaging portion 17 formed corresponding to the engaged portion 16 is not limited to the above-described embodiment.

また、被係合部16及び係合部17は、夫々複数形成されていてもよい。   Moreover, the to-be-engaged part 16 and the engaging part 17 may each be formed in multiple numbers.

また、図14及び図15は、前述の実施形態で説明した被係合部16の変形例を示している。図示するように、絶縁部材本体11の被係合部として、前述した被係合部16の代わりに、有底穴からなる被係合部26や、溝からなる被係合部36を形成することとしてもよい。   14 and 15 show a modified example of the engaged portion 16 described in the above embodiment. As shown in the drawing, as the engaged portion of the insulating member body 11, an engaged portion 26 made of a bottomed hole and an engaged portion 36 made of a groove are formed instead of the engaged portion 16 described above. It is good as well.

詳しくは、図14に示すように、被係合部26、36を、絶縁部材本体11の下端部における外面にのみ形成することとしてもよい。図示の例では、被係合部26、36は、絶縁部材本体11の前記厚さ方向の外方を向く一対の面のうち少なくとも一方に形成されている。   Specifically, as shown in FIG. 14, the engaged portions 26 and 36 may be formed only on the outer surface of the lower end portion of the insulating member main body 11. In the illustrated example, the engaged portions 26 and 36 are formed on at least one of a pair of surfaces of the insulating member body 11 facing outward in the thickness direction.

また、図15に示すように、被係合部26、36を、絶縁部材本体11の下端部における装着溝14にのみ形成することとしてもよい。図示の例では、被係合部26、36は、装着溝14において前記厚さ方向の内方(中央)を向く一対の面のうち少なくとも一方に形成されている。   Further, as shown in FIG. 15, the engaged portions 26 and 36 may be formed only in the mounting groove 14 in the lower end portion of the insulating member main body 11. In the illustrated example, the engaged portions 26 and 36 are formed on at least one of a pair of surfaces facing the inner side (center) in the thickness direction in the mounting groove 14.

また、被係合部26、36を、絶縁部材本体11の下端部における外面及び装着溝14の両方に形成することとしてもよい。
また、被係合部26、36の形状、配置、数量は、図示の例に限定されるものではない。
Further, the engaged portions 26 and 36 may be formed on both the outer surface of the lower end portion of the insulating member main body 11 and the mounting groove 14.
Moreover, the shape, arrangement | positioning, and quantity of the to-be-engaged parts 26 and 36 are not limited to the example of illustration.

また、前述した被係合部16、26、36以外にも、絶縁部材本体11の被係合部として、前記外面や装着溝14から突出する凸部や、ブラスト処理等を用い表面粗さが設定された凹凸部を用いてもよい。   In addition to the above-described engaged portions 16, 26, and 36, the surface roughness of the insulating member main body 11 is increased by using convex portions protruding from the outer surface or the mounting groove 14, blasting, or the like. You may use the set uneven | corrugated | grooved part.

このように、被係合部の形状が種々に設定されても、端部被覆部材12の係合部は、前記被係合部の形状に対応して隙間なく形成されるようになっている。   Thus, even if the shape of the engaged portion is variously set, the engaging portion of the end covering member 12 is formed without a gap corresponding to the shape of the engaged portion. .

また、前述の実施形態では、絶縁部材本体11及び端部被覆部材12を、ポリフェニルエーテルで構成したもので説明したが、これに限定されることはなく、他の樹脂材料であってもよい。ただし、電極板1が浸漬される電解液Sの成分、温度、時間を考慮して、耐酸性、耐熱性に優れたエンジニアリングプラスチックを選定することが好ましい。   In the above-described embodiment, the insulating member main body 11 and the end covering member 12 have been described as being composed of polyphenyl ether. However, the present invention is not limited to this, and other resin materials may be used. . However, it is preferable to select an engineering plastic excellent in acid resistance and heat resistance in consideration of the component, temperature, and time of the electrolytic solution S in which the electrode plate 1 is immersed.

また、装着溝14のシール膜14Aを構成する熱可塑性エラストマとして、スチレン系であるスチレンエチレンブチレンブロック共重合体(SEBS)を使用したもので説明したが、これに限定されることはなく、他の熱可塑性エラストマであってもよい。ただし、ウレタン系(TPU)のものは耐酸性が劣り、ポリエステル系のものは耐温水性に劣るため、特にスチレン系(SBC)、オレフィン系(TPO)の熱可塑性エラストマで構成することがより好ましい。   In addition, the thermoplastic elastomer constituting the sealing film 14A of the mounting groove 14 has been described using a styrene-based styrene ethylene butylene block copolymer (SEBS), but is not limited thereto. It may be a thermoplastic elastomer. However, urethane type (TPU) is poor in acid resistance, and polyester type is inferior in warm water resistance. Therefore, it is more preferable to use a styrene (SBC) or olefin (TPO) thermoplastic elastomer. .

また、絶縁部材本体11とシール膜14Aとが、二色成形法により一体成形されていることとしたが、これに限定されるものではない。すなわち、絶縁部材本体11とシール膜14Aとが、夫々別に作製されたのち、接着剤等の接着部材により一体に連結されていても構わない。ただし、前述の実施形態で説明したように、二色成形法を用いることにより、シール膜14Aと絶縁部材本体11との間に接着部材からなる接合層を形成することがなくなることから、望ましい。   Moreover, although the insulating member main body 11 and the sealing film 14A are integrally formed by the two-color molding method, the present invention is not limited to this. That is, the insulating member main body 11 and the seal film 14A may be manufactured separately and then integrally connected by an adhesive member such as an adhesive. However, as described in the above-described embodiment, it is desirable to use a two-color molding method because a bonding layer made of an adhesive member is not formed between the seal film 14A and the insulating member body 11.

また、図14、図15に示すように、装着溝14にシール膜14Aが形成されていなくとも構わない。   Further, as shown in FIGS. 14 and 15, the seal film 14 </ b> A may not be formed in the mounting groove 14.

また、前述の実施形態においては、パーマネントカソード法による銅の電解精錬について説明したが、これに限定されることはなく、他の金属、例えばNi、Znなどの電解精製、電解採取に使用される電極板1に取り付ける縁部絶縁部材10であってもよい。   Further, in the above-described embodiment, the electrolytic refining of copper by the permanent cathode method has been described. However, the present invention is not limited to this, and is used for electrolytic refining and electrowinning of other metals such as Ni and Zn. The edge insulating member 10 attached to the electrode plate 1 may be used.

1 電極板
10 縁部絶縁部材
11 絶縁部材本体
12 端部被覆部材
14 装着溝
14A シール膜
16、26、36 被係合部
17 係合部
DESCRIPTION OF SYMBOLS 1 Electrode plate 10 Edge insulating member 11 Insulating member main body 12 End covering member 14 Mounting groove 14A Seal film 16, 26, 36 Engagement part 17 Engagement part

Claims (4)

金属の電解精錬工程に用いられる電極板の縁部に取り付ける縁部絶縁部材であって、
棒状をなし、その長手方向に沿って延びる装着溝を有する絶縁部材本体と、
前記絶縁部材本体の長手方向の端部に配置される端部被覆部材と、を備え、
前記端部における外面及び前記装着溝のうち少なくとも一方には、被係合部が形成されており、
前記端部被覆部材は、溶融した樹脂材料が前記端部に固化し一体に形成されているとともに、前記被係合部の形状に対応して形成された係合部を有することを特徴とする縁部絶縁部材。
An edge insulating member attached to the edge of an electrode plate used in a metal electrolytic refining process,
An insulating member body having a rod-like shape and having a mounting groove extending along the longitudinal direction;
An end covering member disposed at an end in the longitudinal direction of the insulating member main body,
An engaged portion is formed on at least one of the outer surface of the end portion and the mounting groove,
The end portion covering member is formed integrally with the melted resin material by solidifying the end portion, and has an engaging portion formed corresponding to the shape of the engaged portion. Edge insulation member.
請求項1に記載の縁部絶縁部材であって、
前記被係合部は、有底穴、貫通孔及び溝のいずれかであることを特徴とする縁部絶縁部材。
The edge insulating member according to claim 1,
The edge insulating member, wherein the engaged portion is one of a bottomed hole, a through hole, and a groove.
請求項1又は2に記載の縁部絶縁部材であって、
前記装着溝には、弾性材料からなるシール膜が形成されており、
前記絶縁部材本体と前記シール膜とが、二色成形法により一体成形されていることを特徴とする縁部絶縁部材。
The edge insulating member according to claim 1 or 2,
A sealing film made of an elastic material is formed in the mounting groove,
The edge insulating member, wherein the insulating member main body and the seal film are integrally formed by a two-color molding method.
金属の電解精錬工程に用いられる電極板の縁部に取り付ける縁部絶縁部材の製造方法であって、
押出し成形により、棒状の絶縁部材本体を成形する工程と、
前記絶縁部材本体の長手方向の端部に、被係合部を形成する工程と、
射出成形により、前記端部に端部被覆部材を一体成形するとともに、前記被係合部に係合する係合部を形成する工程と、を備えることを特徴とする縁部絶縁部材の製造方法。
A method of manufacturing an edge insulating member to be attached to an edge of an electrode plate used in a metal electrolytic refining process,
A step of forming a rod-shaped insulating member body by extrusion molding;
Forming an engaged portion at the longitudinal end of the insulating member body;
And a step of integrally forming an end covering member at the end by injection molding and forming an engaging portion that engages with the engaged portion. .
JP2009149677A 2009-06-24 2009-06-24 Edge insulating member and manufacturing method thereof Active JP5636641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009149677A JP5636641B2 (en) 2009-06-24 2009-06-24 Edge insulating member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009149677A JP5636641B2 (en) 2009-06-24 2009-06-24 Edge insulating member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011006728A true JP2011006728A (en) 2011-01-13
JP5636641B2 JP5636641B2 (en) 2014-12-10

Family

ID=43563702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009149677A Active JP5636641B2 (en) 2009-06-24 2009-06-24 Edge insulating member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5636641B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015078409A (en) * 2013-10-16 2015-04-23 住友金属鉱山株式会社 Permanent cathode for electrorefining and copper electrorefining method using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997041280A1 (en) * 1996-04-26 1997-11-06 Marley Plastics Pty. Ltd. Improvements relating to cathode plate edge protectors
JP2003502511A (en) * 1999-06-18 2003-01-21 カッパー リファイナリーズ プロプライエタリ リミテッド Edge strip cap
JP2007002282A (en) * 2005-06-22 2007-01-11 Mitsubishi Materials Corp Edge part insulating member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997041280A1 (en) * 1996-04-26 1997-11-06 Marley Plastics Pty. Ltd. Improvements relating to cathode plate edge protectors
JP2003502511A (en) * 1999-06-18 2003-01-21 カッパー リファイナリーズ プロプライエタリ リミテッド Edge strip cap
JP2007002282A (en) * 2005-06-22 2007-01-11 Mitsubishi Materials Corp Edge part insulating member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015078409A (en) * 2013-10-16 2015-04-23 住友金属鉱山株式会社 Permanent cathode for electrorefining and copper electrorefining method using the same

Also Published As

Publication number Publication date
JP5636641B2 (en) 2014-12-10

Similar Documents

Publication Publication Date Title
US8679667B2 (en) One piece compression resistant prismatic cell
JP4389846B2 (en) Edge insulation
KR102493194B1 (en) Gasket molded article and its manufacturing method
CN101270486B (en) Electrolytic deposition metal peeling method and bending apparatus using the method
WO2008129779A1 (en) Fuel battery cell, fuel battery and method for manufacturing fuel battery cell
JP5636641B2 (en) Edge insulating member and manufacturing method thereof
CN103603016A (en) Insulated edge integrated with cathode plate and manufacturing method of insulated edge
JPS6256590A (en) Cathode for electrolytic purification of copper and its production
CN106663821B (en) Method for manufacturing integrated liner of plate
JP5437090B2 (en) Method for producing lead-acid battery
KR100788268B1 (en) Edge insulating member for electrode plate, method of locking and unlocking the edge insulating member, and edge insulating member installation jig
US6274012B1 (en) Electrode edge strip with interior floating retaining pins
JP6447087B2 (en) Edge insulation
US20120205254A1 (en) Contact bar assembly, system including the contact bar assembly, and method of using same
JPS6333590A (en) Method for insulating and coating peripheral edge part of electrolytic cathode
JP2014203553A (en) Method of manufacturing gasket integrated with plate
CN103668341A (en) Negative plate with insulating sealed edge
WO2018230331A1 (en) Gasket
JP2018129197A (en) Waterproof connector
CN102216497B (en) Method and equipment for providing the edge of a starting sheet with a dielectric strip
JP2015005497A (en) Manufacturing method of plate integrated gasket
JP5446419B2 (en) Cathode plate with insulation for electrolytic purification
JP2009061739A (en) Molding method of molded article having sealed part
TW201310483A (en) Sealing body for electrolytic capacitor and electrolytic capacitor
JP2005190773A (en) Lead accumulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141007

R150 Certificate of patent or registration of utility model

Ref document number: 5636641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150