JP2011006280A - Carbon material and method for producing the same - Google Patents

Carbon material and method for producing the same Download PDF

Info

Publication number
JP2011006280A
JP2011006280A JP2009150950A JP2009150950A JP2011006280A JP 2011006280 A JP2011006280 A JP 2011006280A JP 2009150950 A JP2009150950 A JP 2009150950A JP 2009150950 A JP2009150950 A JP 2009150950A JP 2011006280 A JP2011006280 A JP 2011006280A
Authority
JP
Japan
Prior art keywords
carbon material
polymer
group
wholly aromatic
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009150950A
Other languages
Japanese (ja)
Inventor
Masayuki Jokai
真之 畳開
Akinori Moriya
彰悟 守屋
Katsuyuki Matsubayashi
克征 松林
Takeshi Shinoda
剛 信田
Teruaki Hayakawa
晃鏡 早川
Hirota Nanbae
裕太 難波江
Shigeki Kuroki
重樹 黒木
Masaaki Kakimoto
雅明 柿本
Junichi Ozaki
純一 尾崎
Seizo Miyata
清藏 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma University NUC
Teijin Ltd
Tokyo Institute of Technology NUC
Original Assignee
Gunma University NUC
Teijin Ltd
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma University NUC, Teijin Ltd, Tokyo Institute of Technology NUC filed Critical Gunma University NUC
Priority to JP2009150950A priority Critical patent/JP2011006280A/en
Publication of JP2011006280A publication Critical patent/JP2011006280A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carbon material not containing expensive noble metals such as platinum or an alloy of those and suitable for an electrode catalyst for a fuel cell and the like.SOLUTION: The carbon material suitable for the electrode catalyst for the fuel cell and the like is obtained by firing a wholly aromatic polybenzimidazole comprising a specific repeating unit and having a characteristic viscosity of 0.05-200 dL/g (methanesulfonic acid solvent, sample concentration: 0.03 g/100 mL, measuring temperature: 25°C) at 500-1,500°C in an inert gas atmosphere.

Description

本発明は、炭素材料及びその製造方法に関する。更に詳しくは、全芳香族ポリベンゾイミダゾールを焼成して得られる炭素材料及びその製造方法に関する。該炭素材料は良好な酸素還元作用を有し、燃料電池用電極触媒として好適である。   The present invention relates to a carbon material and a method for producing the same. More specifically, the present invention relates to a carbon material obtained by calcining wholly aromatic polybenzimidazole and a method for producing the same. The carbon material has a good oxygen reduction action and is suitable as a fuel cell electrode catalyst.

高効率、無公害の燃料電池、特に電気自動車(FCEV)や定置用電熱併供システム(CG−FC)に用いられる固体高分子型燃料電池の実用化は、地球温暖化及び環境汚染問題に対する重要な解決策の一つとして注目されている。しかし、燃料電池においては、そのカソードで起こる酸素還元反応を促進するために、資源量が少なく極めて高価な白金を触媒として多量に使用する必要があり、このことが燃料電池の実用化の大きな障壁になっている。そこで白金等の高価な貴金属を必要としない、燃料電池用電極触媒の開発が大きな注目を集め、わが国はもとより米国をはじめとする世界中で精力的にその研究開発が行われている。それらの研究の主流は鉄やコバルト等の卑金属を活性中心とする電極触媒の開発であるが、得られる電極触媒の発電性能は十分ではなく、また耐久性の面でも問題があり実用化に至ってはいない。
例えば特許文献1は、炭素材料の原料となる有機物として熱硬化性樹脂類を用いて、貴金属以外の遷移金属及び窒素が添加された炭素材料を調製し、この炭素材料を用いた燃料電池用電極触媒及びその製造方法が開示されている。この電極触媒は、従来のものに比べて優れた性能を示してはいるが、白金を使用した電極触媒にはまだ及ばないばかりか、多量の金属化合物をポリマーに添加する必要があるためコスト削減の効果は小さい。
そこで、より優れた活性を有する安価な電極触媒及びその材料が求められている。
Practical application of high-efficiency, pollution-free fuel cells, especially polymer electrolyte fuel cells used in electric vehicles (FCEV) and stationary combined heat and power systems (CG-FC) is important for global warming and environmental pollution problems Is attracting attention as one of the solutions. However, in the fuel cell, in order to promote the oxygen reduction reaction occurring at the cathode, it is necessary to use a large amount of platinum, which has a small amount of resources and is extremely expensive, as a catalyst, which is a major obstacle to practical use of the fuel cell. It has become. Therefore, the development of fuel cell electrode catalysts that do not require expensive noble metals such as platinum has attracted a great deal of attention, and research and development has been vigorously conducted not only in Japan but also around the world including the United States. The mainstream of these studies is the development of electrode catalysts with active bases such as iron and cobalt, but the power generation performance of the obtained electrode catalysts is not sufficient, and there are problems in terms of durability, leading to practical use. No.
For example, Patent Document 1 uses a thermosetting resin as an organic substance as a raw material for a carbon material to prepare a carbon material to which a transition metal other than a noble metal and nitrogen are added, and an electrode for a fuel cell using the carbon material. A catalyst and a method for producing the same are disclosed. This electrocatalyst shows superior performance compared to conventional ones, but it is still not as good as platinum-based electrocatalysts, and it requires a large amount of metal compound to be added to the polymer, thus reducing costs. The effect is small.
Therefore, there is a demand for an inexpensive electrode catalyst having higher activity and its material.

特開2007−26746号公報JP 2007-26746 A

Polymer,39,(1998)p.5981Polymer, 39, (1998) p. 5981

本発明は、上記の事情に鑑みてなされたものであり、その目的は高価な白金等貴金属及びそれらの合金を含まない、燃料電池用電極触媒等に好適な炭素材料及びその製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a carbon material suitable for a fuel cell electrode catalyst and the like, which does not contain expensive noble metals such as platinum and alloys thereof, and a method for producing the same. There is.

本願発明者は、上記の課題を解決すべく鋭意検討した結果、特定の全芳香族ポリベンゾイミダゾールを焼成して得られる炭素材料が、優れた酸化還元活性を有し、燃料電池用電極触媒として好適であることを見出した。即ち、本発明によると、本発明の上記目的及び利点は、第一に、
下記一般式(A−1)
As a result of intensive studies to solve the above problems, the inventor of the present application has found that a carbon material obtained by firing a specific wholly aromatic polybenzimidazole has an excellent redox activity and is used as a fuel cell electrode catalyst. It was found to be suitable. That is, according to the present invention, the above objects and advantages of the present invention are as follows.
The following general formula (A-1)

Figure 2011006280
Figure 2011006280

で表される繰り返し単位及び下記一般式(A−2) And a repeating unit represented by the following general formula (A-2)

Figure 2011006280
Figure 2011006280

で表わされる繰り返し単位からなる群より選ばれる少なくとも1種の繰り返し単位からなり、特有粘度が0.05〜200dL/g(メタンスルホン酸溶媒、試料濃度0.03g/100mL、測定温度25℃)である全芳香族ポリベンゾイミダゾールを、不活性ガス雰囲気下、500〜1,500℃において焼成して得られる炭素材料によって達成される。
本発明の上記目的及び利点は、第二に、
上記の全芳香族ポリベンゾイミダゾールを、不活性雰囲気下500〜1,500℃において焼成する、炭素材料の製造方法によって達成される。
And a specific viscosity of 0.05 to 200 dL / g (methanesulfonic acid solvent, sample concentration 0.03 g / 100 mL, measurement temperature 25 ° C.). It is achieved by a carbon material obtained by firing a wholly aromatic polybenzimidazole at 500 to 1,500 ° C. in an inert gas atmosphere.
The above objects and advantages of the present invention are, secondly,
This is achieved by a method for producing a carbon material in which the wholly aromatic polybenzimidazole is fired at 500 to 1,500 ° C. in an inert atmosphere.

本発明の炭素材料は、高い酸素還元活性を有し、燃料電池用電極触媒として用いられるほか、各種化学反応の触媒として好適に用いることができる。
本発明の炭素材料の製造方法は、高い酸素還元活性を有する有用な炭素材料を簡易な方法により安価に製造することができる。
The carbon material of the present invention has high oxygen reduction activity and can be suitably used as a catalyst for various chemical reactions in addition to being used as an electrode catalyst for fuel cells.
The method for producing a carbon material of the present invention can produce a useful carbon material having high oxygen reduction activity at a low cost by a simple method.

以下、本発明を実施するための形態の例について述べるが、本発明は以下の例に限定されるものではない。
<全芳香族ポリベンゾイミダゾール>
本発明で使用される全芳香族ポリベンゾイミダゾール(以下、「ポリマーA」ということがある。)は、上記一般式(A−1)で表わされる繰り返し単位及び上記一般式(A−2)で表わされる繰り返し単位からなる群より選ばれる少なくとも1種の繰り返し単位からなり、特有粘度が1〜50dL/g(メタンスルホン酸溶媒、試料濃度0.03g/100mL、測定温度25℃)のものである。
上記特有粘度の算出方法を以下により詳細に述べる。
本発明における特有粘度とは、溶媒としてメタンスルホン酸を用い、該溶媒に上記全芳香族ポリベンゾイミダゾールを濃度0.03g/100mLにて溶解した試料溶液の粘度(η)及び該溶媒自身の粘度(η)を25℃にて測定し、これらの値の比(η/η)、即ち相対粘度(ηrel)を算出し、この相対粘度の値から下記数式(i)により求めた値である。
ηinh=(ηrel)/C (i)
(数式(i)中、ηrelは相対粘度であり、Cは上記の試料濃度0.03g/100mLである。)
ポリマーAの特有粘度は、1.0〜50dL/gであることが好ましく、2〜30dL/gであることがより好ましく、更に3〜10dL/gであることが好ましい。
Hereinafter, although the example of the form for implementing this invention is described, this invention is not limited to the following examples.
<Totally aromatic polybenzimidazole>
The wholly aromatic polybenzimidazole (hereinafter sometimes referred to as “polymer A”) used in the present invention is a repeating unit represented by the general formula (A-1) and the general formula (A-2). It consists of at least one repeating unit selected from the group consisting of the repeating units represented, and has a specific viscosity of 1 to 50 dL / g (methanesulfonic acid solvent, sample concentration 0.03 g / 100 mL, measurement temperature 25 ° C.). .
The method for calculating the specific viscosity will be described in more detail below.
The specific viscosity in the present invention refers to the viscosity (η) of a sample solution in which methanesulfonic acid is used as a solvent and the total aromatic polybenzimidazole is dissolved in the solvent at a concentration of 0.03 g / 100 mL, and the viscosity of the solvent itself. (Η 0 ) was measured at 25 ° C., the ratio of these values (η / η 0 ), that is, the relative viscosity (η rel ) was calculated, and the value obtained from the relative viscosity value by the following formula (i) It is.
η inh = (η rel ) / C (i)
(In formula (i), η rel is the relative viscosity, and C is the above sample concentration of 0.03 g / 100 mL.)
The specific viscosity of the polymer A is preferably 1.0 to 50 dL / g, more preferably 2 to 30 dL / g, and further preferably 3 to 10 dL / g.

<全芳香族ポリベンゾイミダゾール(ポリマーA)の製造方法>
本発明で用いられる全芳香族ポリベンゾイミダゾール(ポリマーA)は、非特許文献1(Polymer,39,(1998)p.5981)に記載の方法に準じて、良好な生産性で工業的に製造することができる。
即ち、下記一般式(B−1)
<Method for Producing Fully Aromatic Polybenzimidazole (Polymer A)>
The wholly aromatic polybenzimidazole (polymer A) used in the present invention is industrially produced with good productivity according to the method described in Non-Patent Document 1 (Polymer, 39, (1998) p. 5981). can do.
That is, the following general formula (B-1)

Figure 2011006280
Figure 2011006280

で表わされる化合物及びその強酸塩よりなる群より選ばれる少なくとも1種(以下、「芳香族テトラアミン化合物」ということがある。)と、下記一般式(B−2) And at least one selected from the group consisting of a compound represented by the above and a strong acid salt thereof (hereinafter sometimes referred to as “aromatic tetraamine compound”), and the following general formula (B-2)

Figure 2011006280
Figure 2011006280

(上記一般式(B−2)中、Lは水酸基、ハロゲン原子または基OR(ただしRは炭素数6〜20の芳香族基である。)である。)
で表わされる化合物(以下、「芳香族ジカルボン酸化合物」ということがある。)とを反応させることにより製造することができる。
上記一般式(B−1)の芳香族テトラアミン化合物の強酸塩における強酸としては、例えば塩化水素酸、リン酸、硫酸等を好ましく挙げることができる。上記一般式(B−2)中のLのハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子等を挙げることができる。上記一般式(B−2)中のRの芳香族基としては、例えばフェニル基、トルイル基、ベンジル基、ナフチル基等を挙げることができる。ここで、Rの芳香族基における水素原子のうち1つ又は複数が、各々独立に、フッ素、塩素、臭素等のハロゲン原子;メチル基、エチル基、プロピル基、ヘキシル基等の炭素数1〜6のアルキル基;シクロペンチル基、シクロヘキシル基等の炭素数5〜10のシクロアルキル基;メトキシカルボニル基、エトキシカルボニル基等のアルコキシカルボニル基等で置換されていてもよい。
ポリマーAを製造するに際して使用される芳香族テトラアミン化合物と芳香族ジカルボン酸化合物との使用割合は、これらのモル数が下記数式(ii)
0.8≦(b1)/(b2)≦1.2 (ii)
(数式(ii)中、(b1)は芳香族テトラアミン化合物の使用モル数であり、(b2)は芳香族ジカルボン酸化合物の使用モル数である。)
を満たすことが好ましい。ここで、数値(b1)/(b2)が0.8より小さい場合や1.2より大きい場合には、重合度の十分なポリマーを得ることが困難となる場合がある。(b1)/(b2)の下限は、0.9以上とすることが適当であり、より好ましくは0.93以上であり、更に好ましくは0.95以上である。また、(b1)/(b2)の上限としては、1.1以下とすることが適当であり、より好ましくは1.07以下であり、更に好ましくは1.05以下である。従って、本発明における数値(b1)/(b2)の最適範囲は、0.95≦(b1)/(b2)≦1.05ということができる。
(In the above general formula (B-2), L is a hydroxyl group, a halogen atom or a group OR (where R is an aromatic group having 6 to 20 carbon atoms).)
It can manufacture by making it react with the compound (henceforth an "aromatic dicarboxylic acid compound").
Preferred examples of the strong acid in the strong acid salt of the aromatic tetraamine compound represented by the general formula (B-1) include hydrochloric acid, phosphoric acid, and sulfuric acid. As a halogen atom of L in the said general formula (B-2), a fluorine atom, a chlorine atom, a bromine atom etc. can be mentioned, for example. As an aromatic group of R in the said general formula (B-2), a phenyl group, a toluyl group, a benzyl group, a naphthyl group etc. can be mentioned, for example. Here, one or more of the hydrogen atoms in the aromatic group of R are each independently a halogen atom such as fluorine, chlorine or bromine; a carbon number of 1 to 1 such as a methyl group, an ethyl group, a propyl group or a hexyl group. An alkyl group of 6; a cycloalkyl group having 5 to 10 carbon atoms such as a cyclopentyl group and a cyclohexyl group; and an alkoxycarbonyl group such as a methoxycarbonyl group and an ethoxycarbonyl group.
The use ratio of the aromatic tetraamine compound and the aromatic dicarboxylic acid compound used in the production of the polymer A is such that the number of moles is represented by the following formula (ii):
0.8 ≦ (b1) / (b2) ≦ 1.2 (ii)
(In Formula (ii), (b1) is the number of moles of aromatic tetraamine compound used, and (b2) is the number of moles of aromatic dicarboxylic acid compound used.)
It is preferable to satisfy. Here, when the numerical value (b1) / (b2) is smaller than 0.8 or larger than 1.2, it may be difficult to obtain a polymer having a sufficient degree of polymerization. The lower limit of (b1) / (b2) is suitably 0.9 or more, more preferably 0.93 or more, and still more preferably 0.95 or more. Moreover, as an upper limit of (b1) / (b2), it is appropriate to set it as 1.1 or less, More preferably, it is 1.07 or less, More preferably, it is 1.05 or less. Therefore, the optimum range of the numerical value (b1) / (b2) in the present invention can be 0.95 ≦ (b1) / (b2) ≦ 1.05.

ポリマーAを製造するための芳香族テトラアミン化合物と芳香族ジカルボン酸化合物との反応は、無溶媒下における加熱溶融反応及び溶媒中における反応のいずれも採用することができるが、適当な溶媒中で攪拌下に加熱反応させることが好ましい。反応温度は、50〜500℃とすることが好ましく、100〜350℃とすることが更に好ましい。反応温度が、50℃より低いと反応が十分に進行しないことがあり、一方500℃より高いと分解等の副反応が起こり易くなる場合があり、好ましくない。反応時間は温度条件にもよるが、1時間〜数十時間とすることが好ましい。反応は加圧下から減圧下で行うことができる。
芳香族テトラアミン化合物と芳香族ジカルボン酸化合物との反応は、無触媒でも進行するが、芳香族ジカルボン酸化合物の基Lが基ORである場合には、必要に応じてエステル交換触媒を用いてもよい。ここで使用されるエステル交換触媒としては、例えば三酸化アンチモンの如きアンチモン化合物;酢酸第一錫、塩化錫、オクチル酸錫、ジブチル錫オキシド、ジブチル錫ジアセテートの如き錫化合物;酢酸カルシウムの如きアルカリ土類金属塩;炭酸ナトリウム、炭酸カリウムの如きアルカリ金属塩;亜リン酸ジフェニル、亜リン酸トリフェニルの如き亜リン酸塩等を例示することができる。
また、芳香族テトラアミン化合物と芳香族ジカルボン酸化合物との反応において、芳香族ジカルボン酸化合物として上記一般式(B−2)中のLが水酸基のもの、即ち芳香族ジカルボン酸を用いる場合には、該芳香族ジカルボン酸と上記式(B−1)で表される化合物との塩を調製し、これを反応させてもよい。
芳香族テトラアミン化合物と芳香族ジカルボン酸化合物との反応に際しては、必要に応じて溶媒を用いることができる。ここで使用される好ましい溶媒としては例えば1−メチル−2−ピロリドン、1−シクロヘキシル−2−ピロリドン、ジメチルアセトアミド、ジメチルスルホキシド、ジフェニルエーテル、ジフェニルスルホン、ジクロロメタン、クロロホルム、テトラヒドロフラン、o−クレゾール、m−クレゾール、p−クレゾール、リン酸、ポリリン酸等を挙げることができるが、これらに限定されるものではない。
反応中のポリマーの分解及び着色を防ぐため、反応は乾燥した不活性ガス雰囲気下で行うことが望ましい。
For the reaction of the aromatic tetraamine compound and the aromatic dicarboxylic acid compound for producing the polymer A, either a heat-melting reaction in the absence of a solvent or a reaction in a solvent can be employed. It is preferable to heat-react below. The reaction temperature is preferably 50 to 500 ° C, and more preferably 100 to 350 ° C. If the reaction temperature is lower than 50 ° C, the reaction may not proceed sufficiently. On the other hand, if the reaction temperature is higher than 500 ° C, side reactions such as decomposition may easily occur, which is not preferable. The reaction time depends on temperature conditions, but is preferably 1 hour to several tens of hours. The reaction can be carried out from under pressure to under reduced pressure.
The reaction between the aromatic tetraamine compound and the aromatic dicarboxylic acid compound proceeds even without a catalyst, but when the group L of the aromatic dicarboxylic acid compound is a group OR, a transesterification catalyst may be used as necessary. Good. Examples of the transesterification catalyst used herein include an antimony compound such as antimony trioxide; a tin compound such as stannous acetate, tin chloride, tin octylate, dibutyltin oxide, and dibutyltin diacetate; an alkali such as calcium acetate. Examples include earth metal salts; alkali metal salts such as sodium carbonate and potassium carbonate; phosphites such as diphenyl phosphite and triphenyl phosphite.
In the reaction of an aromatic tetraamine compound and an aromatic dicarboxylic acid compound, when L in the general formula (B-2) is a hydroxyl group, that is, an aromatic dicarboxylic acid is used as the aromatic dicarboxylic acid compound, A salt of the aromatic dicarboxylic acid and the compound represented by the above formula (B-1) may be prepared and reacted.
In the reaction of the aromatic tetraamine compound and the aromatic dicarboxylic acid compound, a solvent can be used as necessary. Preferred solvents used here include, for example, 1-methyl-2-pyrrolidone, 1-cyclohexyl-2-pyrrolidone, dimethylacetamide, dimethyl sulfoxide, diphenyl ether, diphenyl sulfone, dichloromethane, chloroform, tetrahydrofuran, o-cresol, m-cresol. , P-cresol, phosphoric acid, polyphosphoric acid and the like, but are not limited thereto.
In order to prevent decomposition and coloring of the polymer during the reaction, the reaction is desirably performed in a dry inert gas atmosphere.

<全芳香族ポリベンゾイミダゾール(ポリマーA)の焼成方法>
上記のようにして調製した、ポリマーAを焼成、即ち高温で熱処理することにより、ポリマーAの炭素化が起こり、本発明の炭素材料(炭化物)を得ることができる。この焼成の際の温度としては500〜1,500℃の温度が採用され、好ましくは600〜1,200℃であり、より好ましくは650〜1,000℃である。焼成時間は1〜300分とすることが好ましく、10〜180分とすることがより好ましく、更に30〜100分とすることが好ましい。
焼成は、不活性ガス雰囲気にて行われる。ここで、好ましい不活性ガスとして、例えば窒素、アルゴン等が挙げられるが、これらに限定されるものではない。上記不活性ガスは、その酸素濃度が100ppm(体積基準)以下であることが好ましく、20ppm以下であることがより好ましく、10ppm以下であることが更に好ましい。
<炭素材料>
本発明の炭素材料はその酸素還元開始電位が0.7V以上と高いものである。そのため、本発明の炭素材料は、燃料電池用電極触媒として好適に使用することができるほか、各種化学反応、例えば酸化物の還元反応の触媒として好適に用いることができる。
<Baking method of wholly aromatic polybenzimidazole (polymer A)>
When the polymer A prepared as described above is baked, that is, heat-treated at a high temperature, the carbonization of the polymer A occurs, and the carbon material (carbide) of the present invention can be obtained. As the temperature at the time of firing, a temperature of 500 to 1,500 ° C. is adopted, preferably 600 to 1,200 ° C., more preferably 650 to 1,000 ° C. The firing time is preferably 1 to 300 minutes, more preferably 10 to 180 minutes, and further preferably 30 to 100 minutes.
Firing is performed in an inert gas atmosphere. Here, preferred inert gases include, for example, nitrogen and argon, but are not limited thereto. The inert gas preferably has an oxygen concentration of 100 ppm (volume basis) or less, more preferably 20 ppm or less, and still more preferably 10 ppm or less.
<Carbon material>
The carbon material of the present invention has a high oxygen reduction starting potential of 0.7 V or higher. Therefore, the carbon material of the present invention can be suitably used as an electrode catalyst for fuel cells, and can be suitably used as a catalyst for various chemical reactions, for example, oxide reduction reactions.

以下、実施例により本発明方法を更に詳しく具体的に説明する。ただし、これらの実施例により本発明の範囲が限定されるものではない。
以下において、全芳香族ポリベンゾイミダゾールの特有粘度、酸素還元活性及び炭素化収率は、それぞれ、下記のようにして求めた。
(1)全芳香族ポリベンゾイミダゾールの特有粘度(ηinh
メタンスルホン酸に全芳香族ポリベンゾイミダゾールを濃度0.03g/100mLにて溶解した溶液を試料用液とし、25℃において該試料溶液の粘度(η)及び溶媒(メタンスルホン酸)の粘度(η)をそれぞれ測定して相対粘度(ηrel=η/η)を算出し、これを基に上記数式(i)により特有粘度を求めた。
(2)酸素還元活性
酸素還元活性は、回転電極法によりリニアスイープボルタンメトリーを行って測定した酸素還元開始電位として求めた。
なお、リニアスイープボルタンメトリーの手順は以下A〜Dに示した。
A.プラスチックバイアルに、焼成により得られた炭素材料5mgをとり、ガラスビーズをスパチュラ一杯、ナフィオン50μL並びに蒸留水及びエタノールをそれぞれ150μLずつ加え、20分間超音波をあててスラリーとした。
B.上記スラリーを4μLとり、回転電極のガラス状炭素上に塗付し、飽和水蒸気雰囲気下で乾燥した。
C.乾燥後の回転電極を作用極とし、Ag/AgCl電極を参照極とし、白金線を対極とした。電解液である0.5M硫酸に酸素を30分バブリングした後、自然電位を測定した。
D.次いで、600s初期電位を印加した後に、掃引速度1mV/s、回転速度1,500rpmで、0.8V vs.Ag/AgClから−0.2V vs.Ag/AgClまで測定を行った。
E.上記測定で、−10μA・cm−2における電圧値を酸素還元開始電位として算出した。なお、酸素還元開始電位は、銀/塩化銀(Ag/AgCl)電極を用いて測定した値を標準水素電極(NHE)基準値に換算して示した。
(3)炭素化収率
炭素化収率は、焼成後の炭化物の重量及び焼成前の前駆体ポリマー(全芳香族ポリベンゾイミダゾール又は全芳香族ポリアミド)の重量から、下記数式(iii)により求めた。
炭素化収率(%)=(焼成後の炭化物の重量)/(焼成前の前駆体ポリマーの重量)×100 (iii)
Hereinafter, the method of the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited by these examples.
In the following, the specific viscosity, oxygen reduction activity and carbonization yield of the wholly aromatic polybenzimidazole were determined as follows.
(1) Specific viscosity (η inh ) of wholly aromatic polybenzimidazole
A solution of wholly aromatic polybenzimidazole dissolved in methanesulfonic acid at a concentration of 0.03 g / 100 mL is used as a sample solution. At 25 ° C., the viscosity of the sample solution (η) and the viscosity of the solvent (methanesulfonic acid) (η 0 ) was measured, relative viscosity (η rel = η / η 0 ) was calculated, and based on this, the specific viscosity was determined by the above formula (i).
(2) Oxygen reduction activity The oxygen reduction activity was determined as an oxygen reduction starting potential measured by performing linear sweep voltammetry by the rotating electrode method.
In addition, the procedure of linear sweep voltammetry was shown to AD below.
A. To a plastic vial, 5 mg of the carbon material obtained by firing was taken, a glass bead full of spatula, Nafion 50 μL, distilled water and ethanol 150 μL each were added, and ultrasonic waves were applied for 20 minutes to make a slurry.
B. 4 μL of the slurry was taken and applied onto the glassy carbon of the rotating electrode, and dried in a saturated steam atmosphere.
C. The rotating electrode after drying was the working electrode, the Ag / AgCl electrode was the reference electrode, and the platinum wire was the counter electrode. Oxygen was bubbled through 0.5 M sulfuric acid as an electrolytic solution for 30 minutes, and then the natural potential was measured.
D. Next, after applying an initial potential of 600 s, a sweep speed of 1 mV / s, a rotation speed of 1,500 rpm, and 0.8 V vs. -0.2V vs. Ag / AgCl. Measurements were performed up to Ag / AgCl.
E. In the above measurement, the voltage value at −10 μA · cm −2 was calculated as the oxygen reduction starting potential. The oxygen reduction starting potential was expressed by converting a value measured using a silver / silver chloride (Ag / AgCl) electrode into a standard hydrogen electrode (NHE) reference value.
(3) Carbonization yield The carbonization yield is obtained from the weight of the carbide after firing and the weight of the precursor polymer (fully aromatic polybenzimidazole or wholly aromatic polyamide) before firing according to the following formula (iii). It was.
Carbonization yield (%) = (weight of carbide after calcination) / (weight of precursor polymer before calcination) × 100 (iii)

合成例1<モノマーの合成>
2,3,5,6−テトラアミノピリジン三塩酸塩1水和物17.772質量部を、窒素で脱気した水100質量部に溶解した。2,5−ジヒドロキシテレフタル酸13.208質量部を1mol/L−水酸化ナトリウム水溶液137質量部に溶解して窒素で脱気した。
上記2,3,5,6−テトラアミノピリジン三塩酸塩1水和物の溶液を、2,5−ジヒドロキシテレフタル酸二ナトリウム塩水溶液に10分間かけて滴下した。その後、24.3質量部のポリリン酸、35質量部の窒素で脱気した水及び1質量部の酢酸を加え、生成した塩をろ取して回収した。得られた塩を、窒素で脱気した水3,000質量部に分散混合し、再度ろ取して回収した。この分散混合及びろ取操作を3回繰り返し行った後、得られた固体(塩)を十分に乾燥することにより、2,3,5,6−テトラアミノピリジンの2,5−ジヒドロキシテレフタル酸塩を得た。
合成例2<ポリマーAの合成>
上記合成例1で得られた2,3,5,6−テトラアミノピリジンの2,5−ジヒドロキシテレフタル酸塩22.88質量部にポリリン酸62.54質量部及び5酸化リン14.76質量部を加え、100℃にて1時間攪拌混合した。その後、2時間かけて140℃に昇温し、140℃にて更に1時間攪拌を行った。その後、1時間かけて180℃に昇温し、180℃にて更に5時間反応を行い、ドープを得た。得られたドープは、ポリマー18質量部及びポリリン酸82質量部を含有していた。偏光顕微鏡による測定の結果、このドープは液晶性を示すことが分かった。このドープを水にて再沈殿して洗浄することにより、全芳香族ポリベンゾイミダゾール(ポリマーA1)を得た。
このポリマーA1につき、上記の方法によって測定した特有粘度(ηinh)は5.5dL/gであった。
Synthesis Example 1 <Synthesis of Monomer>
17.772 parts by mass of 2,3,5,6-tetraaminopyridine trihydrochloride monohydrate was dissolved in 100 parts by mass of water deaerated with nitrogen. 13.208 parts by mass of 2,5-dihydroxyterephthalic acid was dissolved in 137 parts by mass of a 1 mol / L-sodium hydroxide aqueous solution and deaerated with nitrogen.
The solution of 2,3,5,6-tetraaminopyridine trihydrochloride monohydrate was added dropwise to an aqueous solution of disodium salt of 2,5-dihydroxyterephthalic acid over 10 minutes. Thereafter, 24.3 parts by mass of polyphosphoric acid, water degassed with 35 parts by mass of nitrogen and 1 part by mass of acetic acid were added, and the produced salt was collected by filtration. The obtained salt was dispersed and mixed in 3,000 parts by mass of water deaerated with nitrogen, and collected again by filtration. After repeating this dispersion mixing and filtration operation three times, the obtained solid (salt) was sufficiently dried to obtain 2,5-dihydroxyterephthalate of 2,3,5,6-tetraaminopyridine. Got.
Synthesis Example 2 <Synthesis of Polymer A>
2,22,88 parts by mass of 2,3,5,6-tetraaminopyridine of 2,5-dihydroxyterephthalate obtained in Synthesis Example 1 above, 62.54 parts by mass of polyphosphoric acid and 14.76 parts by mass of phosphorus pentoxide And stirred and mixed at 100 ° C. for 1 hour. Thereafter, the temperature was raised to 140 ° C. over 2 hours, and the mixture was further stirred at 140 ° C. for 1 hour. Then, it heated up to 180 degreeC over 1 hour, and also reacted for 5 hours at 180 degreeC, and dope was obtained. The obtained dope contained 18 parts by mass of polymer and 82 parts by mass of polyphosphoric acid. As a result of measurement with a polarizing microscope, it was found that this dope exhibits liquid crystallinity. This dope was reprecipitated with water and washed to obtain a wholly aromatic polybenzimidazole (polymer A1).
About this polymer A1, the specific viscosity ((eta) inh ) measured by said method was 5.5 dL / g.

比較合成例1<全芳香族ポリアミドの合成1>
塩化カルシウム19.21質量部を、窒素気流下、フラスコ内で250℃にて1時間乾燥した。フラスコ内の温度を室温に戻した後、N−メチル−2−ピロリジノン(NMP)365質量部及び4,4’−ジアミノ−3,3’−ビフェニルジオール12質量部をこの順で加えて溶解し、溶液とした。この溶液を氷浴により0℃に保ちつつ、テレフタル酸クロリド11.26質量部添加し、0℃で1時間、次いで50℃で2時間反応を行い、ポリマーのNMP溶液を得た。
得られた溶液の一部を大量のイオン交換水中に投入して析出したポリマーをろ取して回収し、水で2回及びメタノールで1回、順次に洗浄後、真空乾燥することにより、下記式(R1)
Comparative Synthesis Example 1 <Synthesis of wholly aromatic polyamide 1>
19.21 parts by mass of calcium chloride was dried in a flask at 250 ° C. for 1 hour under a nitrogen stream. After returning the temperature in the flask to room temperature, 365 parts by mass of N-methyl-2-pyrrolidinone (NMP) and 12 parts by mass of 4,4′-diamino-3,3′-biphenyldiol were added and dissolved in this order. A solution. While maintaining this solution at 0 ° C. with an ice bath, 11.26 parts by mass of terephthalic acid chloride was added, and the reaction was carried out at 0 ° C. for 1 hour and then at 50 ° C. for 2 hours to obtain a polymer NMP solution.
A portion of the resulting solution was poured into a large amount of ion-exchanged water, and the precipitated polymer was collected by filtration, washed with water twice and once with methanol, and then vacuum-dried, followed by vacuum drying. Formula (R1)

Figure 2011006280
Figure 2011006280

で表される繰り返し単位からなる全芳香族ポリアミド(ポリマーR1)を得た。
このポリマーR1につき、溶媒として硫酸を用い、試料濃度0.5g/100mL、30℃の条件にて測定を行って求めた特有粘度(ηinh)は5.73dL/gであった。
比較合成例2<全芳香族ポリアミドの合成2>
塩化カルシウム15.8質量部を窒素気流下、フラスコ内で250℃にて1時間乾燥した。フラスコ内の温度を室温に戻した後、N−メチル−2−ピロリジノン(NMP)300質量部及び5(6)−アミノー2−(4−アミノフェニル)ベンズイミダゾール(cas. reg no 7621-86-5)10質量部をこの順で加えて溶解し、溶液とした。この溶液を氷浴により0℃に保ちつつ、テレフタル酸クロリド9.05質量部添加し、0℃で3時間、次いで50℃で3時間反応を行った後、水酸化カルシウム3.303質量部を加えて反応を終了し、ポリマーのNMP溶液を得た。
得られた溶液の一部を大量のイオン交換水中に投入して析出したポリマーをろ取して回収し、水で2回及びメタノールで1回、順次に洗浄後、真空乾燥することにより、下記式(R2)
A wholly aromatic polyamide (polymer R1) consisting of repeating units represented by the formula:
Using this polymer R1, sulfuric acid was used as a solvent, and the specific viscosity (η inh ) obtained by measurement under the conditions of a sample concentration of 0.5 g / 100 mL and 30 ° C. was 5.73 dL / g.
Comparative Synthesis Example 2 <Synthesis 2 of wholly aromatic polyamide>
15.8 parts by mass of calcium chloride was dried at 250 ° C. for 1 hour in a flask under a nitrogen stream. After returning the temperature in the flask to room temperature, 300 parts by mass of N-methyl-2-pyrrolidinone (NMP) and 5 (6) -amino-2- (4-aminophenyl) benzimidazole (cas. Reg no 7621-86- 5) 10 parts by mass was added and dissolved in this order to obtain a solution. While maintaining this solution at 0 ° C. with an ice bath, 9.05 parts by mass of terephthalic acid chloride was added and reacted at 0 ° C. for 3 hours and then at 50 ° C. for 3 hours, and then 3.303 parts by mass of calcium hydroxide was added. In addition, the reaction was terminated to obtain an NMP solution of the polymer.
A portion of the resulting solution was poured into a large amount of ion-exchanged water, and the precipitated polymer was collected by filtration, washed with water twice and once with methanol, and then vacuum-dried, followed by vacuum drying. Formula (R2)

Figure 2011006280
Figure 2011006280

で表される繰り返し単位からなる全芳香族ポリアミド(ポリマーR2)を得た。
このポリマーR2につき、溶媒として硫酸を用い、試料濃度0.5g/100mL、30℃の条件にて測定を行って求めた特有粘度(ηinh)は4.3dL/gであった。
A wholly aromatic polyamide (polymer R2) consisting of repeating units represented by the formula:
For this polymer R2, the specific viscosity (η inh ) obtained by measurement under the conditions of a sample concentration of 0.5 g / 100 mL and 30 ° C. using sulfuric acid as a solvent was 4.3 dL / g.

実施例1<全芳香族ポリベンゾイミダゾールを用いた炭素材料の調製及び該炭素材料の酸素還元活性の測定>
上記合成例2で得られた全芳香族ポリベンゾイミダゾール(ポリマーA1)を窒素雰囲気下、900℃において60分間加熱して炭素化処理した後、ボールミルを用いて粉砕することにより、炭素材料を得た。
この炭素化収率及び得られた炭素材料の酸素還元開始電位の測定結果を表1に示した。
比較例1及び2<全芳香族ポリアミドを用いた炭素材料の調製及び該炭素材料の酸素還元開始電位の測定>
上記実施例1において、全芳香族ポリベンゾイミダゾール(ポリマーA1)の代わりに、上記比較合成例1及び2で得られた全芳香族ポリアミド(ポリマーR1及びポリマーR2)をそれぞれ用いたほかは実施例1と同様にして、炭素材料をそれぞれ得た。
これらの炭素化収率及び得られた炭素材料の酸素還元開始電位の測定結果を、それぞれ表1に示した。
Example 1 <Preparation of carbon material using wholly aromatic polybenzimidazole and measurement of oxygen reduction activity of the carbon material>
The wholly aromatic polybenzimidazole (Polymer A1) obtained in Synthesis Example 2 is carbonized by heating at 900 ° C. for 60 minutes in a nitrogen atmosphere, and then pulverized using a ball mill to obtain a carbon material. It was.
Table 1 shows the measurement results of the carbonization yield and the oxygen reduction initiation potential of the obtained carbon material.
Comparative Examples 1 and 2 <Preparation of carbon material using wholly aromatic polyamide and measurement of oxygen reduction initiation potential of the carbon material>
Example 1 except that the wholly aromatic polyamide (polymer R1 and polymer R2) obtained in Comparative Synthesis Examples 1 and 2 was used in place of the wholly aromatic polybenzimidazole (polymer A1) in Example 1 above. In the same manner as in No. 1, carbon materials were obtained.
Table 1 shows the measurement results of these carbonization yields and the oxygen reduction initiation potential of the obtained carbon material.

Figure 2011006280
Figure 2011006280

本発明の炭素材料は、燃料電池用の電極触媒、各種化学反応の触媒等として好適に用いることができる。   The carbon material of the present invention can be suitably used as an electrode catalyst for fuel cells, a catalyst for various chemical reactions, and the like.

Claims (2)

下記一般式(A−1)
Figure 2011006280
で表される繰り返し単位及び下記一般式(A−2)
Figure 2011006280
で表わされる繰り返し単位からなる群より選ばれる少なくとも1種の繰り返し単位からなり、特有粘度が0.05〜200dL/g(メタンスルホン酸溶媒、試料濃度0.03g/100mL、測定温度25℃)である全芳香族ポリベンゾイミダゾールを、不活性ガス雰囲気下、500〜1,500℃において焼成して得られることを特徴とする、炭素材料。
The following general formula (A-1)
Figure 2011006280
And a repeating unit represented by the following general formula (A-2)
Figure 2011006280
And a specific viscosity of 0.05 to 200 dL / g (methanesulfonic acid solvent, sample concentration 0.03 g / 100 mL, measurement temperature 25 ° C.). A carbon material obtained by firing a wholly aromatic polybenzimidazole at 500 to 1,500 ° C. in an inert gas atmosphere.
請求項1に記載の炭素材料を製造するための方法であって、
上記一般式(A−1)で表される繰り返し単位及び上記一般式(A−2)で表わされる繰り返し単位からなる群より選ばれる少なくとも1種の繰り返し単位からなり、特有粘度が0.05〜200dL/g(メタンスルホン酸溶媒、試料濃度0.03g/100mL、測定温度25℃)である全芳香族ポリベンゾイミダゾールを、不活性ガス雰囲気下、500〜1,500℃において焼成することを特徴とする、炭素材料の製造方法。
A method for producing the carbon material according to claim 1, comprising:
It consists of at least one repeating unit selected from the group consisting of the repeating unit represented by the general formula (A-1) and the repeating unit represented by the general formula (A-2), and has a specific viscosity of 0.05 to A wholly aromatic polybenzimidazole of 200 dL / g (methanesulfonic acid solvent, sample concentration 0.03 g / 100 mL, measurement temperature 25 ° C.) is calcined at 500 to 1,500 ° C. in an inert gas atmosphere. And a method for producing a carbon material.
JP2009150950A 2009-06-25 2009-06-25 Carbon material and method for producing the same Withdrawn JP2011006280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009150950A JP2011006280A (en) 2009-06-25 2009-06-25 Carbon material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009150950A JP2011006280A (en) 2009-06-25 2009-06-25 Carbon material and method for producing the same

Publications (1)

Publication Number Publication Date
JP2011006280A true JP2011006280A (en) 2011-01-13

Family

ID=43563427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009150950A Withdrawn JP2011006280A (en) 2009-06-25 2009-06-25 Carbon material and method for producing the same

Country Status (1)

Country Link
JP (1) JP2011006280A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014020915A1 (en) 2012-08-01 2014-02-06 東洋インキScホールディングス株式会社 Cell catalyst composition, production method therefor, electrode material, and fuel cell
CN114920688A (en) * 2022-05-05 2022-08-19 东华大学 Method for preparing 2,3,5, 6-tetraaminopyridine-2, 5-dihydroxy terephthalate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014020915A1 (en) 2012-08-01 2014-02-06 東洋インキScホールディングス株式会社 Cell catalyst composition, production method therefor, electrode material, and fuel cell
CN114920688A (en) * 2022-05-05 2022-08-19 东华大学 Method for preparing 2,3,5, 6-tetraaminopyridine-2, 5-dihydroxy terephthalate

Similar Documents

Publication Publication Date Title
KR101150843B1 (en) Preparing method of cathode catalyst comprising carbon nitride and conductive carbon support for pemfc, cathode catalyst for pemfc, electrode for pemfc and pemfc
JP5796813B2 (en) Sulfonate compound, polymer electrolyte membrane containing the same, and fuel cell containing the same
Cai et al. Nickel (ii)-modified covalent-organic framework film for electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF)
CN109796006B (en) Application of ionic liquid in preparation of nitrogen-doped carbon quantum dots, and preparation method and application of nitrogen-doped carbon quantum dots
CN103394350A (en) Method for preparing titanium tungsten oxide coated carbon nano-tube platinum-supported electro-catalyst
EP1860135A1 (en) Electrolyte membrane
CN110560117A (en) Bimetallic cobalt ruthenium-nitrogen phosphorus doped porous carbon electrocatalyst and preparation method and application thereof
JP5403601B2 (en) Carbon material and manufacturing method thereof
JP2011006283A (en) Carbon material and method for producing the same
KR101609271B1 (en) Organic/inorganic complex proton conductor, electrode for fuel cell comprising the organic/inorganic complex proton conductor, electrolyte membrane for fuel cell comprising the organic/inorganic complex proton conductor, and fuel cell employing the same
Li et al. Recent advances in hybrid water electrolysis for energy-saving hydrogen production
CN113026033B (en) Cobalt-doped ruthenium-based catalyst, preparation method thereof and application of cobalt-doped ruthenium-based catalyst as acidic oxygen precipitation reaction electrocatalyst
Vengadesan et al. Electrochemical fabrication of nano-structured poly (dimethoxyaniline)-platinum hybrid materials: An efficient anode electrocatalyst for oxidation of methanol
JP6312981B2 (en) Method for producing mesoporous iridium oxide, method for producing water oxidation catalyst, and method for producing mesoporous iridium oxide electrode
JP2011006280A (en) Carbon material and method for producing the same
KR101379361B1 (en) Polymer electrolyte membrane comprising ionic liquid having sulfonic acid group, and method for preparing the same
US20220395819A1 (en) Porphyrin-based catalysts for water splitting
US7981567B2 (en) Polymer having oxocarbon group, and use thereof
JP2007084739A (en) Ionic group-bearing polymer, polyelectrolyte material, polyelectrolyte component, membrane electrode assembly, and polyelectrolyte-type fuel cell
EP3235809B1 (en) Compound and polymer electrolyte membrane using same
JP2011006281A (en) Carbon material and method for producing the same
JP4813218B2 (en) Proton conducting electrolyte and fuel cell
JP2005019122A (en) Solid polyelectrolyte, film using it, catalyst electrode layer, film/electrode junction, and fuel cell
JP2011006282A (en) Carbon material and method for producing the same
KR20140053157A (en) Catalysts free from noble metals suitable for the electrochemical reduction of oxygen

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120904