JP2011006677A - 押出しラミネート用エチレン−α−オレフィン共重合体およびその積層体 - Google Patents
押出しラミネート用エチレン−α−オレフィン共重合体およびその積層体 Download PDFInfo
- Publication number
- JP2011006677A JP2011006677A JP2010122510A JP2010122510A JP2011006677A JP 2011006677 A JP2011006677 A JP 2011006677A JP 2010122510 A JP2010122510 A JP 2010122510A JP 2010122510 A JP2010122510 A JP 2010122510A JP 2011006677 A JP2011006677 A JP 2011006677A
- Authority
- JP
- Japan
- Prior art keywords
- group
- ethylene
- zirconium dichloride
- fluorenyl
- diphenylmethylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Laminated Bodies (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
【課題】押出しラミネート加工時の押出負荷が小さく、ネックインが抑制され、高速加工が可能であり、成形時の発煙が抑制された押出しラミネート用エチレン−α−オレフィン共重合体を提供する。
【解決手段】以下の条件を全て充足する押出しラミネート用エチレン−α−オレフィン共重合体。
(a)エチレンに基づく単量体単位と炭素原子数3〜20のα−オレフィンに基づく単量体単位を有する
(b)密度が860〜950kg/m3
(c)MFRが1〜100g/10分
(d)Mw/Mnが4〜30
(e)Mz/Mwが2〜5
(f)SRが1.6以上
(g)線形粘弾性測定によって求められる特性緩和時間(τ)が0.01〜10秒
(h)流動の活性化エネルギー(Ea)が35kJ/mol以上
【選択図】なし
【解決手段】以下の条件を全て充足する押出しラミネート用エチレン−α−オレフィン共重合体。
(a)エチレンに基づく単量体単位と炭素原子数3〜20のα−オレフィンに基づく単量体単位を有する
(b)密度が860〜950kg/m3
(c)MFRが1〜100g/10分
(d)Mw/Mnが4〜30
(e)Mz/Mwが2〜5
(f)SRが1.6以上
(g)線形粘弾性測定によって求められる特性緩和時間(τ)が0.01〜10秒
(h)流動の活性化エネルギー(Ea)が35kJ/mol以上
【選択図】なし
Description
本発明は、押出しラミネート用エチレン−α−オレフィン共重合体およびその積層体に関するものである。
ポリエステル系樹脂、ポリアミド系樹脂、紙などの基材にエチレン系樹脂を押出ラミネートして得られる積層体は、食品や工業部品等の包装材料として用いられている。エチレン系樹脂を用いて押出ラミネートする場合、Tダイより押出した溶融状フィルム端部が中央方向へと縮んでしまうネックインが発生することがある。ネックインが発生すると、フィルム幅が小さくなるとともにフィルム端部の厚みがフィルム中央部に比べ厚くなってしまうため、製品の歩留まりが悪化する。ネックインを抑えるためには、溶融張力の大きいエチレン系樹脂を使用することが有効である。
エチレン−α−オレフィン共重合体のうち、メタロセン触媒を用いて重合された共重合体は、衝撃強度や引張強度等の機械的強度に優れることが知られている。そのため、このような共重合体を用いると、メタロセン触媒ではない触媒を用いて重合されたエチレン−α−オレフィン共重合体から形成された成形品が有する機械的強度を維持したまま、その厚みを薄くすることができるため、成形品の軽量化や低コスト化が期待できることから、種々の用途に該共重合体を利用することが検討されている。ところが、従来のメタロセン触媒を用いて重合されたエチレン−α−オレフィン共重合体は、押出加工時の押出負荷が高いという問題や、また溶融張力やスウェル比が小さいためにネックインが大きくなってしまうという問題があり、改良が求められていた。
このような問題を解決するため、昨今では、新規なメタロセン触媒が検討され、該触媒により重合された押出しラミネート用エチレン−α−オレフィン共重合体およびその積層体が提案されている。例えば、特許文献1には、2つのシクロペンタジエン型アニオン骨格を有する基が架橋基を介して結合した配位子を有する遷移金属化合物と、シクロペンタジエン型アニオン骨格を有する基とフルオレニル型アニオン骨格を有する基が架橋基を介して結合した配位子を有する遷移金属化合物の組み合わせよりなるメタロセン触媒と、助触媒としてメチルアルモキサンを多孔質シリカに担持処理してなる担体とを用いて重合されたエチレン−α−オレフィン共重合体を含む積層体が記載されている。
しかしながら、特許文献1記載のエチレン−α−オレフィン共重合体は、押出負荷およびスウェル比について、さらなる改良が求められている。また、高速加工性、成形時の発煙抑制についても、さらなる改良が求められていた。
かかる状況の下、本発明が解決しようとする課題は、押出しラミネート加工時の押出負荷が小さく、ネックインが抑制され、高速加工が可能であり、成形時の発煙が抑制された押出しラミネート用エチレン−α−オレフィン共重合体、および該共重合体を基材上に押出しラミネートして得られる積層体を提供するものである。
かかる状況の下、本発明が解決しようとする課題は、押出しラミネート加工時の押出負荷が小さく、ネックインが抑制され、高速加工が可能であり、成形時の発煙が抑制された押出しラミネート用エチレン−α−オレフィン共重合体、および該共重合体を基材上に押出しラミネートして得られる積層体を提供するものである。
本発明の第一は、以下の条件を全て充足する押出しラミネート用エチレン−α−オレフィン共重合体である。
(a)エチレンに基づく単量体単位と炭素数3〜20のα−オレフィンに基づく単量体単位を有する
(b)密度が860〜950kg/m3
(c)メルトフローレート(MFR)が1〜100g/10分
(d)重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が4〜30(e)Z平均分子量(Mz)と重量平均分子量(Mw)との比(Mz/Mw)が2〜5
(f)スウェル比(SR)が1.6以上
(g)線形粘弾性測定によって求められる特性緩和時間(τ)が0.01〜10秒
(h)流動の活性化エネルギー(Ea)が35kJ/mol以上
(a)エチレンに基づく単量体単位と炭素数3〜20のα−オレフィンに基づく単量体単位を有する
(b)密度が860〜950kg/m3
(c)メルトフローレート(MFR)が1〜100g/10分
(d)重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が4〜30(e)Z平均分子量(Mz)と重量平均分子量(Mw)との比(Mz/Mw)が2〜5
(f)スウェル比(SR)が1.6以上
(g)線形粘弾性測定によって求められる特性緩和時間(τ)が0.01〜10秒
(h)流動の活性化エネルギー(Ea)が35kJ/mol以上
本発明の第二は、前記押出しラミネート用エチレン−α−オレフィン共重合体を、基材上に押出しラミネートして得られる積層体にかかるものである。
本発明により、押出しラミネート加工時の押出負荷が小さく、ネックインが抑制され、高速加工が可能であり、成形時の発煙が抑制された押出しラミネート用エチレン−α−オレフィン共重合体、および該共重合体を基材上に押出しラミネートして得られる積層体を提供することができる。
本発明のエチレン−α−オレフィン共重合体は、エチレンに基づく単量体単位と炭素数3〜20のα−オレフィンに基づく単量体単位とを含むエチレン−α−オレフィン共重合体である。該α−オレフィンとしては、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、1−ドデセン、4−メチル−1−ペンテン、4−メチル−1−ヘキセン等があげられ、これらは単独で用いられていてもよく、2種以上を併用されていてもよい。α−オレフィンとしては、好ましくは1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、1−オクテンである。
本発明のエチレン−α−オレフィン共重合体は、上記のエチレンに基づく単量体単位および炭素数3〜20のα−オレフィンに基づく単量体単位に加え、本発明の効果を損なわない範囲において、他の単量体に基づく単量体単位を有していてもよい。他の単量体としては、例えば、共役ジエン(例えばブタジエンやイソプレン)、非共役ジエン(例えば1,4−ペンタジエン)、アクリル酸、アクリル酸エステル(例えばアクリル酸メチルやアクリル酸エチル)、メタクリル酸、メタクリル酸エステル(例えばメタクリル酸メチルやメタクリル酸エチル)、酢酸ビニル等があげられる。
本発明のエチレン−α−オレフィン共重合体中のエチレンに基づく単量体単位の含有量は、エチレン−α−オレフィン共重合体の全重量(100重量%)に対して、通常50〜99.5重量%である。またα−オレフィンに基づく単量体単位の含有量は、エチレン−α−オレフィン共重合体の全重量(100重量%)に対して、通常0.5〜50重量%である。
本発明のエチレン−α−オレフィン共重合体として、好ましくは、エチレンに基づく単量体単位および炭素数4〜20のα−オレフィンに基づく単量体単位を有する共重合体であり、より好ましくは、エチレンに基づく単量体単位および炭素数5〜20のα−オレフィンに基づく単量体単位を有する共重合体であり、さらに好ましくは、エチレンに基づく単量体単位および炭素数6〜8のα−オレフィンに基づく単量体単位を有する共重合体である。
本発明のエチレン−α−オレフィン共重合体としては、例えば、エチレン−1−ブテン共重合体、エチレン−1−ヘキセン共重合体、エチレン−4−メチル−1−ペンテン共重合体、エチレン−1−オクテン共重合体、エチレン−1−ブテン−1−ヘキセン共重合体、エチレン−1−ブテン−4−メチル−1−ペンテン共重合体、エチレン−1−ブテン−1−オクテン共重合体、エチレン−1−ヘキセン−1−オクテン共重合体等があげられ、好ましくはエチレン−1−ヘキセン共重合体、エチレン−4−メチル−1−ペンテン共重合体、エチレン−1−ブテン−1−ヘキセン共重合体、エチレン−1−ブテン−1−オクテン共重合体、エチレン−1−ヘキセン−1−オクテン共重合体である。
本発明のエチレン−α−オレフィン共重合体の密度(以下、「d」と記載することがある。)は、860〜950kg/m3である。得られる成形体の機械的強度を高める観点から、好ましくは940kg/m3以下であり、より好ましくは935kg/m3以下であり、更に好ましくは930kg/m3以下である。また、得られる成形体の剛性を高める観点から、好ましくは870kg/m3以上であり、より好ましくは880kg/m3以上であり、更に好ましくは890kg/m3以上であり、特に好ましくは900kg/m3以上である。該密度は、JIS K6760−1995に記載のアニーリングを行った後、JIS K7112−1980のうち、A法に規定された方法に従って測定される。また、エチレン−α−オレフィン共重合体の密度は、エチレン−α−オレフィン共重合体中のエチレンに基づく単量体単位の含有量により変更することができる。
本発明のエチレン−α−オレフィン共重合体のメルトフローレート(以下、「MFR」と記載することがある。)は、通常、1〜100g/10分である。該メルトフローレートは、成形加工時の押出負荷を低減する観点から、好ましくは1.5g/10分以上である。該メルトフローレートは、JIS K7210−1995に規定された方法において、温度190℃、荷重21.18Nの条件で、A法により測定される値である。また、エチレン−α−オレフィン共重合体のメルトフローレートは、後述する製造方法において、例えば、水素濃度または重合温度により変更することができ、水素濃度または重合温度を高くすると、エチレン−α−オレフィン共重合体のメルトフローレートが大きくなる。
本発明のエチレン−α−オレフィン共重合体は、エチレン−α−オレフィン共重合体の示差走査熱量測定から得られる融解曲線において、25℃から融解終了温度までの範囲に存在する融解ピークが単一である共重合体であることが好ましい。融解ピークが複数存在するということは、エチレン−α−オレフィン共重合体の融解曲線において、最大融解ピーク(ピーク高さが最も大きい融解ピーク)とは別の融解ピークが存在するということであり、エチレン−α−オレフィン共重合体の組成分布(エチレン−α−オレフィン共重合体に含まれる各重合体成分間での単量体単位の含有割合の分布)が広いことを意味しており、結晶性が低い成分を含む。本発明の好ましいエチレン−α−オレフィン共重合体は、融解ピークが単一である、すなわち組成分布が狭く、結晶性が低い成分の含有量が少ないため、清浄性に優れる積層体を得ることができる。
なお、エチレン−α−オレフィン共重合体の融解曲線は、示差走査熱量計(例えば、パーキンエルマー社製の示差走査型熱量計DSC−7型)により、例えば、約10mgの試料を封入したアルミニウムパンを、(1)150℃で5分間保持し、(2)5℃/分で150℃から20℃まで降温し、(3)20℃で2分間保持し、(4)5℃/分で20℃から融解終了温度+約20℃(通常150℃程度)まで昇温して、(4)の測定で得られた示差走査熱量測定曲線から得られる。
本発明のエチレン−α−オレフィン共重合体の重量平均分子量(以下、「Mw」と記載することがある。)と数平均分子量(以下、「Mn」と記載することがある。)との比(以下、「Mw/Mn」と記載することがある。)は、4〜30であり、Z平均分子量(以下、「Mz」と記載することがある。)と重量平均分子量(Mw)との比(以下、「Mz/Mw」と記載することがある。)は、2〜5である。Mw/Mnが小さすぎると、成形加工時の押出負荷が高くなることがある。Mw/Mnは、好ましくは4.5以上であり、より好ましくは5.5以上であり、さらに好ましくは6以上である。Mz/Mwが大きすぎると溶融状態にある重合体の分子鎖の緩和時間が長くなり、成形時のフィルムの引取性が悪くなる傾向がある。また、Mz/Mwが大きすぎると、適切なMFRに調整したときに低分子量成分の割合が増え、内容物への低分子量成分の移行が起こったり、押出しラミネーション成形時に発煙の原因になったりすることがある。Mz/Mwは、好ましくは4.5以下であり、より好ましくは4以下である。Mw/Mnが大きすぎるあるいはMz/Mwが小さすぎると、得られる成形体の機械的強度が低くなることがある。Mw/Mnは、好ましくは25以下であり、より好ましくは20以下であり、さらに好ましくは15以下であり、特に好ましくは12以下である。Mz/Mwは、好ましくは2.5以上である。なお、該Mw/Mnと該Mz/Mwとは、ゲル・パーミエイション・クロマトグラフ(GPC)法により、数平均分子量(Mn)、重量平均分子量(Mw)およびZ平均分子量(Mz)を測定し、MwをMnで除し、MzをMwで除すことにより求められる。また、該Mw/Mnは、後述する製造方法において、例えば、水素濃度または重合温度により変更することができ、水素濃度または重合温度を高くすると、エチレン−α−オレフィン共重合体のMw/Mnが大きくなる。該Mz/Mwは、後述する製造方法において、例えば、遷移金属化合物(A1)と遷移金属化合物(A2)との使用割合により変更することができ、遷移金属化合物(A2)の使用割合を低くすると、エチレン−α−オレフィン共重合体のMz/Mwが小さくなる。
Mz/Mwは、高分子量成分の分子量分布を表すもので、Mw/Mnに比してMz/Mwが小さいことは高分子量成分の分子量分布が狭く、非常に高い分子量の成分割合、すなわち緩和時間が非常に長い成分が少ないことを意味し、Mw/Mnに比してMz/Mwが大きいことは高分子量成分の分子量分布が広く、非常に高い分子量、すなわち緩和時間が非常に長い成分割合が高いことを意味する。押し出し負荷を低減する観点、および緩和時間を短くする観点から、好ましくは(Mw/Mn)−(Mz/Mw)が1以上であり、より好ましくは(Mw/Mn)−(Mz/Mw)が2以上である。(Mw/Mn)−(Mz/Mw)は、例えば、遷移金属化合物(A1)と遷移金属化合物(A2)との使用割合により変更することができ、遷移金属化合物(A2)の使用割合を多くすると、エチレン−α−オレフィン共重合体の(Mw/Mn)−(Mz/Mw)が大きくなる。また、予備重合を実施することでも、(Mw/Mn)−(Mz/Mw)を大きくすることができる。
本発明のエチレン−α−オレフィン共重合体は、単峰性の分子量分布を示す共重合体であることが好ましい。ここで、単峰性分布とは、ゲル・パーミエイション・クロマトグラフ(GPC)法により測定された分子量分布曲線がピークを1つ有することを意味する。
分子量分布が二峰性分布の場合、分子量が低い成分を含む。分子量が低い成分は、成形加工時に揮発しやすく、押出しラミネート加工時の発煙量が多くなる。本発明の好ましいエチレン−α−オレフィン共重合体は、分子量が低い成分の量が少なく、押出しラミネート加工時の発煙量を低減させることができる。
分子量分布が二峰性分布の場合、分子量が低い成分を含む。分子量が低い成分は、成形加工時に揮発しやすく、押出しラミネート加工時の発煙量が多くなる。本発明の好ましいエチレン−α−オレフィン共重合体は、分子量が低い成分の量が少なく、押出しラミネート加工時の発煙量を低減させることができる。
本発明のエチレン−α−オレフィン共重合体のスウェル比(以下、「SR」と記載することがある。)は、1.6以上である。スウェル比が小さすぎると、Tダイフィルム成形にネックインが大きくなることがある。スウェル比は、好ましくは1.7以上であり、より好ましくは1.8以上であり、さらに好ましくは1.9以上である。また、該スウェル比は、押出成形時の引き取り性を高める観点からは、好ましくは2.5以下である。該スウェル比は、メルトフローレート(MFR)を測定する際に、温度190℃、荷重21.18Nの条件でオリフィスから、15〜20mm程度の長さで押出したエチレン−α−オレフィン共重合体のストランドを、空気中で冷却し、得られた固体状のストランドについて、押出し上流側先端から約5mmの位置でのストランドの直径D(単位:mm)を測定し、その直径Dをオリフィス径2.095mm(D0)で除した値(D/D0)である。また、該スウェル比は、後述する製造方法において、例えば、重合時の水素濃度やエチレン圧または電子供与性化合物濃度により変更することができ、水素濃度を高く、またはエチレン圧を低くすると、エチレン−α−オレフィン共重合体のスウェル比が大きくなる。その他にも、重合時に予備重合を実施することなどでスウェル比を制御することができうる。
本発明のエチレン−α−オレフィン共重合体の炭素数5以上の分岐数(以下、「NLCB」と記載することがある。)は、成形加工時の押出負荷をより低減する観点から、好ましくは0.1/1000C以上であり、より好ましくは0.12/1000C以上である。また、得られる成形体の機械的強度を高める観点から、好ましくは1/1000C以下であり、より好ましくは0.7/1000C以下である。また、該NLCBは、後述する製造方法において、例えば、電子供与性化合物の濃度または遷移金属化合物(A1)と遷移金属化合物(A2)との使用割合により変更することができる。また、予備重合を実施することによっても制御しうる。
NLCBは、カーボン核磁気共鳴(13C−NMR)法によって測定された13C−NMRスペクトルから、5〜50ppmに観測されるすべてのピークの面積の総和を1000として、炭素数5以上の分岐が結合したメチン炭素に由来するピークの面積を求めることにより得られる。炭素数5以上の分岐が結合したメチン炭素に由来するピークは38.2ppm付近(参考:学術文献「Macromolecules」,(米国),American Chemical Society,1999年,第32巻,p.3817−3819)に観測される。この炭素数5以上の分岐が結合したメチン炭素に由来するピークの位置は、測定装置および測定条件によりずれることがあるため、通常、測定装置および測定条件毎に、標品の測定を行って決定する。また、スペクトル解析には、窓関数として、負の指数関数を用いることが好ましい。
本発明のエチレン−α−オレフィン共重合体の特性緩和時間(以下、「τ」と記載することがある。)は、成形時の引き取り性および、積層体の外観を高める観点から、0.01〜10秒である。特性緩和時間は、エチレン−α−オレフィン共重合体が有する長鎖分枝の長さを示す数値であり、長鎖分枝が短いと特性緩和時間は小さな値となり、長鎖分枝が長いと特性緩和時間は大きな値となる。τが長いエチレン−α−オレフィン共重合体の場合、引き取り性を高めるためには分子量分布を広げる必要があると考えられるが、その場合、低分子量成分が増え、内容物への低分子量成分の移行が起こったり、押出しラミネーション成形時に発煙の原因になったりすることがある。特性緩和時間は、好ましくは0.1秒以上である。また、特性緩和時間は、好ましくは5秒以下である。特性緩和時間は、例えば、水素濃度やエチレン圧などの重合条件や、遷移金属化合物(A1)と遷移金属化合物(A2)との使用割合により変更することができ、遷移金属化合物(A2)の使用割合を少なくすると、エチレン−α−オレフィン共重合体の特性緩和時間を短くすることができる。
特性緩和時間は、温度−時間重ね合わせ原理に基づいて作成される、190℃での溶融複素粘度(単位:Pa・sec)の角周波数(単位:rad/sec)依存性を示すマスターカーブから算出される数値である。具体的には、130℃、150℃、170℃および190℃夫々の温度(T、単位:℃)におけるエチレン−α−オレフィン共重合体の溶融複素粘度−角周波数曲線(溶融複素粘度の単位はPa・sec、角周波数の単位はrad/secである。)を、温度−時間重ね合わせ原理に基づいて、190℃における溶融複素粘度−角周波数曲線に重ね合わせてマスターカーブを作成し、得られたマスターカーブを下記式(I)で近似することにより算出される値である。
η=η0/[1+(τ×ω)n] (I)
η:溶融複素粘度(単位:Pa・sec)
ω:角周波数(単位:rad/sec)
τ:特性緩和時間(単位:sec)
η0:エチレン−α−オレフィン共重合体毎に求まる定数(単位:Pa・sec)
n:エチレン−α−オレフィン共重合体毎に求まる定数
上記計算は、市販の計算ソフトウェアを用いてもよく、該計算ソフトウェアとしては、Rheometrics社製 Rhios V.4.4.4などがあげられる。
η=η0/[1+(τ×ω)n] (I)
η:溶融複素粘度(単位:Pa・sec)
ω:角周波数(単位:rad/sec)
τ:特性緩和時間(単位:sec)
η0:エチレン−α−オレフィン共重合体毎に求まる定数(単位:Pa・sec)
n:エチレン−α−オレフィン共重合体毎に求まる定数
上記計算は、市販の計算ソフトウェアを用いてもよく、該計算ソフトウェアとしては、Rheometrics社製 Rhios V.4.4.4などがあげられる。
溶融複素粘度−角周波数曲線の測定は、粘弾性測定装置(例えば、Rheometrics社製Rheometrics Mechanical Spectrometer RMS−800など。)を用い、通常、ジオメトリー:パラレルプレート、プレート直径:25mm、プレート間隔:1.5〜2mm、ストレイン:5%、角周波数:0.1〜100rad/秒の条件で行われる。なお、測定は窒素雰囲気下で行われ、また、測定試料には予め酸化防止剤を適量(例えば1000ppm。)を配合することが好ましい。
本発明のエチレン−α−オレフィン共重合体の下記式(II)で定義されるg*が0.76〜0.95であることが好ましい(g*については以下の文献を参考にした:Developments in Polymer Characterisation-4,. J. V.. Dawkins,. Ed.,. Applied Science, London,. 1983, Chapter. I,. 「Characterization. of. Long Chain Branching in Polymers,」 Th. G. Scholte著)。
g*=[η]/([η]GPC×gSCB*) (II)
[式中、[η]は、エチレン−α−オレフィン共重合体の極限粘度(単位:dl/g)を表し、下記式(II−I)によって定義される。下記式(II−II)によって定義されるものとした。gSCB*は、下記式(II−III)によって定義される。
[η]=23.3×log(ηrel) (II−I)
(式中、ηrelは、エチレン−α−オレフィン共重合体の相対粘度を表す。)
[η]GPC=0.00046×Mv0.725 (II−II)
(式中、Mvは、エチレン−α−オレフィン共重合体の粘度平均分子量を表す。)
gSCB*=(1−A)1.725 (II−III)
(式中、Aは、エチレン−α−オレフィン共重合体中の短鎖分岐の含量測定から直接求めることができる。)]
g*=[η]/([η]GPC×gSCB*) (II)
[式中、[η]は、エチレン−α−オレフィン共重合体の極限粘度(単位:dl/g)を表し、下記式(II−I)によって定義される。下記式(II−II)によって定義されるものとした。gSCB*は、下記式(II−III)によって定義される。
[η]=23.3×log(ηrel) (II−I)
(式中、ηrelは、エチレン−α−オレフィン共重合体の相対粘度を表す。)
[η]GPC=0.00046×Mv0.725 (II−II)
(式中、Mvは、エチレン−α−オレフィン共重合体の粘度平均分子量を表す。)
gSCB*=(1−A)1.725 (II−III)
(式中、Aは、エチレン−α−オレフィン共重合体中の短鎖分岐の含量測定から直接求めることができる。)]
[η]GPCは、分子量分布がエチレン−α−オレフィン共重合体と同一の分子量分布であって、かつ分子鎖が直鎖状であると仮定した重合体の極限粘度(単位:dl/g)を表す。
gSCB*は、エチレン−α−オレフィン共重合体に短鎖分岐を導入することによって生じるg*への寄与を表す。
式(II−II)は、L. H. Tung著 Journal of Polymer Science, 36, 130 (1959) 287-294頁に記載の式を用いた。
gSCB*は、エチレン−α−オレフィン共重合体に短鎖分岐を導入することによって生じるg*への寄与を表す。
式(II−II)は、L. H. Tung著 Journal of Polymer Science, 36, 130 (1959) 287-294頁に記載の式を用いた。
エチレン−α−オレフィン共重合体の相対粘度(ηrel)は、熱劣化防止剤としてブチルヒドロキシトルエン(BHT)を0.5重量%含むテトラリン100mlに、オレフィン重合体100mgを135℃で溶解してサンプル溶液を調製し、ウベローデ型粘度計を用いて前記サンプル溶液と熱劣化防止剤としてBHTを0.5重量%のみを含むテトラリンからなるブランク溶液との降下時間から算出される。
式(II−III)中のAについては、短鎖分岐の分岐炭素数をn(例えばα−オレフィンとしてブテンを用いた場合はn=2、ヘキセンを用いた場合はn=4)とし、NMRないしは赤外分光より求められる炭素数1000個あたりの短鎖分岐数をyとした時、
A=((12×n+2n+1)×y)/((1000−2y−2)×14+(y+2)×15+y×13)
として見積もった。
A=((12×n+2n+1)×y)/((1000−2y−2)×14+(y+2)×15+y×13)
として見積もった。
g*は、長鎖分岐に起因する、溶液中での分子の収縮度を表す指標であり、分子鎖あたりの長鎖分岐を含有する量が多ければ分子鎖の収縮は大きくなり、g*は小さくなる。エチレン−α−オレフィン共重合体のg*は、押し出し負荷を低減させる観点から、好ましくは0.95以下であり、より好ましくは0.85以下である。g*が大きい場合、長鎖分岐が十分に含まれていないため、十分に押し出し負荷を低減できない。また、エチレン−α−オレフィン共重合体のg*は、積層体の機械強度向上と共重合体の緩和時間を短くする観点から、好ましくは0.76以上である。g*が小さすぎると、結晶を形成したときの分子鎖の広がりが小さすぎるため、タイ分子の生成確率が落ち、強度が低下する他、長鎖分岐構造に起因して分子鎖の緩和時間が長くなりすぎ、積層体の外観が悪化する。g*は、例えば予備重合を実施することで制御しうる。
本発明のエチレン−α−オレフィン共重合体の流動の活性化エネルギー(以下、「Ea」と記載することがある。)は、成形加工時の押出負荷をより低減する観点から、好ましくは35kJ/mol以上であり、より好ましくは42kJ/mol以上で、更に好ましくは50kJ/mol以上で、更により好ましくは60kJ/mol以上ある。また、流動の活性化エネルギーは、押出成形時の引き取り性を高める観点からは、好ましくは150kJ/mol以下であり、より好ましくは130kJ/mol以下であり、更に好ましくは110kJ/mol以下であり、更により好ましくは100kJ/mol以下であり、最も好ましくは80kJ/mol以下である。また、流動の活性化エネルギーは、後述する製造方法において、例えば、遷移金属化合物(A1)と遷移金属化合物(A2)との使用割合により変更することができ、遷移金属化合物(A2)の使用割合を高くすると、エチレン−α−オレフィン共重合体のEaが大きくなりうる。また、後述する製造方法において、有機アルミニウム化合物(C)と遷移金属化合物((A1)と(A2)の和)のモル比を変えることでも、流動の活性化エネルギーの値を制御しうる。
流動の活性化エネルギー(Ea)は、温度−時間重ね合わせ原理に基づいて、190℃での溶融複素粘度(単位はPa・secである。)の角周波数(単位:rad/sec)依存性を示すマスターカーブを作成する際のシフトファクター(aT)からアレニウス型方程式により算出される数値であって、以下に示す方法で求められる値である。すなわち、130℃、150℃、170℃および190℃夫々の温度(T、単位:℃)におけるエチレン−α−オレフィン共重合体の溶融複素粘度−角周波数曲線(溶融複素粘度の単位はPa・sec、角周波数の単位はrad/secである。)を、温度−時間重ね合わせ原理に基づいて、各温度(T)での溶融複素粘度−角周波数曲線毎に、190℃でのエチレン系共重合体の溶融複素粘度−角周波数曲線に重ね合わせた際に得られる各温度(T)でのシフトファクター(aT)を求め、夫々の温度(T)と、各温度(T)でのシフトファクター(aT)とから、最小自乗法により[ln(aT)]と[1/(T+273.16)]との一次近似式(下記(III)式)を算出する。次に、該一次式の傾きmと下記式(IV)とからEaを求める。
ln(aT) = m(1/(T+273.16))+n (III)
Ea = |0.008314×m| (IV)
aT :シフトファクター
Ea:流動の活性化エネルギー(単位:kJ/mol)
T :温度(単位:℃)
上記計算は、市販の計算ソフトウェアを用いてもよく、該計算ソフトウェアとしては、Rheometrics社製 Rhios V.4.4.4などがあげられる。
なお、シフトファクター(aT)は、夫々の温度(T)における溶融複素粘度−角周波数の両対数曲線を、log(Y)=−log(X)軸方向に移動させて(但し、Y軸を溶融複素粘度、X軸を角周波数とする。)、190℃での溶融複素粘度−角周波数曲線に重ね合わせた際の移動量であり、該重ね合わせでは、夫々の温度(T)における溶融複素粘度−角周波数の両対数曲線は、各曲線ごとに、角周波数をaT倍に、溶融複素粘度を1/aT倍に移動させる。また、130℃、150℃、170℃および190℃の4点の値から(I)式を最小自乗法で求めるときの相関係数は、通常、0.99以上である。
ln(aT) = m(1/(T+273.16))+n (III)
Ea = |0.008314×m| (IV)
aT :シフトファクター
Ea:流動の活性化エネルギー(単位:kJ/mol)
T :温度(単位:℃)
上記計算は、市販の計算ソフトウェアを用いてもよく、該計算ソフトウェアとしては、Rheometrics社製 Rhios V.4.4.4などがあげられる。
なお、シフトファクター(aT)は、夫々の温度(T)における溶融複素粘度−角周波数の両対数曲線を、log(Y)=−log(X)軸方向に移動させて(但し、Y軸を溶融複素粘度、X軸を角周波数とする。)、190℃での溶融複素粘度−角周波数曲線に重ね合わせた際の移動量であり、該重ね合わせでは、夫々の温度(T)における溶融複素粘度−角周波数の両対数曲線は、各曲線ごとに、角周波数をaT倍に、溶融複素粘度を1/aT倍に移動させる。また、130℃、150℃、170℃および190℃の4点の値から(I)式を最小自乗法で求めるときの相関係数は、通常、0.99以上である。
溶融複素粘度−角周波数曲線の測定は、粘弾性測定装置(例えば、Rheometrics社製Rheometrics Mechanical Spectrometer RMS−800など。)を用い、通常、ジオメトリー:パラレルプレート、プレート直径:25mm、プレート間隔:1.5〜2mm、ストレイン:5%、角周波数:0.1〜100rad/秒の条件で行われる。なお、測定は窒素雰囲気下で行われ、また、測定試料には予め酸化防止剤を適量(例えば1000ppm。)を配合することが好ましい。
本発明のエチレン−α−オレフィン共重合体は、以下の式を満たすことが好ましい。
CXS≦1.8×10-8×MFR0.42×d-216+5
上記式中、CXSとは冷キシレン可溶部であり、米国のCode of federal regulations,Foodand Drugs Administrationの§175.1520に規定された方法に従い分析が可能である。樹脂中のCXS量が上記式を満たさない(多い)場合、フィルム成形時の揮発成分量が多く清浄性が悪くなり、またフィルム同士が張り付く、ブロッキング現象が起きることがある。なお、下限については0以上である。一般的に樹脂の有機溶媒可溶成分量は、MFRと密度と相関関係にあり、MFRが高ければ、また密度が低ければCXSは増加傾向にある。例えば、『メタロセン触媒と次世代ポリマーの展望』(シーエムシー出版 1993年8月20日発行)には、一般的なエチレン系重合体における、室温n−デカン可溶部量とエチレン系共重合体の密度との関係が示されている。この文献から、有機溶媒可溶成分量と密度の間に指数関数的な相関関係が確認され、有機溶媒可溶成分量を密度の指数関数で表すことが可能であることを示している。上記式は、CXSと密度間の関係に、さらにMFRの影響を考慮し、実施例のデータの回帰により求めた。CXSの範囲として、好ましくは
CXS≦1.8×10-8×MFR0.42×d-216+3 であり、さらに好ましくは
CXS≦1.8×10-8×MFR0.42×d-216+2 である。
CXS≦1.8×10-8×MFR0.42×d-216+5
上記式中、CXSとは冷キシレン可溶部であり、米国のCode of federal regulations,Foodand Drugs Administrationの§175.1520に規定された方法に従い分析が可能である。樹脂中のCXS量が上記式を満たさない(多い)場合、フィルム成形時の揮発成分量が多く清浄性が悪くなり、またフィルム同士が張り付く、ブロッキング現象が起きることがある。なお、下限については0以上である。一般的に樹脂の有機溶媒可溶成分量は、MFRと密度と相関関係にあり、MFRが高ければ、また密度が低ければCXSは増加傾向にある。例えば、『メタロセン触媒と次世代ポリマーの展望』(シーエムシー出版 1993年8月20日発行)には、一般的なエチレン系重合体における、室温n−デカン可溶部量とエチレン系共重合体の密度との関係が示されている。この文献から、有機溶媒可溶成分量と密度の間に指数関数的な相関関係が確認され、有機溶媒可溶成分量を密度の指数関数で表すことが可能であることを示している。上記式は、CXSと密度間の関係に、さらにMFRの影響を考慮し、実施例のデータの回帰により求めた。CXSの範囲として、好ましくは
CXS≦1.8×10-8×MFR0.42×d-216+3 であり、さらに好ましくは
CXS≦1.8×10-8×MFR0.42×d-216+2 である。
本発明のエチレン−α−オレフィン共重合体の製造方法としては、下記一般式(1)で表される遷移金属化合物(A1)と、下記一般式(3)で表される遷移金属化合物(A2)と、後述の助触媒成分(B)とを接触させて形成される重合用触媒であって、遷移金属化合物(A1)と遷移金属化合物(A2)とのモル比((A1)/(A2))を1〜60で、接触させる重合用触媒の存在下、エチレンと炭素数3〜20のα−オレフィンとを共重合する方法をあげることができる。(A1)/(A2)は、溶融状態におけるエチレン−α−オレフィン共重合体の分子鎖の緩和時間を短く、かつ機械強度を高める観点から、好ましくは2以上であり、、より好ましくは5以上であり、更に好ましくは10以上である。また、(A1)/(A2)は、SRを高める観点から、好ましくは、30以下である。
[式中、M1は元素周期律表の第4族の遷移金属原子を表し、X1およびR1は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1〜20の置換されていてもよいハイドロカルビル基、炭素数1〜20の置換されていてもよいハイドロカルビルオキシ基、炭素数1〜20の置換シリル基または炭素数1〜20の置換アミノ基であり、複数のX1は互いに同じであっても異なっていてもよく、複数のR1は互いに同じであっても異なっていてもよく、Q1は下記一般式(2)で表される架橋基を表す。
(式中、mは1〜5の整数であり、J1は元素周期律表の第14族の原子を表し、R2は、水素原子、ハロゲン原子、炭素数1〜20の置換されていてもよいハイドロカルビル基、炭素数1〜20の置換されていてもよいハイドロカルビルオキシ基、炭素数1〜20の置換シリル基または炭素数1〜20の置換アミノ基であり、複数のR2は互いに同じであっても異なっていてもよい。)]
[式中、M2は元素周期律表の第4族の遷移金属原子を表し、X2、R3およびR4は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1〜20の置換されていてもよいハイドロカルビル基、炭素数1〜20の置換されていてもよいハイドロカルビルオキシ基、炭素数1〜20の置換シリル基または炭素数1〜20の置換アミノ基であり、複数のX2は互いに同じであっても異なっていてもよく、複数のR3は互いに同じであっても異なっていてもよく、複数のR4は互いに同じであっても異なっていてもよく、Q2は、下記一般式(4)で表される架橋基を表す。
(式中、nは1〜5の整数であり、J2は元素周期律表の第14族の原子を表し、R5は、水素原子、ハロゲン原子、炭素数1〜20の置換されていてもよいハイドロカルビル基、炭素数1〜20の置換されていてもよいハイドロカルビルオキシ基、炭素数1〜20の置換シリル基または炭素数1〜20の置換アミノ基であり、複数のR5は互いに同じであっても異なっていてもよい。)]
一般式(1)のM1および一般式(3)のM2は、元素周期律表の第4族の遷移金属原子を表し、例えば、チタン原子、ジルコニウム原子、ハフニウム原子などがあげられる。
一般式(1)のX1、R1、一般式(3)のX2、R3、R4は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1〜20の置換されていてもよいハイドロカルビル基、炭素数1〜20の置換されていてもよいハイドロカルビルオキシ基、炭素数1〜20の置換シリル基または炭素数1〜20の置換アミノ基であり、複数のX1は互いに同じであっても異なっていてもよく、複数のR1は互いに同じであっても異なっていてもよく、複数のX2は互いに同じであっても異なっていてもよく、複数のR3は互いに同じであっても異なっていてもよく、複数のR4は互いに同じであっても異なっていてもよい。
X1、R1、X2、R3およびR4のハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子などがあげられる。
X1、R1、X2、R3およびR4の炭素数1〜20の置換されていてもよいハイドロカルビル基としては、炭素数1〜20のアルキル基、炭素数1〜20のハロゲン化アルキル基、炭素数7〜20のアラルキル基、炭素数6〜20のアリール基などがあげられる。
炭素数1〜20のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、ネオペンチル基、イソペンチル基、n−ヘキシル基、n−へプチル基、n−オクチル基、n−デシル基、n−ノニル基、n−デシル基、n−ドデシル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−ペンタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基、n−ノナデシル基、n−エイコシル基などがあげられる。
炭素数1〜20のハロゲン化アルキル基としては、例えば、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、クロロメチル基、ジクロロメチル基、トリクロロメチル基、ブロモメチル基、ジブロモメチル基、トリブロモメチル基、ヨードメチル基、ジヨードメチル基、トリヨードメチル基、フルオロエチル基、ジフルオロエチル基、トリフルオロエチル基、テトラフルオロエチル基、ペンタフルオロエチル基、クロロエチル基、ジクロロエチル基、トリクロロエチル基、テトラクロロエチル基、ペンタクロロエチル基、ブロモエチル基、ジブロモエチル基、トリブロモエチル基、テトラブロモエチル基、ペンタブロモエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基、パーフルオロオクチル基、パーフルオロドデシル基、パーフルオロペンタデシル基、パーフルオロエイコシル基、パークロロプロピル基、パークロロブチル基、パークロロペンチル基、パークロロヘキシル基、パークロロオクチル基、パークロロドデシル基、パークロロペンタデシル基、パークロロエイコシル基、パーブロモプロピル基、パーブロモブチル基、パーブロモペンチル基、パーブロモヘキシル基、パーブロモオクチル基、パーブロモドデシル基、パーブロモペンタデシル基、パーブロモエイコシル基などがあげられる。
炭素数7〜20のアラルキル基としては、例えば、ベンジル基、(2−メチルフェニル)メチル基、(3−メチルフェニル)メチル基、(4−メチルフェニル)メチル基、(2,3−ジメチルフェニル)メチル基、(2,4−ジメチルフェニル)メチル基、(2,5−ジメチルフェニル)メチル基、(2,6−ジメチルフェニル)メチル基、(3,4−ジメチルフェニル)メチル基、(4,6−ジメチルフェニル)メチル基、(2,3,4−トリメチルフェニル)メチル基、(2,3,5−トリメチルフェニル)メチル基、(2,3,6−トリメチルフェニル)メチル基、(3,4,5−トリメチルフェニル)メチル基、(2,4,6−トリメチルフェニル)メチル基、(2,3,4,5−テトラメチルフェニル)メチル基、(2,3,4,6−テトラメチルフェニル)メチル基、(2,3,5,6−テトラメチルフェニル)メチル基、(ペンタメチルフェニル)メチル基、(エチルフェニル)メチル基、(n−プロピルフェニル)メチル基、(イソプロピルフェニル)メチル基、(n−ブチルフェニル)メチル基、(sec−ブチルフェニル)メチル基、(tert−ブチルフェニル)メチル基、(n−ペンチルフェニル)メチル基、(ネオペンチルフェニル)メチル基、(n−ヘキシルフェニル)メチル基、(n−オクチルフェニル)メチル基、(n−デシルフェニル)メチル基、(n−デシルフェニル)メチル基、(n−テトラデシルフェニル)メチル基、ナフチルメチル基、アントラセニルメチル基、フェニルエチル基、フェニルプロピル基、フェニルブチル基、ジフェニルメチル基、ジフェニルエチル基、ジフェニルプロピル基、ジフェニルブチル基などがあげられる。また、これらのアラルキル基がフッ素原子、塩素原子、臭素原子またはヨウ素原子などのハロゲン原子で置換されたハロゲン化アラルキル基などがあげられる。
炭素数6〜20のアリール基としては、例えば、フェニル基、2−トリル基、3−トリル基、4−トリル基、2,3−キシリル基、2,4−キシリル基、2,5−キシリル基、2,6−キシリル基、3,4−キシリル基、3,5−キシリル基、2,3,4−トリメチルフェニル基、2,3,5−トリメチルフェニル基、2,3,6−トリメチルフェニル基、2,4,6−トリメチルフェニル基、3,4,5−トリメチルフェニル基、2,3,4,5−テトラメチルフェニル基、2,3,4,6−テトラメチルフェニル基、2,3,5,6−テトラメチルフェニル基、ペンタメチルフェニル基、エチルフェニル基、ジエチルフェニル基、トリエチルフェニル基、n−プロピルフェニル基、イソプロピルフェニル基、n−ブチルフェニル基、sec−ブチルフェニル基、tert−ブチルフェニル基、n−ペンチルフェニル基、ネオペンチルフェニル基、n−ヘキシルフェニル基、n−オクチルフェニル基、n−デシルフェニル基、n−ドデシルフェニル基、n−テトラデシルフェニル基、ナフチル基、アントラセニル基などがあげられる。また、これらのアリール基がフッ素原子、塩素原子、臭素原子またはヨウ素原子などのハロゲン原子で置換されたハロゲン化アリール基などがあげられる。
また、炭素数1〜20の置換されていてもよいハイドロカルビル基としては、置換シリル基で置換されたハイドロカルビル基、置換アミノ基で置換されたハイドロカルビル基、ハイドロカルビルオキシ基で置換されたハイドロカルビル基などがあげられる。
置換シリル基で置換されたハイドロカルビル基としては、トリメチルシリルメチル基、トリメチルシリルエチル基、トリメチルシリルプロピル基、トリメチルシリルブチル基、トリメチルシリルフェニル基、ビス(トリメチルシリル)メチル基、ビス(トリメチルシリル)エチル基、ビス(トリメチルシリル)プロピル基、ビス(トリメチルシリル)ブチル基、ビス(トリメチルシリル)フェニル基、トリフェニルシリルメチル基などがあげられる。
置換アミノ基で置換されたハイドロカルビル基としては、ジメチルアミノメチル基、ジメチルアミノエチル基、ジメチルアミノプロピル基、ジメチルアミノブチル基、ジメチルアミノフェニル基、ビス(ジメチルアミノ)メチル基、ビス(ジメチルアミノ)エチル基、ビス(ジメチルアミノ)プロピル基、ビス(ジメチルアミノ)ブチル基、ビス(ジメチルアミノ)フェニル基、フェニルアミノメチル基、ジフェニルアミノメチル基、ジフェニルアミノフェニル基などがあげられる。
ハイドロカルビルオキシ基で置換されたハイドロカルビル基としては、メトキシメチル基、エトキシメチル基、n−プロポキシメチル基、イソプロポキシメチル基、n−ブトキシメチル基、sec−ブトキシメチル基、tert−ブトキシメチル基、フェノキシメチル基、メトキシエチル基、エトキシエチル基、n−プロポキシエチル基、イソプロポキシエチル基、n−ブトキシエチル基、sec−ブトキシエチル基、tert−ブトキシエチル基、フェノキシエチル基、メトキシ−n−プロピル基、エトキシ−n−プロピル基、n−プロポキシ−n−プロピル基、イソプロポキシ−n−プロピル基、n−ブトキシ−n−プロピル基、sec−ブトキシ−n−プロピル基、tert−ブトキシ−n−プロピル基、フェノキシ−n−プロピル基、メトキシイソプロピル基、エトキシイソプロピル基、n−プロポキシイソプロピル基、イソプロポキシイソプロピル基、n−ブトキシイソプロピル基、sec−ブトキシイソプロピル基、tert−ブトキシイソプロピル基、フェノキシイソプロピル基、メトキシフェニル基、エトキシフェニル基、n−プロポキシフェニル基、イソプロポキシフェニル基、n−ブトキシフェニル基、sec−ブトキシフェニル基、tert−ブトキシフェニル基、フェノキシフェニル基などがあげられる。
X1、R1、X2、R3およびR4の炭素数1〜20の置換されていてもよいハイドロカルビルオキシ基としては、炭素数1〜20のアルコキシ基、炭素数7〜20のアラルキルオキシ基、炭素数6〜20のアリールオキシ基などがあげられる。
炭素数1〜20のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、sec−ブトキシ基、tert−ブトキシ基、n−ペンチルオキシ基、ネオペンチルオキシ基、n−ヘキシルオキシ基、n−オクチルオキシ基、n−ノニルオキシ基、n−デシルオキシ基、n−ウンデシルオキシ基、n−ドデシルオキシ基、n−トリデシルオキシ基、n−テトラデシルオキシ基、n−ペンタデシルオキシ基、n−ヘキサデシルオキシ基、n−ヘプタデシルオキシ基、n−ヘプタデシルオキシ基、n−オクタデシルオキシ基、n−ノナデシルオキシ基、n−エイコソキシ基などがあげられる。また、これらのアルコキシ基が、フッ素原子、塩素原子、臭素原子またはヨウ素原子などのハロゲン原子で置換されたハロゲン化アルコキシ基などがあげられる。
炭素数7〜20のアラルキルオキシ基としては、例えば、ベンジルオキシ基、(2−メチルフェニル)メトキシ基、(3−メチルフェニル)メトキシ基、(4−メチルフェニル)メトキシ基、(2,3−ジメチルフェニル)メトキシ基、(2,4−ジメチルフェニル)メトキシ基、(2,5−ジメチルフェニル)メトキシ基、(2,6−ジメチルフェニル)メトキシ基、(3,4−ジメチルフェニル)メトキシ基、(3,5−ジメチルフェニル)メトキシ基、(2,3,4−トリメチルフェニル)メトキシ基、(2,3,5−トリメチルフェニル)メトキシ基、(2,3,6−トリメチルフェニル)メトキシ基、(2,4,5−トリメチルフェニル)メトキシ基、(2,4,6−トリメチルフェニル)メトキシ基、(3,4,5−トリメチルフェニル)メトキシ基、(2,3,4,5−テトラメチルフェニル)メトキシ基、(2,3,4,6−テトラメチルフェニル)メトキシ基、(2,3,5,6−テトラメチルフェニル)メトキシ基、(ペンタメチルフェニル)メトキシ基、(エチルフェニル)メトキシ基、(n−プロピルフェニル)メトキシ基、(イソプロピルフェニル)メトキシ基、(n−ブチルフェニル)メトキシ基、(sec−ブチルフェニル)メトキシ基、(tert−ブチルフェニル)メトキシ基、(n−ヘキシルフェニル)メトキシ基、(n−オクチルフェニル)メトキシ基、(n−デシルフェニル)メトキシ基、(n−テトラデシルフェニル)メトキシ基、ナフチルメトキシ基、アントラセニルメトキシ基などがあげられる。また、これらのアラルキルオキシ基がフッ素原子、塩素原子、臭素原子またはヨウ素原子などのハロゲン原子で置換されたハロゲン化アラルキルオキシ基などがあげられる。
炭素数6〜20のアリールオキシ基としては、例えば、フェノキシ基、2−メチルフェノキシ基、3−メチルフェノキシ基、4−メチルフェノキシ基、2,3−ジメチルフェノキシ基、2,4−ジメチルフェノキシ基、2,5−ジメチルフェノキシ基、2,6−ジメチルフェノキシ基、3,4−ジメチルフェノキシ基、3,5−ジメチルフェノキシ基、2,3,4−トリメチルフェノキシ基、2,3,5−トリメチルフェノキシ基、2,3,6−トリメチルフェノキシ基、2,4,5−トリメチルフェノキシ基、2,4,6−トリメチルフェノキシ基、3,4,5−トリメチルフェノキシ基、2,3,4,5−テトラメチルフェノキシ基、2,3,4,6−テトラメチルフェノキシ基、2,3,5,6−テトラメチルフェノキシ基、ペンタメチルフェノキシ基、エチルフェノキシ基、n−プロピルフェノキシ基、イソプロピルフェノキシ基、n−ブチルフェノキシ基、sec−ブチルフェノキシ基、tert−ブチルフェノキシ基、n−ヘキシルフェノキシ基、n−オクチルフェノキシ基、n−デシルフェノキシ基、n−テトラデシルフェノキシ基、ナフトキシ基、アントラセノキシ基などがあげられる。また、これらのアリールオキシ基がフッ素原子、塩素原子、臭素原子またはヨウ素原子などのハロゲン原子で置換されたハロゲン化アリールオキシ基などがあげられる。
X1、R1、X2、R3およびR4の炭素数1〜20の置換シリル基としては、アルキル基、アリール基などのハイドロカルビル基で置換されたシリル基をあげることできる。具体的には、例えば、メチルシリル基、エチルシリル基、n−プロピルシリル基、イソプロピルシリル基、n−ブチルシリル基、sec−ブチルシリル基、tert−ブチルシリル基、イソブチルシリル基、n−ペンチルシリル基、n−ヘキシルシリル基、フェニルシリル基などの1置換シリル基;ジメチルシリル基、ジエチルシリル基、ジ−n−プロピルシリル基、ジイソプロピルシリル基、ジ−n−ブチルシリル基、ジ−sec−ブチルシリル基、ジ−tert−ブチルシリル基、ジイソブチルシリル基、ジフェニルシリル基などの2置換シリル基;トリメチルシリル基、トリエチルシリル基、トリ−n−プロピルシリル基、トリイソプロピルシリル基、トリ−n−ブチルシリル基、トリ−sec−ブチルシリル基、トリ−tert−ブチルシリル基、トリイソブチルシリル基、tert−ブチル−ジメチルシリル基、トリ−n−ペンチルシリル基、トリ−n−ヘキシルシリル基、トリシクロヘキシルシリル基、トリフェニルシリル基などの3置換シリル基などがあげられる。
X1、R1、X2、R3およびR4の炭素数1〜20の置換アミノ基としては、例えば、アルキル基、アリール基などのハイドロカルビル基2つで置換されたアミノ基をあげることできる。具体的には、例えば、メチルアミノ基、エチルアミノ基、n−プロピルアミノ基、イソプロピルアミノ基、n−ブチルアミノ基、sec−ブチルアミノ基、tert−ブチルアミノ基、イソブチルアミノ基、n−ヘキシルアミノ基、n−オクチルアミノ基、n−デシルアミノ基、フェニルアミノ基、ベンジルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジ−n−プロピルアミノ基、ジイソプロピルアミノ基、ジ−n−ブチルアミノ基、ジ−sec−ブチルアミノ基、ジ−tert−ブチルアミノ基、ジ−イソブチルアミノ基、tert−ブチルイソプロピルアミノ基、ジ−n−ヘキシルアミノ基、ジ−n−オクチルアミノ基、ジ−n−デシルアミノ基、ジフェニルアミノ基、ジベンジルアミノ基、tert−ブチルイソプロピルアミノ基、フェニルエチルアミノ基、フェニルプロピルアミノ基、フェニルブチルアミノ基、ピロリル基、ピロリジニル基、ピペリジニル基、カルバゾリル基、ジヒドロイソインドリル基などがあげられる。
X1として好ましくは、塩素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、トリフルオロメトキシ基、フェニル基、フェノキシ基、2,6−ジ−tert−ブチルフェノキシ基、3,4,5−トリフルオロフェノキシ基、ペンタフルオロフェノキシ基、2,3,5,6−テトラフルオロ−4−ペンタフルオロフェニルフェノキシ基、ベンジル基である。
R1として好ましくは、水素原子、炭素数1〜6のアルキル基であり、より好ましくは、水素原子、炭素数1〜4のアルキル基であり、更に好ましくは水素原子である。
X2として好ましくは、塩素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、トリフルオロメトキシ基、フェニル基、フェノキシ基、2,6−ジ−tert−ブチルフェノキシ基、3,4,5−トリフルオロフェノキシ基、ペンタフルオロフェノキシ基、2,3,5,6−テトラフルオロ−4−ペンタフルオロフェニルフェノキシ基、ベンジル基である。
R3として好ましくは、水素原子、炭素数1〜6のアルキル基であり、より好ましくは、水素原子、炭素数1〜4のアルキル基であり、更に好ましくは水素原子である。
R4として好ましくは、水素原子、炭素数1〜6のアルキル基であり、より好ましくは、水素原子、炭素数1〜4のアルキル基であり、更に好ましくは水素原子である。
一般式(1)のQ1は一般式(2)で表される架橋基を表し、一般式(3)のQ2は一般式(4)で表される架橋基を表す。
一般式(2)のmおよび一般式(4)のnは1〜5の整数である。mとして好ましくは、1〜2であり、nとして好ましくは、1〜2である。
一般式(2)のJ1および一般式(4)のJ2は、元素周期律表の第14族の遷移金属原子を表し、炭素原子、ケイ素原子、ゲルマニウム原子などがあげられる。好ましくは、炭素原子またはケイ素原子である。
一般式(2)のR2、一般式(4)のR5は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1〜20の置換されていてもよいハイドロカルビル基、炭素数1〜20の置換されていてもよいハイドロカルビルオキシ基、炭素数1〜20の置換シリル基または炭素数1〜20の置換アミノ基であり、複数のR2は互いに同じであっても異なっていてもよく、複数のR5は互いに同じであっても異なっていてもよい。
R2およびR5のハロゲン原子、炭素数1〜20の置換されていてもよいハイドロカルビル基、炭素数1〜20の置換されていてもよいハイドロカルビルオキシ基、炭素数1〜20の置換シリル基および炭素数1〜20の置換アミノ基としては、X1、R1、X2、R3およびR4のハロゲン原子、炭素数1〜20の置換されていてもよいハイドロカルビル基、炭素数1〜20の置換されていてもよいハイドロカルビルオキシ基、炭素数1〜20の置換シリル基および炭素数1〜20の置換アミノ基として例示したものをあげることができる。
Q1およびQ2としては、メチレン基、エチリデン基、エチレン基、プロピリデン基、プロピレン基、ブチリデン基、ブチレン基、ペンチリデン基、ペンチレン基、ヘキシリデン基、イソプロピリデン基、メチルエチルメチレン基、メチルプロピルメチレン基、メチルブチルメチレン基、ビス(シクロヘキシル)メチレン基、メチルフェニルメチレン基、ジフェニルメチレン基、フェニル(メチルフェニル)メチレン基、ジ(メチルフェニル)メチレン基、ビス(ジメチルフェニル)メチレン基、ビス(トリメチルフェニル)メチレン基、フェニル(エチルフェニル)メチレン基、ジ(エチルフェニル)メチレン基、ビス(ジエチルフェニル)メチレン基、フェニル(プロピルフェニル)メチレン基、ジ(プロピルフェニル)メチレン基、ビス(ジプロピルフェニル)メチレン基、フェニル(ブチルフェニル)メチレン基、ジ(ブチルフェニル)メチレン基、フェニル(ナフチル)メチレン基、ジ(ナフチル)メチレン基、フェニル(ビフェニル)メチレン基、ジ(ビフェニル)メチレン基、フェニル(トリメチルシリルフェニル)メチレン基、ビス(トリメチルシリルフェニル)メチレン基、ビス(ペンタフルオロフェニル)メチレン基、
シランジイル基、ジシランジイル基、トリシランジイル基、テトラシランジイル基、ジメチルシランジイル基、ビス(ジメチルシラン)ジイル基、ジエチルシランジイル基、ジプロピルシランジイル基、ジブチルシランジイル基、ジフェニルシランジイル基、シラシクロブタンジイル基、シラシクロヘキサンジイル基、ジビニルシランジイル基、ジアリルシランジイル基、(メチル)(ビニル)シランジイル基、(アリル)(メチル)シランジイル基等をあげることができる。
Q1として好ましくは、メチレン基、エチレン基、イソプロピリデン基、ビス(シクロヘキシル)メチレン基、ジフェニルメチレン基、ジメチルシランジイル基、ビス(ジメチルシラン)ジイル基であり、より好ましくは、エチレン基、ジメチルシランジイル基である。また、Q2として好ましくは、メチレン基、エチレン基、イソプロピリデン基、ビス(シクロヘキシル)メチレン基、ジフェニルメチレン基、ジメチルシランジイル基、ビス(ジメチルシラン)ジイル基であり、より好ましくは、ジフェニルメチレン基である。
一般式(1)で表される遷移金属化合物(A1)としては、M1をジルコニウム原子、X1を塩素原子としたものとして、メチレンビス(インデニル)ジルコニウムジクロリド、イソプロピリデンビス(インデニル)ジルコニウムジクロリド、(メチル)(フェニル)メチレンビス(インデニル)ジルコニウムジクロリド、ジフェニルメチレンビス(インデニル)ジルコニウムジクロリド、エチレンビス(インデニル)ジルコニウムジクロリド、
メチレンビス(メチルインデニル)ジルコニウムジクロリド、イソプロピリデンビス(メチルインデニル)ジルコニウムジクロリド、(メチル)(フェニル)メチレンビス(メチルインデニル)ジルコニウムジクロリド、ジフェニルメチレンビス(メチルインデニル)ジルコニウムジクロリド、エチレンビス(メチルインデニル)ジルコニウムジクロリド、
メチレン(インデニル)(メチルインデニル)ジルコニウムジクロリド、イソプロピリデン(インデニル)(メチルインデニル)ジルコニウムジクロリド、(メチル)(フェニル)メチレン(インデニル)(メチルインデニル)ジルコニウムジクロリド、ジフェニルメチレン(インデニル)(メチルインデニル)ジルコニウムジクロリド、エチレン(インデニル)(メチルインデニル)ジルコニウムジクロリド、
メチレンビス(2,4−ジメチルインデニル)ジルコニウムジクロリド、イソプロピリデンビス(2,4−ジメチルインデニル)ジルコニウムジクロリド、(メチル)(フェニル)メチレンビス(2,4−ジメチルインデニル)ジルコニウムジクロリド、ジフェニルメチレンビス(2,4−ジメチルインデニル)ジルコニウムジクロリド、エチレンビス(2,4−ジメチルインデニル)ジルコニウムジクロリド、
ジメチルシランジイルビス(インデニル)ジルコニウムジクロリド、ジエチルシランジイルビス(インデニル)ジルコニウムジクロリド、ジ(n−プロピル)シランジイルビス(インデニル)ジルコニウムジクロリド、ジイソプロピルシランジイルビス(インデニル)ジルコニウムジクロリド、ジシクロヘキシルシランジイルビス(インデニル)ジルコニウムジクロリド、ジフェニルシランジイルビス(インデニル)ジルコニウムジクロリド、ジ(p−トリル)シランジイルビス(インデニル)ジルコニウムジクロリド、ジビニルシランジイルビス(インデニル)ジルコニウムジクロリド、ジアリルシランジイルビス(インデニル)ジルコニウムジクロリド、(メチル)(ビニル)シランジイルビス(インデニル)ジルコニウムジクロリド、(アリル)(メチル)シランジイルビス(インデニル)ジルコニウムジクロリド、(エチル)(メチル)シランジイルビス(インデニル)ジルコニウムジクロリド、(メチル)(n−プロピル)シランジイルビス(インデニル)ジルコニウムジクロリド、(メチル)(イソプロピル)シランジイルビス(インデニル)ジルコニウムジクロリド、(シクロヘキシル)(メチル)ビス(インデニル)ジルコニウムジクロリド、(メチル)(フェニル)シランジイルビス(インデニル)ジルコニウムジクロリド、
ジメチルシランジイルビス(メチルインデニル)ジルコニウムジクロリド、ジエチルシランジイルビス(メチルインデニル)ジルコニウムジクロリド、ジ(n−プロピル)シランジイルビス(メチルインデニル)ジルコニウムジクロリド、ジイソプロピルシランジイルビス(メチルインデニル)ジルコニウムジクロリド、ジシクロヘキシルシランジイルビス(メチルインデニル)ジルコニウムジクロリド、ジフェニルシランジイルビス(メチルインデニル)ジルコニウムジクロリド、(エチル)(メチル)シランジイルビス(メチルインデニル)ジルコニウムジクロリド、(メチル)(n−プロピル)シランジイルビス(メチルインデニル)ジルコニウムジクロリド、(メチル)(イソプロピル)シランジイルビス(メチルインデニル)ジルコニウムジクロリド、(シクロヘキシル)(メチル)ビス(メチルインデニル)ジルコニウムジクロリド、(メチル)(フェニル)シランジイルビス(メチルインデニル)ジルコニウムジクロリド、
ジメチルシランジイル(インデニル)(メチルインデニル)ジルコニウムジクロリド、ジエチルシランジイル(インデニル)(メチルインデニル)ジルコニウムジクロリド、ジ(n−プロピル)シランジイル(インデニル)(メチルインデニル)ジルコニウムジクロリド、ジイソプロピルシランジイル(インデニル)(メチルインデニル)ジルコニウムジクロリド、ジシクロヘキシルシランジイル(インデニル)(メチルインデニル)ジルコニウムジクロリド、ジフェニルシランジイル(インデニル)(メチルインデニル)ジルコニウムジクロリド、(エチル)(メチル)シランジイル(インデニル)(メチルインデニル)ジルコニウムジクロリド、(メチル)(n−プロピル)シランジイル(インデニル)(メチルインデニル)ジルコニウムジクロリド、(メチル)(イソプロピル)シランジイル(インデニル)(メチルインデニル)ジルコニウムジクロリド、(シクロヘキシル)(メチル)(インデニル)(メチルインデニル)ジルコニウムジクロリド、(メチル)(フェニル)シランジイル(インデニル)(メチルインデニル)ジルコニウムジクロリド、
ジメチルシランジイルビス(2,4−ジメチルインデニル)ジルコニウムジクロリド、ジエチルシランジイルビス(2,4−ジメチルインデニル)ジルコニウムジクロリド、ジ(n−プロピル)シランジイルビス(2,4−ジメチルインデニル)ジルコニウムジクロリド、ジイソプロピルシランジイルビス(2,4−ジメチルインデニル)ジルコニウムジクロリド、ジシクロヘキシルシランジイルビス(2,4−ジメチルインデニル)ジルコニウムジクロリド、ジフェニルシランジイルビス(2,4−ジメチルインデニル)ジルコニウムジクロリド、(エチル)(メチル)シランジイルビス(2,4−ジメチルインデニル)ジルコニウムジクロリド、(メチル)(n−プロピル)シランジイルビス(2,4−ジメチルインデニル)ジルコニウムジクロリド、(メチル)(イソプロピル)シランジイルビス(2,4−ジメチルインデニル)ジルコニウムジクロリド、(シクロヘキシル)(メチル)ビス(2,4−ジメチルインデニル)ジルコニウムジクロリド、(メチル)(フェニル)シランジイルビス(2,4−ジメチルインデニル)ジルコニウムジクロリド等を例示することができる。
上記例示においてη5−インデニル基の置換体は、架橋基が1−位の場合、一置換体であれば、2−位、3−位、4−位、5−位、6−位および7−位の置換体を含み、架橋位が1−位以外でも同様に全ての組合せを含む。二置換体以上も同様に、置換基および架橋位の全ての組合せを含む。また、上記遷移金属化合物のX1のジクロリドをジフルオライド、ジブロマイド、ジアイオダイド、ジメチル、ジエチル、ジイソプロピル、ジメトキシド、ジエトキシド、ジプロポキシド、ジブトキシド、ビス(トリフルオロメトキシド)、ジフェニル、ジフェノキシド、ビス(2,6−ジ−tert−ブチルフェノキシド)、ビス(3,4,5−トリフルオロフェノキシド)、ビス(ペンタフルオロフェノキシド)、ビス(2,3,5,6−テトラフルオロ−4−ペンタフルオロフェニルフェノキシド)、ジベンジル等に変更した化合物を例示することができる。さらに、上記遷移金属化合物のM1のジルコニウムをチタンまたはハフニウムに変更した化合物を例示することができる。
一般式(1)で表される遷移金属化合物(A1)として好ましくは、エチレンビス(インデニル)ジルコニウムジフェノキシド、エチレンビス(インデニル)ジルコニウムジクロリド、ジメチルシリレンビス(インデニル)ジルコニウムジクロリドである。
一般式(3)で表される遷移金属化合物(A2)としては、M2をジルコニウム原子、X2を塩素原子とし、架橋基Q2をジフェニルメチレン基としたものとして、ジフェニルメチレン(1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、
ジフェニルメチレン(2−メチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−メチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジメチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジメチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジメチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリメチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリメチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリメチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラメチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、
ジフェニルメチレン(2−エチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−エチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジエチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジエチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジエチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリエチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリエチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリエチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラエチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、
ジフェニルメチレン(2−n−プロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−n−プロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジ−n−プロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジ−n−プロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジ−n−プロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリ−n−プロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリ−n−プロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリ−n−プロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラ−n−プロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、
ジフェニルメチレン(2−イソプロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−イソプロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジイソプロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジイソプロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジイソプロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリイソプロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリイソプロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリイソプロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトライソプロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、
ジフェニルメチレン(2−フェニル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−フェニル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジフェニル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジフェニル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジフェニル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリフェニル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリフェニル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリフェニル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラフェニル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、
ジフェニルメチレン(2−トリメチルシリル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−トリメチルシリル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ビス(トリメチルシリル)−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ビス(トリメチルシリル)−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ビス(トリメチルシリル)−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリス(トリメチルシリル)−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリス(トリメチルシリル)−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリス(トリメチルシリル)−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラキス(トリメチルシリル)−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、
ジフェニルメチレン(1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、
ジフェニルメチレン(2−メチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−メチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジメチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジメチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジメチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリメチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリメチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリメチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラメチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、
ジフェニルメチレン(2−エチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−エチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジエチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジエチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジエチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリエチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリエチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリエチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラエチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、
ジフェニルメチレン(2−n−プロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−n−プロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジ−n−プロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジ−n−プロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジ−n−プロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリ−n−プロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリ−n−プロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリ−n−プロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラ−n−プロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、
ジフェニルメチレン(2−イソプロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−イソプロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジイソプロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジイソプロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジイソプロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリイソプロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリイソプロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリイソプロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトライソプロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、
ジフェニルメチレン(2−フェニル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−フェニル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジフェニル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジフェニル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジフェニル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリフェニル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリフェニル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリフェニル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラフェニル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、
ジフェニルメチレン(2−トリメチルシリル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−トリメチルシリル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ビス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ビス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ビス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラキス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、
ジフェニルメチレン(1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、
ジフェニルメチレン(2−メチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−メチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジメチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジメチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジメチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリメチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリメチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリメチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラメチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、
ジフェニルメチレン(2−エチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−エチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジエチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジエチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジエチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリエチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリエチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリエチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラエチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、
ジフェニルメチレン(2−n−プロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−n−プロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジ−n−プロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジ−n−プロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジ−n−プロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリ−n−プロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリ−n−プロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリ−n−プロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラ−n−プロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、
ジフェニルメチレン(2−イソプロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−イソプロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジイソプロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジイソプロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジイソプロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリイソプロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリイソプロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリイソプロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトライソプロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、
ジフェニルメチレン(2−フェニル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−フェニル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジフェニル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジフェニル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジフェニル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリフェニル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリフェニル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリフェニル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラフェニル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、
ジフェニルメチレン(2−トリメチルシリル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−トリメチルシリル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ビス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ビス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ビス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラキス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、
ジフェニルメチレン(1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、
ジフェニルメチレン(2−メチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−メチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジメチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジメチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジメチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリメチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリメチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリメチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラメチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、
ジフェニルメチレン(2−エチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−エチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジエチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジエチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジエチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリエチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリエチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリエチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラエチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、
ジフェニルメチレン(2−n−プロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−n−プロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジ−n−プロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジ−n−プロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジ−n−プロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリ−n−プロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリ−n−プロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリ−n−プロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラ−n−プロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、
ジフェニルメチレン(2−イソプロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−イソプロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジイソプロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジイソプロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジイソプロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリイソプロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリイソプロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリイソプロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトライソプロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、
ジフェニルメチレン(2−フェニル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−フェニル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジフェニル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジフェニル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジフェニル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリフェニル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリフェニル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリフェニル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラフェニル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、
ジフェニルメチレン(2−トリメチルシリル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−トリメチルシリル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ビス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ビス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ビス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラキス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド等を例示することができる。
上記遷移金属化合物のX2のジクロリドを、ジフルオライド、ジブロマイド、ジアイオダイド、ジメチル、ジエチル、ジイソプロピル、ジメトキシド、ジエトキシド、ジプロポキシド、ジブトキシド、ビス(トリフルオロメトキシド)、ジフェニル、ジフェノキシド、ビス(2,6−ジ−tert−ブチルフェノキシド)、ビス(3,4,5−トリフルオロフェノキシド)、ビス(ペンタフルオロフェノキシド)、ビス(2,3,5,6−テトラフルオロ−4−ペンタフルオロフェニルフェノキシド)、ジベンジル等に変更した化合物を例示することができる。また、上記遷移金属化合物のQ2のジフェニルメチレン基を、メチレン基、エチレン基、イソプロピリデン基、メチルフェニルメチレン基、ジメチルシランジイル基、ジフェニルシランジイル基、シラシクロブタンジイル基、シラシクロヘキサンジイル基等に変更した化合物を例示することができる。さらに、上記遷移金属化合物のM2のジルコニウムをチタンまたはハフニウムに変更した化合物を例示することもできる。
一般式(3)で表される遷移金属化合物(A2)として好ましくは、ジフェニルメチレン(1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリドである。
本発明のエチレン−α−オレフィン共重合体の製造に用いられる重合用触媒の調製に使用される助触媒成分(B)としては、下記成分(b1)、下記成分(b2)、下記成分(b3)および下記成分(b4)を接触させて形成される固体触媒成分があげられる。
(b1):下記一般式(5)で表される化合物
M3Lx (5)
[式中、M3はリチウム原子、ナトリウム原子、カリウム原子、ルビジウム原子、セシウム原子、ベリリウム原子、マグネシウム原子、カルシウム原子、ストロンチウム原子、バリウム原子、亜鉛原子、ゲルマニウム原子、スズ原子、鉛原子、アンチモン原子またはビスマス原子を表し、xはM3の原子価に相当する数を表す。Lは水素原子、ハロゲン原子または置換されていてもよいハイドロカルビル基を表し、Lが複数存在する場合、それらは互いに同じであっても異なっていてもよい。]
(b2):下記一般式(6)で表される化合物
R6 t-1T1H (6)
[式中、T1は酸素原子、硫黄原子、窒素原子またはリン原子を表し、tはT1の原子価に相当する数を表す。R6はハロゲン原子、電子吸引性基、ハロゲン原子を含有する基または電子吸引性基を有する基を表し、R6が複数存在する場合、それらは互いに同じであっても異なっていてもよい。]
(b3):下記一般式(7)で表される化合物
R7 s-2T2H2 (7)
[式中、T2は酸素原子、硫黄原子、窒素原子またはリン原子を表し、sはT2の原子価に相当する数を表す。R7はハロゲン原子、ハイドロカルビル基またはハロゲン化ハイドロカルビル基を表す。]
(b4):粒子状担体
(b1):下記一般式(5)で表される化合物
M3Lx (5)
[式中、M3はリチウム原子、ナトリウム原子、カリウム原子、ルビジウム原子、セシウム原子、ベリリウム原子、マグネシウム原子、カルシウム原子、ストロンチウム原子、バリウム原子、亜鉛原子、ゲルマニウム原子、スズ原子、鉛原子、アンチモン原子またはビスマス原子を表し、xはM3の原子価に相当する数を表す。Lは水素原子、ハロゲン原子または置換されていてもよいハイドロカルビル基を表し、Lが複数存在する場合、それらは互いに同じであっても異なっていてもよい。]
(b2):下記一般式(6)で表される化合物
R6 t-1T1H (6)
[式中、T1は酸素原子、硫黄原子、窒素原子またはリン原子を表し、tはT1の原子価に相当する数を表す。R6はハロゲン原子、電子吸引性基、ハロゲン原子を含有する基または電子吸引性基を有する基を表し、R6が複数存在する場合、それらは互いに同じであっても異なっていてもよい。]
(b3):下記一般式(7)で表される化合物
R7 s-2T2H2 (7)
[式中、T2は酸素原子、硫黄原子、窒素原子またはリン原子を表し、sはT2の原子価に相当する数を表す。R7はハロゲン原子、ハイドロカルビル基またはハロゲン化ハイドロカルビル基を表す。]
(b4):粒子状担体
一般式(5)のM3は、リチウム原子、ナトリウム原子、カリウム原子、ルビジウム原子、セシウム原子、ベリリウム原子、マグネシウム原子、カルシウム原子、ストロンチウム原子、バリウム原子、亜鉛原子、ゲルマニウム原子、スズ原子、鉛原子、アンチモン原子またはビスマス原子である。好ましくは、マグネシウム原子、カルシウム原子、ストロンチウム原子、バリウム原子、亜鉛原子、ゲルマニウム原子、スズ原子またはビスマス原子であり、より好ましくは、マグネシウム原子、亜鉛原子、スズ原子またはビスマス原子であり、更に好ましくは亜鉛原子である。
一般式(5)のxはM3の原子価に相当する数を表す。例えば、M3が亜鉛原子の場合、xは2である。
一般式(5)のLは、水素原子、ハロゲン原子または置換されていてもよいハイドロカルビル基を表し、Lが複数存在する場合、それらは互いに同じであっても異なっていてもよい。
Lのハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子などがあげられる。
Lの置換されていてもよいハイドロカルビル基としては、アルキル基、アラルキル基、アリール基、ハロゲン化アルキル基などがあげられる。
Lのアルキル基としては、炭素数1〜20のアルキル基が好ましく、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、ネオペンチル基、イソペンチル基、n−ヘキシル基、n−へプチル基、n−オクチル基、n−デシル基、n−ノニル基、n−デシル基、n−ドデシル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−ペンタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基、n−ノナデシル基、n−エイコシル基などがあげられる。好ましくは、メチル基、エチル基、イソプロピル基、tert−ブチル基またはイソブチル基である。
Lのハロゲン化アルキル基としては、炭素数1〜20のハロゲン化アルキル基が好ましく、例えば、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、クロロメチル基、ジクロロメチル基、トリクロロメチル基、ブロモメチル基、ジブロモメチル基、トリブロモメチル基、ヨードメチル基、ジヨードメチル基、トリヨードメチル基、フルオロエチル基、ジフルオロエチル基、トリフルオロエチル基、テトラフルオロエチル基、ペンタフルオロエチル基、クロロエチル基、ジクロロエチル基、トリクロロエチル基、テトラクロロエチル基、ペンタクロロエチル基、ブロモエチル基、ジブロモエチル基、トリブロモエチル基、テトラブロモエチル基、ペンタブロモエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基、パーフルオロオクチル基、パーフルオロドデシル基、パーフルオロペンタデシル基、パーフルオロエイコシル基、パークロロプロピル基、パークロロブチル基、パークロロペンチル基、パークロロヘキシル基、パークロロオクチル基、パークロロドデシル基、パークロロペンタデシル基、パークロロエイコシル基、パーブロモプロピル基、パーブロモブチル基、パーブロモペンチル基、パーブロモヘキシル基、パーブロモオクチル基、パーブロモドデシル基、パーブロモペンタデシル基、パーブロモエイコシル基などがあげられる。
Lのアラルキル基としては、炭素数7〜20のアラルキル基が好ましく、例えば、ベンジル基、(2−メチルフェニル)メチル基、(3−メチルフェニル)メチル基、(4−メチルフェニル)メチル基、(2,3−ジメチルフェニル)メチル基、(2,4−ジメチルフェニル)メチル基、(2,5−ジメチルフェニル)メチル基、(2,6−ジメチルフェニル)メチル基、(3,4−ジメチルフェニル)メチル基、(4,6−ジメチルフェニル)メチル基、(2,3,4−トリメチルフェニル)メチル基、(2,3,5−トリメチルフェニル)メチル基、(2,3,6−トリメチルフェニル)メチル基、(3,4,5−トリメチルフェニル)メチル基、(2,4,6−トリメチルフェニル)メチル基、(2,3,4,5−テトラメチルフェニル)メチル基、(2,3,4,6−テトラメチルフェニル)メチル基、(2,3,5,6−テトラメチルフェニル)メチル基、(ペンタメチルフェニル)メチル基、(エチルフェニル)メチル基、(n−プロピルフェニル)メチル基、(イソプロピルフェニル)メチル基、(n−ブチルフェニル)メチル基、(sec−ブチルフェニル)メチル基、(tert−ブチルフェニル)メチル基、(n−ペンチルフェニル)メチル基、(ネオペンチルフェニル)メチル基、(n−ヘキシルフェニル)メチル基、(n−オクチルフェニル)メチル基、(n−デシルフェニル)メチル基、(n−デシルフェニル)メチル基、(n−テトラデシルフェニル)メチル基、ナフチルメチル基、アントラセニルメチル基、フェニルエチル基、フェニルプロピル基、フェニルブチル基、ジフェニルメチル基、ジフェニルエチル基、ジフェニルプロピル基、ジフェニルブチル基などがあげられる。好ましくは、ベンジル基である。また、これらのアラルキル基がフッ素原子、塩素原子、臭素原子またはヨウ素原子などのハロゲン原子で置換された炭素数7〜20のハロゲン化アラルキル基などがあげられる。
Lのアリール基としては、炭素数6〜20のアリール基が好ましく、例えば、フェニル基、2−トリル基、3−トリル基、4−トリル基、2,3−キシリル基、2,4−キシリル基、2,5−キシリル基、2,6−キシリル基、3,4−キシリル基、3,5−キシリル基、2,3,4−トリメチルフェニル基、2,3,5−トリメチルフェニル基、2,3,6−トリメチルフェニル基、2,4,6−トリメチルフェニル基、3,4,5−トリメチルフェニル基、2,3,4,5−テトラメチルフェニル基、2,3,4,6−テトラメチルフェニル基、2,3,5,6−テトラメチルフェニル基、ペンタメチルフェニル基、エチルフェニル基、ジエチルフェニル基、トリエチルフェニル基、n−プロピルフェニル基、イソプロピルフェニル基、n−ブチルフェニル基、sec−ブチルフェニル基、tert−ブチルフェニル基、n−ペンチルフェニル基、ネオペンチルフェニル基、n−ヘキシルフェニル基、n−オクチルフェニル基、n−デシルフェニル基、n−ドデシルフェニル基、n−テトラデシルフェニル基、ナフチル基、アントラセニル基などがあげられる。好ましくは、フェニル基である。また、これらのアリール基がフッ素原子、塩素原子、臭素原子またはヨウ素原子などのハロゲン原子で置換された炭素数6〜20のハロゲン化アリール基などがあげられる。
Lとして好ましくは、水素原子、アルキル基またはアリール基であり、より好ましくは、水素原子またはアルキル基であり、更に好ましくはアルキル基である。
一般式(6)のT1は、酸素原子、硫黄原子、窒素原子またはリン原子であり、好ましくは、窒素原子または酸素原子であり、より好ましくは酸素原子である。
一般式(6)のtは、T1の原子価を表し、T1が酸素原子または硫黄原子の場合、tは2であり、T1が窒素原子またはリン原子の場合、tは3である。
一般式(6)のR6は、ハロゲン原子、電子吸引性基、ハロゲン原子を含有する基、電子吸引性基を有する基を表し、電子吸引性基を含有する基または電子吸引性基を表し、R6が複数存在する場合、それらは互いに同じであっても異なっていてもよい。電子吸引性の指標としては、ハメット則の置換基定数σ等が知られており、ハメット則の置換基定数σが正である官能基が電子吸引性基としてあげられる。
R6のハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子などがあげられる。
R6の電子吸引性基としては、シアノ基、ニトロ基、カルボニル基、ハイドロカルビルオキシカルボニル基、スルホン基、フェニル基などがあげられる。
R6のハロゲン原子を含有する基としては、ハロゲン化アルキル基、ハロゲン化アラルキル基、ハロゲン化アリール基、(ハロゲン化アルキル)アリール基などのハロゲン化ハイドロカルビル基;ハロゲン化ハイドロカルビルオキシ基;ハロゲン化ハイドロカルビルオキシカルボニル基などがあげられる。また、R6の電子吸引性基を有する基としては、シアノ化アリール基などのシアノ化ハイドロカルビル基、ニトロ化アリール基などのニトロ化ハイドロカルビル基などがあげられる。
R6のハロゲン化アルキル基としては、フルオロメチル基、クロロメチル基、ブロモメチル基、ヨードメチル基、ジフルオロメチル基、ジクロロメチル基、ジブロモメチル基、ジヨードメチル基トリフルオロメチル基、トリクロロメチル基、トリブロモメチル基、トリヨードメチル基、2,2,2−トリフルオロエチル基、2,2,2−トリクロロエチル基、2,2,2−トリブロモエチル基、2,2,2−トリヨードエチル基、2,2,3,3,3−ペンタフルオロプロピル基、2,2,3,3,3−ペンタクロロプロピル基、2,2,3,3,3−ペンタブロモプロピル基、2,2,3,3,3−ペンタヨードプロピル基、2,2,2−トリフルオロ−1−トリフルオロメチルエチル基、2,2,2−トリクロロ−1−トリクロロメチルエチル基、2,2,2−トリブロモ−1−トリブロモメチルエチル基、2,2,2−トリヨード−1−トリヨードメチルエチル基、1,1−ビス(トリフルオロメチル)−2,2,2−トリフルオロエチル基 、1,1−ビス(トリクロロメチル)−2,2,2−トリクロロエチル基、1,1−ビス(トリブロモメチル)−2,2,2−トリブロモエチル基 、1,1−ビス(トリヨードメチル)−2,2,2−トリヨードエチル基などがあげられる。
R6のハロゲン化アリール基としては、2−フルオロフェニル基、3−フルオロフェニル基、4−フルオロフェニル基、2,4−ジフルオロフェニル基、2,6−ジフルオロフェニル基、3,4−ジフルオロフェニル基、3,5−ジフルオロフェニル基、2,4,6−トリフルオロフェニル基、3,4,5−トリフルオロフェニル基、2,3,5,6−テトラフルオロフェニル基、ペンタフルオロフェニル基、2,3,5,6−テトラフルオロ−4−トリフルオロメチルフェニル基、2,3,5,6−テトラフルオロ−4−ペンタフルオロフェニルフェニル基、パーフルオロ−1−ナフチル基、パーフルオロ−2−ナフチル基、2−クロロフェニル基、3−クロロフェニル基、4−クロロフェニル基、2,4−ジクロロフェニル基、2,6−ジクロロフェニル基、3,4−ジクロロフェニル基、3,5−ジクロロフェニル基、2,4,6−トリクロロフェニル基、3,4,5−トリクロロフェニル基、2,3,5,6−テトラクロロフェニル基、ペンタクロロフェニル基、2,3,5,6−テトラクロロ−4−トリクロロメチルフェニル基、2,3,5,6−テトラクロロ−4−ペンタクロロフェニルフェニル基、パークロロ−1−ナフチル基、パークロロ−2−ナフチル基、2−ブロモフェニル基、3−ブロモフェニル基、4−ブロモフェニル基、2,4−ジブロモフェニル基、2,6−ジブロモフェニル基、3,4−ジブロモフェニル基、3,5−ジブロモフェニル基、2,4,6−トリブロモフェニル基、3,4,5−トリブロモフェニル基、2,3,5,6−テトラブロモフェニル基、ペンタブロモフェニル基、2,3,5,6−テトラブロモ−4−トリブロモメチルフェニル基、2,3,5,6−テトラブロモ−4−ペンタブロモフェニルフェニル基、パーブロモ−1−ナフチル基、パーブロモ−2−ナフチル基、2−ヨードフェニル基、3−ヨードフェニル基、4−ヨードフェニル基、2,4−ジヨードフェニル基、2,6−ジヨードフェニル基、3,4−ジヨードフェニル基、3,5−ジヨードフェニル基、2,4,6−トリヨードフェニル基、3,4,5−トリヨードフェニル基、2,3,5,6−テトラヨードフェニル基、ペンタヨードフェニル基、2,3,5,6−テトラヨード−4−トリヨードメチルフェニル基、2,3,5,6−テトラヨード−4−ペンタヨードフェニルフェニル基、パーヨード−1−ナフチル基、パーヨード−2−ナフチル基などがあげられる。
R6の(ハロゲン化アルキル)アリール基としては、2−(トリフルオロメチル)フェニル基、3−(トリフルオロメチル)フェニル基、4−(トリフルオロメチル)フェニル基、2,6−ビス(トリフルオロメチル)フェニル基、3,5−ビス(トリフルオロメチル)フェニル基、2,4,6−トリス(トリフルオロメチル)フェニル基、3,4,5−トリス(トリフルオロメチル)フェニル基などがあげられる。
R6のシアノ化アリール基としては、2−シアノフェニル基、3−シアノフェニル基、4−シアノフェニル基などがあげられる。
R6のニトロ化アリール基としては、2−ニトロフェニル基、3−ニトロフェニル基、4−ニトロフェニル基などがあげられる。
R6のハイドロカルビルオキシカルボニル基としては、アルコキシカルボニル基、アラルキルオキシカルボニル基、アリールオキシカルボニル基などがあげられ、より具体的には、メトキシカルボニル基、エトキシカルボニル基、n−プロポキシカルボニル基、イソプロポキシカルボニル基、フェノキシカルボニル基などがあげられる。
R6のハロゲン化ハイドロカルビルオキシカルボニル基としては、ハロゲン化アルコキシカルボニル基、ハロゲン化アラルキルオキシカルボニル基、ハロゲン化アリールオキシカルボニル基などがあげられ、より具体的には、トリフルオロメトキシカルボニル基、ペンタフルオロフェノキシカルボニル基などがあげられる。
R6として好ましくは、ハロゲン化ハイドロカルビル基であり、より好ましくは、ハロゲン化アルキル基またはハロゲン化アリール基であり、さらに好ましくは、フッ素化アルキル基、フッ素化アリール基、塩素化アルキル基または塩素化アリール基であり、特に好ましくは、フッ素化アルキル基またはフッ素化アリール基である。フッ素化アルキル基として好ましくは、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2−トリフルオロエチル基、2,2,3,3,3−ペンタフルオロプロピル基、2,2,2−トリフルオロ−1−トリフルオロメチルエチル基または1,1−ビス(トリフルオロメチル)−2,2,2−トリフルオロエチル基であり、より好ましくは、トリフルオロメチル基、2,2,2−トリフルオロ−1−トリフルオロメチルエチル基または1,1−ビス(トリフルオロメチル)−2,2,2−トリフルオロエチル基である。フッ素化アリール基として好ましくは、2−フルオロフェニル基、3−フルオロフェニル基、4−フルオロフェニル基、2,4−ジフルオロフェニル基、2,6−ジフルオロフェニル基、3,4−ジフルオロフェニル基、3,5−ジフルオロフェニル基、2,4,6−トリフルオロフェニル基、3,4,5−トリフルオロフェニル基、2,3,5,6−テトラフルオロフェニル基、ペンタフルオロフェニル基、2,3,5,6−テトラフルオロ−4−トリフルオロメチルフェニル基、2,3,5,6−テトラフルオロ−4−ペンタフルオロフェニルフェニル基、パーフルオロ−1−ナフチル基またはパーフルオロ−2−ナフチル基であり、より好ましくは、3,5−ジフルオロフェニル基、3,4,5−トリフルオロフェニル基またはペンタフルオロフェニル基である。塩素化アルキル基として好ましくは、クロロメチル基、ジクロロメチル基、トリクロロメチル基、2,2,2−トリクロロエチル基、2,2,3,3,3−ペンタクロロプロピル基、2,2,2−トリクロロ−1−トリクロロメチルエチル基または1,1−ビス(トリクロロメチル)−2,2,2−トリクロロエチル基である。塩素化アリール基として好ましくは、4−クロロフェニル基、2,6−ジクロロフェニル基、3.5−ジクロロフェニル基、2,4,6−トリクロロフェニル基、3,4,5−トリクロロフェニル基またはペンタクロロフェニル基である。
一般式(7)のT2は、酸素原子、硫黄原子、窒素原子またはリン原子であり、好ましくは、窒素原子または酸素原子であり、より好ましくは酸素原子である。
一般式(7)のsは、T2の原子価を表し、T2が酸素原子または硫黄原子の場合、sは2であり、T2が窒素原子またはリン原子の場合、sは3である。
一般式(7)のR7は、ハイドロカルビル基またはハロゲン化ハイドロカルビル基を表す。R7のハイドロカルビル基としては、アルキル基、アラルキル基、アリール基などがあげられ、Lのアルキル基、アラルキル基、アリール基として例示した基を例示することができる。R7のハロゲン化ハイドロカルビル基としては、ハロゲン化アルキル基、ハロゲン化アラルキル基、ハロゲン化アリール基、(ハロゲン化アルキル)アリール基などのハロゲン化ハイドロカルビル基などがあげられ、R6のハロゲン化アルキル基、ハロゲン化アリール基、(ハロゲン化アルキル)アリール基として例示した基を例示することができる。
R7として好ましくは、ハロゲン化ハイドロカルビル基であり、より好ましくは、フッ素化ハイドロカルビル基である。
成分(b1)の一般式(5)で表される化合物としては、M3が亜鉛原子である化合物として、ジメチル亜鉛、ジエチル亜鉛、ジ−n−プロピル亜鉛、ジイソプロピル亜鉛、ジ−n−ブチル亜鉛、ジイソブチル亜鉛、ジ−n−ヘキシル亜鉛等のジアルキル亜鉛;ジフェニル亜鉛、ジナフチル亜鉛、ビス(ペンタフルオロフェニル)亜鉛等のジアリール亜鉛;ジアリル亜鉛等のジアルケニル亜鉛;ビス(シクロペンタジエニル)亜鉛;塩化メチル亜鉛、塩化エチル亜鉛、塩化n−プロピル亜鉛、塩化イソプロピル亜鉛、塩化n−ブチル亜鉛、塩化イソブチル亜鉛、塩化n−ヘキシル亜鉛、臭化メチル亜鉛、臭化エチル亜鉛、臭化n−プロピル亜鉛、臭化イソプロピル亜鉛、臭化n−ブチル亜鉛、臭化イソブチル亜鉛、臭化n−ヘキシル亜鉛、よう化メチル亜鉛、よう化エチル亜鉛、よう化n−プロピル亜鉛、よう化イソプロピル亜鉛、よう化n−ブチル亜鉛、よう化イソブチル亜鉛、よう化n−ヘキシル亜鉛等のハロゲン化アルキル亜鉛;ふっ化亜鉛、塩化亜鉛、臭化亜鉛、よう化亜鉛等のハロゲン化亜鉛等があげられる。
成分(b1)の一般式(5)で表される化合物として好ましくは、ジアルキル亜鉛であり、さらに好ましくは、ジメチル亜鉛、ジエチル亜鉛、ジ−n−プロピル亜鉛、ジイソプロピル亜鉛、ジ−n−ブチル亜鉛、ジイソブチル亜鉛、またはジ−n−ヘキシル亜鉛であり、特に好ましくはジメチル亜鉛またはジエチル亜鉛である。
成分(b2)の一般式(6)で表される化合物としては、アミン、ホスフィン、アルコール、チオール、フェノール、チオフェノール、ナフトール、ナフチルチオール、カルボン酸化合物などがあげられる。
アミンとしては、ジ(フルオロメチル)アミン、ビス(ジフルオロメチル)アミン、ビス(トリフルオロメチル)アミン、ビス(2,2,2−トリフルオロエチル)アミン、ビス(2,2,3,3,3−ペンタフルオロプロピル)アミン、ビス(2,2,2−トリフルオロ−1−トリフルオロメチルエチル)アミン、ビス(1,1−ビス(トリフルオロメチル)−2,2,2−トリフルオロエチル)アミン、ビス(2−フルオロフェニル)アミン、ビス(3−フルオロフェニル)アミン、ビス(4−フルオロフェニル)アミン、ビス(2,6−ジフルオロフェニル)アミン、ビス(3,5−ジフルオロフェニル)アミン、ビス(2,4,6−トリフルオロフェニル)アミン、ビス(3,4,5−トリフルオロフェニル)アミン、ビス(ペンタフルオロフェニル)アミン、ビス(2−(トリフルオロメチル)フェニル)アミン、ビス(3−(トリフルオロメチル)フェニル)アミン、ビス(4−(トリフルオロメチル)フェニル)アミン、ビス(2,6−ジ(トリフルオロメチル)フェニル)アミン、ビス(3,5−ジ(トリフルオロメチル)フェニル)アミン、ビス(2,4,6−トリ(トリフルオロメチル)フェニル)アミン、ビス(2−シアノフェニル)アミン、(3−シアノフェニル)アミン、ビス(4−シアノフェニル)アミン、ビス(2−ニトロフェニル)アミン、ビス(3−ニトロフェニル)アミン、ビス(4−ニトロフェニル)アミン、ビス(1H,1H−パーフルオロブチル)アミン、ビス(1H,1H−パーフルオロペンチル)アミン、ビス(1H,1H−パーフルオロヘキシル)アミン、ビス(1H,1H−パーフルオロオクチル)アミン、ビス(1H,1H−パーフルオロドデシル)アミン、ビス(1H,1H−パーフルオロペンタデシル)アミン、ビス(1H,1H−パーフルオロエイコシル)アミンなどをあげることができる。また、これらのアミンのフルオロをクロロ、ブロモまたはヨードに変更したアミンをあげることができる。
ホスフィンとしては、上記アミンの窒素原子をリン原子に変更した化合物をあげることができる。それらのホスフィンは、上記アミン中のアミンをホスフィンに置き換えることによって表される化合物である。
アルコールとしては、フルオロメタノール、ジフルオロメタノール、トリフルオロメタノール、2,2,2−トリフルオロエタノール、2,2,3,3,3−ペンタフルオロプロパノール、2,2,2−トリフルオロ−1−トリフルオロメチルエタノール、1,1−ビス(トリフルオロメチル)−2,2,2−トリフルオロエタノール、1H,1H−パーフルオロブタノール、1H,1H−パーフルオロペンタノール、1H,1H−パーフルオロヘキサノール、1H,1H−パーフルオロオクタノール、1H,1H−パーフルオロドデカノール、1H,1H−パーフルオロペンタデカノール、1H,1H−パーフルオロエイコサノールなどをあげることができる。また、これらのアルコールのフルオロをクロロ、ブロモまたはヨードに変更したアルコールをあげることができる。
チオールとしては、上記アルコールの酸素原子を硫黄原子に変更した化合物をあげることができる。それらのチオールは、上記アルコール中のノールをンチオールに置き換えることによって表される化合物である。
フェノールとしては、2−フルオロフェノール、3−フルオロフェノール、4−フルオロフェノール、2,4−ジフルオロフェノール、2,6−ジフルオロフェノール、3,4−ジフルオロフェノール、3,5−ジフルオロフェノール、2,4,6−トリフルオロフェノール、3,4,5−トリフルオロフェノール、2,3,5,6−テトラフルオロフェノール、ペンタフルオロフェノール、2,3,5,6−テトラフルオロ−4−トリフルオロメチルフェノール、2,3,5,6−テトラフルオロ−4−ペンタフルオロフェニルフェノールなどをあげることができる。また、これらのフェノールのフルオロをクロロ、ブロモまたはヨードに変更したフェノールをあげることができる。
チオフェノールとしては、上記フェノールの酸素原子を硫黄原子に変更した化合物をあげることができる。それらのチオフェノールは、上記フェノール中のフェノールをチオフェノールに置き換えることによって表される化合物である。
ナフトールとしては、パーフルオロ−1−ナフトール、パーフルオロ−2−ナフトール、4,5,6,7,8−ペンタフルオロ−2−ナフトール、2−(トリフルオロメチル)フェノール、3−(トリフルオロメチル)フェノール、4−(トリフルオロメチル)フェノール、2,6−ビス(トリフルオロメチル)フェノール、3,5−ビス(トリフルオロメチル)フェノール、2,4,6−トリス(トリフルオロメチル)フェノール、2−シアノフェノール、3−シアノフェノール、4−シアノフェノール、2−ニトロフェノール、3−ニトロフェノール、4−ニトロフェノールなどをあげることができる。また、これらのナフトールのフルオロをクロロ、ブロモまたはヨードに変更したナフトールをあげることができる。
ナフチルチオールとしては、上記ナフトールの酸素原子を硫黄原子に変更した化合物をあげることができる。それらのナフチオールは、上記ナフトール中のナフトールをナフチルチオールに置き換えることによって表される化合物である。
カルボン酸化合物としては、例えば、ペンタフルオロベンゾイックアシッド、パーフルオロエタノイックアシッド、パーフルオロプロパノイックアシッド、パーフルオロブタノイックアシッド、パーフルオロペンタノイックアシッド、パーフルオロヘキサノイックアシッド、パーフルオロヘプタノイックアシッド、パーフルオロオクタノイックアシッド、パーフルオロノナノイックアシッド、パーフルオロデカノイックアシッド、パーフルオロウンデカノイックアシッド、パーフルオロドデカノイックアシッドなどをあげることができる。
成分(b2)の一般式(6)で表される化合物として好ましくは、アミン、アルコールまたはフェノール化合物であり、アミンとして好ましくは、ビス(トリフルオロメチル)アミン、ビス(2,2,2−トリフルオロエチル)アミン、ビス(2,2,3,3,3−ペンタフルオロプロピル)アミン、ビス(2,2,2−トリフルオロ−1−トリフルオロメチルエチル)アミン、ビス(1,1−ビス(トリフルオロメチル)−2,2,2−トリフルオロエチル)アミンまたはビス(ペンタフルオロフェニル)アミンであり、アルコールとして好ましくは、トリフルオロメタノール、2,2,2−トリフルオロエタノール、2,2,3,3,3−ペンタフルオロプロパノール、2,2,2−トリフルオロ−1−トリフルオロメチルエタノールまたは1,1−ビス(トリフルオロメチル)−2,2,2−トリフルオロエタノールであり、フェノールとして好ましくは、2−フルオロフェノール、3−フルオロフェノール、4−フルオロフェノール、2,6−ジフルオロフェノール、3,5−ジフルオロフェノール、2,4,6−トリフルオロフェノール、3,4,5−トリフルオロフェノール、ペンタフルオロフェノール、2−(トリフルオロメチル)フェノール、3−(トリフルオロメチル)フェノール、4−(トリフルオロメチル)フェノール、2,6−ビス(トリフルオロメチル)フェノール、3,5−ビス(トリフルオロメチル)フェノール、2,4,6−トリス(トリフルオロメチル)フェノールまたは3,4,5−トリス(トリフルオロメチル)フェノールである。
成分(b2)の一般式(6)で表される化合物としてより好ましくは、ビス(トリフルオロメチル)アミン、ビス(ペンタフルオロフェニル)アミン、トリフルオロメタノール、2,2,2−トリフルオロ−1−トリフルオロメチルエタノール、1,1−ビス(トリフルオロメチル)−2,2,2−トリフルオロエタノール、2−フルオロフェノール、3−フルオロフェノール、4−フルオロフェノール、2,6−ジフルオロフェノール、3,5−ジフルオロフェノール、2,4,6−トリフルオロフェノール、3,4,5−トリフルオロフェノール、ペンタフルオロフェノール、4−(トリフルオロメチル)フェノール、2,6−ビス(トリフルオロメチル)フェノールまたは2,4,6−トリス(トリフルオロメチル)フェノールであり、さらに好ましくは、3,5−ジフルオロフェノール、3,4,5−トリフルオロフェノール、ペンタフルオロフェノールまたは1,1−ビス(トリフルオロメチル)−2,2,2−トリフルオロエタノールである。
成分(b3)の一般式(7)で表される化合物としては、水、硫化水素、アミン、アニリン化合物などをあげることができる。
アミンとしては、メチルアミン、エチルアミン、n−プロピルアミン、イソプロピルアミン、n−ブチルアミン、sec−ブチルアミン、tert−ブチルアミン、イソブチルアミン、n−ペンチルアミン、ネオペンチルアミン、イソペンチルアミン、n−ヘキシルアミン、n−オクチルアミン、n−デシルアミン、n−ドデシルアミン、n−ペンタデシルアミン、n−エイコシルアミン等のアルキルアミン;ベンジルアミン、(2−メチルフェニル)メチルアミン、(3−メチルフェニル)メチルアミン、(4−メチルフェニル)メチルアミン、(2,3−ジメチルフェニル)メチルアミン、(2,4−ジメチルフェニル)メチルアミン、(2,5−ジメチルフェニル)メチルアミン、(2,6−ジメチルフェニル)メチルアミン、(3,4−ジメチルフェニル)メチルアミン、(3,5−ジメチルフェニル)メチルアミン、(2,3,4−トリメチルフェニル)メチルアミン、(2,3,5−トリメチルフェニル)メチルアミン、(2,3,6−トリメチルフェニル)メチルアミン、(3,4,5−トリメチルフェニル)メチルアミン、(2,4,6−トリメチルフェニル)メチルアミン、(2,3,4,5−テトラメチルフェニル)メチルアミン、(2,3,4,6−テトラメチルフェニル)メチルアミン、(2,3,5,6−テトラメチルフェニル)メチルアミン、(ペンタメチルフェニル)メチルアミン、(エチルフェニル)メチルアミン、(n−プロピルフェニル)メチルアミン、(イソプロピルフェニル)メチルアミン、(n−ブチルフェニル)メチルアミン、(sec−ブチルフェニル)メチルアミン、(tert−ブチルフェニル)メチルアミン、(n−ペンチルフェニル)メチルアミン、(ネオペンチルフェニル)メチルアミン、(n−ヘキシルフェニル)メチルアミン、(n−オクチルフェニル)メチルアミン、(n−デシルフェニル)メチルアミン、(n−テトラデシルフェニル)メチルアミン、ナフチルメチルアミン、アントラセニルメチルアミン等のアラルキルアミン;アリルアミン;シクロペンタジエニルアミンなどがあげられる。
また、アミンとしては、フルオロメチルアミン、ジフルオロメチルアミン、トリフルオロメチルアミン、2,2,2−トリフルオロエチルアミン、2,2,3,3,3−ペンタフルオロプロピルアミン、2,2,2−トリフルオロ−1−トリフルオロメチルエチルアミン、1,1−ビス(トリフルオロメチル)−2,2,2−トリフルオロエチルアミン、パーフルオロプロピルアミン、パーフルオロブチルアミン、パーフルオロペンチルアミン、パーフルオロヘキシルアミン、パーフルオロオクチルアミン、パーフルオロドデシルアミン、パーフルオロペンタデシルアミン、パーフルオロエイコシルアミンなどのハロゲン化アルキルアミンなどがあげられる。また、これらのアミンのフルオロをクロロ、ブロモまたはヨードに変更したアミンをあげることができる。
アニリン化合物としては、アニリン、ナフチルアミン、アントラセニルアミン、2−メチルアニリン、3−メチルアニリン、4−メチルアニリン、2,3−ジメチルアニリン、2,4−ジメチルアニリン、2,5−ジメチルアニリン、2,6−ジメチルアニリン、3,4−ジメチルアニリン、3,5−ジメチルアニリン、2,3,4−トリメチルアニリン、2,3,5−トリメチルアニリン、2,3,6−トリメチルアニリン、2,4,6−トリメチルアニリン、3,4,5−トリメチルアニリン、2,3,4,5−テトラメチルアニリン、2,3,4,6−テトラメチルアニリン、2,3,5,6−テトラメチルアニリン、ペンタメチルアニリン、2−エチルアニリン、3−エチルアニリン、4−エチルアニリン、2,3−ジエチルアニリン、2,4−ジエチルアニリン、2,5−ジエチルアニリン、2,6−ジエチルアニリン、3,4−ジエチルアニリン、3,5−ジエチルアニリン、2,3,4−トリエチルアニリン、2,3,5−トリエチルアニリン、2,3,6−トリエチルアニリン、2,4,6−トリエチルアニリン、3,4,5−トリエチルアニリン、2,3,4,5−テトラエチルアニリン、2,3,4,6−テトラエチルアニリン、2,3,5,6−テトラエチルアニリン、ペンタエチルアニリンなどをあげることができる。また、これらのアニリン化合物のエチルをn−プロピル、イソプロピル、n−ブチル、sec−ブチル、tert−ブチル、n−ペンチル、ネオペンチル、n−ヘキシル、n−オクチル、n−デシル、n−ドデシル、n−テトラデシルなどに変更したアニリン化合物などがあげられる。
また、アニリン化合物としては、2−フルオロアニリン、3−フルオロアニリン、4−フルオロアニリン、2,6−ジフルオロアニリン、3,5−ジフルオロアニリン、2,4,6−トリフルオロアニリン、3,4,5−トリフルオロアニリン、ペンタフルオロアニリン、2−(トリフルオロメチル)アニリン、3−(トリフルオロメチル)アニリン、4−(トリフルオロメチル)アニリン、2,6−ジ(トリフルオロメチル)アニリン、3,5−ジ(トリフルオロメチル)アニリン、2,4,6−トリ(トリフルオロメチル)アニリン、3,4,5−トリ(トリフルオロメチル)アニリンなどをあげることができる。また、これらのアニリン化合物のフルオロをクロロ、ブロモ、ヨードなどに変更したアニリン化合物をあげることができる。
成分(b3)の一般式(7)で表される化合物として好ましくは、水、硫化水素、メチルアミン、エチルアミン、n−プロピルアミン、イソプロピルアミン、n−ブチルアミン、sec−ブチルアミン、tert−ブチルアミン、イソブチルアミン、n−オクチルアミン、アニリン、2,6−ジメチルアニリン、2,4,6−トリメチルアニリン、ナフチルアミン、アントラセニルアミン、ベンジルアミン、トリフルオロメチルアミン、ペンタフルオロエチルアミン、パーフルオロプロピルアミン、パーフルオロブチルアミン、パーフルオロペンチルアミン、パーフルオロヘキシルアミン、パーフルオロオクチルアミン、パーフルオロドデシルアミン、パーフルオロペンタデシルアミン、パーフルオロエイコシルアミン、2−フルオロアニリン、3−フルオロアニリン、4−フルオロアニリン、2,6−ジフルオロアニリン、3,5−ジフルオロアニリン、2,4,6−トリフルオロアニリン、3,4,5−トリフルオロアニリン、ペンタフルオロアニリン、2−(トリフルオロメチル)アニリン、3−(トリフルオロメチル)アニリン、4−(トリフルオロメチル)アニリン、2,6−ビス(トリフルオロメチル)アニリン、3,5−ビス(トリフルオロメチル)アニリン、2,4,6−トリス(トリフルオロメチル)アニリン、または3,4,5−トリス(トリフルオロメチル)アニリンであり、特に好ましくは、水、トリフルオロメチルアミン、パーフルオロブチルアミン、パーフルオロオクチルアミン、パーフルオロペンタデシルアミン、2−フルオロアニリン、3−フルオロアニリン、4−フルオロアニリン、2,6−ジフルオロアニリン、3,5−ジフルオロアニリン、2,4,6−トリフルオロアニリン、3,4,5−トリフルオロアニリン、ペンタフルオロアニリン、2−(トリフルオロメチル)アニリン、3−(トリフルオロメチル)アニリン、4−(トリフルオロメチル)アニリン、2,6−ビス(トリフルオロメチル)アニリン、3,5−ビス(トリフルオロメチル)アニリン、2,4,6−トリス(トリフルオロメチル)アニリン、または3,4,5−トリス(トリフルオロメチル)アニリンであり、もっとも好ましくは水またはペンタフルオロアニリンである。
成分(b4)の粒子状担体としては、重合用触媒調製用の溶媒あるいは重合溶媒に不溶な固体状物質が好適に用いられ、多孔質の物質がより好適に用いられ、無機物質または有機ポリマーが更に好適に用いられ、無機物質が特に好適に用いられる。
成分(b4)の粒子状担体は、粒径の整ったものであることが好ましく、成分(b4)の粒子状担体の粒径の体積基準の幾何標準偏差は、好ましくは2.5以下であり、より好ましくは2.0以下であり、更に好ましくは1.7以下である。
成分(b4)の粒子状担体の無機物質としては、無機酸化物、粘土、粘土鉱物などをあげることができる。また、これらを複数混合して用いてもよい。
無機酸化物としては、SiO2、Al2O3、MgO、ZrO2、TiO2、B2O3、CaO、ZnO、BaO、ThO2、SiO2−MgO、SiO2−Al2O3、SiO2−TiO2、SiO2−V2O5、SiO2−Cr2O3、SiO2−TiO2−MgO、ならびに、これら2種以上の混合物をあげることができる。これらの無機酸化物の中では、SiO2および/またはAl2O3が好ましく、特にSiO2(シリカ)が好ましい。なお、上記無機酸化物は少量のNa2CO3、K2CO3、CaCO3、MgCO3、Na2SO4、Al2(SO4)3、BaSO4、KNO3、Mg(NO3)2、Al(NO3)3、Na2O、K2O、Li2O等の炭酸塩、硫酸塩、硝酸塩、酸化物成分を含有してもよい。
また、無機酸化物には通常、表面に水酸基が生成し存在しているが、無機酸化物として、表面水酸基の活性水素を種々の置換基で置換した改質無機酸化物を使用してもよい。改質無機酸化物としては、例えば、トリメチルクロロシラン、tert−ブチルジメチルクロロシラン等のトリアルキルクロロシラン;トリフェニルクロロシラン等のトリアリールクロロシラン;ジメチルジクロロシラン等のジアルキルジクロロシラン;ジフェニルジクロロシラン等のジアリールジクロロシラン;メチルトリクロロシラン等のアルキルトリクロロシラン;フェニルトリクロロシラン等のアリールトリクロロシラン;トリメチルメトキシシラン等のトリアルキルアルコキシシラン;トリフェニルメトキシシラン等のトリアリールアルコシキシラン;ジメチルジメトキシシラン等のジアルキルジアルコキシシラン;ジフェニルジメトキシシラン等のジアリールジアルコキシシラン;メチルトリメトキシシラン等のアルキルトリアルコキシシラン;フェニルトリメトキシシラン等のアリールトリアルコキシシラン;テトラメトキシシラン等のテトラアルコキシシラン;1,1,1,3,3,3−ヘキサメチルジシラザン等のアルキルジシラザン;テトラクロロシラン;メタノール、エタノール等のアルコール;フェノール;ジブチルマグネシウム、ブチルエチルマグネシウム、ブチルオクチルマグネシウム等のジアルキルマグネシウム;ブチルリチウム等のアルキルリチウム等と接触された無機酸化物をあげることができる。
更に、トリアルキルアルミニウムとの接触後、ジエチルアミンおよびジフェニルアミン等のジアルキルアミン、メタノールおよびエタノール等のアルコール、フェノールと接触された無機酸化物を例示することができる。
また、無機酸化物は水酸基同士が水素結合することにより無機酸化物自体の強度が高まっていることがある。その場合、仮に表面水酸基の活性水素全てについて種々の置換基で置換してしまうと、粒子強度の低下等を招く場合がある。よって、無機酸化物の表面水酸基の活性水素は必ずしも全て置換する必要はなく、表面水酸基の置換率は適宜決めればよい。表面水酸基の置換率を変化させる方法は特に限定されない。該方法としては、例えば、接触に使用する化合物の使用量を変化させる方法を例示することができる。
粘土または粘土鉱物としては、カオリン、ベントナイト、木節粘土、ガイロメ粘土、アロフェン、ヒシンゲル石、バイロフィライト、タルク、ウンモ群、スメクタイト、モンモリロナイト群、ヘクトライト、ラポナイト、サポナイト、バーミキュライト、リョクデイ石群、パリゴルスカイト、カオリナイト、ナクライト、ディッカイト、ハロイサイトなどをあげることができる。これらの中で好ましくは、スメクタイト、モンモリロナイト、ヘクトライト、ラポナイト、サポナイトであり、更に好ましくはモンモリロナイト、ヘクトライトである。
無機物質としては、無機酸化物が好適に用いられる。無機物質は、乾燥し実質的に水分が除去されていることが好ましく、加熱処理により乾燥させたものが好ましい。加熱処理は、通常、目視で水分を確認できない無機物質について温度100〜1,500℃で、好ましくは100〜1,000℃で、さらに好ましくは200〜800℃で実施される。加熱時間は、好ましくは10分間〜50時間、より好ましくは1時間〜30時間である。加熱乾燥の方法としては、加熱中に乾燥した不活性ガス(例えば、窒素またはアルゴン等)を一定の流速で流通させて乾燥する方法、減圧下で加熱減圧する方法等をあげることができる。
無機物質の平均粒子径は、通常1〜5000μmであり、好ましくは、5〜1000μmであり、より好ましくは10〜500μmであり、更に好ましくは10〜100μmである。細孔容量は、好ましくは0.1ml/g以上であり、より好ましくは0.3〜10ml/gである。比表面積は、好ましくは10〜1000m2/gであり、より好ましくは100〜500m2/gである。
成分(b4)の粒子状担体の有機ポリマーとしては、活性水素を有する官能基もしくは非プロトン供与性のルイス塩基性官能基を有する重合体が好ましい。
活性水素を有する官能基としては、1級アミノ基、2級アミノ基、イミノ基、アミド基、ヒドラジド基、アミジノ基、ヒドロキシ基、ヒドロペルオキシ基、カルボキシル基、ホルミル基、カルバモイル基、スルホン酸基、スルフィン酸基、スルフェン酸基、チオール基、チオホルミル基、ピロリル基、イミダゾリル基、ピペリジル基、インダゾリル基、カルバゾリル基等があげられる。好ましくは、1級アミノ基、2級アミノ基、イミノ基、アミド基、イミド基、ヒドロキシ基、ホルミル基、カルボキシル基、スルホン酸基、チオール基である。特に好ましくは、1級アミノ基、2級アミノ基、アミド基またはヒドロキシ基である。なお、これらの基はハロゲン原子や炭素数1〜20のハイドロカルビル基で置換されていてもよい。
非プロトン供与性のルイス塩基性官能基は、活性水素原子を有しないルイス塩基部分を有する官能基であり、ピリジル基、N−置換イミダゾリル基、N−置換インダゾリル基、ニトリル基、アジド基、N−置換イミノ基、N,N−置換アミノ基、N,N−置換アミノオキシ基、N,N,N−置換ヒドラジノ基、ニトロソ基、ニトロ基、ニトロオキシ基、フリル基、カルボニル基、チオカルボニル基、アルコキシ基、アルキルオキシカルボニル基、N,N−置換カルバモイル基、チオアルコキシ基、置換スルフィニル基、置換スルホニル基、置換スルホン酸基等があげられる。好ましくは、複素環基であり、さらに好ましくは、酸素原子および/または窒素原子を環内に有する芳香族複素環基である。特に好ましくは、ピリジル基、N−置換イミダゾリル基、N−置換インダゾリル基であり、最も好ましくはピリジル基である。なお、これらの基はハロゲン原子や炭素数1〜20のハイドロカルビル基で置換されていてもよい。
有機ポリマーにおいて、活性水素を有する官能基もしくは非プロトン供与性のルイス塩基性官能基の含有量は、有機ポリマーを構成する重合体単位グラムあたりの官能基のモル量として、好ましくは0.01〜50mmol/gであり、より好ましくは0.1〜20mmol/gである。
上記の活性水素を有する官能基もしくは非プロトン供与性のルイス塩基性官能基を有する重合体の製造方法としては、例えば、活性水素を有する官能基もしくは非プロトン供与性のルイス塩基性官能基と1個以上の重合性不飽和基とを有するモノマーを単独重合させる方法、該モノマーと重合性不飽和基を有する他のモノマーとを共重合させる方法をあげることができる。このとき更に重合性不飽和基を2個以上有する架橋重合性モノマーをも一緒に共重合することが好ましい。
上記の重合性不飽和基としては、ビニル基、アリル基等のアルケニル基;エチン基等のアルキニル基等をあげることができる。
活性水素を有する官能基と1個以上の重合性不飽和基を有するモノマーとしては、ビニル基含有1級アミン、ビニル基含有2級アミン、ビニル基含有アミド化合物、ビニル基含有ヒドロキシ化合物などをあげることができる。該モノマーの具体例としては、N−(1−エテニル)アミン、N−(2−プロペニル)アミン、N−(1−エテニル)−N−メチルアミン、N−(2−プロペニル)−N−メチルアミン、1−エテニルアミド、2−プロペニルアミド、N−メチル−(1−エテニル)アミド、N−メチル−(2−プロペニル)アミド、ビニルアルコール、2−プロペン−1−オール、3−ブテン−1−オールなどがあげられる。
活性水素原子を有しないルイス塩基部分を有する官能基と1個以上の重合性不飽和基を有するモノマーとしては、ビニルピリジン、ビニル(N−置換)イミダゾール、ビニル(N−置換)インダゾールなどをあげることができる。
重合性不飽和基を有する他のモノマーとしては、例えば、エチレン、α−オレフィン、芳香族ビニル化合物、環状オレフィンなどをあげることができる。該モノマーの具体例としては、エチレン、プロピレン、1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、スチレン、ノルボルネン、ジシクロペンタジエンである。これらのモノマーは2種以上を用いてもよい。好ましくは、エチレン、スチレンである。また、重合性不飽和基を2個以上有する架橋重合性モノマーとしては、ジビニルベンゼン等をあげることができる。
有機ポリマーの平均粒子径は、通常1〜5000μmであり、好ましくは5〜1000μmであり、より好ましくは10〜500μmである。細孔容量は、好ましくは0.1ml/g以上であり、より好ましくは0.3〜10ml/gである。比表面積は、好ましくは10〜1000m2/gであり、より好ましくは50〜500m2/gである。
有機ポリマーは、乾燥され、実質的に水分が除去されていることが好ましく、加熱処理により乾燥されたものが好ましい。加熱処理の温度は、目視で水分を確認できない有機ポリマーについては、通常30〜400℃であり、好ましくは50〜200℃であり、更に好ましくは70〜150℃である。加熱時間は、好ましくは10分間〜50時間であり、より好ましくは1時間〜30時間である。加熱乾燥の方法としては、加熱中に、乾燥した不活性ガス(例えば、窒素またはアルゴン等)を一定の流速で流通させて乾燥する方法、減圧下で加熱乾燥する方法等をあげることができる。
助触媒成分(B)は、成分(b1)、成分(b2)、成分(b3)および成分(b4)を接触させて形成されるものである。成分(b1)、成分(b2)、成分(b3)および成分(b4))の接触順序としては、次の順序があげられる。
<1> 成分(b1)と成分(b2)とが接触され、該接触による接触物と成分(b3)とが接触され、該接触による接触物と成分(b4)とが接触される。
<2> 成分(b1)と成分(b2)とが接触され、該接触による接触物と成分(b4)とが接触され、該接触による接触物と成分(b3)とが接触される。
<3> 成分(b1)と成分(b3)とが接触され、該接触による接触物と成分(b2)とが接触され、該接触による接触物と成分(b4)とが接触される。
<4> 成分(b1)と成分(b3)とが接触され、該接触による接触物と成分(b4)とが接触され、該接触による接触物と成分(b2)とが接触される。
<5> 成分(b1)と成分(b4)とが接触され、該接触による接触物と成分(b2)とが接触され、該接触による接触物と成分(b3)とが接触される。
<6> 成分(b1)と成分(b4)とが接触され、該接触による接触物と成分(b3)とが接触され、該接触による接触物と成分(b2)とが接触される。
<7> 成分(b2)と成分(b3)とが接触され、該接触による接触物と成分(b1)とが接触され、該接触による接触物と成分(b4)とが接触される。
<8> 成分(b2)と成分(b3)とが接触され、該接触による接触物と成分(b4)とが接触され、該接触による接触物と成分(b1)とが接触される。
<9> 成分(b2)と成分(b4)とが接触され、該接触による接触物と成分(b1)とが接触され、該接触による接触物と成分(b3)とが接触される。
<10> 成分(b2)と成分(b4)とが接触され、該接触による接触物と成分(b3)とが接触され、該接触による接触物と成分(b1)とが接触される。
<11> 成分(b3)と成分(b4)とが接触され、該接触による接触物と成分(b1)とが接触され、該接触による接触物と成分(b2)とが接触される。
<12> 成分(b3)と成分(b4)とが接触され、該接触による接触物と成分(b2)とが接触され、該接触による接触物と成分(b1)とが接触される。
<1> 成分(b1)と成分(b2)とが接触され、該接触による接触物と成分(b3)とが接触され、該接触による接触物と成分(b4)とが接触される。
<2> 成分(b1)と成分(b2)とが接触され、該接触による接触物と成分(b4)とが接触され、該接触による接触物と成分(b3)とが接触される。
<3> 成分(b1)と成分(b3)とが接触され、該接触による接触物と成分(b2)とが接触され、該接触による接触物と成分(b4)とが接触される。
<4> 成分(b1)と成分(b3)とが接触され、該接触による接触物と成分(b4)とが接触され、該接触による接触物と成分(b2)とが接触される。
<5> 成分(b1)と成分(b4)とが接触され、該接触による接触物と成分(b2)とが接触され、該接触による接触物と成分(b3)とが接触される。
<6> 成分(b1)と成分(b4)とが接触され、該接触による接触物と成分(b3)とが接触され、該接触による接触物と成分(b2)とが接触される。
<7> 成分(b2)と成分(b3)とが接触され、該接触による接触物と成分(b1)とが接触され、該接触による接触物と成分(b4)とが接触される。
<8> 成分(b2)と成分(b3)とが接触され、該接触による接触物と成分(b4)とが接触され、該接触による接触物と成分(b1)とが接触される。
<9> 成分(b2)と成分(b4)とが接触され、該接触による接触物と成分(b1)とが接触され、該接触による接触物と成分(b3)とが接触される。
<10> 成分(b2)と成分(b4)とが接触され、該接触による接触物と成分(b3)とが接触され、該接触による接触物と成分(b1)とが接触される。
<11> 成分(b3)と成分(b4)とが接触され、該接触による接触物と成分(b1)とが接触され、該接触による接触物と成分(b2)とが接触される。
<12> 成分(b3)と成分(b4)とが接触され、該接触による接触物と成分(b2)とが接触され、該接触による接触物と成分(b1)とが接触される。
成分(b1)、成分(b2)、成分(b3)および成分(b4)との接触は、不活性気体雰囲気下で実施されることが好ましい。接触温度は、通常−100〜300℃であり、好ましくは−80〜200℃である。接触時間は、通常1分間〜200時間であり、好ましくは10分間〜100時間である。また、接触には溶媒が用いられていてもよく、用いられることなくこれらの化合物が直接接触されていてもよい。
溶媒が使用される場合、成分(b1)、成分(b2)、成分(b3)および成分(b4)、およびそれらの接触物と反応しないものが用いられる。しかしながら、上述のように、段階的に各成分が接触される場合には、ある段階においてある成分と反応する溶媒であっても、該溶媒が他の段階において各成分と反応しない溶媒であれば、該溶媒は他の段階で用いられることができる。つまり、各段階における溶媒は相互に、同じかまたは異なる。該溶媒としては、例えば、脂肪族炭化水素溶媒、芳香族炭化水素溶媒等の非極性溶媒;ハロゲン化物溶媒、エーテル系溶媒、アルコール系溶媒、フェノール系溶媒、カルボニル系溶媒、リン酸誘導体、ニトリル系溶媒、ニトロ化合物、アミン系溶媒、硫黄化合物等の極性溶媒をあげることができる。具体例としては、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、2,2,4−トリメチルペンタン、シクロヘキサン等の脂肪族炭化水素溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素溶媒;ジクロロメタン、ジフルオロメタン、クロロホルム、1,2−ジクロロエタン、1,2−ジブロモエタン、1,1,2−トリクロロ−1,2,2−トリフルオロエタン、テトラクロロエチレン、クロロベンゼン、ブロモベンゼン、o−ジクロロベンゼン等のハロゲン化物溶媒;ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジ−n−ブチルエーテル、メチル−tert−ブチル−エーテル、アニソール、1,4−ジオキサン、1,2−ジメトキシエタン、ビス(2−メトキシエチル)エーテル、テトラヒドロフラン、テトラヒドロピラン等のエーテル系溶媒;メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、2−メチル−1−プロパノール、3−メチル−1−ブタノール、シクロヘキサノール、ベンジルアルコール、エチレングリコール、プロピレングリコール、2−メトキシエタノール、2−エトキシエタノール、ジエチレングリコール、トリエチレングリコール、グリセリン等のアルコール系溶媒;フェノール、p−クレゾール等のフェノール系溶媒;アセトン、エチルメチルケトン、シクロヘキサノン、無水酢酸、酢酸エチル、酢酸ブチル、炭酸エチレン、炭酸プロピレン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン等のカルボニル系溶媒;ヘキサメチルリン酸トリアミド、リン酸トリエチル等のリン酸誘導体;アセトニトリル、プロピオニトリル、スクシノニトリル、ベンゾニトリル等のニトリル系溶媒;ニトロメタン、ニトロベンゼン等のニトロ化合物;ピリジン、ピペリジン、モルホリン等のアミン系溶媒;ジメチルスルホキシド、スルホラン等の硫黄化合物をあげることができる。
成分(b1)、成分(b2)および成分(b3)とが接触されてなる接触物(c)と、成分(b4)とが接触される場合、つまり上記の<1>、<3>、<7>の各方法において、接触物(c)を製造する場合の溶媒(s1)としては、上記の脂肪族炭化水素溶媒、芳香族炭化水素溶媒またはエーテル系溶媒が好ましい。
一方、接触物(c)と成分(b4)とが接触される場合の溶媒(s2)としては、極性溶媒が好ましい。溶媒の極性を表す指標としては、ET N値(C.Reichardt,“Solvents and Solvents Effects in Organic Chemistry”, 2nd ed., VCH Verlag (1988).)等が知られており、0.8≧ET N≧0.1なる範囲を満足する溶媒が特に好ましい。
かかる極性溶媒としては、例えば、ジクロロメタン、ジクロロジフルオロメタンクロロホルム、1,2−ジクロロエタン、1,2−ジブロモエタン、1,1,2−トリクロロ−1,2,2−トリフルオロエタン、テトラクロロエチレン、クロロベンゼン、ブロモベンゼン、o−ジクロロベンゼン、ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジ−n−ブチルエーテル、メチル−tert−ブチルエーテル、アニソール、1,4−ジオキサン、1,2−ジメトキシエタン、ビス(2−メトキシエチル)エーテル、テトラヒドロフラン、テトラヒドロピラン、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、2−メチル−1−プロパノール、3−メチル−1−ブタノール、シクロヘキサノール、ベンジルアルコール、エチレングリコール、プロピレングリコール、2−メトキシエタノール、2−エトキシエタノール、ジエチレングリコール、トリエチレングリコール、アセトン、エチルメチルケトン、シクロヘキサノン、無水酢酸、酢酸エチル、酢酸ブチル、炭酸エチレン、炭酸プロピレン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ヘキサメチルリン酸トリアミド、リン酸トリエチル、アセトニトリル、プロピオニトリル、スクシノニトリル、ベンゾニトリル、ニトロメタン、ニトロベンゼン、エチレンジアミン、ピリジン、ピペリジン、モルホリン、ジメチルスルホキシド、スルホランなどをあげることができる。
溶媒(s2)として更に好ましくは、ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジ−n−ブチルエーテル、メチル−tert−ブチルエーテル、アニソール、1,4−ジオキサン、1,2−ジメトキシエタン、ビス(2−メトキシエチル)エーテル、テトラヒドロフラン、テトラヒドロピラン、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、2−メチル−1−プロパノール、3−メチル−1−ブタノール、シクロヘキサノール、ベンジルアルコール、エチレングリコール、プロピレングリコール、2−メトキシエタノール、2−エトキシエタノール、ジエチレングリコール、トリエチレングリコールであり、特に好ましくは、ジ−n−ブチルエーテル、メチル−tert−ブチルエーテル、1,4−ジオキサン、テトラヒドロフラン、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、2−メチル−1−プロパノール、3−メチル−1−ブタノール、シクロヘキサノールであり、最も好ましくは、テトラヒドロフラン、メタノール、エタノール、1−プロパノール、2−プロパノールである。
前記溶媒(s2)としては、これら極性溶媒と炭化水素溶媒との混合溶媒が用いられることができる。炭化水素溶媒としては、脂肪族炭化水素溶媒や芳香族炭化水素溶媒として例示した化合物が用いられる。極性溶媒と炭化水素溶媒との混合溶媒としては、例えば、ヘキサン/メタノール混合溶媒、ヘキサン/エタノール混合溶媒、ヘキサン/1−プロパノール混合溶媒、ヘキサン/2−プロパノール混合溶媒、ヘプタン/メタノール混合溶媒、ヘプタン/エタノール混合溶媒、ヘプタン/1−プロパノール混合溶媒、ヘプタン/2−プロパノール混合溶媒、トルエン/メタノール混合溶媒、トルエン/エタノール混合溶媒、トルエン/1−プロパノール混合溶媒、トルエン/2−プロパノール混合溶媒、キシレン/メタノール混合溶媒、キシレン/エタノール混合溶媒、キシレン/1−プロパノール混合溶媒、キシレン/2−プロパノール混合溶媒などをあげることができる。好ましくは、ヘキサン/メタノール混合溶媒、ヘキサン/エタノール混合溶媒、ヘプタン/メタノール混合溶媒、ヘプタン/エタノール混合溶媒、トルエン/メタノール混合溶媒、トルエン/エタノール混合溶媒、キシレン/メタノール混合溶媒、キシレン/エタノール混合溶媒である。更に好ましくは、ヘキサン/メタノール混合溶媒、ヘキサン/エタノール混合溶媒、トルエン/メタノール混合溶媒、トルエン/エタノール混合溶媒である。最も好ましくはトルエン/エタノール混合溶媒である。また、トルエン/エタノール混合溶媒における、エタノール分率の好ましい範囲は10〜50体積%であり、更に好ましくは15〜30体積%である。
成分(b1)、成分(b2)および成分(b3)を接触させて形成される接触物(c)と、成分(b4)とが接触される場合、つまり上記の<1>、<3>、<7>の各方法において、溶媒(s1)および溶媒(s2)として、共に炭化水素溶媒を用いることもできる。この場合、成分(b1)、成分(b2)および成分(b3)が接触された後、得られた接触物(c)と成分(b4)とが接触されるまでの時間は短い方が好ましい。時間として好ましくは0〜5時間であり、更に好ましくは0〜3時間であり、最も好ましくは0〜1時間である。また、接触物(c)と成分(b4)とが接触される温度は、通常−100℃〜40℃であり、好ましくは−20℃〜20℃であり、最も好ましくは−10℃〜10℃である。
上記の<2>、<5>、<6>、<8>、<9>、<10>、<11>、<12>の場合、上記の非極性溶媒、極性溶媒いずれも使用されることができる。好ましくは、非極性溶媒である。なぜならば、成分(b1)と成分(b3)との接触物や、成分(b1)と成分(b2)との接触物と成分(b3)とが接触されてなる接触物は、一般的に非極性溶媒に対し溶解性が低いので、これら接触物が生成する時に反応系内に成分(b4)が存在する場合、該接触物が成分(b4)の表面に析出し、より固定化されやすい、と考えられるからである。
成分(b1)の使用量1モルあたりの成分(b2)および成分(b3)の使用量としては、下記の関係式(V)を満足することが好ましい。
|M3の原子価−成分(b2)のモル量−2×成分(b3)のモル量|≦1 (V)
また、成分(b1)の使用量1モルあたりの成分(b2)の使用量は、好ましくは0.01〜1.99モルであり、より好ましくは0.1〜1.8モルであり、更に好ましくは0.2〜1.5モルであり、最も好ましくは0.3〜1モルである。成分(b1)の使用量1モルあたりの成分(b3)の好ましい使用量、より好ましい使用量、更に好ましい使用量、最も好ましい使用量は、M3の原子価、上記の成分(b1)の使用量1モルあたりの成分(b2)の使用量、および上記関係式(I)によってそれぞれ算出される。
|M3の原子価−成分(b2)のモル量−2×成分(b3)のモル量|≦1 (V)
また、成分(b1)の使用量1モルあたりの成分(b2)の使用量は、好ましくは0.01〜1.99モルであり、より好ましくは0.1〜1.8モルであり、更に好ましくは0.2〜1.5モルであり、最も好ましくは0.3〜1モルである。成分(b1)の使用量1モルあたりの成分(b3)の好ましい使用量、より好ましい使用量、更に好ましい使用量、最も好ましい使用量は、M3の原子価、上記の成分(b1)の使用量1モルあたりの成分(b2)の使用量、および上記関係式(I)によってそれぞれ算出される。
成分(b1)および成分(b2)の使用量は、助触媒成分(B)に含まれる成分(b1)に由来する金属原子が、助触媒成分(B)1gあたりに含まれる金属原子のモル数として、好ましくは0.1mmol以上となる量であり、より好ましくは0.5〜20mmolとなる量である。
反応をより速く進行させるため、上記のような接触の後に、より高い温度での加熱工程を付加してもよい。加熱工程では、より高温とするために、沸点の高い溶媒を使用することが好ましく、加熱工程を行う際に、接触で用いた溶媒を他のより沸点の高い溶媒に置き換えてもよい。
助触媒成分(B)は、このような接触の結果、原料である成分(b1)、成分(b2)、成分(b3)および/または成分(b4)が未反応物として残存していてもよいが、予め未反応物を除去する洗浄処理を行った方が好ましい。その際の溶媒は、接触時の溶媒と同じでも異なっていてもよい。このような洗浄処理は不活性気体雰囲気下で実施するのが好ましい。接触温度は、通常−100〜300℃であり、好ましくは−80〜200℃である。接触時間は、通常1分間〜200時間であり、好ましくは10分間〜100時間である。
また、このような接触や洗浄処理の後、生成物から溶媒を留去し、その後0℃以上の温度で減圧下1時間〜24時間乾燥を行うことが好ましい。より好ましくは0℃〜200℃の温度で1時間〜24時間であり、更に好ましくは10℃〜200℃の温度で1時間〜24時間であり、特に好ましくは10℃〜160℃の温度で2時間〜18時間であり、最も好ましくは15℃〜160℃の温度で4時間〜18時間である。
遷移金属化合物(A1)と遷移金属化合物(A2)の合計の使用量は、助触媒成分(B)1gあたり、通常、1〜10000μmol/gであり、好ましくは10〜1000μmol/gであり、より好ましくは20〜500μmol/gである。
重合用触媒の調製において、遷移金属化合物(A1)、遷移金属化合物(A2)および助触媒成分(B)に加え、有機アルミニウム化合物(C)を接触させてもよい。有機アルミニウム化合物(C)の使用量は、遷移金属化合物(A1)と遷移金属化合物(A2)の合計のモル数1モルあたりの有機アルミニウム化合物(C)のアルミニウム原子のモル数として、好ましくは、0.1〜1000であり、より好ましくは0.5〜500であり、更に好ましくは1〜100である。
有機アルミニウム化合物(C)としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ−n−プロピルアルミニウム、トリ−n−ブチルアルミニウム、トリイソブチルアルミニウム、トリ−n−ヘキシルアルミニウム、トリ−n−オクチルアルミニウム等のトリアルキルアルミニウム;ジメチルアルミニウムクロライド、ジエチルアルミニウムクロライド、ジ−n−プロピルアルミニウムクロライド、ジ−n−ブチルアルミニウムクロライド、ジイソブチルアルミニウムクロライド、ジ−n−ヘキシルアルミニウムクロライド等のジアルキルアルミニウムクロライド;メチルアルミニウムジクロライド、エチルアルミニウムジクロライド、n−プロピルアルミニウムジクロライド、n−ブチルアルミニウムジクロライド、イソブチルアルミニウムジクロライド、n−ヘキシルアルミニウムジクロライド等のアルキルアルミニウムジクロライド;ジメチルアルミニウムハイドライド、ジエチルアルミニウムハイドライド、ジ−n−プロピルアルミニウムハイドライド、ジ−n−ブチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド、ジ−n−ヘキシルアルミニウムハイドライド等のジアルキルアルミニウムハイドライド;メチル(ジメトキシ)アルミニウム、メチル(ジエトキシ)アルミニウム、メチル(ジ−tert−ブトキシ)アルミニウム等のアルキル(ジアルコキシ)アルミニウム;ジメチル(メトキシ)アルミニウム、ジメチル(エトキシ)アルミニウム、メチル(tert−ブトキシ)アルミニウム等のジアルキル(アルコキシ)アルミニウム;メチル(ジフェノキシ)アルミニウム、メチルビス(2,6−ジイソプロピルフェノキシ)アルミニウム、メチルビス(2,6−ジフェニルフェノキシ)アルミニウム等のアルキル(ジアリールオキシ)アルミニウム;ジメチル(フェノキシ)アルミニウム、ジメチル(2,6−ジイソプロピルフェノキシ)アルミニウム、ジメチル(2,6−ジフェニルフェノキシ)アルミニウム等のジアルキル(アリールオキシ)アルミニウム等をあげることができる。これらの有機アルミニウム化合物は、一種類のみを用いても、二種類以上を組み合わせて用いてもよい。
有機アルミニウム化合物(C)として好ましくは、トリアルキルアルミニウムであり、より好ましくは、トリメチルアルミニウム、トリエチルアルミニウム、トリ−n−ブチルアルミニウム、トリイソブチルアルミニウム、トリ−n−ヘキシルアルミニウム、トリ−n−オクチルアルミニウムであり、更に好ましくは、トリイソブチルアルミニウム、トリ−n−オクチルアルミニウムである。
また、重合用触媒の調製において、遷移金属化合物(A1)、遷移金属化合物(A2)および助触媒成分(B)に加え、電子供与性化合物(D)を接触させてもよい。電子供与性化合物(D)の使用量は、遷移金属化合物(A1)と遷移金属化合物(A2)の合計のモル数1モルあたりの電子供与性化合物(D)のモル数として、好ましくは0.01〜100であり、より好ましくは0.1〜50であり、更に好ましくは0.25〜5である。
電子供与性化合物(D)としては、トリエチルアミン、トリノルマルオクチルアミンをあげることができる。
遷移金属化合物(A1)と遷移金属化合物(A2)と助触媒成分(B)と、必要に応じて、有機アルミニウム化合物(C)と電子供与性化合物(D)との接触は、不活性気体雰囲気下で実施されることが好ましい。接触温度は通常−100〜300℃であり、好ましくは−80〜200℃である。接触時間は通常1分間〜200時間であり、好ましくは30分間〜100時間である。また、接触は、各成分が重合反応槽に別々に投入されて、重合反応器内で行われてもよい。
本発明のエチレン−α−オレフィン共重合体の製造方法としては、気相重合法、スラリー重合法、バルク重合法などにより、エチレンとα−オレフィンとを共重合する方法があげられる。好ましくは、気相重合法であり、より好ましくは連続気相重合法である。該重合法に用いられる気相重合反応装置としては、通常、流動層型反応槽を有する装置であり、好ましくは、拡大部を有する流動層型反応槽を有する装置である。反応槽内に撹拌翼が設置されていてもよい。
重合用触媒、各触媒成分を重合反応槽に供給する方法としては、通常、窒素、アルゴン等の不活性ガス、水素、エチレン等を用いて、水分のない状態で供給する方法、各成分を溶媒に溶解または稀釈して、溶液またはスラリー状態で供給する方法が用いられる。
エチレンとα−オレフィンを気相重合する場合、重合温度としては、通常、エチレン−α−オレフィン共重合体が溶融する温度未満であり、好ましくは0〜150℃であり、より好ましくは30〜100℃である。重合反応槽には、不活性ガスを導入してもよく、分子量調節剤として水素を導入してもよい。また、有機アルミニウム化合物(C)、電子供与性化合物(D)を導入してもよい。
重合に用いるα−オレフィンとしては、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、1−ドデセン、4−メチル−1−ペンテン、4−メチル−1−ヘキセンなどの炭素数3〜20のα−オレフィンがあげられる。これらは単独で用いられていてもよく、2種以上を併用されていてもよい。好ましくは1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、1−オクテンである。エチレンとα−オレフィンとの組み合せとしては、エチレン/1−ブテン、エチレン/1−ヘキセン、エチレン/4−メチル−1−ペンテン、エチレン/1−オクテン、エチレン/1−ブテン/1−ヘキセン、エチレン/1−ブテン/4−メチル−1−ペンテン、エチレン/1−ブテン/1−オクテン、エチレン/1−ヘキセン/1−オクテン等があげられ、好ましくはエチレン/1−ヘキセン、エチレン/4−メチル−1−ペンテン、エチレン/1−ブテン/1−ヘキセン、エチレン/1−ブテン/1−オクテン、エチレン/1−ヘキセン/1−オクテンである。
また、エチレンとα−オレフィンとの共重合においては、必要に応じて、他の単量体を重合反応槽に導入し、本発明の効果を損なわない範囲において、該他の単量体を共重合させてもよい。該他の単量体としては、ジオレフィン、環状オレフィン、アルケニル芳香族炭化水素、α,β−不飽和カルボン酸等をあげることができる。
これらの具体例としては、例えば、1,5−ヘキサジエン、1,4−ヘキサジエン、1,4−ペンタジエン、1,7−オクタジエン、1,8−ノナジエン、1,9−デカジエン、4−メチル−1,4−ヘキサジエン、5−メチル−1,4−ヘキサジエン、7−メチル−1,6−オクタジエン、5−エチリデン−2−ノルボルネン、ジシクロペンタジエン、5−ビニル−2−ノルボルネン、5−メチル−2−ノルボルネン、ノルボルナジエン、5−メチレン−2−ノルボルネン、1,5−シクロオクタジエン、5,8−エンドメチレンヘキサヒドロナフタレン、1,3−ブタジエン、イソプレン、1,3−ヘキサジエン、1,3−オクタジエン、1,3−シクロオクタジエン、1,3−シクロヘキサジエン等のジオレフィン;シクロペンテン、シクロヘキセン、ノルボルネン、5−メチルノルボルネン、5−エチルノルボルネン、5−ブチルノルボルネン、5−フェニルノルボルネン、5−ベンジルノルボルネン、テトラシクロドデセン、トリシクロデセン、トリシクロウンデセン、ペンタシクロペンタデセン、ペンタシクロヘキサデセン、8−メチルテトラシクロドデセン、8−エチルテトラシクロドデセン、5−アセチルノルボルネン、5−アセチルオキシノルボルネン、5−メトキシカルボニルノルボルネン、5−エトキシカルボニルノルボルネン、5−メチル−5−メトキシカルボニルノルボルネン、5−シアノノルボルネン、8−メトキシカルボニルテトラシクロドデセン、8−メチル−8−テトラシクロドデセン、8−シアノテトラシクロドデセン等の環状オレフィン;スチレン、2−フェニルプロピレン、2−フェニルブテン、3−フェニルプロピレン等のアルケニルベンゼン、p−メチルスチレン、m−メチルスチレン、o−メチルスチレン、p−エチルスチレン、m−エチルスチレン、o−エチルスチレン、2,4−ジメチルスチレン、2,5−ジメチルスチレン、3,4−ジメチルスチレン、3,5−ジメチルスチレン、3−メチル−5−エチルスチレン、p−第3級ブチルスチレン、p−第2級ブチルスチレン等のアルキルスチレン、ジビニルベンゼン等のビスアルケニルベンゼン、1−ビニルナフタレン等のアルケニルナフタレン等のアルケニル芳香族炭化水素;アクリル酸、メタクリル酸、フマル酸、無水マレイン酸、イタコン酸、無水イタコン酸、ビシクロ(2,2,1)−5−ヘプテン−2,3−ジカルボン酸等のα,β−不飽和カルボン酸;α,β−不飽和カルボン酸のナトリウム、カリウム、リチウム、亜鉛、マグネシウム、カルシウム等の金属塩;アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸イソプロピル、アクリル酸t−ブチル、アクリル酸2−エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル等のα,β−不飽和カルボン酸アルキルエステル;マレイン酸、イタコン酸等の不飽和ジカルボン酸;酢酸ビニル、プロピオン酸ビニル、カプロン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、トリフルオロ酢酸ビニル等のビニルエステル;アクリル酸グリシジル、メタクリル酸グリシジル、イタコン酸モノグリシジルエステル等の不飽和カルボン酸グリシジルエステル等があげられる。
本発明のエチレン−α−オレフィン共重合体の製造方法としては、遷移金属化合物(A1)と遷移金属化合物(A2)と助触媒成分(B)と、必要に応じて、更に、有機アルミニウム化合物(C)と電子供与性化合物(D)とを用いて、少量のオレフィンを重合(以下、予備重合と称する。)して得られた予備重合固体成分を、重合用触媒成分または重合用触媒として用いて、エチレンとα−オレフィンとを共重合する方法が好ましい。
予備重合で用いられるオレフィンとしては、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、4−メチル−1−ペンテン、シクロペンテン、シクロヘキセンなどをあげることができる。これらは1種または2種以上組み合わせて用いることができる。好ましくは、エチレンのみ、あるいはエチレンとα−オレフィンとを併用して、更に好ましくは、エチレンのみ、あるいは1−ブテン、1−ヘキセンおよび1−オクテンから選ばれる少なくとも1種のα−オレフィンとエチレンとを併用して用いられる。
予備重合固体成分中の予備重合された重合体の含有量は、助触媒成分(B)1g当たり、好ましくは0.01〜1000gであり、より好ましくは0.05〜500gであり、更に好ましくは0.1〜200gである。
予備重合方法としては、連続重合法でもバッチ重合法でもよく、例えば、バッチ式スラリー重合法、連続式スラリー重合法、連続気相重合法である。予備重合を行う重合反応槽に、遷移金属化合物(A1)と遷移金属化合物(A2)と助触媒成分(B)と、必要に応じて、有機アルミニウム化合物(C)と電子供与性化合物(D)とを投入する方法としては、通常、窒素、アルゴン等の不活性ガス、水素、エチレン等を用いて、水分のない状態で投入する方法、各成分を溶媒に溶解または稀釈して、溶液またはスラリー状態で投入する方法が用いられる。
予備重合をスラリー重合法で行う場合、溶媒としては、通常、飽和脂肪族炭化水素化合物が用いられ、例えば、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ノルマルヘキサン、シクロヘキサン、ヘプタン等があげられる。これらは単独あるいは2種以上組み合わせて用いられる。飽和脂肪族炭化水素化合物としては、常圧における沸点が100℃以下のものが好ましく、常圧における沸点が90℃以下のものがより好ましく、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ノルマルヘキサン、シクロヘキサンが更に好ましい。
また、予備重合をスラリー重合法で行う場合、スラリー濃度としては、溶媒1リットル当たりの助触媒成分(B)の量が、通常0.1〜600gであり、好ましくは0.5〜300gである。予備重合温度は、通常−20〜100℃であり、好ましくは0〜80℃である。予備重合中、重合温度は適宜変更してもよい。また、予備重合中の気相部でのオレフィン類の分圧は、通常0.001〜2MPaであり、好ましくは0.01〜1MPaである。予備重合時間は、通常2分間〜15時間である。
予備重合された予備重合固体触媒成分を重合反応槽に供給する方法としては、通常、窒素、アルゴン等の不活性ガス、水素、エチレン等を用いて、水分のない状態で供給する方法、各成分を溶媒に溶解または稀釈して、溶液またはスラリー状態で供給する方法が用いられる。
本発明のエチレン−α−オレフィン共重合体は、必要に応じて、他の樹脂とともに各種成形に使用することができる。他の樹脂としては、本発明のエチレン−α−オレフィン共重合体とは異なるエチレン−α−オレフィン共重合体が挙げられる。
本発明の積層体は、該エチレン−α−オレフィン共重合体を基材上にフィルム状に溶融押出し、基材と溶融樹脂とを圧着して得られる。
基材を構成する原料としては、樹脂、紙、金属などが挙げられる。該樹脂としては、例えばポリエステル系樹脂、ナイロン系樹脂、ポリビニルアルコール系樹脂、ポリプロピレン系樹脂、ポリエチレン系樹脂、セロハン、ポリ塩化ビニリデン、ポリスチレン、ポリ塩化ビニル、ポリカーボネート、ポリメチルメタクリレート、ポリウレタン、フッ素樹脂、ポリアクリロニトリル、ポリブテン樹脂、ポリイミド樹脂、ポリアリレート樹脂、アセチルセルロースなどがあげられる。
基材はフィルムなどの形状で用いられ、単層であっても、多層であってもよい。該基材の厚さは押出ラミネーション加工が可能であればよく、好ましくは1〜300μm、より好ましくは5〜250μm、さらに好ましくは8〜200μmである。
ダイから押出された直後の樹脂温度は、基材と溶融状フィルムとの接着性を高める観点から250℃以上とすることが好ましい。また、樹脂の劣化を抑制する観点、発煙成分による冷却ロール汚染を低減する観点から330℃以下とすることが好ましく、320℃以下とすることがより好ましい。
基材と溶融状フィルムとの接着性を高めるために、基材にアンカーコート処理、電子線照射処理、プラズマ処理、コロナ放電処理または火炎処理、オゾン処理等の公知の表面処理、溶融状フィルムにオゾン処理等の表面酸化処理を行ってもよい。
押出しラミネート用Tダイから押出しした溶融状フィルムは、基材とともにチルロールとニップロールによって圧着される。Tダイから押出された溶融状フィルムが最初にチルロールと接するまでの距離、いわゆるエアギャップは、ネックインを小さくする観点から、250mm以下とすることが好ましい。
本発明のエチレン−α−オレフィン共重合体には、必要に応じて、公知の添加剤を含有させてもよい。添加剤としては、例えば、酸化防止剤、耐候剤、滑剤、抗ブロッキング剤、帯電防止剤、防曇剤、無滴剤、顔料、フィラー等があげられる
上記の通り、本発明のエチレン−α−オレフィン共重合体は、成形加工時の押出負荷、引取性といった成形加工性に優れる。そのため、Tダイによる溶融膜成形時のネックインも低くなりうる。また、押出成形時の高速加工性も良好である。
基材上に押出しラミネートされた、本発明のエチレン−α−オレフィン共重合体からなる層は、従来の高圧法低密度ポリエチレンからなる層に比べてヒートシール強度に優れる。
よって本発明のエチレン−α−オレフィン共重合体、および該共重合体を押出しラミネート加工してなる積層体は、食品包装などの種々な用途に用いることができ、特にヒートシールが求められる用途に好適である。
基材上に押出しラミネートされた、本発明のエチレン−α−オレフィン共重合体からなる層は、従来の高圧法低密度ポリエチレンからなる層に比べてヒートシール強度に優れる。
よって本発明のエチレン−α−オレフィン共重合体、および該共重合体を押出しラミネート加工してなる積層体は、食品包装などの種々な用途に用いることができ、特にヒートシールが求められる用途に好適である。
以下、実施例および比較例により本発明を説明する。
実施例および比較例での物性は、次の方法に従って測定した。
実施例および比較例での物性は、次の方法に従って測定した。
(1)密度(d、単位:Kg/m3)
JIS K7112−1980のうち、A法に規定された方法に従って測定した。なお、試料には、JIS K6760−1995に記載のアニーリングを行った。
JIS K7112−1980のうち、A法に規定された方法に従って測定した。なお、試料には、JIS K6760−1995に記載のアニーリングを行った。
(2)メルトフローレート(MFR、単位:g/10分)
JIS K7210−1995に規定された方法において、荷重21.18N、温度190℃の条件で、A法により測定した。
JIS K7210−1995に規定された方法において、荷重21.18N、温度190℃の条件で、A法により測定した。
(3)メルトフローレート比(MFRR)
JIS K7210−1995に規定された方法において、試験荷重211.82N、測定温度190℃の条件で測定されるメルトフローレート(H−MFR)と、JIS K7210−1995に規定された方法において、荷重21.18Nおよび温度190℃の条件で測定されるメルトフローレート(MFR)とを測定し、H−MFRをMFRで除した値を求めた。
JIS K7210−1995に規定された方法において、試験荷重211.82N、測定温度190℃の条件で測定されるメルトフローレート(H−MFR)と、JIS K7210−1995に規定された方法において、荷重21.18Nおよび温度190℃の条件で測定されるメルトフローレート(MFR)とを測定し、H−MFRをMFRで除した値を求めた。
(4)スウェル比(SR)
(2)のメルトフローレートの測定において、温度190℃、荷重21.18Nの条件で、オリフィスから15〜20mm程度の長さで押出したエチレン−α−オレフィン共重合体のストランドを、空気中で冷却し、固体状のストランドを得た。次に、該ストランドの押出し上流側先端から約5mmの位置でのストランドの直径D(単位:mm)を測定し、その直径Dをオリフィス径2.095mm(D0)で除した値(D/D0)を算出し、スウェル比とした。
(2)のメルトフローレートの測定において、温度190℃、荷重21.18Nの条件で、オリフィスから15〜20mm程度の長さで押出したエチレン−α−オレフィン共重合体のストランドを、空気中で冷却し、固体状のストランドを得た。次に、該ストランドの押出し上流側先端から約5mmの位置でのストランドの直径D(単位:mm)を測定し、その直径Dをオリフィス径2.095mm(D0)で除した値(D/D0)を算出し、スウェル比とした。
(5)分子量分布(Mw/Mn、Mz/Mw)
ゲル・パーミエイション・クロマトグラフ(GPC)法を用いて、下記の条件(1)〜(8)により、z平均分子量(Mz)、重量平均分子量(Mw)と数平均分子量(Mn)を測定し、Mw/MnとMz/Mwを求めた。クロマトグラム上のベースラインは、試料溶出ピークが出現するよりも十分に保持時間が短い安定した水平な領域の点と、溶媒溶出ピークが観測されたよりも十分に保持時間が長い安定した水平な領域の点とを結んでできる直線とした。
(1)装置:Waters製Waters150C
(2)分離カラム:TOSOH TSKgelGMH6−HT
(3)測定温度:140℃
(4)キャリア:オルトジクロロベンゼン
(5)流量:1.0mL/分
(6)注入量:500μL
(7)検出器:示差屈折
(8)分子量標準物質:標準ポリスチレン
ゲル・パーミエイション・クロマトグラフ(GPC)法を用いて、下記の条件(1)〜(8)により、z平均分子量(Mz)、重量平均分子量(Mw)と数平均分子量(Mn)を測定し、Mw/MnとMz/Mwを求めた。クロマトグラム上のベースラインは、試料溶出ピークが出現するよりも十分に保持時間が短い安定した水平な領域の点と、溶媒溶出ピークが観測されたよりも十分に保持時間が長い安定した水平な領域の点とを結んでできる直線とした。
(1)装置:Waters製Waters150C
(2)分離カラム:TOSOH TSKgelGMH6−HT
(3)測定温度:140℃
(4)キャリア:オルトジクロロベンゼン
(5)流量:1.0mL/分
(6)注入量:500μL
(7)検出器:示差屈折
(8)分子量標準物質:標準ポリスチレン
(6)DSC融解ピーク数
エチレン−α−オレフィン共重合体を、150℃の熱プレス機により10MPaの圧力で5分間プレスした後、30℃の冷却プレス機で5分間冷却して、厚さ約100μmのシートに成形し、該シートから約10mgの試料を切り出し、アルミニウムパンに封入した。次に、試料を封入したアルミニウムパンを、示差走査熱量計(パーキンエルマー社製の示差走査型熱量計DSC−7型)にて、(1)150℃で5分間保持し、(2)5℃/分で150℃から20℃まで降温し、(3)20℃で2分間保持し、(4)5℃/分で20℃から150℃まで昇温して、(4)での融解曲線を測定した。得られた融解曲線より、25℃から融解終了温度(融解曲線が高温側のベースラインに戻る温度)までの範囲に存在する融解ピークの数を求めた。
エチレン−α−オレフィン共重合体を、150℃の熱プレス機により10MPaの圧力で5分間プレスした後、30℃の冷却プレス機で5分間冷却して、厚さ約100μmのシートに成形し、該シートから約10mgの試料を切り出し、アルミニウムパンに封入した。次に、試料を封入したアルミニウムパンを、示差走査熱量計(パーキンエルマー社製の示差走査型熱量計DSC−7型)にて、(1)150℃で5分間保持し、(2)5℃/分で150℃から20℃まで降温し、(3)20℃で2分間保持し、(4)5℃/分で20℃から150℃まで昇温して、(4)での融解曲線を測定した。得られた融解曲線より、25℃から融解終了温度(融解曲線が高温側のベースラインに戻る温度)までの範囲に存在する融解ピークの数を求めた。
(7)炭素数5以上の分岐数(NLCB、単位:1/1000C)
カーボン核磁気共鳴法によって、次の測定条件により、カーボン核磁気共鳴スペクトル(13C−NMR)を測定し、下記算出方法より求めた。
<測定条件>
装置 :Bruker社製 AVANCE600
測定溶媒:1,2−ジクロロベンゼン/1,2−ジクロロベンゼン−d4
=75/25(容積比)の混合液
測定温度:130℃
測定方法:プロトンデカップリング法
パルス幅:45度
パルス繰り返し時間:4秒
測定基準:トリメチルシラン
窓関数 :負の指数関数
<算出方法>
5〜50ppmに観測されるすべてのピークの総和を1000として、38.22〜38.27ppm付近にピークトップを有するピークのピーク面積を求めた。当該ピークのピーク面積は、高磁場側で隣接するピークとの谷のケミカルシフトから、低磁場側で隣接するピークとの谷のケミカルシフトまでの範囲でのシグナルの面積とした。なお、本条件によるエチレン−1−オクテン共重合体の測定では、炭素数6の分岐が結合したメチン炭素に由来するピークのピークトップの位置は、38.21ppmであった。
カーボン核磁気共鳴法によって、次の測定条件により、カーボン核磁気共鳴スペクトル(13C−NMR)を測定し、下記算出方法より求めた。
<測定条件>
装置 :Bruker社製 AVANCE600
測定溶媒:1,2−ジクロロベンゼン/1,2−ジクロロベンゼン−d4
=75/25(容積比)の混合液
測定温度:130℃
測定方法:プロトンデカップリング法
パルス幅:45度
パルス繰り返し時間:4秒
測定基準:トリメチルシラン
窓関数 :負の指数関数
<算出方法>
5〜50ppmに観測されるすべてのピークの総和を1000として、38.22〜38.27ppm付近にピークトップを有するピークのピーク面積を求めた。当該ピークのピーク面積は、高磁場側で隣接するピークとの谷のケミカルシフトから、低磁場側で隣接するピークとの谷のケミカルシフトまでの範囲でのシグナルの面積とした。なお、本条件によるエチレン−1−オクテン共重合体の測定では、炭素数6の分岐が結合したメチン炭素に由来するピークのピークトップの位置は、38.21ppmであった。
(8)短鎖分岐数(NSCB、単位:1/1000C)
エチレン−α−オレフィン共重合体中の短鎖分岐数は、赤外吸収スペクトルから求めた。尚、測定ならびに計算は、文献(Die Makromoleculare Chemie, 177, 449 (1976) McRae, M. A., Madams, W. F. )記載の方法に従い、α−オレフィン由来の特性吸収を利用して実施した。赤外吸収スペクトルは、赤外分光光度計(日本分光工業社製 FT−IR7300)を用いて測定した。
エチレン−α−オレフィン共重合体中の短鎖分岐数は、赤外吸収スペクトルから求めた。尚、測定ならびに計算は、文献(Die Makromoleculare Chemie, 177, 449 (1976) McRae, M. A., Madams, W. F. )記載の方法に従い、α−オレフィン由来の特性吸収を利用して実施した。赤外吸収スペクトルは、赤外分光光度計(日本分光工業社製 FT−IR7300)を用いて測定した。
(9)g*
前記式(II)によってg*を求めた。
なお、[η]は、エチレン−α−オレフィン共重合体の相対粘度(ηrel)を、熱劣化防止剤としてブチルヒドロキシトルエン(BHT)を0.5重量%含むテトラリン100mlに、エチレン−α−オレフィン共重合体100mgを135℃で溶解してサンプル溶液を調製し、ウベローデ型粘度計を用いて前記サンプル溶液と熱劣化防止剤としてBHTを0.5重量%のみを含むテトラリンからなるブランク溶液との降下時間から算出し、式(II−I)によって求め、[η]GPCは、(5)のエチレン−α−オレフィン共重合体の分子量分布の測定から、式(II−II)によって求め、gSCB*は、(8)のエチレン−α−オレフィン共重合体の短鎖分岐数の測定から式(II−III)によって求めた。
前記式(II)によってg*を求めた。
なお、[η]は、エチレン−α−オレフィン共重合体の相対粘度(ηrel)を、熱劣化防止剤としてブチルヒドロキシトルエン(BHT)を0.5重量%含むテトラリン100mlに、エチレン−α−オレフィン共重合体100mgを135℃で溶解してサンプル溶液を調製し、ウベローデ型粘度計を用いて前記サンプル溶液と熱劣化防止剤としてBHTを0.5重量%のみを含むテトラリンからなるブランク溶液との降下時間から算出し、式(II−I)によって求め、[η]GPCは、(5)のエチレン−α−オレフィン共重合体の分子量分布の測定から、式(II−II)によって求め、gSCB*は、(8)のエチレン−α−オレフィン共重合体の短鎖分岐数の測定から式(II−III)によって求めた。
(10)溶融複素粘度(η*、単位:Pa・sec)
粘弾性測定装置(Rheometrics社製Rheometrics Mechanical Spectrometer RMS−800)を用いて、下記測定条件で190℃での溶融複素粘度−角周波数曲線を測定し、角周波数100rad/秒で測定された溶融複素粘度を求めた。該溶融複素粘度が低いほど、押出成形時の押出負荷に優れる。
<測定条件>
ジオメトリー:パラレルプレート
プレート直径:25mm
プレート間隔:1.5〜2mm
ストレイン :5%
角周波数 :0.1〜100rad/秒
測定雰囲気 :窒素
粘弾性測定装置(Rheometrics社製Rheometrics Mechanical Spectrometer RMS−800)を用いて、下記測定条件で190℃での溶融複素粘度−角周波数曲線を測定し、角周波数100rad/秒で測定された溶融複素粘度を求めた。該溶融複素粘度が低いほど、押出成形時の押出負荷に優れる。
<測定条件>
ジオメトリー:パラレルプレート
プレート直径:25mm
プレート間隔:1.5〜2mm
ストレイン :5%
角周波数 :0.1〜100rad/秒
測定雰囲気 :窒素
(11)最高引取速度(MTV、単位:m/分)
東洋精機製作所製メルトテンションテスターを用い、150℃の温度および0.32g/分の押出速度で、直径2.095mm、長さ8mmのオリフィスからエチレン−α−オレフィン共重合体を溶融押出し、該押出された溶融したエチレン−α−オレフィン共重合体を引取ロールにより6.3(m/分)/分の引取上昇速度でフィラメント状に引取った。フィラメント状のエチレン−α−オレフィン共重合体が切断する際の引取速度を最高引取速度とした。この値が高いほど押出成形時の引き取り性に優れる。
東洋精機製作所製メルトテンションテスターを用い、150℃の温度および0.32g/分の押出速度で、直径2.095mm、長さ8mmのオリフィスからエチレン−α−オレフィン共重合体を溶融押出し、該押出された溶融したエチレン−α−オレフィン共重合体を引取ロールにより6.3(m/分)/分の引取上昇速度でフィラメント状に引取った。フィラメント状のエチレン−α−オレフィン共重合体が切断する際の引取速度を最高引取速度とした。この値が高いほど押出成形時の引き取り性に優れる。
(12)衝撃強度(単位:kJ/m2)
ASTM D1822−68に従って測定を行った。
ASTM D1822−68に従って測定を行った。
(13)特性緩和時間(τ)(sec)
粘弾性測定装置(Rheometrics社製Rheometrics Mechanical Spectrometer RMS−800)を用いて、下記測定条件で130℃、150℃、170℃および190℃での溶融複素粘度−角周波数曲線を測定し、次に、得られた溶融複素粘度−角周波数曲線から、Rheometrics社製計算ソフトウェア Rhios V.4.4.4を用いて、190℃での溶融複素粘度−角周波数曲線のマスターカーブを作成し、特性緩和時間(τ)を求めた。
<測定条件>
ジオメトリー:パラレルプレート
プレート直径:25mm
プレート間隔:1.5〜2mm
ストレイン :5%
角周波数 :0.1〜100rad/秒
測定雰囲気 :窒素
粘弾性測定装置(Rheometrics社製Rheometrics Mechanical Spectrometer RMS−800)を用いて、下記測定条件で130℃、150℃、170℃および190℃での溶融複素粘度−角周波数曲線を測定し、次に、得られた溶融複素粘度−角周波数曲線から、Rheometrics社製計算ソフトウェア Rhios V.4.4.4を用いて、190℃での溶融複素粘度−角周波数曲線のマスターカーブを作成し、特性緩和時間(τ)を求めた。
<測定条件>
ジオメトリー:パラレルプレート
プレート直径:25mm
プレート間隔:1.5〜2mm
ストレイン :5%
角周波数 :0.1〜100rad/秒
測定雰囲気 :窒素
(14)流動の活性化エネルギー(Ea、単位:kJ/mol)
粘弾性測定装置(Rheometrics社製Rheometrics Mechanical Spectrometer RMS−800)を用いて、下記測定条件で130℃、150℃、170℃および190℃での溶融複素粘度−角周波数曲線を測定し、次に、得られた溶融複素粘度−角周波数曲線から、Rheometrics社製計算ソフトウェア Rhios V.4.4.4を用いて、190℃での溶融複素粘度−角周波数曲線のマスターカーブを作成し、活性化エネルギー(Ea)を求めた。
<測定条件>
ジオメトリー:パラレルプレート
プレート直径:25mm
プレート間隔:1.5〜2mm
ストレイン :5%
角周波数 :0.1〜100rad/秒
測定雰囲気 :窒素
(15)冷キシレン可溶部(CXS)
米国のCode of federal regulations,Foodand Drugs Administrationの§175.1520に規定された方法に従った。
この値が小さいほど、押出ラミネート時の発煙性が小さい。
粘弾性測定装置(Rheometrics社製Rheometrics Mechanical Spectrometer RMS−800)を用いて、下記測定条件で130℃、150℃、170℃および190℃での溶融複素粘度−角周波数曲線を測定し、次に、得られた溶融複素粘度−角周波数曲線から、Rheometrics社製計算ソフトウェア Rhios V.4.4.4を用いて、190℃での溶融複素粘度−角周波数曲線のマスターカーブを作成し、活性化エネルギー(Ea)を求めた。
<測定条件>
ジオメトリー:パラレルプレート
プレート直径:25mm
プレート間隔:1.5〜2mm
ストレイン :5%
角周波数 :0.1〜100rad/秒
測定雰囲気 :窒素
(15)冷キシレン可溶部(CXS)
米国のCode of federal regulations,Foodand Drugs Administrationの§175.1520に規定された方法に従った。
この値が小さいほど、押出ラミネート時の発煙性が小さい。
(16)ネックイン−1(NI−1)
溶融樹脂の押出厚み50μm、加工速度1.5m/minの条件下における、押出加工時のダイの開口部と多層フィルムの樹脂膜の幅の差(両側合計値)を測定し、エチレン系樹脂RS9(押出しラミネート用の高圧法低密度ポリエチレン;物性値は表6に記載)の値を基準としたときの下記評価基準にてネックインの良否を判定した。
◎:基準値から-30%未満の場合
○:基準値から-30%以上10%未満の場合
△:基準値から10%以上30%未満の場合
×:基準値から30%以上の場合
溶融樹脂の押出厚み50μm、加工速度1.5m/minの条件下における、押出加工時のダイの開口部と多層フィルムの樹脂膜の幅の差(両側合計値)を測定し、エチレン系樹脂RS9(押出しラミネート用の高圧法低密度ポリエチレン;物性値は表6に記載)の値を基準としたときの下記評価基準にてネックインの良否を判定した。
◎:基準値から-30%未満の場合
○:基準値から-30%以上10%未満の場合
△:基準値から10%以上30%未満の場合
×:基準値から30%以上の場合
(17)ネックイン−2(NI−2)
溶融樹脂の押出厚み20μm、加工速度80m/minの条件下における、押出加工時のダイの開口部と多層フィルムの樹脂膜の幅の差(両側合計値)を測定し、エチレン系樹脂RS9(押出しラミネート用の高圧法低密度ポリエチレン;物性値は表7に記載)の値を基準としたときの下記評価基準にてネックインの良否を判定した。
◎:基準値から-30%未満の場合
○:基準値から-30%以上10%未満の場合
△:基準値から10%以上30%未満の場合
×:基準値から30%以上の場合
溶融樹脂の押出厚み20μm、加工速度80m/minの条件下における、押出加工時のダイの開口部と多層フィルムの樹脂膜の幅の差(両側合計値)を測定し、エチレン系樹脂RS9(押出しラミネート用の高圧法低密度ポリエチレン;物性値は表7に記載)の値を基準としたときの下記評価基準にてネックインの良否を判定した。
◎:基準値から-30%未満の場合
○:基準値から-30%以上10%未満の場合
△:基準値から10%以上30%未満の場合
×:基準値から30%以上の場合
(18)ドローダウン性−1(DD−1)
溶融樹脂の押出量550g/hrの条件下において、押出加工時の巻取速度を高くして、樹脂が切れて巻き取れなくなった時の巻取速度を、ドローダウンとして測定し、エチレン系樹脂RS9(押出しラミネート用の高圧法低密度ポリエチレン;物性値は表6に記載)の値を基準としたときの下記評価基準にてドローダウンの良否を判定した。
◎:基準値から-5%以上の場合
○:基準値から-20%以上-5%未満の場合
△:基準値から-50%以上-20%未満の場合
×:基準値から-50%未満の場合
溶融樹脂の押出量550g/hrの条件下において、押出加工時の巻取速度を高くして、樹脂が切れて巻き取れなくなった時の巻取速度を、ドローダウンとして測定し、エチレン系樹脂RS9(押出しラミネート用の高圧法低密度ポリエチレン;物性値は表6に記載)の値を基準としたときの下記評価基準にてドローダウンの良否を判定した。
◎:基準値から-5%以上の場合
○:基準値から-20%以上-5%未満の場合
△:基準値から-50%以上-20%未満の場合
×:基準値から-50%未満の場合
(19)ドローダウン性−2(DD−2)
溶融樹脂の押出量50kg/hrの条件下において、押出加工時の巻取速度を高くして、樹脂が切れて巻き取れなくなった時の巻取速度を、ドローダウンとして測定し、エチレン系樹脂RS9(押出しラミネート用の高圧法低密度ポリエチレン;物性値は表7に記載)の値を基準としたときの下記評価基準にてドローダウンの良否を判定した。
◎:基準値から-30%以上の場合
○:基準値から-50%以上-30%未満の場合
△:基準値から-70%以上-50%未満の場合
×:基準値から-70%未満の場合
溶融樹脂の押出量50kg/hrの条件下において、押出加工時の巻取速度を高くして、樹脂が切れて巻き取れなくなった時の巻取速度を、ドローダウンとして測定し、エチレン系樹脂RS9(押出しラミネート用の高圧法低密度ポリエチレン;物性値は表7に記載)の値を基準としたときの下記評価基準にてドローダウンの良否を判定した。
◎:基準値から-30%以上の場合
○:基準値から-50%以上-30%未満の場合
△:基準値から-70%以上-50%未満の場合
×:基準値から-70%未満の場合
(20)ヒートシール性 (単位:N/15mm幅)
2枚の試料フィルムを重ね合わせ、テスター産業(株)製のヒートシーラー機を用い、シール温度:120℃、シール面圧力:0.098MPa、シール時間:1秒、シール幅:10mm、シール長さ15mmの条件でヒートシールを行った。そして、引張試験機を用いて、200mm/分の速度でヒートシール部の幅方向に剥離するように引張り、その際生じる最大荷量をヒートシール強度とした。この値が高いほどヒートシール性に優れる。
2枚の試料フィルムを重ね合わせ、テスター産業(株)製のヒートシーラー機を用い、シール温度:120℃、シール面圧力:0.098MPa、シール時間:1秒、シール幅:10mm、シール長さ15mmの条件でヒートシールを行った。そして、引張試験機を用いて、200mm/分の速度でヒートシール部の幅方向に剥離するように引張り、その際生じる最大荷量をヒートシール強度とした。この値が高いほどヒートシール性に優れる。
(21)樹脂圧力(単位:MPa)
溶融樹脂の押出厚み50μm、加工速度1.5m/minの条件下における、押出加工時のクロスヘッド部の樹脂圧力を測定した。この値が小さいほど、押出ラミネート時の押出負荷が小さく、加工性に優れる。
溶融樹脂の押出厚み50μm、加工速度1.5m/minの条件下における、押出加工時のクロスヘッド部の樹脂圧力を測定した。この値が小さいほど、押出ラミネート時の押出負荷が小さく、加工性に優れる。
実施例1
(1)固体触媒成分の調製
窒素置換した撹拌機を備えた反応器に、窒素流通下で300℃において加熱処理したシリカ(デビソン社製 Sylopol948;50%体積平均粒子径=55μm;細孔容量=1.67ml/g;比表面積=325m2/g)2.8kgとトルエン24kgとを入れて、撹拌した。その後、5℃に冷却した後、1,1,1,3,3,3−ヘキサメチルジシラザン0.9kgとトルエン1.4kgとの混合溶液を反応器の温度を5℃に保ちながら30分間で滴下した。滴下終了後、5℃で1時間撹拌し、次に95℃に昇温し、95℃で3時間撹拌し、ろ過した。得られた固体生成物をトルエン20.8kgで6回、洗浄を行った。その後、トルエン7.1kgを加えスラリーとし、一晩静置した。
(1)固体触媒成分の調製
窒素置換した撹拌機を備えた反応器に、窒素流通下で300℃において加熱処理したシリカ(デビソン社製 Sylopol948;50%体積平均粒子径=55μm;細孔容量=1.67ml/g;比表面積=325m2/g)2.8kgとトルエン24kgとを入れて、撹拌した。その後、5℃に冷却した後、1,1,1,3,3,3−ヘキサメチルジシラザン0.9kgとトルエン1.4kgとの混合溶液を反応器の温度を5℃に保ちながら30分間で滴下した。滴下終了後、5℃で1時間撹拌し、次に95℃に昇温し、95℃で3時間撹拌し、ろ過した。得られた固体生成物をトルエン20.8kgで6回、洗浄を行った。その後、トルエン7.1kgを加えスラリーとし、一晩静置した。
上記で得られたスラリーに、ジエチル亜鉛のヘキサン溶液(ジエチル亜鉛濃度:50重量%)1.73kgとヘキサン1.02kgとを投入し、撹拌した。その後、5℃に冷却した後、3,4,5−トリフルオロフェノール0.78kgとトルエン1.44kgとの混合溶液を、反応器の温度を5℃に保ちながら60分間で滴下した。滴下終了後、5℃で1時間撹拌し、次に40℃に昇温し、40℃で1時間撹拌した。その後、22℃に冷却し、H2O0.11kgを反応器の温度を22℃に保ちながら1.5時間で滴下した。滴下終了後、22℃で1.5時間撹拌し、次に40℃に昇温し、40℃で2時間撹拌し、更に80℃に昇温し、80℃で2時間撹拌した。撹拌後、室温にて、残量16Lまで上澄み液を抜き出し、トルエン11.6kgを投入し、次に、95℃に昇温し、4時間撹拌した。撹拌後、室温にて、上澄み液を抜き出し、固体生成物を得た。得られた固体生成物をトルエン20.8kgで4回、ヘキサン24リットルで3回、洗浄を行った。その後、乾燥することにより、固体触媒成分を得た。
(2)重合
減圧乾燥後アルゴンで置換した内容積3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.03MPaになるように加え、1−ヘキセンを180ml、重合溶媒としてブタンを650g仕込み、70℃まで昇温した。その後、エチレンを、その分圧が1.6MPaになるように加え系内を安定させた。ガスクロマトグラフィー分析の結果、系内のガス組成は、水素=1.84mol%であった。これに、有機アルミニウム化合物(C)として濃度を1mol/lに調整したトリイソブチルアルミニウムのヘキサン溶液 0.9mlを投入した。次に、濃度を2μmol/mlに調整したラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド[遷移金属化合物(A1)に相当]のトルエン溶液 0.5mlと、濃度を0.1μmol/mlに調整したジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド[遷移金属化合物(A2)に相当]のトルエン溶液 0.8mlを投入し、続いて上記実施例1(1)で得られた固体触媒成分38.7mgを投入した。重合中は全圧、およびガス中の水素濃度を一定に維持するように、エチレン/水素混合ガス(水素=0.25mol%)を連続的に供給しながら、70℃で60分間重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体182gを得た。得られた共重合体の物性を表1に示した。
(2)重合
減圧乾燥後アルゴンで置換した内容積3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.03MPaになるように加え、1−ヘキセンを180ml、重合溶媒としてブタンを650g仕込み、70℃まで昇温した。その後、エチレンを、その分圧が1.6MPaになるように加え系内を安定させた。ガスクロマトグラフィー分析の結果、系内のガス組成は、水素=1.84mol%であった。これに、有機アルミニウム化合物(C)として濃度を1mol/lに調整したトリイソブチルアルミニウムのヘキサン溶液 0.9mlを投入した。次に、濃度を2μmol/mlに調整したラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド[遷移金属化合物(A1)に相当]のトルエン溶液 0.5mlと、濃度を0.1μmol/mlに調整したジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド[遷移金属化合物(A2)に相当]のトルエン溶液 0.8mlを投入し、続いて上記実施例1(1)で得られた固体触媒成分38.7mgを投入した。重合中は全圧、およびガス中の水素濃度を一定に維持するように、エチレン/水素混合ガス(水素=0.25mol%)を連続的に供給しながら、70℃で60分間重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体182gを得た。得られた共重合体の物性を表1に示した。
実施例2
(1)重合
減圧乾燥後アルゴンで置換した内容積3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.04MPaになるように加え、1−ヘキセンを200ml、重合溶媒としてブタンを650g仕込み、70℃まで昇温した。その後、エチレンを、その分圧が1.6MPaになるように加え系内を安定させた。ガスクロマトグラフィー分析の結果、系内のガス組成は、水素=2.21mol%であった。これに、有機アルミニウム化合物(C)として濃度を1mol/lに調整したトリイソブチルアルミニウムのヘキサン溶液 0.9mlを投入した。次に、濃度を2μmol/mlに調整したラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド[遷移金属化合物(A1)に相当]のトルエン溶液 0.3mlと、濃度を0.1μmol/mlに調整したジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド[遷移金属化合物(A2)に相当]のトルエン溶液 0.5mlを投入し、続いて上記実施例1(1)で得られた固体触媒成分16.4mgを投入した。重合中は全圧、およびガス中の水素濃度を一定に維持するように、エチレン/水素混合ガス(水素=0.25mol%)を連続的に供給しながら、70℃で60分間重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体101gを得た。得られた共重合体の物性を表1に示した。
(1)重合
減圧乾燥後アルゴンで置換した内容積3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.04MPaになるように加え、1−ヘキセンを200ml、重合溶媒としてブタンを650g仕込み、70℃まで昇温した。その後、エチレンを、その分圧が1.6MPaになるように加え系内を安定させた。ガスクロマトグラフィー分析の結果、系内のガス組成は、水素=2.21mol%であった。これに、有機アルミニウム化合物(C)として濃度を1mol/lに調整したトリイソブチルアルミニウムのヘキサン溶液 0.9mlを投入した。次に、濃度を2μmol/mlに調整したラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド[遷移金属化合物(A1)に相当]のトルエン溶液 0.3mlと、濃度を0.1μmol/mlに調整したジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド[遷移金属化合物(A2)に相当]のトルエン溶液 0.5mlを投入し、続いて上記実施例1(1)で得られた固体触媒成分16.4mgを投入した。重合中は全圧、およびガス中の水素濃度を一定に維持するように、エチレン/水素混合ガス(水素=0.25mol%)を連続的に供給しながら、70℃で60分間重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体101gを得た。得られた共重合体の物性を表1に示した。
実施例3
(1)重合
減圧乾燥後アルゴンで置換した内容積3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.04MPaになるように加え、1−ヘキセンを180ml、重合溶媒としてブタンを650g仕込み、70℃まで昇温した。その後、エチレンを、その分圧が1.6MPaになるように加え系内を安定させた。ガスクロマトグラフィー分析の結果、系内のガス組成は、水素=2.12mol%であった。これに、有機アルミニウム化合物(C)として濃度を1mol/lに調整したトリイソブチルアルミニウムのヘキサン溶液 0.9mlを投入した。次に、濃度を2μmol/mlに調整したラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド[遷移金属化合物(A1)に相当]のトルエン溶液 0.5mlと、濃度を0.1μmol/mlに調整したジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド[遷移金属化合物(A2)に相当]のトルエン溶液 0.8mlを投入し、続いて上記実施例1(1)で得られた固体触媒成分29.2mgを投入した。重合中は全圧、およびガス中の水素濃度を一定に維持するように、エチレン/水素混合ガス(水素=0.27mol%)を連続的に供給しながら、70℃で60分間重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体189gを得た。得られた共重合体の物性を表1に示した。
(1)重合
減圧乾燥後アルゴンで置換した内容積3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.04MPaになるように加え、1−ヘキセンを180ml、重合溶媒としてブタンを650g仕込み、70℃まで昇温した。その後、エチレンを、その分圧が1.6MPaになるように加え系内を安定させた。ガスクロマトグラフィー分析の結果、系内のガス組成は、水素=2.12mol%であった。これに、有機アルミニウム化合物(C)として濃度を1mol/lに調整したトリイソブチルアルミニウムのヘキサン溶液 0.9mlを投入した。次に、濃度を2μmol/mlに調整したラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド[遷移金属化合物(A1)に相当]のトルエン溶液 0.5mlと、濃度を0.1μmol/mlに調整したジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド[遷移金属化合物(A2)に相当]のトルエン溶液 0.8mlを投入し、続いて上記実施例1(1)で得られた固体触媒成分29.2mgを投入した。重合中は全圧、およびガス中の水素濃度を一定に維持するように、エチレン/水素混合ガス(水素=0.27mol%)を連続的に供給しながら、70℃で60分間重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体189gを得た。得られた共重合体の物性を表1に示した。
実施例4
(1)重合
減圧乾燥後アルゴンで置換した内容積3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.04MPaになるように加え、1−ヘキセンを160ml、重合溶媒としてブタンを650g仕込み、70℃まで昇温した。その後、エチレンを、その分圧が1.6MPaになるように加え系内を安定させた。ガスクロマトグラフィー分析の結果、系内のガス組成は、水素=2.52mol%であった。これに、有機アルミニウム化合物(C)として濃度を1mol/lに調整したトリイソブチルアルミニウムのヘキサン溶液 0.9mlを投入した。次に、濃度を2μmol/mlに調整したラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド[遷移金属化合物(A1)に相当]のトルエン溶液 0.5mlと、濃度を0.1μmol/mlに調整したジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド[遷移金属化合物(A2)に相当]のトルエン溶液 0.8mlを投入し、続いて上記実施例1(1)で得られた固体触媒成分20.6mgを投入した。重合中は全圧、およびガス中の水素濃度を一定に維持するように、エチレン/水素混合ガス(水素=0.25mol%)を連続的に供給しながら、70℃で60分間重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体135gを得た。得られた共重合体の物性を表1に示した。
(1)重合
減圧乾燥後アルゴンで置換した内容積3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.04MPaになるように加え、1−ヘキセンを160ml、重合溶媒としてブタンを650g仕込み、70℃まで昇温した。その後、エチレンを、その分圧が1.6MPaになるように加え系内を安定させた。ガスクロマトグラフィー分析の結果、系内のガス組成は、水素=2.52mol%であった。これに、有機アルミニウム化合物(C)として濃度を1mol/lに調整したトリイソブチルアルミニウムのヘキサン溶液 0.9mlを投入した。次に、濃度を2μmol/mlに調整したラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド[遷移金属化合物(A1)に相当]のトルエン溶液 0.5mlと、濃度を0.1μmol/mlに調整したジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド[遷移金属化合物(A2)に相当]のトルエン溶液 0.8mlを投入し、続いて上記実施例1(1)で得られた固体触媒成分20.6mgを投入した。重合中は全圧、およびガス中の水素濃度を一定に維持するように、エチレン/水素混合ガス(水素=0.25mol%)を連続的に供給しながら、70℃で60分間重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体135gを得た。得られた共重合体の物性を表1に示した。
実施例5
(1)重合
減圧乾燥後アルゴンで置換した内容積3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.06MPaになるように加え、1−ヘキセンを180ml、重合溶媒としてブタンを650g仕込み、70℃まで昇温した。その後、エチレンを、その分圧が1.6MPaになるように加え系内を安定させた。ガスクロマトグラフィー分析の結果、系内のガス組成は、水素=3.56mol%であった。これに、有機アルミニウム化合物(C)として濃度を1mol/lに調整したトリイソブチルアルミニウムのヘキサン溶液 0.9mlを投入した。次に、濃度を2μmol/mlに調整したラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド[遷移金属化合物(A1)に相当]のトルエン溶液 0.5mlと、濃度を0.1μmol/mlに調整したジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド[遷移金属化合物(A2)に相当]のトルエン溶液 0.8mlを投入し、続いて上記実施例1(1)で得られた固体触媒成分23.1mgを投入した。重合中は全圧、およびガス中の水素濃度を一定に維持するように、エチレン/水素混合ガス(水素=0.29mol%)を連続的に供給しながら、70℃で60分間重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体118gを得た。得られた共重合体の物性を表1に示した。
(1)重合
減圧乾燥後アルゴンで置換した内容積3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.06MPaになるように加え、1−ヘキセンを180ml、重合溶媒としてブタンを650g仕込み、70℃まで昇温した。その後、エチレンを、その分圧が1.6MPaになるように加え系内を安定させた。ガスクロマトグラフィー分析の結果、系内のガス組成は、水素=3.56mol%であった。これに、有機アルミニウム化合物(C)として濃度を1mol/lに調整したトリイソブチルアルミニウムのヘキサン溶液 0.9mlを投入した。次に、濃度を2μmol/mlに調整したラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド[遷移金属化合物(A1)に相当]のトルエン溶液 0.5mlと、濃度を0.1μmol/mlに調整したジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド[遷移金属化合物(A2)に相当]のトルエン溶液 0.8mlを投入し、続いて上記実施例1(1)で得られた固体触媒成分23.1mgを投入した。重合中は全圧、およびガス中の水素濃度を一定に維持するように、エチレン/水素混合ガス(水素=0.29mol%)を連続的に供給しながら、70℃で60分間重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体118gを得た。得られた共重合体の物性を表1に示した。
実施例6
(1)重合
減圧乾燥後アルゴンで置換した内容積3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.04MPaになるように加え、1−ヘキセンを180ml、重合溶媒としてブタンを650g仕込み、70℃まで昇温した。その後、エチレンを、その分圧が1.6MPaになるように加え系内を安定させた。ガスクロマトグラフィー分析の結果、系内のガス組成は、水素=2.41mol%であった。これに、有機アルミニウム化合物(C)として濃度を1mol/lに調整したトリイソブチルアルミニウムのヘキサン溶液 0.9mlを投入した。次に、濃度を2μmol/mlに調整したラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド[遷移金属化合物(A1)に相当]のトルエン溶液 0.45mlと、濃度を0.1μmol/mlに調整したジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド[遷移金属化合物(A2)に相当]のトルエン溶液 0.3mlを投入し、続いて上記実施例1(1)で得られた固体触媒成分9.9mgを投入した。重合中は全圧、およびガス中の水素濃度を一定に維持するように、エチレン/水素混合ガス(水素=0.25mol%)を連続的に供給しながら、70℃で60分間重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体124.4gを得た。得られた共重合体の物性を表2に示した。
(1)重合
減圧乾燥後アルゴンで置換した内容積3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.04MPaになるように加え、1−ヘキセンを180ml、重合溶媒としてブタンを650g仕込み、70℃まで昇温した。その後、エチレンを、その分圧が1.6MPaになるように加え系内を安定させた。ガスクロマトグラフィー分析の結果、系内のガス組成は、水素=2.41mol%であった。これに、有機アルミニウム化合物(C)として濃度を1mol/lに調整したトリイソブチルアルミニウムのヘキサン溶液 0.9mlを投入した。次に、濃度を2μmol/mlに調整したラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド[遷移金属化合物(A1)に相当]のトルエン溶液 0.45mlと、濃度を0.1μmol/mlに調整したジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド[遷移金属化合物(A2)に相当]のトルエン溶液 0.3mlを投入し、続いて上記実施例1(1)で得られた固体触媒成分9.9mgを投入した。重合中は全圧、およびガス中の水素濃度を一定に維持するように、エチレン/水素混合ガス(水素=0.25mol%)を連続的に供給しながら、70℃で60分間重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体124.4gを得た。得られた共重合体の物性を表2に示した。
実施例7
(1)予備重合触媒成分の調製
予め窒素置換した内容積5リットルの撹拌機付きオートクレーブに、ブタン833gを投入した後、オートクレーブを50℃まで昇温して、次にエチレンを28g仕込み、系内が安定させた。次に、別途50mlのフラスコに窒素雰囲気下でジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド[遷移金属化合物(A2)に相当]57mgと、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド[遷移金属化合物(A1)に相当]0.67gと、有機アルミニウム化合物(C)としてトリイソブチルアルミニウム濃度が1mmol/mLであるトリイソブチルアルミニウムのヘキサン溶液を4.1mLを混合して50℃で4時間撹拌混合した溶液をオートクレーブに投入した。続いて実施例1で調製した固体触媒成分10.4gを投入して重合を開始した。水素濃度が0.2%であるエチレンと水素の混合ガスを連続供給しながら50℃で80分の予備重合を実施した。重合終了後、エチレン、ブタン、水素などをパージして残った固体を室温にて乾燥し、固体触媒成分1g当り17.5gのポリエチレンを含有する予備重合触媒成分を得た。
(2)重合
減圧乾燥後アルゴンで置換した3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.035MPaになるように加え、1−ヘキセン180ml、ブタンを650g仕込み、系内の温度を70℃まで昇温した後、エチレンを、その分圧が1.6MPaになるように導入し、系内を安定させた。ガスクロマトグラフィーの結果、系内のガス組成は、水素=2.15mol%であった。これに、有機アルミニウム化合物(C)としてトリイソブチルアルミニウム濃度が1mmol/mLであるトリイソブチルアルミニウムのヘキサン溶液を0.9mL投入した。次に実施例7(1)で得られた予備重合触媒成分を363mg投入した。重合中は全圧、およびガス中の水素濃度を一定に維持するように、エチレン/水素混合ガス(水素=0.24mol%)を連続的に供給しながら、70℃で60分重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体128gを得た。得られた共重合体の物性を表2に示した。
(1)予備重合触媒成分の調製
予め窒素置換した内容積5リットルの撹拌機付きオートクレーブに、ブタン833gを投入した後、オートクレーブを50℃まで昇温して、次にエチレンを28g仕込み、系内が安定させた。次に、別途50mlのフラスコに窒素雰囲気下でジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド[遷移金属化合物(A2)に相当]57mgと、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド[遷移金属化合物(A1)に相当]0.67gと、有機アルミニウム化合物(C)としてトリイソブチルアルミニウム濃度が1mmol/mLであるトリイソブチルアルミニウムのヘキサン溶液を4.1mLを混合して50℃で4時間撹拌混合した溶液をオートクレーブに投入した。続いて実施例1で調製した固体触媒成分10.4gを投入して重合を開始した。水素濃度が0.2%であるエチレンと水素の混合ガスを連続供給しながら50℃で80分の予備重合を実施した。重合終了後、エチレン、ブタン、水素などをパージして残った固体を室温にて乾燥し、固体触媒成分1g当り17.5gのポリエチレンを含有する予備重合触媒成分を得た。
(2)重合
減圧乾燥後アルゴンで置換した3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.035MPaになるように加え、1−ヘキセン180ml、ブタンを650g仕込み、系内の温度を70℃まで昇温した後、エチレンを、その分圧が1.6MPaになるように導入し、系内を安定させた。ガスクロマトグラフィーの結果、系内のガス組成は、水素=2.15mol%であった。これに、有機アルミニウム化合物(C)としてトリイソブチルアルミニウム濃度が1mmol/mLであるトリイソブチルアルミニウムのヘキサン溶液を0.9mL投入した。次に実施例7(1)で得られた予備重合触媒成分を363mg投入した。重合中は全圧、およびガス中の水素濃度を一定に維持するように、エチレン/水素混合ガス(水素=0.24mol%)を連続的に供給しながら、70℃で60分重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体128gを得た。得られた共重合体の物性を表2に示した。
実施例8
(1)重合
減圧乾燥後、アルゴンで置換した3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.03MPaになるように加え、1−ヘキセン120ml、ブタンを650g仕込み、系内の温度を70℃まで昇温した後、エチレンを、その分圧が1.0MPaになるように導入し、系内を安定させた。ガスクロマトグラフィーの結果、系内のガス組成は、水素=2.37mol%であった。これに、有機アルミニウム化合物(C)としてトリイソブチルアルミニウム濃度が1mmol/mLであるトリイソブチルアルミニウムのヘキサン溶液を0.9mL投入した。次に上記実施例7(1)で得られた予備重合触媒成分を289mg投入した。重合中は全圧、およびガス中の水素濃度を一定に維持するように、エチレン/水素混合ガス(水素=0.24mol%)を連続的に供給しながら、70℃で120分重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体79gを得た。得られた共重合体の物性を表2に示した。
(1)重合
減圧乾燥後、アルゴンで置換した3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.03MPaになるように加え、1−ヘキセン120ml、ブタンを650g仕込み、系内の温度を70℃まで昇温した後、エチレンを、その分圧が1.0MPaになるように導入し、系内を安定させた。ガスクロマトグラフィーの結果、系内のガス組成は、水素=2.37mol%であった。これに、有機アルミニウム化合物(C)としてトリイソブチルアルミニウム濃度が1mmol/mLであるトリイソブチルアルミニウムのヘキサン溶液を0.9mL投入した。次に上記実施例7(1)で得られた予備重合触媒成分を289mg投入した。重合中は全圧、およびガス中の水素濃度を一定に維持するように、エチレン/水素混合ガス(水素=0.24mol%)を連続的に供給しながら、70℃で120分重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体79gを得た。得られた共重合体の物性を表2に示した。
実施例9
(1)予備重合触媒成分の調製
予め窒素置換した内容積5リットルの撹拌機付きオートクレーブに、ブタン836gを投入した後、オートクレーブを50℃まで昇温して、次にエチレンを28g仕込み、系内が安定させた。次に、別途50mlのフラスコに窒素雰囲気下でジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド[遷移金属化合物(A2)に相当]0.25gと、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド[遷移金属化合物(A1)に相当]0.52gと、トリイソブチルアルミニウム濃度が1mmol/mLであるトリイソブチルアルミニウムのヘキサン溶液を4.3mLを混合して50℃で4時間撹拌混合した溶液をオートクレーブに投入した。その後さらに、実施例1(1)で得られた固体触媒成分10.3gを投入して重合を開始した。水素濃度が0.2%であるエチレンと水素の混合ガスを連続供給しながら50℃で100分の予備重合を実施した。重合終了後、エチレン、ブタン、水素などをパージして残った固体を室温にて乾燥し、固体触媒成分1g当り15.9gのポリエチレンを含有する予備重合触媒成分を得た。
(2)重合
減圧乾燥後、アルゴンで置換した3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.08MPaになるように加え、1−ヘキセン180ml、ブタンを650g仕込み、系内の温度を70℃まで昇温した後、エチレンを、その分圧が1.6MPaになるように導入し、系内を安定させた。ガスクロマトグラフィーの結果、系内のガス組成は、水素=4.73mol%であった。これに、有機アルミニウム化合物(C)としてトリイソブチルアルミニウム濃度が1mmol/mLであるトリイソブチルアルミニウムのヘキサン溶液を0.9mL投入した。次に上記実施例9(1)で得られた予備重合触媒成分を333mg投入した。重合中は全圧、およびガス中の水素濃度を一定に維持するように、エチレン/水素混合ガス(水素=0.33mol%)を連続的に供給しながら、70℃で120分重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体78gを得た。得られた共重合体の物性を表2に示した。
(1)予備重合触媒成分の調製
予め窒素置換した内容積5リットルの撹拌機付きオートクレーブに、ブタン836gを投入した後、オートクレーブを50℃まで昇温して、次にエチレンを28g仕込み、系内が安定させた。次に、別途50mlのフラスコに窒素雰囲気下でジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド[遷移金属化合物(A2)に相当]0.25gと、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド[遷移金属化合物(A1)に相当]0.52gと、トリイソブチルアルミニウム濃度が1mmol/mLであるトリイソブチルアルミニウムのヘキサン溶液を4.3mLを混合して50℃で4時間撹拌混合した溶液をオートクレーブに投入した。その後さらに、実施例1(1)で得られた固体触媒成分10.3gを投入して重合を開始した。水素濃度が0.2%であるエチレンと水素の混合ガスを連続供給しながら50℃で100分の予備重合を実施した。重合終了後、エチレン、ブタン、水素などをパージして残った固体を室温にて乾燥し、固体触媒成分1g当り15.9gのポリエチレンを含有する予備重合触媒成分を得た。
(2)重合
減圧乾燥後、アルゴンで置換した3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.08MPaになるように加え、1−ヘキセン180ml、ブタンを650g仕込み、系内の温度を70℃まで昇温した後、エチレンを、その分圧が1.6MPaになるように導入し、系内を安定させた。ガスクロマトグラフィーの結果、系内のガス組成は、水素=4.73mol%であった。これに、有機アルミニウム化合物(C)としてトリイソブチルアルミニウム濃度が1mmol/mLであるトリイソブチルアルミニウムのヘキサン溶液を0.9mL投入した。次に上記実施例9(1)で得られた予備重合触媒成分を333mg投入した。重合中は全圧、およびガス中の水素濃度を一定に維持するように、エチレン/水素混合ガス(水素=0.33mol%)を連続的に供給しながら、70℃で120分重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体78gを得た。得られた共重合体の物性を表2に示した。
実施例10
(1)重合
減圧乾燥後アルゴンで置換した内容積3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.035MPaになるように加え、1−ヘキセンを180ml、重合溶媒としてブタンを650g仕込み、70℃まで昇温した。その後、エチレンを、その分圧が1.6MPaになるように加え系内を安定させた。ガスクロマトグラフィー分析の結果、系内のガス組成は、水素=1.9mol%であった。これに、有機アルミニウム化合物(C)として濃度を1mol/lに調整したトリイソブチルアルミニウムのヘキサン溶液 0.9mlを投入した。次に、濃度を2μmol/mlに調整したラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド[遷移金属化合物(A1)に相当]のトルエン溶液 0.613mlと、濃度を1μmol/mlに調整したジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド[遷移金属化合物(A2)に相当]のトルエン溶液 0.1mlを投入し、続いて上記実施例1(1)で得られた固体触媒成分21mgを投入した。重合中は、エチレン/水素混合ガス(水素=0.26mol%)を連続的に供給しながら、70℃で60分間重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体214gを得た。得られた共重合体の物性を表2に示した。
(1)重合
減圧乾燥後アルゴンで置換した内容積3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.035MPaになるように加え、1−ヘキセンを180ml、重合溶媒としてブタンを650g仕込み、70℃まで昇温した。その後、エチレンを、その分圧が1.6MPaになるように加え系内を安定させた。ガスクロマトグラフィー分析の結果、系内のガス組成は、水素=1.9mol%であった。これに、有機アルミニウム化合物(C)として濃度を1mol/lに調整したトリイソブチルアルミニウムのヘキサン溶液 0.9mlを投入した。次に、濃度を2μmol/mlに調整したラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド[遷移金属化合物(A1)に相当]のトルエン溶液 0.613mlと、濃度を1μmol/mlに調整したジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド[遷移金属化合物(A2)に相当]のトルエン溶液 0.1mlを投入し、続いて上記実施例1(1)で得られた固体触媒成分21mgを投入した。重合中は、エチレン/水素混合ガス(水素=0.26mol%)を連続的に供給しながら、70℃で60分間重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体214gを得た。得られた共重合体の物性を表2に示した。
比較例1
(1)固体触媒成分(S)の調製
窒素置換した攪拌機付きの反応器に、成分(b)固体状担体として窒素流通下で300℃において加熱処理したシリカ(デビソン社製 Sylopol948;平均粒子径=55μm;細孔容量=1.67ml/g;比表面積=325m2/g)9.68kgを入れた。トルエンを100リットル加えた後、2℃に冷却した。これにメチルアルモキサンのトルエン溶液(2.9M)26.3リットルを一時間かけて滴下した。5℃にて30分間攪拌した後、90分間かけて95℃まで加熱し、4時間攪拌を行った。その後40℃へ冷却した後、40分間静置し、固体成分を沈降させ、上層のスラリー部分を取り除いた。洗浄操作として、これに、トルエン100リットルを加え、10分間攪拌した後、攪拌を停止して静置し固体成分を沈降させ、同様に上層のスラリー部分を取り除いた。以上の洗浄操作を計3回繰り返した。さらに、トルエン100リットルを加え、攪拌を行った後、攪拌を止めると同時にろ過を行った。この操作をもう1回繰り返した後、ヘキサン110リットルを加え、同様の方法にてろ過を行った。この操作をもう一度繰り返した。その後、窒素流通下70℃で7時間乾燥を行うことにより、固体触媒成分12.6kgを得た。元素分析の結果、Al=4.4mmol/gであった。
(1)固体触媒成分(S)の調製
窒素置換した攪拌機付きの反応器に、成分(b)固体状担体として窒素流通下で300℃において加熱処理したシリカ(デビソン社製 Sylopol948;平均粒子径=55μm;細孔容量=1.67ml/g;比表面積=325m2/g)9.68kgを入れた。トルエンを100リットル加えた後、2℃に冷却した。これにメチルアルモキサンのトルエン溶液(2.9M)26.3リットルを一時間かけて滴下した。5℃にて30分間攪拌した後、90分間かけて95℃まで加熱し、4時間攪拌を行った。その後40℃へ冷却した後、40分間静置し、固体成分を沈降させ、上層のスラリー部分を取り除いた。洗浄操作として、これに、トルエン100リットルを加え、10分間攪拌した後、攪拌を停止して静置し固体成分を沈降させ、同様に上層のスラリー部分を取り除いた。以上の洗浄操作を計3回繰り返した。さらに、トルエン100リットルを加え、攪拌を行った後、攪拌を止めると同時にろ過を行った。この操作をもう1回繰り返した後、ヘキサン110リットルを加え、同様の方法にてろ過を行った。この操作をもう一度繰り返した。その後、窒素流通下70℃で7時間乾燥を行うことにより、固体触媒成分12.6kgを得た。元素分析の結果、Al=4.4mmol/gであった。
(2)スラリー状触媒成分(Cat−1)の調製
窒素置換した100mlのガラス製フラスコに上記(1)で調製した固体触媒成分(S)を200mg加えた。次に、濃度を2μmol/mlに調整したジメチルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリド[遷移金属化合物(A1)に相当]のトルエン溶液 12.5mlと、濃度を2μmol/mlに調整したジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド[遷移金属化合物(A2)に相当]のトルエン溶液 1mlを投入し、室温で5分間反応させた。その後、上澄み液をデカンテーションにより除いた後、ヘキサンで2回洗浄し、6mlのヘキサンスラリーとした。
窒素置換した100mlのガラス製フラスコに上記(1)で調製した固体触媒成分(S)を200mg加えた。次に、濃度を2μmol/mlに調整したジメチルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリド[遷移金属化合物(A1)に相当]のトルエン溶液 12.5mlと、濃度を2μmol/mlに調整したジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド[遷移金属化合物(A2)に相当]のトルエン溶液 1mlを投入し、室温で5分間反応させた。その後、上澄み液をデカンテーションにより除いた後、ヘキサンで2回洗浄し、6mlのヘキサンスラリーとした。
(3)重合
減圧乾燥後アルゴンで置換した内容積3リットルの撹拌機付きオートクレーブ内を真空にし、1−ヘキセンを180ml、重合溶媒としてブタンを650g仕込み、70℃まで昇温した。その後、エチレン/水素混合ガス(水素=0.33mol%)を、混合ガスの分圧が1.6MPaになるように加え、系内を安定させた。ガスクロマトグラフィー分析の結果、系内のガス組成は、水素=0.15mol%であった。これに、有機アルミニウム化合物(C)として濃度を1mol/lに調整したトリイソブチルアルミニウムのヘキサン溶液 0.9mlを投入した。次に、上記(2)で調製したスラリー状触媒成分(Cat-1)を6ml投入した。重合中は、エチレン/水素混合ガス(水素=0.33mol%)を連続的に供給しながら、70℃で60分間重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体71gを得た。得られた共重合体の物性を表3に示した。
減圧乾燥後アルゴンで置換した内容積3リットルの撹拌機付きオートクレーブ内を真空にし、1−ヘキセンを180ml、重合溶媒としてブタンを650g仕込み、70℃まで昇温した。その後、エチレン/水素混合ガス(水素=0.33mol%)を、混合ガスの分圧が1.6MPaになるように加え、系内を安定させた。ガスクロマトグラフィー分析の結果、系内のガス組成は、水素=0.15mol%であった。これに、有機アルミニウム化合物(C)として濃度を1mol/lに調整したトリイソブチルアルミニウムのヘキサン溶液 0.9mlを投入した。次に、上記(2)で調製したスラリー状触媒成分(Cat-1)を6ml投入した。重合中は、エチレン/水素混合ガス(水素=0.33mol%)を連続的に供給しながら、70℃で60分間重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体71gを得た。得られた共重合体の物性を表3に示した。
比較例2
(1)重合
減圧乾燥後アルゴンで置換した内容積3リットルの撹拌機付きオートクレーブ内を真空にし、1−ヘキセンを180ml、重合溶媒としてブタンを650g仕込み、70℃まで昇温した。その後、エチレンを、その分圧が1.6MPaになるように加え系内を安定させた。これに、有機アルミニウム化合物(C)として濃度を1mol/lに調整したトリイソブチルアルミニウムのヘキサン溶液 0.9mlを投入した。次に、比較例1(2)と同じ条件で調製したスラリー状触媒成分(Cat-1)を6ml投入した。重合中は、エチレン/水素混合ガス(水素=0.23mol%)を連続的に供給しながら、70℃で60分間重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体123gを得た。得られた共重合体の物性を表3に示した。
(1)重合
減圧乾燥後アルゴンで置換した内容積3リットルの撹拌機付きオートクレーブ内を真空にし、1−ヘキセンを180ml、重合溶媒としてブタンを650g仕込み、70℃まで昇温した。その後、エチレンを、その分圧が1.6MPaになるように加え系内を安定させた。これに、有機アルミニウム化合物(C)として濃度を1mol/lに調整したトリイソブチルアルミニウムのヘキサン溶液 0.9mlを投入した。次に、比較例1(2)と同じ条件で調製したスラリー状触媒成分(Cat-1)を6ml投入した。重合中は、エチレン/水素混合ガス(水素=0.23mol%)を連続的に供給しながら、70℃で60分間重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体123gを得た。得られた共重合体の物性を表3に示した。
実施例11
(1)造粒
15mmφ単軸押出機(S.ラボ製)を用いて、押出機の設定温度170℃、押出量80g/hrの条件で、実施例10で得られたエチレン−α−オレフィン共重合体を造粒した。以下、造粒した実施例10のエチレン−α−オレフィン共重合体をエチレン系樹脂(RS1)と称する。
(1)造粒
15mmφ単軸押出機(S.ラボ製)を用いて、押出機の設定温度170℃、押出量80g/hrの条件で、実施例10で得られたエチレン−α−オレフィン共重合体を造粒した。以下、造粒した実施例10のエチレン−α−オレフィン共重合体をエチレン系樹脂(RS1)と称する。
(2)押出しラミネート加工性評価用Tダイ製膜
ランドキャッスル社製の15mmφ単軸押出機の先端に、150mm幅のTダイ(ストレートマニホールド)を備えた押出装置を用いた。
該押出装置にランドキャッスル社製の冷却ロール、巻き取り装置を配置したTダイキャスト製膜装置を設置し、基材に貼合することなく製膜することで、樹脂圧力、ネックインおよびドローダウン性の押出しラミネート加工性を評価した。
なお加工条件は、押出機の設定温度300℃、エアギャップ30mmとし、前記造粒品を溶融押出した。実施した押出ラミネートの加工性評価結果を表4に示した。
ランドキャッスル社製の15mmφ単軸押出機の先端に、150mm幅のTダイ(ストレートマニホールド)を備えた押出装置を用いた。
該押出装置にランドキャッスル社製の冷却ロール、巻き取り装置を配置したTダイキャスト製膜装置を設置し、基材に貼合することなく製膜することで、樹脂圧力、ネックインおよびドローダウン性の押出しラミネート加工性を評価した。
なお加工条件は、押出機の設定温度300℃、エアギャップ30mmとし、前記造粒品を溶融押出した。実施した押出ラミネートの加工性評価結果を表4に示した。
実施例12
(1)予備重合
予め窒素置換した内容積210リットルの撹拌機付き反応器に、常温下でブタン80リットルを投入し、次に、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド32.4mmolを投入した。その後、反応器内の温度を50℃まで上昇させ、2時間攪拌した。反応器内の温度を30℃まで降温し、エチレンを0.1 kg、水素を常温常圧として 0.1 L投入した。次に、特開2009-79182号公報の実施例1(1)および(2)に記載の方法と同様にして調製した、粒子状固体触媒成分697 gを投入した。その後、トルエン300mlに溶解したジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド2.59mmolを投入した。系内が安定した後、トリイソブチルアルミニウム140mmolを投入して重合を開始した。
(1)予備重合
予め窒素置換した内容積210リットルの撹拌機付き反応器に、常温下でブタン80リットルを投入し、次に、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド32.4mmolを投入した。その後、反応器内の温度を50℃まで上昇させ、2時間攪拌した。反応器内の温度を30℃まで降温し、エチレンを0.1 kg、水素を常温常圧として 0.1 L投入した。次に、特開2009-79182号公報の実施例1(1)および(2)に記載の方法と同様にして調製した、粒子状固体触媒成分697 gを投入した。その後、トルエン300mlに溶解したジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド2.59mmolを投入した。系内が安定した後、トリイソブチルアルミニウム140mmolを投入して重合を開始した。
重合開始後、反応器内の重合温度を30℃で0.5時間運転を行い、その後30分かけて50℃まで昇温して、その後は50℃で重合を行った。最初の0.5時間は、エチレンを0.6kg/hrで供給し、水素を常温常圧として0.7リットル/hrの速度で供給し、重合開始後0.5時間からは、エチレンを3.2kg/hr、水素を常温常圧として9.6リットル/hrの速度で供給し、合計6時間の予備重合を実施した。重合終了後、反応器内圧力を0.6MPaGまでパージし、スラリー状予備重合触媒成分を乾燥器に移送して、窒素流通乾燥を実施して、予備重合触媒成分を得た。該予備重合触媒成分中のエチレン重合体の予備重合量は、粒子状固体触媒成分1g当り21.3gであり、予備重合触媒成分の嵩密度は461kg/m3であった。
(2)重合
減圧乾燥後、アルゴンで置換した3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.033MPaになるように加え、1−ヘキセン180ml、ブタンを650g仕込み、系内の温度を70℃まで昇温した後、エチレンを、その分圧が1.6MPaになるように導入し、系内を安定させた。ガスクロマトグラフィーの結果、系内のガス組成は、水素=1.88mol%であった。これに、有機アルミニウム化合物(C)としてトリイソブチルアルミニウム濃度が1mmol/mLであるトリイソブチルアルミニウムのヘキサン溶液を0.9mL投入した。次に上記実施例12(1)で得られた予備重合触媒成分を874mg投入した。重合中は、エチレン/水素混合ガス(水素=0.282mol%)を連続的に供給しながら、70℃で120分重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体241gを得た。得られたエチレン−α−オレフィン共重合体をエチレン系樹脂(RS2)と称する。 得られた共重合体の物性を表4に示した。
減圧乾燥後、アルゴンで置換した3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.033MPaになるように加え、1−ヘキセン180ml、ブタンを650g仕込み、系内の温度を70℃まで昇温した後、エチレンを、その分圧が1.6MPaになるように導入し、系内を安定させた。ガスクロマトグラフィーの結果、系内のガス組成は、水素=1.88mol%であった。これに、有機アルミニウム化合物(C)としてトリイソブチルアルミニウム濃度が1mmol/mLであるトリイソブチルアルミニウムのヘキサン溶液を0.9mL投入した。次に上記実施例12(1)で得られた予備重合触媒成分を874mg投入した。重合中は、エチレン/水素混合ガス(水素=0.282mol%)を連続的に供給しながら、70℃で120分重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体241gを得た。得られたエチレン−α−オレフィン共重合体をエチレン系樹脂(RS2)と称する。 得られた共重合体の物性を表4に示した。
(2)造粒・押出しラミネート加工性評価用Tダイ製膜
上記(1)で得られたエチレン−1−ヘキセン共重合体に対して、実施例11(1)、(2)に記載の方法と同様の方法で、造粒・製膜を行い、樹脂圧力、ネックインおよびドローダウン性の押出しラミネート加工性を評価した。実施した押出ラミネートの加工性評価およびヒートシール強度評価結果を表4に示した。
上記(1)で得られたエチレン−1−ヘキセン共重合体に対して、実施例11(1)、(2)に記載の方法と同様の方法で、造粒・製膜を行い、樹脂圧力、ネックインおよびドローダウン性の押出しラミネート加工性を評価した。実施した押出ラミネートの加工性評価およびヒートシール強度評価結果を表4に示した。
実施例13
(1)重合
減圧乾燥後、アルゴンで置換した3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.028MPaになるように加え、1−ヘキセン180ml、ブタンを650g仕込み、系内の温度を70℃まで昇温した後、エチレンを、その分圧が1.6MPaになるように導入し、系内を安定させた。ガスクロマトグラフィーの結果、系内のガス組成は、水素=1.77mol%であった。これに、有機アルミニウム化合物(C)としてトリイソブチルアルミニウム濃度が1mmol/mLであるトリイソブチルアルミニウムのヘキサン溶液を0.9mL投入した。次に上記実施例12(1)で得られた予備重合触媒成分を785mg投入した。重合中は、エチレン/水素混合ガス(水素=0.157mol%)を連続的に供給しながら、70℃で90分重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体243gを得た。得られたエチレン−α−オレフィン共重合体をエチレン系樹脂(RS3)と称する。得られた共重合体の物性を表4に示した。
(1)重合
減圧乾燥後、アルゴンで置換した3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.028MPaになるように加え、1−ヘキセン180ml、ブタンを650g仕込み、系内の温度を70℃まで昇温した後、エチレンを、その分圧が1.6MPaになるように導入し、系内を安定させた。ガスクロマトグラフィーの結果、系内のガス組成は、水素=1.77mol%であった。これに、有機アルミニウム化合物(C)としてトリイソブチルアルミニウム濃度が1mmol/mLであるトリイソブチルアルミニウムのヘキサン溶液を0.9mL投入した。次に上記実施例12(1)で得られた予備重合触媒成分を785mg投入した。重合中は、エチレン/水素混合ガス(水素=0.157mol%)を連続的に供給しながら、70℃で90分重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体243gを得た。得られたエチレン−α−オレフィン共重合体をエチレン系樹脂(RS3)と称する。得られた共重合体の物性を表4に示した。
(2)造粒・押出しラミネート加工性評価用Tダイ製膜
上記(1)で得られたエチレン−1−ヘキセン共重合体に対して、実施例11(1)、(2)に記載の方法と同様の方法で、造粒・製膜を行い、樹脂圧力、ネックインおよびドローダウン性の押出しラミネート加工性を評価した。実施した押出ラミネートの加工性評価およびヒートシール強度評価結果を表4に示した。
上記(1)で得られたエチレン−1−ヘキセン共重合体に対して、実施例11(1)、(2)に記載の方法と同様の方法で、造粒・製膜を行い、樹脂圧力、ネックインおよびドローダウン性の押出しラミネート加工性を評価した。実施した押出ラミネートの加工性評価およびヒートシール強度評価結果を表4に示した。
実施例14
(1)重合
減圧乾燥後アルゴンで置換した内容積3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.032MPaになるように加え、1−ヘキセンを170ml、重合溶媒としてブタンを650g仕込み、70℃まで昇温した。その後、エチレンを、その分圧が1.6MPaになるように加え系内を安定させた。ガスクロマトグラフィー分析の結果、系内のガス組成は、水素=2.0mol%であった。これに、有機アルミニウム化合物(C)として濃度を1mol/lに調整したトリイソブチルアルミニウムのヘキサン溶液 0.9mlを投入した。次に、濃度を2μmol/mlに調整したラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド[遷移金属化合物(A1)に相当]のトルエン溶液 0.250mlと、濃度を0.1μmol/mlに調整したジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド[遷移金属化合物(A2)に相当]のトルエン溶液 0.4mlを投入し、続いて上記実施例1(1)で得られた固体触媒成分18mgを投入した。重合中は、エチレン/水素混合ガス(水素=0.20mol%)を連続的に供給しながら、70℃で180分間重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体247gを得た。得られたエチレン−α−オレフィン共重合体をエチレン系樹脂(RS4)と称する。得られたエチレン−1−ヘキセン共重合体の物性を表4に示した。
(1)重合
減圧乾燥後アルゴンで置換した内容積3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.032MPaになるように加え、1−ヘキセンを170ml、重合溶媒としてブタンを650g仕込み、70℃まで昇温した。その後、エチレンを、その分圧が1.6MPaになるように加え系内を安定させた。ガスクロマトグラフィー分析の結果、系内のガス組成は、水素=2.0mol%であった。これに、有機アルミニウム化合物(C)として濃度を1mol/lに調整したトリイソブチルアルミニウムのヘキサン溶液 0.9mlを投入した。次に、濃度を2μmol/mlに調整したラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド[遷移金属化合物(A1)に相当]のトルエン溶液 0.250mlと、濃度を0.1μmol/mlに調整したジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド[遷移金属化合物(A2)に相当]のトルエン溶液 0.4mlを投入し、続いて上記実施例1(1)で得られた固体触媒成分18mgを投入した。重合中は、エチレン/水素混合ガス(水素=0.20mol%)を連続的に供給しながら、70℃で180分間重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体247gを得た。得られたエチレン−α−オレフィン共重合体をエチレン系樹脂(RS4)と称する。得られたエチレン−1−ヘキセン共重合体の物性を表4に示した。
(2)造粒・押出しラミネート加工性評価用Tダイ製膜
上記(1)で得られたエチレン−1−ヘキセン共重合体に対して、実施例11(1)、(2)に記載の方法と同様の方法で、造粒・製膜を行い、樹脂圧力、ネックインおよびドローダウン性の押出しラミネート加工性を評価した。実施した押出ラミネートの加工性評価結果を表4に示した。
上記(1)で得られたエチレン−1−ヘキセン共重合体に対して、実施例11(1)、(2)に記載の方法と同様の方法で、造粒・製膜を行い、樹脂圧力、ネックインおよびドローダウン性の押出しラミネート加工性を評価した。実施した押出ラミネートの加工性評価結果を表4に示した。
実施例15
(1)重合
減圧乾燥後アルゴンで置換した内容積3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.075MPaになるように加え、1−ヘキセンを170ml、重合溶媒としてブタンを650g仕込み、70℃まで昇温した。その後、エチレンを、その分圧が1.6MPaになるように加え系内を安定させた。ガスクロマトグラフィー分析の結果、系内のガス組成は、水素=4.3mol%であった。これに、有機アルミニウム化合物(C)として濃度を1mol/lに調整したトリイソブチルアルミニウムのヘキサン溶液 0.9mlを投入した。次に、濃度を2μmol/mlに調整したラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド[遷移金属化合物(A1)に相当]のトルエン溶液 0.450mlと、濃度を1μmol/mlに調整したジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド[遷移金属化合物(A2)に相当]のトルエン溶液 0.45mlを投入し、続いて上記実施例1(1)で得られた固体触媒成分38mgを投入した。重合中は、エチレン/水素混合ガス(水素=0.35mol%)を連続的に供給しながら、70℃で90分間重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体232gを得た。得られたエチレン−α−オレフィン共重合体をエチレン系樹脂(RS5)と称する。得られたエチレン−1−ヘキセン共重合体の物性を表5に示した。
(1)重合
減圧乾燥後アルゴンで置換した内容積3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.075MPaになるように加え、1−ヘキセンを170ml、重合溶媒としてブタンを650g仕込み、70℃まで昇温した。その後、エチレンを、その分圧が1.6MPaになるように加え系内を安定させた。ガスクロマトグラフィー分析の結果、系内のガス組成は、水素=4.3mol%であった。これに、有機アルミニウム化合物(C)として濃度を1mol/lに調整したトリイソブチルアルミニウムのヘキサン溶液 0.9mlを投入した。次に、濃度を2μmol/mlに調整したラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド[遷移金属化合物(A1)に相当]のトルエン溶液 0.450mlと、濃度を1μmol/mlに調整したジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド[遷移金属化合物(A2)に相当]のトルエン溶液 0.45mlを投入し、続いて上記実施例1(1)で得られた固体触媒成分38mgを投入した。重合中は、エチレン/水素混合ガス(水素=0.35mol%)を連続的に供給しながら、70℃で90分間重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体232gを得た。得られたエチレン−α−オレフィン共重合体をエチレン系樹脂(RS5)と称する。得られたエチレン−1−ヘキセン共重合体の物性を表5に示した。
(2)造粒・押出しラミネート加工性評価用Tダイ製膜
上記(1)で得られたエチレン−1−ヘキセン共重合体に対して、実施例11(1)、(2)に記載の方法と同様の方法で、造粒・製膜を行い、樹脂圧力、ネックインおよびドローダウン性の押出しラミネート加工性を評価した。実施した押出ラミネートの加工性評価結果を表5に示した。
上記(1)で得られたエチレン−1−ヘキセン共重合体に対して、実施例11(1)、(2)に記載の方法と同様の方法で、造粒・製膜を行い、樹脂圧力、ネックインおよびドローダウン性の押出しラミネート加工性を評価した。実施した押出ラミネートの加工性評価結果を表5に示した。
実施例16
(1)重合
減圧乾燥後アルゴンで置換した内容積3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.095MPaになるように加え、1−ヘキセンを160ml、重合溶媒としてブタンを650g仕込み、70℃まで昇温した。その後、エチレンを、その分圧が1.6MPaになるように加え系内を安定させた。ガスクロマトグラフィー分析の結果、系内のガス組成は、水素=5.0mol%であった。これに、有機アルミニウム化合物(C)として濃度を1mol/lに調整したトリイソブチルアルミニウムのヘキサン溶液 0.9mlを投入した。次に、濃度を2μmol/mlに調整したラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド[遷移金属化合物(A1)に相当]のトルエン溶液 0.400mlと、濃度を1μmol/mlに調整したジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド[遷移金属化合物(A2)に相当]のトルエン溶液 0.8mlを投入し、続いて上記実施例1(1)で得られた固体触媒成分43mgを投入した。重合中は、エチレン/水素混合ガス(水素=0.42mol%)を連続的に供給しながら、70℃で90分間重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体202gを得た。得られたエチレン−α−オレフィン共重合体をエチレン系樹脂(RS6)と称する。得られたエチレン−1−ヘキセン共重合体の物性を表5に示した。
(1)重合
減圧乾燥後アルゴンで置換した内容積3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.095MPaになるように加え、1−ヘキセンを160ml、重合溶媒としてブタンを650g仕込み、70℃まで昇温した。その後、エチレンを、その分圧が1.6MPaになるように加え系内を安定させた。ガスクロマトグラフィー分析の結果、系内のガス組成は、水素=5.0mol%であった。これに、有機アルミニウム化合物(C)として濃度を1mol/lに調整したトリイソブチルアルミニウムのヘキサン溶液 0.9mlを投入した。次に、濃度を2μmol/mlに調整したラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド[遷移金属化合物(A1)に相当]のトルエン溶液 0.400mlと、濃度を1μmol/mlに調整したジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド[遷移金属化合物(A2)に相当]のトルエン溶液 0.8mlを投入し、続いて上記実施例1(1)で得られた固体触媒成分43mgを投入した。重合中は、エチレン/水素混合ガス(水素=0.42mol%)を連続的に供給しながら、70℃で90分間重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体202gを得た。得られたエチレン−α−オレフィン共重合体をエチレン系樹脂(RS6)と称する。得られたエチレン−1−ヘキセン共重合体の物性を表5に示した。
(2)造粒・押出しラミネート加工性評価用Tダイ製膜
上記(1)で得られたエチレン−1−ヘキセン共重合体に対して、実施例11(1)、(2)に記載の方法と同様の方法で、造粒・製膜を行い、樹脂圧力、ネックインおよびドローダウン性の押出しラミネート加工性を評価した。実施した押出ラミネートの加工性評価結果を表5に示した。
上記(1)で得られたエチレン−1−ヘキセン共重合体に対して、実施例11(1)、(2)に記載の方法と同様の方法で、造粒・製膜を行い、樹脂圧力、ネックインおよびドローダウン性の押出しラミネート加工性を評価した。実施した押出ラミネートの加工性評価結果を表5に示した。
比較例3
(1)重合
減圧乾燥後、アルゴンで置換した3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.035MPaになるように加え、1−ヘキセン180ml、ブタンを650g仕込み、系内の温度を70℃まで昇温した後、エチレンを、その分圧が1.6MPaになるように導入し、系内を安定させた。ガスクロマトグラフィーの結果、系内のガス組成は、水素=1.86mol%であった。これに、トリエチルアミン濃度が0.1mmol/mLであるトリエチルアミンのトルエン溶液0.9mLを投入し、次に有機アルミニウム化合物(C)としてトリイソブチルアルミニウム濃度が1mmol/mLであるトリイソブチルアルミニウムのヘキサン溶液を0.9mL投入した。次に上記実施例12(1)で得られた予備重合触媒成分を395mg投入した。重合中は、エチレン/水素混合ガス(水素=0.462mol%)を連続的に供給しながら、70℃で180分重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体を得、同様の重合操作をもう一度繰り返して得られたエチレン−1−ヘキセン共重合体をあわせ、計226gのエチレン−1−ヘキセン共重合体を得た。得られたエチレン−α−オレフィン共重合体をエチレン系樹脂(RS7)と称する。得られたエチレン−1−ヘキセン共重合体の物性を表5に示した。
(1)重合
減圧乾燥後、アルゴンで置換した3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.035MPaになるように加え、1−ヘキセン180ml、ブタンを650g仕込み、系内の温度を70℃まで昇温した後、エチレンを、その分圧が1.6MPaになるように導入し、系内を安定させた。ガスクロマトグラフィーの結果、系内のガス組成は、水素=1.86mol%であった。これに、トリエチルアミン濃度が0.1mmol/mLであるトリエチルアミンのトルエン溶液0.9mLを投入し、次に有機アルミニウム化合物(C)としてトリイソブチルアルミニウム濃度が1mmol/mLであるトリイソブチルアルミニウムのヘキサン溶液を0.9mL投入した。次に上記実施例12(1)で得られた予備重合触媒成分を395mg投入した。重合中は、エチレン/水素混合ガス(水素=0.462mol%)を連続的に供給しながら、70℃で180分重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体を得、同様の重合操作をもう一度繰り返して得られたエチレン−1−ヘキセン共重合体をあわせ、計226gのエチレン−1−ヘキセン共重合体を得た。得られたエチレン−α−オレフィン共重合体をエチレン系樹脂(RS7)と称する。得られたエチレン−1−ヘキセン共重合体の物性を表5に示した。
(2)造粒・押出しラミネート加工性評価用Tダイ製膜
上記(1)で得られたエチレン−1−ヘキセン共重合体に対して、実施例11(1)、(2)に記載の方法と同様の方法で、造粒・製膜を行い、樹脂圧力、ネックインおよびドローダウン性の押出しラミネート加工性を評価した。実施した押出ラミネートの加工性評価およびヒートシール強度評価結果を表5に示した。
上記(1)で得られたエチレン−1−ヘキセン共重合体に対して、実施例11(1)、(2)に記載の方法と同様の方法で、造粒・製膜を行い、樹脂圧力、ネックインおよびドローダウン性の押出しラミネート加工性を評価した。実施した押出ラミネートの加工性評価およびヒートシール強度評価結果を表5に示した。
比較例4
エチレン系樹脂(RS1)に替えてエチレン系樹脂(RS8)(直鎖状低密度ポリエチレン、物性値を表5に示した。)を用いた以外は、実施例11の押出しラミネート加工性評価と同様に行った。得られた押出しラミネート加工性評価結果を表5に示した。
エチレン系樹脂(RS1)に替えてエチレン系樹脂(RS8)(直鎖状低密度ポリエチレン、物性値を表5に示した。)を用いた以外は、実施例11の押出しラミネート加工性評価と同様に行った。得られた押出しラミネート加工性評価結果を表5に示した。
比較例5
エチレン系樹脂(RS1)に替えてエチレン系樹脂(RS9)(押出しラミネート用の高圧法低密度ポリエチレン;物性値を表6に示した。)を用いた以外は、実施例11の押出しラミネート加工性評価と同様に行った。得られた押出しラミネート加工性評価およびヒートシール強度評価結果を表6に示した。
エチレン系樹脂(RS1)に替えてエチレン系樹脂(RS9)(押出しラミネート用の高圧法低密度ポリエチレン;物性値を表6に示した。)を用いた以外は、実施例11の押出しラミネート加工性評価と同様に行った。得られた押出しラミネート加工性評価およびヒートシール強度評価結果を表6に示した。
比較例6
エチレン系樹脂(RS1)に替えてエチレン系樹脂(RS10)(押出しラミネート用の高圧法低密度ポリエチレン;物性値を表6に示した。)を用いた以外は、実施例11の押出しラミネート加工性評価と同様に行った。得られた押出しラミネート加工性評価およびヒートシール強度評価結果を表6に示した。
エチレン系樹脂(RS1)に替えてエチレン系樹脂(RS10)(押出しラミネート用の高圧法低密度ポリエチレン;物性値を表6に示した。)を用いた以外は、実施例11の押出しラミネート加工性評価と同様に行った。得られた押出しラミネート加工性評価およびヒートシール強度評価結果を表6に示した。
実施例17
(1)予備重合
予め窒素置換した内容積210リットルの撹拌機付き反応器に、常温下でブタン80リットルを投入し、次に、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド32.4mmolを投入した。その後、反応器内の温度を50℃まで上昇させ、2時間攪拌した。反応器内の温度を30℃まで降温し、エチレンを0.1 kg、水素を常温常圧として 0.1 L投入した。次に、特開2009-79182号公報の実施例1(1)および(2)に記載の方法と同様にして調製した、粒子状固体触媒成分697 gを投入した。その後、トルエン300mlに溶解したジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド2.59mmolを投入した。系内が安定した後、トリイソブチルアルミニウム140mmolを投入して重合を開始した。
(1)予備重合
予め窒素置換した内容積210リットルの撹拌機付き反応器に、常温下でブタン80リットルを投入し、次に、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド32.4mmolを投入した。その後、反応器内の温度を50℃まで上昇させ、2時間攪拌した。反応器内の温度を30℃まで降温し、エチレンを0.1 kg、水素を常温常圧として 0.1 L投入した。次に、特開2009-79182号公報の実施例1(1)および(2)に記載の方法と同様にして調製した、粒子状固体触媒成分697 gを投入した。その後、トルエン300mlに溶解したジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド2.59mmolを投入した。系内が安定した後、トリイソブチルアルミニウム140mmolを投入して重合を開始した。
重合開始後、反応器内の重合温度を30℃で0.5時間運転を行い、その後30分かけて50℃まで昇温して、その後は50℃で重合を行った。最初の0.5時間は、エチレンを0.6kg/hrで供給し、水素を常温常圧として0.7リットル/hrの速度で供給し、重合開始後0.5時間からは、エチレンを3.2kg/hr、水素を常温常圧として9.6リットル/hrの速度で供給し、合計6時間の予備重合を実施した。重合終了後、反応器内圧力を0.6MPaGまでパージし、スラリー状予備重合触媒成分を乾燥器に移送して、窒素流通乾燥を実施して、予備重合触媒成分を得た。該予備重合触媒成分中のエチレン重合体の予備重合量は、粒子状固体触媒成分1g当り21.3gであり、予備重合触媒成分の嵩密度は461kg/m3であった。
(2)気相重合
連続式流動床気相重合装置を用い、重合温度:86℃、圧力:2.0MPaG、ホールドアップ量:80kg、ガス組成:エチレン85.9mol%、水素1.11mol%、1−ヘキセン1.39mol%、窒素11.5mol%、循環ガス線速度:0.34m/s、上記実施例1(1)で得た予備重合触媒成分の供給量:96.1g/hr、トリイソブチルアルミニウムの供給量:20mmol/hrの条件で、エチレンと1−ヘキセンとの共重合を行ったところ、19.6kg/hrの生成速度でエチレン−1−ヘキセン共重合体の粒子を得た。得られたエチレン−1−ヘキセン共重合体の粒子を押出機(神戸製鋼所社製 LCM50)を用いて、フィード速度50kg/hr、スクリュー回転数450rpm、ゲート開度50%、サクション圧力0.1MPa、樹脂温度200〜230℃の条件で造粒することによりエチレン−1−ヘキセン共重合体を得た。得られたエチレン−1−ヘキセン共重合体を用いた物性評価の結果を表7に示した。
(3)造粒
15mmφ単軸押出機(S.ラボ製)を用いて、押出機の設定温度170℃、押出量80g/hrの条件で、上記(1)で得られたエチレン−α−オレフィン共重合体を造粒した。以下、造粒した上記(1)のエチレン−α−オレフィン共重合体をエチレン系樹脂(RS11)と称する。
連続式流動床気相重合装置を用い、重合温度:86℃、圧力:2.0MPaG、ホールドアップ量:80kg、ガス組成:エチレン85.9mol%、水素1.11mol%、1−ヘキセン1.39mol%、窒素11.5mol%、循環ガス線速度:0.34m/s、上記実施例1(1)で得た予備重合触媒成分の供給量:96.1g/hr、トリイソブチルアルミニウムの供給量:20mmol/hrの条件で、エチレンと1−ヘキセンとの共重合を行ったところ、19.6kg/hrの生成速度でエチレン−1−ヘキセン共重合体の粒子を得た。得られたエチレン−1−ヘキセン共重合体の粒子を押出機(神戸製鋼所社製 LCM50)を用いて、フィード速度50kg/hr、スクリュー回転数450rpm、ゲート開度50%、サクション圧力0.1MPa、樹脂温度200〜230℃の条件で造粒することによりエチレン−1−ヘキセン共重合体を得た。得られたエチレン−1−ヘキセン共重合体を用いた物性評価の結果を表7に示した。
(3)造粒
15mmφ単軸押出機(S.ラボ製)を用いて、押出機の設定温度170℃、押出量80g/hrの条件で、上記(1)で得られたエチレン−α−オレフィン共重合体を造粒した。以下、造粒した上記(1)のエチレン−α−オレフィン共重合体をエチレン系樹脂(RS11)と称する。
(3)押出しラミネート加工
住友重機械モダン社製の65mmφ(L/D=32)の単軸押出機の先端に、800mm幅のTダイ(ストレートマニホールド)を備えた押出装置を用いた。該押出装置に住友重機械モダン(株)社製 共押出ラミネーターを接続し、押出ラミネーションを行った。基材には、厚み12μmの二軸延伸ポリエチレンテレフタレートフィルム(東洋紡績製(株)東洋紡エステルフィルムE5100)を用い、溶融押出する樹脂には上記のRS11を用いた。
押出機の温度を押出機の温度を327℃に設定し、Tダイから押出された直後の樹脂温度が320℃となるようにして、前記樹脂を溶融押出した。なお、エアギャップは160mmとした。実施した押出しラミネートの加工性評価結果および積層フィルムのヒートシール強度評価結果を表7に示した。
住友重機械モダン社製の65mmφ(L/D=32)の単軸押出機の先端に、800mm幅のTダイ(ストレートマニホールド)を備えた押出装置を用いた。該押出装置に住友重機械モダン(株)社製 共押出ラミネーターを接続し、押出ラミネーションを行った。基材には、厚み12μmの二軸延伸ポリエチレンテレフタレートフィルム(東洋紡績製(株)東洋紡エステルフィルムE5100)を用い、溶融押出する樹脂には上記のRS11を用いた。
押出機の温度を押出機の温度を327℃に設定し、Tダイから押出された直後の樹脂温度が320℃となるようにして、前記樹脂を溶融押出した。なお、エアギャップは160mmとした。実施した押出しラミネートの加工性評価結果および積層フィルムのヒートシール強度評価結果を表7に示した。
比較例7
エチレン系樹脂(RS11)に変えて、比較例5で用いたRS9を用いた以外は、実施例17の押出しラミネートの加工性評価を行った。評価結果は表7に示した。
エチレン系樹脂(RS11)に変えて、比較例5で用いたRS9を用いた以外は、実施例17の押出しラミネートの加工性評価を行った。評価結果は表7に示した。
比較例8
エチレン系樹脂(RS11)に変えて、比較例6で用いたRS10を用いた以外は、実施例17の押出しラミネートの加工性評価および積層フィルムのヒートシール強度評価を行った。評価結果は表7に示した。
エチレン系樹脂(RS11)に変えて、比較例6で用いたRS10を用いた以外は、実施例17の押出しラミネートの加工性評価および積層フィルムのヒートシール強度評価を行った。評価結果は表7に示した。
Claims (3)
- 以下の条件を全て充足する押出しラミネート用エチレン−α−オレフィン共重合体。
(a)エチレンに基づく単量体単位と炭素原子数3〜20のα−オレフィンに基づく単量体単位を有する
(b)密度が860〜950kg/m3
(c)メルトフローレート(MFR)が1〜100g/10分
(d)重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が4〜30(e)Z平均分子量(Mz)と重量平均分子量(Mw)との比(Mz/Mw)が2〜5
(f)スウェル比(SR)が1.6以上
(g)線形粘弾性測定によって求められる特性緩和時間(τ)が0.01〜10秒
(h)流動の活性化エネルギー(Ea)が35kJ/mol以上 - 13C−NMRにより測定される炭素数5以上の分岐数(NLCB)が炭素原子1000個あたり0.1以上である請求項1に記載の押出しラミネート用エチレン−α−オレフィン共重合体。
- 請求項1または2に記載の押出しラミネート用エチレン−α−オレフィン共重合体を、基材上に押出しラミネートして得られる積層体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010122510A JP2011006677A (ja) | 2009-05-29 | 2010-05-28 | 押出しラミネート用エチレン−α−オレフィン共重合体およびその積層体 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009130158 | 2009-05-29 | ||
JP2010122510A JP2011006677A (ja) | 2009-05-29 | 2010-05-28 | 押出しラミネート用エチレン−α−オレフィン共重合体およびその積層体 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011006677A true JP2011006677A (ja) | 2011-01-13 |
Family
ID=43563677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010122510A Pending JP2011006677A (ja) | 2009-05-29 | 2010-05-28 | 押出しラミネート用エチレン−α−オレフィン共重合体およびその積層体 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011006677A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014074103A (ja) * | 2012-10-03 | 2014-04-24 | Mitsui Chemicals Inc | 易カット性ラミネートフィルム |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001515114A (ja) * | 1997-08-15 | 2001-09-18 | ザ ダウ ケミカル カンパニー | 実質的に線状の均一なオレフィン重合体組成物から製造されるフィルム |
JP2002515521A (ja) * | 1998-05-15 | 2002-05-28 | ユニベーション・テクノロジーズ・エルエルシー | 混合触媒及び重合プロセスにおけるそれらの使用 |
JP2004149761A (ja) * | 2002-09-02 | 2004-05-27 | Sumitomo Chem Co Ltd | エチレン重合体 |
JP2005089769A (ja) * | 1994-04-07 | 2005-04-07 | Bp Chem Internatl Ltd | 長鎖分枝を有するコポリマー及び該コポリマーから調製されるフィルム |
JP2005097522A (ja) * | 2003-08-26 | 2005-04-14 | Tosoh Corp | ポリエチレン樹脂組成物および積層体 |
JP2005206777A (ja) * | 2003-12-25 | 2005-08-04 | Tosoh Corp | エチレン系重合体およびその製造方法 |
JP2006272587A (ja) * | 2005-03-28 | 2006-10-12 | Tosoh Corp | 押出ラミネート積層体 |
JP2006277587A (ja) * | 2005-03-30 | 2006-10-12 | Daiwa Securities Group Inc | 決済照合システム、決済照合方法及び決済照合プログラム |
WO2007034920A1 (ja) * | 2005-09-22 | 2007-03-29 | Mitsui Chemicals, Inc. | エチレン系重合体、該重合体を含む熱可塑性樹脂組成物及び成形体 |
JP2007176116A (ja) * | 2005-12-28 | 2007-07-12 | Nippon Polyethylene Kk | ヒートシール性積層体 |
JP2007520597A (ja) * | 2004-01-09 | 2007-07-26 | シェブロン フィリップス ケミカル カンパニー エルピー | 触媒組成物及び押出コーティング用途のポリオレフィン |
JP2009149872A (ja) * | 2007-11-30 | 2009-07-09 | Sumitomo Chemical Co Ltd | エチレン−α−オレフィン共重合体および成形体 |
-
2010
- 2010-05-28 JP JP2010122510A patent/JP2011006677A/ja active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005089769A (ja) * | 1994-04-07 | 2005-04-07 | Bp Chem Internatl Ltd | 長鎖分枝を有するコポリマー及び該コポリマーから調製されるフィルム |
JP2001515114A (ja) * | 1997-08-15 | 2001-09-18 | ザ ダウ ケミカル カンパニー | 実質的に線状の均一なオレフィン重合体組成物から製造されるフィルム |
JP2002515521A (ja) * | 1998-05-15 | 2002-05-28 | ユニベーション・テクノロジーズ・エルエルシー | 混合触媒及び重合プロセスにおけるそれらの使用 |
JP2004149761A (ja) * | 2002-09-02 | 2004-05-27 | Sumitomo Chem Co Ltd | エチレン重合体 |
JP2005097522A (ja) * | 2003-08-26 | 2005-04-14 | Tosoh Corp | ポリエチレン樹脂組成物および積層体 |
JP2005206777A (ja) * | 2003-12-25 | 2005-08-04 | Tosoh Corp | エチレン系重合体およびその製造方法 |
JP2007520597A (ja) * | 2004-01-09 | 2007-07-26 | シェブロン フィリップス ケミカル カンパニー エルピー | 触媒組成物及び押出コーティング用途のポリオレフィン |
JP2006272587A (ja) * | 2005-03-28 | 2006-10-12 | Tosoh Corp | 押出ラミネート積層体 |
JP2006277587A (ja) * | 2005-03-30 | 2006-10-12 | Daiwa Securities Group Inc | 決済照合システム、決済照合方法及び決済照合プログラム |
WO2007034920A1 (ja) * | 2005-09-22 | 2007-03-29 | Mitsui Chemicals, Inc. | エチレン系重合体、該重合体を含む熱可塑性樹脂組成物及び成形体 |
JP2007176116A (ja) * | 2005-12-28 | 2007-07-12 | Nippon Polyethylene Kk | ヒートシール性積層体 |
JP2009149872A (ja) * | 2007-11-30 | 2009-07-09 | Sumitomo Chemical Co Ltd | エチレン−α−オレフィン共重合体および成形体 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014074103A (ja) * | 2012-10-03 | 2014-04-24 | Mitsui Chemicals Inc | 易カット性ラミネートフィルム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5407300B2 (ja) | エチレン−α−オレフィン共重合体および成形体 | |
JP5407299B2 (ja) | エチレン−α−オレフィン共重合体および成形体 | |
JP5407301B2 (ja) | エチレン−α−オレフィン共重合体および成形体 | |
US8809462B2 (en) | Ethylene-α-olefin copolymer, molded article, catalyst for copolymerization, and method for producing an ethylene-α-olefin copolymer | |
US20110136994A1 (en) | Olefin polymerization catalyst and production process of olefin polymer | |
US8436101B2 (en) | Ethylene-α-olefin copolymer and molded object thereof | |
JP5392015B2 (ja) | エチレン−α−オレフィン共重合体及び成形体 | |
JP5182224B2 (ja) | カレンダー成形用エチレン−α−オレフィン共重合体およびカレンダー成形体 | |
WO2010137732A1 (ja) | エチレン-α-オレフィン共重合体及び成形体 | |
JP5720117B2 (ja) | 中空成形食品容器 | |
JP2011006676A (ja) | フィルム用エチレン−α−オレフィン共重合体、フィルムおよび食品包装用フィルム | |
WO2010137719A1 (ja) | 架橋発泡成形用樹脂組成物、架橋発泡成形体、履き物用部材および履き物 | |
JP2011006675A (ja) | エチレン−α−オレフィン共重合体及び成形体 | |
JP2010275444A (ja) | オレフィン重合用触媒およびオレフィン重合体の製造方法 | |
JP2010276128A (ja) | チューブ | |
JP2011006677A (ja) | 押出しラミネート用エチレン−α−オレフィン共重合体およびその積層体 | |
WO2012115259A1 (ja) | エチレン-α-オレフィン共重合体及び成形体 | |
JP2011132402A (ja) | 発泡用エチレン−α−オレフィン共重合体、発泡用樹脂組成物および発泡体 | |
JP2011006678A (ja) | 架橋発泡用樹脂組成物および架橋発泡体 | |
JP2011132401A (ja) | 発泡用エチレン−α−オレフィン共重合体、発泡用樹脂組成物および発泡体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130404 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131004 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140422 |