JP2011006295A - Method for producing carbon monoxide and method for producing phosgene using the same - Google Patents

Method for producing carbon monoxide and method for producing phosgene using the same Download PDF

Info

Publication number
JP2011006295A
JP2011006295A JP2009152162A JP2009152162A JP2011006295A JP 2011006295 A JP2011006295 A JP 2011006295A JP 2009152162 A JP2009152162 A JP 2009152162A JP 2009152162 A JP2009152162 A JP 2009152162A JP 2011006295 A JP2011006295 A JP 2011006295A
Authority
JP
Japan
Prior art keywords
carbon monoxide
coke
phosgene
producing
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009152162A
Other languages
Japanese (ja)
Inventor
Takuya Mizuno
琢也 水野
Masahiro Kuragaki
雅弘 倉垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Chemicals Ltd filed Critical Teijin Chemicals Ltd
Priority to JP2009152162A priority Critical patent/JP2011006295A/en
Priority to CN2010102059603A priority patent/CN101927999A/en
Publication of JP2011006295A publication Critical patent/JP2011006295A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing phosgene where the increase of pressure drop and the deterioration of a solid catalyst caused by clogging of a solid compound containing nickel on the surface layer and in the space of the solid catalyst are suppressed, where the renewal frequency of the solid catalyst is reduced, which has an advantageous cost and which has excellent production efficiency, and to provide a method for producing carbon monoxide used as the raw material of phosgene.SOLUTION: In the method for producing carbon monoxide by carrying out the aeration of an oxygen-containing gas to the coke to oxidize the coke, it is characterized in that the coke having a nickel content of 350 wt.ppm or less is used.

Description

本発明は一酸化炭素の製造方法およびそれを用いたホスゲンの製造方法に関する。更に詳しくは、ニッケル化合物含有量の少ない一酸化炭素の製造方法、および得られた一酸化炭素を用いてホスゲンを製造する方法に関する。また、一酸化炭素(CO)と塩素(Cl)とを固体触媒上で反応させてホスゲンを製造する際、ニッケルを含有する固体の化合物が、固体触媒表層や間隙に詰まることによる固体触媒層の圧力損失上昇および固体触媒の劣化を抑制し、コスト的に有利でかつ生産効率の優れたホスゲンの製造方法に関する。 The present invention relates to a method for producing carbon monoxide and a method for producing phosgene using the same. More specifically, the present invention relates to a method for producing carbon monoxide with a low nickel compound content, and a method for producing phosgene using the obtained carbon monoxide. Further, when phosgene is produced by reacting carbon monoxide (CO) and chlorine (Cl 2 ) on a solid catalyst, the solid catalyst layer is formed by solid compounds containing nickel clogging the solid catalyst surface layer or gaps. The present invention relates to a method for producing phosgene that suppresses an increase in pressure loss and deterioration of a solid catalyst, is advantageous in cost, and has excellent production efficiency.

工業的に一酸化炭素を製造する方法として、コークスを酸化する方法が一般に知られている。その一酸化炭素中には様々な不純物が含まれており、幾つかの一酸化炭素製造(精製)方法が提案されている。さらに、その一酸化炭素を用いてホスゲンを製造する方法として、固体触媒に活性炭を用いて塩素と反応させて製造する種々の方法が提案されている。   As a method for industrially producing carbon monoxide, a method for oxidizing coke is generally known. The carbon monoxide contains various impurities, and several carbon monoxide production (purification) methods have been proposed. Furthermore, as a method for producing phosgene using the carbon monoxide, various methods for producing by reacting with chlorine using activated carbon as a solid catalyst have been proposed.

例えば、特許文献1〜4にはホスゲン製造用に一酸化炭素の製造(精製)方法が提案されている。しかしながら、何れの方法においても、一酸化炭素中のニッケル(Ni)化合物を圧力損失上昇抑制可能な濃度まで除去することができず、この一酸化炭素を用いてホスゲンを製造する場合、ニッケルを含有する固体の化合物が、固体触媒表層や間隙に詰まることによる圧力損失上昇および固体触媒の劣化が促進され、固体触媒の寿命が短くなるため、コスト的に不利で、かつ生産効率が劣るという問題がある。   For example, Patent Documents 1 to 4 propose a method for producing (purifying) carbon monoxide for producing phosgene. However, in any method, the nickel (Ni) compound in carbon monoxide cannot be removed to a concentration capable of suppressing the increase in pressure loss, and when phosgene is produced using this carbon monoxide, nickel is contained. As the solid compound is clogged in the surface layer and the gap of the solid catalyst, the pressure loss increase and the deterioration of the solid catalyst are promoted, and the life of the solid catalyst is shortened, which is disadvantageous in terms of cost and inferior in production efficiency. is there.

特開2000−203824号公報JP 2000-203824 A 特開2000−248059号公報JP 2000-248059 A 特開2007−176722号公報JP 2007-176722 A 特開平10−194716号公報Japanese Patent Laid-Open No. 10-194716

本発明の目的は、ホスゲンを製造する際、ニッケルを含有する固体の化合物が固体触媒表層や間隙に詰まることによる圧力損失上昇および固体触媒の劣化を抑制し、固体触媒の更新頻度を少なくして、コスト的に有利で、かつ生産効率の優れたホスゲンの製造方法、およびその原料として用いる一酸化炭素の製造方法を提供することである。   The object of the present invention is to suppress the increase in pressure loss and deterioration of the solid catalyst due to clogging of the solid compound containing nickel in the surface layer and the gap of the solid catalyst when producing phosgene, and reduce the renewal frequency of the solid catalyst. Another object of the present invention is to provide a method for producing phosgene, which is advantageous in terms of cost and excellent in production efficiency, and a method for producing carbon monoxide used as a raw material.

本発明者らは、上記目的を達成せんと鋭意研究した結果、一酸化炭素中に含まれるニッケル化合物が、塩素と反応して固体の化合物を生成し、この固体の化合物が圧力損失の上昇に大きく寄与していたことおよび固体触媒の劣化が促進されることが分かった。さらに、この固体の化合物はコークス中のニッケル含有量に著しく影響されることが分かり、ニッケル含有量の少ないコークスを用いて一酸化炭素を製造することで、ニッケル化合物含有量の少ない一酸化炭素を製造でき、上記目的を達成できることを見出し、本発明に到達した。   As a result of earnest research that the present inventors have achieved the above-mentioned object, the nickel compound contained in carbon monoxide reacts with chlorine to produce a solid compound, which increases the pressure loss. It was found that a large contribution was made and deterioration of the solid catalyst was promoted. Furthermore, it was found that this solid compound was significantly influenced by the nickel content in the coke. Carbon monoxide having a low nickel compound content was produced by producing carbon monoxide using coke having a low nickel content. It has been found that the above object can be achieved and the present invention has been achieved.

すなわち、本発明によれば、
1.コークスに酸素含有ガスを通気することによりコークスを酸化させて一酸化炭素を製造する方法において、ニッケル含有量が350重量ppm以下のコークスを使用することを特徴とする一酸化炭素の製造方法、
2.一酸化炭素中のニッケル化合物含有量が20容積ppm以下である前項1記載の一酸化炭素の製造方法、
3.前項1記載の方法で得られた一酸化炭素を精製して、ニッケル化合物含有量が0.05容積ppm以下、硫黄化合物含有量が1容積ppm以下、露点温度が−20℃以下、一酸化炭素純度が95容積%以上である一酸化炭素の製造方法、
4.酸洗浄したコークスを使用することを特徴とする前項1記載の一酸化炭素の製造方法、および
5.前項1記載の方法で得られた一酸化炭素と塩素とを固体触媒を用いて反応させることを特徴とするホスゲンの製造方法、
が提供される。
That is, according to the present invention,
1. In the method for producing carbon monoxide by oxidizing coke by bubbling oxygen-containing gas through coke, a method for producing carbon monoxide, characterized by using coke having a nickel content of 350 ppm by weight or less,
2. The method for producing carbon monoxide according to 1 above, wherein the content of the nickel compound in the carbon monoxide is 20 ppm by volume or less,
3. The carbon monoxide obtained by the method described in the preceding item 1 is purified, the nickel compound content is 0.05 volume ppm or less, the sulfur compound content is 1 volume ppm or less, the dew point temperature is −20 ° C. or less, carbon monoxide. A method for producing carbon monoxide having a purity of 95% by volume or more,
4). 4. A method for producing carbon monoxide according to item 1 above, wherein the acid washed coke is used; A process for producing phosgene, characterized by reacting carbon monoxide obtained by the method of the preceding item 1 and chlorine using a solid catalyst;
Is provided.

本発明によれば、ホスゲンを製造する際、ニッケル化合物による、圧力損失の上昇を抑制し、ホスゲンの生産量の低減を回避することができ、その奏する工業的効果は格別なものである。   According to the present invention, when phosgene is produced, an increase in pressure loss due to the nickel compound can be suppressed, and a reduction in the production amount of phosgene can be avoided, and the industrial effect produced by the phosgene is exceptional.

本発明で使用するコークスは化石燃料由来の原料、例えば石油、石炭等から製造されたものであり、そのニッケル含有量は350重量ppm以下であり、300重量ppm以下が好ましく、250重量ppm以下がさらに好ましく、100重量ppm以下が特に好ましい。350重量ppmを超える場合、得られる一酸化炭素中のニッケル化合物濃度が高くなり、その一酸化炭素と塩素とを反応させて、ホスゲンを製造する際、固体触媒層の圧力損失上昇や固体触媒の劣化という問題が生じる。   The coke used in the present invention is produced from a fossil fuel-derived raw material, such as petroleum, coal, etc., and its nickel content is 350 ppm by weight or less, preferably 300 ppm by weight or less, preferably 250 ppm by weight or less. Further preferred is 100 ppm by weight or less. When it exceeds 350 ppm by weight, the concentration of the nickel compound in the obtained carbon monoxide becomes high, and when producing phosgene by reacting the carbon monoxide and chlorine, the increase in pressure loss of the solid catalyst layer and the solid catalyst The problem of deterioration arises.

ニッケル含有量350重量ppm以下のコークスを得る方法として特に制限は無いが、その1つの方法として酸洗浄する方法が挙げられる。酸洗浄する方法としては例えばコークスを酸に浸漬させる方法やコークスに酸を注ぎかける方法がある。酸洗浄に用いる酸としては、塩酸、硫酸、硝酸、リン酸、フッ酸等の酸を含む水溶液であり、その中で特に塩酸水溶液が好ましい。その水溶液の濃度は0.5mol/L以上が好ましく、1mol/L以上がより好ましい。濃度が0.5mol/Lより低い場合は、ニッケルの溶出に長時間要することとなる。浸漬時間は3〜100時間が好ましく、5〜60時間がより好ましい。浸漬時間が3時間より短い場合はニッケル溶出が不十分な場合があり、100時間を超える場合は効率が悪くなる。   Although there is no restriction | limiting in particular as a method of obtaining coke with nickel content of 350 weight ppm or less, As one of the methods, the method of acid washing is mentioned. Examples of the acid cleaning method include a method in which coke is immersed in an acid and a method in which acid is poured into the coke. The acid used for the acid cleaning is an aqueous solution containing an acid such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, hydrofluoric acid, and among them, an aqueous hydrochloric acid solution is particularly preferable. The concentration of the aqueous solution is preferably 0.5 mol / L or more, and more preferably 1 mol / L or more. When the concentration is lower than 0.5 mol / L, it takes a long time to elute nickel. The immersion time is preferably 3 to 100 hours, more preferably 5 to 60 hours. When the immersion time is shorter than 3 hours, nickel elution may be insufficient, and when it exceeds 100 hours, the efficiency is deteriorated.

酸洗浄したコークスはpHが5〜8になるまで水洗することが好ましい。そのまま使用すると一酸化炭素発生炉等の機器が腐食する可能性があるので水洗をしてpHを中性付近にすることが好ましい。水洗浄後のコークスは水分量を0.5重量%以下にする事が好ましい。コークス中に水分量が0.5重量%より多く含まれる場合、反応炉温度の低下による反応効率の悪化や水素発生などの副反応が発生する可能性がある。コークス中のニッケル含有量は、粉砕したコークスに濃硫酸を添加して灰化後、硫酸水素カリウムで融解し、希硝酸に完全に溶解した後、ICP発光分析(高周波プラズマ発光分析)法により分析することができる。   The acid washed coke is preferably washed with water until the pH is 5-8. If used as it is, there is a possibility that equipment such as a carbon monoxide generator may corrode, so it is preferable to wash with water to make the pH near neutral. The coke after washing with water preferably has a water content of 0.5% by weight or less. If the amount of water contained in the coke is more than 0.5% by weight, side reactions such as deterioration in reaction efficiency due to a decrease in the reactor temperature and generation of hydrogen may occur. Nickel content in coke is analyzed by ICP emission analysis (high frequency plasma emission analysis) after adding concentrated sulfuric acid to crushed coke, incineration, melting with potassium hydrogen sulfate, and completely dissolving in dilute nitric acid. can do.

コークスと酸素とを反応させて得られる一酸化炭素中にはニッケル化合物が含まれる。一酸化炭素中に含まれるニッケル化合物はニッケルカルボニル(Ni(CO))等であり、本発明で使用される一酸化炭素中には20容積ppm以下、通常0.01〜20容積ppm程度存在する。該一酸化炭素中に含まれるニッケルカルボニル等のニッケル化合物は塩素と反応し塩化ニッケル等のニッケルを含有する固体の化合物となり、圧力損失上昇および固体触媒の劣化の原因となる。なお、一酸化炭素中に含まれるニッケル化合物の濃度は、一酸化炭素ガス100Lを、ガス洗浄瓶に入れたヨウ素を溶解させたエタノール、希塩酸および希硝酸(3種類の吸収液を使用)に吸収させて、ICP発光分析法より測定される(JIS K−0083)。 The carbon monoxide obtained by reacting coke with oxygen contains a nickel compound. The nickel compound contained in the carbon monoxide is nickel carbonyl (Ni (CO) 4 ) or the like, and the carbon monoxide used in the present invention has 20 ppm by volume or less, usually about 0.01 to 20 ppm by volume. To do. The nickel compound such as nickel carbonyl contained in the carbon monoxide reacts with chlorine to become a solid compound containing nickel such as nickel chloride, which causes an increase in pressure loss and deterioration of the solid catalyst. The concentration of nickel compound contained in carbon monoxide was absorbed by 100L of carbon monoxide gas in ethanol, dilute hydrochloric acid, and dilute nitric acid (using three types of absorbents) in a gas cleaning bottle. And measured by ICP emission spectrometry (JIS K-0083).

本発明で使用する一酸化炭素は下記の方法で精製することが好ましい。該精製方法として金属添加触媒例えば銅(Cu)、クロム(Cr)、バナジウム(V)、モリブデン(Mo)等の金属酸化物および/または金属塩を添着した活性炭または活性アルミナ等に接触せしめ、次いで、アルカリ水溶液、例えば水酸化ナトリウム水溶液、水酸化カリウム水溶液、炭酸ナトリウム水溶液、炭酸水素ナトリウム水溶液、炭酸カリウム水溶液、炭酸水素カリウム水溶液と接触させた後、冷却させ、次に活性炭または活性アルミナ等充填槽を通気させて、ニッケル化合物含有量を0.05容積ppm以下、硫黄化合物含有量を1容積ppm以下、露点温度を−20℃以下、一酸化炭素純度を95容積%以上にすることが好ましい。   The carbon monoxide used in the present invention is preferably purified by the following method. As the purification method, contact is made with a metal addition catalyst such as activated carbon or activated alumina impregnated with metal oxide and / or metal salt such as copper (Cu), chromium (Cr), vanadium (V), molybdenum (Mo), etc. An alkaline aqueous solution such as a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution, a sodium carbonate aqueous solution, a sodium hydrogen carbonate aqueous solution, a potassium carbonate aqueous solution or a potassium hydrogen carbonate aqueous solution. It is preferable that the nickel compound content is 0.05 volume ppm or less, the sulfur compound content is 1 volume ppm or less, the dew point temperature is −20 ° C. or less, and the carbon monoxide purity is 95 volume% or more.

本発明において、得られた一酸化炭素と塩素とを固体触媒を用いて反応させ、高純度のホスゲンを長期間安定的に製造することができる。ホスゲン製造に用いる固体触媒として活性炭やゼオライトがあり、活性炭が好ましく使用される。活性炭触媒は市販されているものでよく、その比表面積が200〜1500m/gで、平均粒径が0.5〜10mm、平均長さ1〜10mmの円柱状のものが好ましく使用される。特に触媒の平均粒径が0.5mm〜5mmと小さい場合は、ニッケルを含有する固体の化合物が触媒層間隙に詰まり易く、圧力損失の上昇が大きくなり易い。活性炭の具体例としては、例えば日本エンバイロケミカルズ社製白鷺C2x6/8等が挙げられる。 In the present invention, the obtained carbon monoxide and chlorine can be reacted using a solid catalyst to stably produce high-purity phosgene for a long period of time. As solid catalysts used for phosgene production, there are activated carbon and zeolite, and activated carbon is preferably used. The activated carbon catalyst may be commercially available, and a cylindrical one having a specific surface area of 200 to 1500 m 2 / g, an average particle diameter of 0.5 to 10 mm, and an average length of 1 to 10 mm is preferably used. In particular, when the average particle diameter of the catalyst is as small as 0.5 mm to 5 mm, a solid compound containing nickel tends to clog the catalyst layer gap, and the increase in pressure loss tends to increase. Specific examples of the activated carbon include, for example, Shirahige C 2x 6/8 manufactured by Nippon Enviro Chemicals.

以下に本発明の実施例を示して更に説明するが、本発明はその要旨を超えない限りこれらの実施例に限定されるものではない。なお、一酸化炭素(CO)の露点、CO中の硫黄含有量およびニッケル化合物含有量は、下記の方法により測定した。   Examples of the present invention will be further described below, but the present invention is not limited to these examples unless it exceeds the gist. The dew point of carbon monoxide (CO), the sulfur content in CO, and the nickel compound content were measured by the following methods.

(1)コークス中ニッケル含有量:試料を9.8MPaの圧力で圧縮粉砕した。粉砕試料に濃硫酸を添加して灰化後、硫酸水素カリウムで融解した。希硝酸に完全に溶解した後、ICP発光分析(高周波プラズマ発光分析)法の検液とし、金属(Ni)成分の分析を行った。なお、ICP発光分析装置はバリアン(株)製 VISTA MP−Xを使用した。
(2)CO中のニッケル化合物含有量;ニッケルカルボニル分析は以下の方法で実施した。まず、COガス100Lを、ガス洗浄瓶に入れたヨウ素−エタノールに通した後、乾固させた。これを純水に溶解させてJIS K−0083に記載の方法に従って測定した。その他のCO中のニッケル化合物はJIS K−0083に記載の方法で試料採取および分析を行った。
(3)CO中の硫黄化合物含有量;ガスクロマトグラフ装置(日立製作所製)にCOを注入し、硫黄原子含有量として測定した。
(4)COの露点測定;露点計(桜測器(株)製WTY180)を用いて測定した。
(5)COの純度;赤外線式ガス分析計(島津製作所製 REA−2F)を用いて測定した。
(1) Nickel content in coke: The sample was compressed and pulverized at a pressure of 9.8 MPa. Concentrated sulfuric acid was added to the pulverized sample and incinerated, and then melted with potassium hydrogen sulfate. After completely dissolving in dilute nitric acid, the metal (Ni) component was analyzed as a test solution for ICP emission analysis (high frequency plasma emission analysis). The ICP emission analyzer used was VISTA MP-X manufactured by Varian.
(2) Nickel compound content in CO; nickel carbonyl analysis was carried out by the following method. First, 100 L of CO gas was passed through iodine-ethanol in a gas washing bottle and then dried. This was dissolved in pure water and measured according to the method described in JIS K-0083. Other nickel compounds in CO were sampled and analyzed by the method described in JIS K-0083.
(3) Sulfur compound content in CO; CO was injected into a gas chromatograph apparatus (manufactured by Hitachi, Ltd.) and measured as the sulfur atom content.
(4) CO dew point measurement: Measured using a dew point meter (WTY180 manufactured by Sakura Sokki Co., Ltd.).
(5) Purity of CO: Measured using an infrared gas analyzer (REA-2F manufactured by Shimadzu Corporation).

[実施例1]
コークスはニッケル含有量500重量ppm、平均径50mmである市販のコークスを破砕して平均径を25mm未満として、そのコークスを1mol/Lの塩酸水溶液に24時間浸漬させ、その後水洗したものを使用した。水洗後の水のpHは6であった。このコークスをロータリーキルンで120℃、24時間乾燥させた。このコークスの水分含有量は0.3重量%で、ニッケル含有量は100重量ppmであった。
[Example 1]
Coke was used by crushing commercially available coke having a nickel content of 500 ppm by weight and an average diameter of 50 mm to make the average diameter less than 25 mm, soaking the coke in a 1 mol / L hydrochloric acid aqueous solution for 24 hours, and then washing with water. . The pH of the water after washing was 6. The coke was dried in a rotary kiln at 120 ° C. for 24 hours. The coke had a water content of 0.3% by weight and a nickel content of 100 ppm by weight.

該コークスを充填した一酸化炭素発生炉内に酸素、二酸化炭素混合ガスを吹き込んで一酸化炭素を製造した。得られたCO(ニッケル化合物含有量10容積ppm)を、クロム(Cr)等の金属酸化物を添着した活性アルミナに接触せしめ、苛性ソーダ水溶液と向流接触させた後、熱交換器を用いて5℃に冷却させ、次に活性アルミナ充填槽を通気させた。得られたCOの純度は98.5容積%、COの露点は−45℃以下、CO中のニッケル化合物濃度は0.01容積ppm、CO中の硫黄化合物濃度は0.2容積ppm以下であった。   Carbon monoxide was produced by blowing a mixed gas of oxygen and carbon dioxide into a carbon monoxide generator filled with the coke. The obtained CO (nickel compound content: 10 ppm by volume) is brought into contact with activated alumina impregnated with a metal oxide such as chromium (Cr), and is brought into countercurrent contact with an aqueous caustic soda solution. It was allowed to cool to 0 ° C. and then the activated alumina filling vessel was aerated. The purity of the obtained CO was 98.5% by volume, the dew point of CO was −45 ° C. or less, the concentration of nickel compound in CO was 0.01 ppm by volume, and the concentration of sulfur compound in CO was 0.2 ppm by volume or less. It was.

このCOを用いてホスゲンを製造するに当たり、ホスゲン反応槽として反応熱を除去する機能を有した多管式反応槽のシェル側に35℃の冷却水を通水し、チューブ側に活性炭(比表面積1300m/g、平均粒径2.7±0.3mm、平均長さ5.5±0.5mmの日本エンバイロケミカルズ社製白鷺C2X6/8)を充填した。この上記の方法により得られたCO1モルに対しCl0.97モルの混合ガスを混合器に通した後ホスゲン反応槽に通気して、ホスゲンを100t生産した。その結果、混合器の入口からホスゲン反応槽出口までのガスの圧力損失は、ホスゲン生産開始時と比べて0.05kPa上昇した。 In producing phosgene using this CO, cooling water of 35 ° C. is passed through the shell side of a multi-tubular reaction tank having a function of removing reaction heat as a phosgene reaction tank, and activated carbon (specific surface area) is supplied to the tube side. 1300 m 2 / g, an average particle size of 2.7 ± 0.3 mm, and an average length of 5.5 ± 0.5 mm were manufactured by Nippon Enviro Chemicals Co., Ltd. Hakuho C 2X 6/8). A mixed gas of 0.97 mol of Cl 2 with respect to 1 mol of CO obtained by the above method was passed through a mixer and then vented to a phosgene reaction tank to produce 100 t of phosgene. As a result, the pressure loss of gas from the inlet of the mixer to the outlet of the phosgene reaction vessel increased by 0.05 kPa compared to when phosgene production was started.

[実施例2]
実施例1で用いたNi含有量100重量ppmのコークスと市販のNi含有量500重量ppmのものを2:1の割合で混合したコークスを使用した以外は実施例1と同じ方法でCOを製造した。得られたCOの純度は98.5容積%、COの露点は−45℃以下、CO中のニッケル化合物濃度は0.02容積ppm、CO中の硫黄化合物濃度は0.2容積ppm以下であった。そのCOを用いてホスゲンを100t生産し、その結果、混合器の入口からホスゲン反応槽出口までのガスの圧力損失は、ホスゲン生産開始時と比べて0.05kPa上昇した。
[Example 2]
CO was produced in the same manner as in Example 1 except that coke having a Ni content of 100 ppm by weight used in Example 1 and a commercially available Ni content of 500 ppm by weight were mixed at a ratio of 2: 1. did. The purity of the obtained CO was 98.5% by volume, the dew point of CO was −45 ° C. or less, the concentration of nickel compound in CO was 0.02 ppm by volume, and the concentration of sulfur compound in CO was 0.2 ppm by volume or less. It was. The CO was used to produce 100 tons of phosgene. As a result, the pressure loss of gas from the mixer inlet to the phosgene reactor outlet increased by 0.05 kPa compared to the start of phosgene production.

[実施例3]
実施例1で用いたNi含有量100重量ppmのコークスと市販のNi含有量500重量ppmのものを1:1の割合で混合したコークスを使用した以外は実施例1と同じ方法でCOを製造した。得られたCOの純度は98.5容積%、COの露点は−45℃以下、CO中のニッケル化合物濃度は0.04容積ppm、CO中の硫黄化合物濃度は0.2容積ppm以下であった。そのCOを用いてホスゲンを100t生産し、その結果、混合器の入口からホスゲン反応槽出口までのガスの圧力損失は、ホスゲン生産開始時と比べて0.3kPa上昇した。
[Example 3]
CO was produced in the same manner as in Example 1 except that coke having a Ni content of 100 ppm by weight used in Example 1 and a commercially available Ni content of 500 ppm by weight were mixed at a ratio of 1: 1. did. The purity of the obtained CO was 98.5% by volume, the dew point of CO was −45 ° C. or less, the concentration of nickel compound in CO was 0.04 ppm by volume, and the concentration of sulfur compound in CO was 0.2 ppm by volume or less. It was. The CO was used to produce 100 tons of phosgene. As a result, the pressure loss of gas from the mixer inlet to the phosgene reactor outlet increased by 0.3 kPa compared to the time when phosgene production was started.

[比較例1]
実施例1で用いたNi含有量100重量ppmのコークスと市販のNi含有量500重量ppmのものを1:2の割合で混合したコークスを使用した以外は実施例1と同じ方法でCOを製造した。得られたCOの純度は98.5容積%、COの露点は−45℃以下、CO中のニッケル化合物濃度は0.10容積ppm、CO中の硫黄化合物濃度は0.2容積ppm以下であった。そのCOを用いて、ホスゲンを100t生産した。その結果、混合器の入口からホスゲン反応槽出口までのガスの圧力損失は、ホスゲン生産開始時と比べて1.0kPa上昇した。
[Comparative Example 1]
CO was produced in the same manner as in Example 1 except that coke having a Ni content of 100 ppm by weight used in Example 1 and a commercially available Ni content of 500 ppm by weight in a ratio of 1: 2 was used. did. The purity of the obtained CO was 98.5% by volume, the dew point of CO was −45 ° C. or less, the concentration of nickel compound in CO was 0.10 ppm by volume, and the concentration of sulfur compound in CO was 0.2 ppm by volume or less. It was. 100t of phosgene was produced using the CO. As a result, the pressure loss of the gas from the mixer inlet to the phosgene reactor outlet increased by 1.0 kPa compared to when phosgene production was started.

[比較例2]
市販コークスでNi含有量500重量ppmのものを使用した以外は実施例1と同じ方法でCOを製造した。得られたCOの純度は98.5容積%、COの露点は−45℃以下、CO中のニッケル化合物濃度は0.12容積ppm、CO中の硫黄化合物濃度は0.2容積ppm以下であった。そのCOを用いてホスゲンを100t生産した。その結果、混合器の入口からホスゲン反応槽出口までのガスの圧力損失は、ホスゲン生産開始時と比べて1.5kPa上昇した。
[Comparative Example 2]
CO was produced in the same manner as in Example 1 except that commercially available coke having a Ni content of 500 ppm by weight was used. The purity of the obtained CO was 98.5% by volume, the dew point of CO was −45 ° C. or less, the concentration of nickel compound in CO was 0.12 ppm by volume, and the concentration of sulfur compound in CO was 0.2 ppm by volume or less. It was. 100t of phosgene was produced using the CO. As a result, the pressure loss of the gas from the mixer inlet to the phosgene reactor outlet increased by 1.5 kPa compared to when phosgene production was started.

Figure 2011006295
Figure 2011006295

本発明で製造された一酸化炭素およびホスゲンは、ポリカーボネート樹脂の製造原料等として有用である。   Carbon monoxide and phosgene produced in the present invention are useful as raw materials for producing polycarbonate resins.

Claims (5)

コークスに酸素含有ガスを通気することによりコークスを酸化させて一酸化炭素を製造する方法において、ニッケル含有量が350重量ppm以下のコークスを使用することを特徴とする一酸化炭素の製造方法。   A method for producing carbon monoxide, characterized by using coke having a nickel content of 350 ppm by weight or less in a method for producing carbon monoxide by oxidizing coke by passing an oxygen-containing gas through coke. 一酸化炭素中のニッケル化合物含有量が20容積ppm以下である請求項1記載の一酸化炭素の製造方法。   The method for producing carbon monoxide according to claim 1, wherein the content of the nickel compound in the carbon monoxide is 20 ppm by volume or less. 請求項1記載の方法で得られた一酸化炭素を精製して、ニッケル化合物含有量が0.05容積ppm以下、硫黄化合物含有量が1容積ppm以下、露点温度が−20℃以下、一酸化炭素純度が95容積%以上である一酸化炭素の製造方法。   The carbon monoxide obtained by the method according to claim 1 is purified to have a nickel compound content of 0.05 volume ppm or less, a sulfur compound content of 1 volume ppm or less, a dew point temperature of −20 ° C. or less, and monoxide. A method for producing carbon monoxide having a carbon purity of 95% by volume or more. 酸洗浄したコークスを使用することを特徴とする請求項1記載の一酸化炭素の製造方法。   The method for producing carbon monoxide according to claim 1, wherein the acid washed coke is used. 請求項1記載の方法で得られた一酸化炭素と塩素とを固体触媒を用いて反応させることを特徴とするホスゲンの製造方法。   A method for producing phosgene, comprising reacting carbon monoxide obtained by the method according to claim 1 and chlorine using a solid catalyst.
JP2009152162A 2009-06-26 2009-06-26 Method for producing carbon monoxide and method for producing phosgene using the same Pending JP2011006295A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009152162A JP2011006295A (en) 2009-06-26 2009-06-26 Method for producing carbon monoxide and method for producing phosgene using the same
CN2010102059603A CN101927999A (en) 2009-06-26 2010-06-13 The manufacture method of carbon monoxide and the carbonyl chloride manufacture method of using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009152162A JP2011006295A (en) 2009-06-26 2009-06-26 Method for producing carbon monoxide and method for producing phosgene using the same

Publications (1)

Publication Number Publication Date
JP2011006295A true JP2011006295A (en) 2011-01-13

Family

ID=43367494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009152162A Pending JP2011006295A (en) 2009-06-26 2009-06-26 Method for producing carbon monoxide and method for producing phosgene using the same

Country Status (2)

Country Link
JP (1) JP2011006295A (en)
CN (1) CN101927999A (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE453750B (en) * 1984-06-14 1988-02-29 Skf Steel Eng Ab KIT FOR GASING OF FINE DISTRIBUTED COAL CONTENTS
US4671804A (en) * 1985-11-29 1987-06-09 Texaco Inc. Partial oxidation process
JP4290793B2 (en) * 1999-01-22 2009-07-08 帝人化成株式会社 Method for producing phosgene
JP5108184B2 (en) * 2001-07-11 2012-12-26 大陽日酸株式会社 Carbon monoxide purification method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013020632; WALSH,D.E. et al: 'A laboratory study of petroleum coke combustion. Kinetics and catalytic effects' Industrial & Engineering Chemistry Research Vol.27, No.7, 1988, p.1115-1120 *

Also Published As

Publication number Publication date
CN101927999A (en) 2010-12-29

Similar Documents

Publication Publication Date Title
JP2010524672A (en) Method for recovering ruthenium from a ruthenium-containing supported catalyst material
CN101293636A (en) Process for the oxidation of a gaseous mixture containing hydrogen chloride
WO2007043203A1 (en) Method of producing chlorine gas, aqueous sodium hypochlorite solution and liquid chlorine
US8765991B2 (en) Process for the preparation of isocyanates
KR101361993B1 (en) Process for producing chlorine
JP2006111611A (en) Method for producing fluoromethane and product produced thereby
EP1958693A1 (en) Method for production of supported ruthenium and method for production of chlorine
JP2006137669A (en) Method for producing phosgene
JP4649631B2 (en) Treatment method of gas generated from incinerator
US7820127B2 (en) Method and apparatus for producing nitrogen trifluoride
JP2011006295A (en) Method for producing carbon monoxide and method for producing phosgene using the same
JP2008110339A (en) Method for removal of chlorine gas
JP2007224341A (en) Silver ingot production method
CN101773777A (en) Method for removing hydrogen phosphide by wet catalytic air oxidation
JP5387154B2 (en) Glycerin reforming apparatus and reforming method
JP2008214187A (en) Carbonyl fluoride having reduced content of hydrogen fluoride and method for producing the same
CN108970573B (en) Chemical adsorbent and application and method thereof in purification and co-oxidation method for co-production of tert-butyl alcohol
JP2011006296A (en) Method for producing carbon monoxide and method for producing phosgene using the same
JP4624905B2 (en) Method for producing nitrogen trifluoride
JP4915095B2 (en) Carbon monoxide production method and phosgene production method
JPWO2019171882A1 (en) A method for removing oxygen from crude carbon monoxide gas and a method for purifying carbon monoxide gas
JP4999406B2 (en) Chlorine production method
JP2009196826A (en) Method for manufacturing chlorine
JP2006070005A (en) Method and apparatus for producing formic acid
JPH06171907A (en) Production of chlorine

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110704

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130412

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130903