JP2011004552A - Terminal processing method for super-extra-fine coaxial cable - Google Patents

Terminal processing method for super-extra-fine coaxial cable Download PDF

Info

Publication number
JP2011004552A
JP2011004552A JP2009146904A JP2009146904A JP2011004552A JP 2011004552 A JP2011004552 A JP 2011004552A JP 2009146904 A JP2009146904 A JP 2009146904A JP 2009146904 A JP2009146904 A JP 2009146904A JP 2011004552 A JP2011004552 A JP 2011004552A
Authority
JP
Japan
Prior art keywords
coaxial cable
film shield
electrode
thin film
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009146904A
Other languages
Japanese (ja)
Inventor
Kazuo Taira
加津雄 平
Shigeru Kobayashi
茂 小林
Takao Namihira
隆男 浪平
Shusuke Akiyama
秀典 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshinogawa Electric Wire and Cable Co Ltd
Original Assignee
Yoshinogawa Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshinogawa Electric Wire and Cable Co Ltd filed Critical Yoshinogawa Electric Wire and Cable Co Ltd
Priority to JP2009146904A priority Critical patent/JP2011004552A/en
Publication of JP2011004552A publication Critical patent/JP2011004552A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a terminal processing method for a super-extra-fine coaxial cable by which a thin-film shield is instantaneously melted and vaporized applying a low voltage by a single operation without damaging a dielectric layer.SOLUTION: According to the terminal processing method for removing the thin-film shield from the super-extra-fine coaxial cable, the thin-film shield to be removed is placed between a first electrode and a second electrode to bring it into contact with the first and second electrodes. The distance between both electrodes is determined to be 1 to 10 mm, and a pulse current is supplied under a condition that electric power generated by a pulse current per super-extra-fine coaxial cable is 5×10to 1 J. This causes the thin-film shield to melt and vaporize to be removed.

Description

本発明は超極細同軸ケーブルの端末加工方法、より詳しくは、信号伝送の高帯域化・高密度実装化・省スペース化等のために用いられる超極細同軸ケーブルの端末加工方法に関する。   The present invention relates to a terminal processing method for a superfine coaxial cable, and more particularly to a terminal processing method for a superfine coaxial cable used for increasing the bandwidth, high-density packaging, and space saving of signal transmission.

ノート型パソコンなどに使われるLCD(液晶ディスプレイ)の配線材には、従来、主にFPC(フレキシブルプリント基板)が用いられてきた。近年における信号伝送の高帯域化・高密度実装化・省スペース化等に伴い超極細同軸ケーブルの要求が高まっており、例えば、LCDの高画質化のために、画像信号の高速化が求められるようになり、これに対応するために、FPCに代わって超極細同軸ケーブルがディスプレイ周辺の配線材に適用されるようになってきている。   Conventionally, an FPC (flexible printed circuit board) has been mainly used as a wiring material of an LCD (liquid crystal display) used for a notebook personal computer or the like. With the recent increase in bandwidth, high-density packaging, and space saving of signal transmission, the demand for ultra-fine coaxial cables is increasing. For example, high-speed image signals are required to improve the image quality of LCDs. Therefore, in order to cope with this, an extra-fine coaxial cable has been applied to the wiring material around the display instead of the FPC.

シールドとして横巻きシールドを用いた超極細同軸ケーブルについてのシールドの除去方法、端末加工方法は知られている(例えば、特許文献1、2参照。)。超極細同軸ケーブルについて外径をより小さくするために、シールドを横巻きシールドから銅薄膜のような薄膜シールドに変化してきている。しかし、このように銅薄膜のような薄膜シールドを用いる場合には超極細同軸ケーブルの耐屈曲性を改善するために誘電体層の表面を処理して誘電体層と薄膜シールドとの接着強度を改善しており、そのことにより薄膜シールドの除去が困難になり、端末加工性が悪化する。   A shield removal method and a terminal processing method are known for an ultrafine coaxial cable using a laterally wound shield as a shield (see, for example, Patent Documents 1 and 2). In order to reduce the outer diameter of the ultra-fine coaxial cable, the shield has been changed from a horizontally wound shield to a thin film shield such as a copper thin film. However, when using a thin film shield such as a copper thin film in this way, the surface of the dielectric layer is treated to improve the adhesive strength between the dielectric layer and the thin film shield in order to improve the bending resistance of the ultrafine coaxial cable. It has been improved, which makes it difficult to remove the thin film shield and deteriorates the terminal processability.

現在は超極細同軸ケーブルの薄膜シールドの除去にパルスレーザー、例えば波長1.06μmのパルスレーザーが使用されている。しかし、レーザーの影にあたる部分の薄膜シールドは除去されないため、反対側からもパルスレーザーを照射する必要があり、所要時間が長くなる(合計で約10秒)。また誘電体層へのダメージがあり、更に、薄膜シールドの厚さの変化に応じてパワー、速度、時間等の設定を変更する必要がある。   Currently, a pulse laser, for example, a pulse laser having a wavelength of 1.06 μm, is used to remove the thin film shield of the ultra-fine coaxial cable. However, since the thin-film shield in the shadowed portion of the laser is not removed, it is necessary to irradiate the pulse laser from the opposite side, and the required time becomes long (total time is about 10 seconds). Further, there is damage to the dielectric layer, and further, it is necessary to change the settings of power, speed, time and the like according to the change of the thickness of the thin film shield.

超極細同軸ケーブルの薄膜シールドの除去技術ではないが、樹脂のリサイクルを目的として樹脂表面に設けられた金属皮膜を樹脂から除去する技術としてパルス放電を利用することが提案されている(例えば、特許文献3参照。)。その技術は大面積の除去技術であり、高電圧(5〜15kV)を必要としている。   Although it is not a technique for removing the thin film shield of ultra-fine coaxial cables, it has been proposed to use pulse discharge as a technique for removing the metal film provided on the resin surface from the resin for the purpose of resin recycling (for example, patents) Reference 3). This technique is a large area removal technique and requires a high voltage (5 to 15 kV).

特開2000−245026号公報JP 2000-244502 A 特開2005−328696号公報JP-A-2005-328696 特開2005−153492号公報JP 2005-153492 A

本発明の目的は、銅薄膜のような薄膜シールドを一回の操作で、瞬間的に、誘電体層へのダメージなしで、低電圧で溶融、蒸発させて除去し得る超極細同軸ケーブルの端末加工方法を提供することにある。   SUMMARY OF THE INVENTION The object of the present invention is to end a micro-fine coaxial cable that can be removed by melting and evaporating a thin-film shield, such as a copper thin film, at a low voltage, instantaneously, without damaging the dielectric layer. It is to provide a processing method.

本発明者らは超極細同軸ケーブルの銅薄膜のような薄膜シールドを一回の操作で、瞬間的に、誘電体層へのダメージなしで、低電圧で溶融、蒸発させて除去し得る方法について鋭意検討した結果、露出した薄膜シールドの除去すべき部分を第一電極と第二電極との間に配置し且つ該第一電極及び第二電極の両方に接触させてパルス電流を通電することにより薄膜シールドを溶融、蒸発させて除去し得ることを見出し、本発明を完成した。   The present inventors have described a method in which a thin film shield such as a copper thin film of an ultrafine coaxial cable can be removed by melting and evaporating at a low voltage instantaneously without damaging the dielectric layer. As a result of intensive studies, a portion to be removed of the exposed thin film shield is disposed between the first electrode and the second electrode, and a pulse current is applied by contacting both the first electrode and the second electrode. The present inventors have found that the thin film shield can be removed by melting and evaporation.

即ち、本発明の超極細同軸ケーブルの端末加工方法は、内部導体と、該内部導体の外周に設けられた誘電体層と、該誘電体層の外周に設けられた薄膜シールド層とを有する超極細同軸ケーブルを複数本並列に配置し、該薄膜シールドを除去する超極細同軸ケーブルの端末加工方法において、該薄膜シールドの除去すべき部分を第一電極と第二電極との間に配置し且つ該第一電極及び第二電極の両方に接触させ、電極間距離を1〜10mmとし、該超極細同軸ケーブル1本当りのパルス電流の電力量を5×10-4〜1Jとしてパルス電流を流すことにより該薄膜シールドを溶融、蒸発させて除去することを特徴とする。 That is, the terminal processing method of the ultrafine coaxial cable according to the present invention includes an inner conductor, a dielectric layer provided on the outer periphery of the inner conductor, and a thin film shield layer provided on the outer periphery of the dielectric layer. In a method for processing an ultra-fine coaxial cable by arranging a plurality of micro-coaxial cables in parallel and removing the thin-film shield, the portion to be removed of the thin-film shield is disposed between the first electrode and the second electrode; The first electrode and the second electrode are brought into contact with each other, the distance between the electrodes is set to 1 to 10 mm, and the pulse current per one ultrafine coaxial cable is set to 5 × 10 −4 to 1 J. Thus, the thin film shield is melted and evaporated to be removed.

また、本発明の超極細同軸ケーブルの端末加工方法は、内部導体と、該内部導体の外周に設けられた誘電体層と、該誘電体層の外周に設けられた薄膜シールド層と、該薄膜シールド層の外周に設けられた保護被覆層とを有する超極細同軸ケーブルを複数本並列に配置し、該超極細同軸ケーブルの端部となる部分の保護被覆層を除去して薄膜シールドを露出させた後、該露出した薄膜シールドを除去する超極細同軸ケーブルの端末加工方法において、該露出した薄膜シールドの除去すべき部分を第一電極と第二電極との間に配置し且つ該第一電極及び第二電極の両方に接触させ、電極間距離を1〜10mmとし、該超極細同軸ケーブル1本当りのパルス電流の電力量を5×10-4〜1Jとしてパルス電流を流すことにより該薄膜シールドを溶融、蒸発させて除去することを特徴とする。 Further, the terminal processing method of the ultrafine coaxial cable of the present invention includes an inner conductor, a dielectric layer provided on the outer periphery of the inner conductor, a thin-film shield layer provided on the outer periphery of the dielectric layer, and the thin film A plurality of ultrafine coaxial cables having a protective coating layer provided on the outer periphery of the shield layer are arranged in parallel, and the protective coating layer at the end of the ultrafine coaxial cable is removed to expose the thin film shield. Then, in the terminal processing method of the ultrafine coaxial cable that removes the exposed thin film shield, a portion to be removed of the exposed thin film shield is disposed between the first electrode and the second electrode, and the first electrode And the second electrode is brought into contact with each other, the distance between the electrodes is set to 1 to 10 mm, and the amount of pulse current per one ultrafine coaxial cable is set to 5 × 10 −4 to 1 J to flow the thin film. Melting shield Evaporated and removing it.

本発明の超極細同軸ケーブルの端末加工方法により、銅薄膜のような薄膜シールドを一回の操作で、瞬間的に、誘電体層へのダメージなしで、低電圧で溶融、蒸発させて除去することができる。   With the method for processing an ultrafine coaxial cable according to the present invention, a thin film shield such as a copper thin film is instantaneously removed by melting and evaporating at a low voltage without damaging the dielectric layer in a single operation. be able to.

本発明の端末加工方法の実施で用いるパルス電流発生装置の一構成例を示す概略回路図である。It is a schematic circuit diagram which shows one structural example of the pulse current generator used by implementation of the terminal processing method of this invention. 本発明の端末加工方法の実施の態様を説明するための概略説明図である。It is a schematic explanatory drawing for demonstrating the embodiment of the terminal processing method of this invention.

本発明の端末加工方法で処理する超極細同軸ケーブルは、内部導体と、該内部導体の外周に設けられた誘電体層と、該誘電体層の外周に設けられた薄膜シールド層とを有するものであるか、又は、内部導体と、該内部導体の外周に設けられた誘電体層と、該誘電体層の外周に設けられた銅薄膜のような薄膜シールド層と、該薄膜シールド層の外周に設けられた保護被覆層とを有するものであり、このような構造の超極細同軸ケーブルは周知であり、本発明では周知の超極細同軸ケーブルの端末を加工する。   The ultrafine coaxial cable processed by the terminal processing method of the present invention has an inner conductor, a dielectric layer provided on the outer periphery of the inner conductor, and a thin film shield layer provided on the outer periphery of the dielectric layer. Or an inner conductor, a dielectric layer provided on the outer periphery of the inner conductor, a thin film shield layer such as a copper thin film provided on the outer periphery of the dielectric layer, and an outer periphery of the thin film shield layer A superfine coaxial cable having such a structure is well known, and the end of a well known ultrafine coaxial cable is processed in the present invention.

本発明の端末加工方法において、保護被覆層を有する超極細同軸ケーブルの場合には、このような超極細同軸ケーブルを複数本並列に配置し、該超極細同軸ケーブルの端部となる部分(コネクタとの接続部分)の保護被覆層を除去して薄膜シールドを露出させた後、該露出した薄膜シールドを除去するのであるが、超極細同軸ケーブルの端部となる部分の保護被覆層の除去方法は周知であり、本発明では周知の方法により超極細同軸ケーブルの端部となる部分の保護被覆層を除去する。   In the terminal processing method of the present invention, in the case of an ultrafine coaxial cable having a protective coating layer, a plurality of such ultrafine coaxial cables are arranged in parallel, and a portion (connector) that becomes the end of the ultrafine coaxial cable And the exposed thin-film shield is removed, and then the exposed thin-film shield is removed. The method of removing the protective coating layer at the end of the ultrafine coaxial cable In the present invention, the protective coating layer at the end portion of the ultrafine coaxial cable is removed by a well-known method.

本発明の端末加工方法は超極細同軸ケーブルの薄膜シールドの除去方法にのみ特徴を有している。本発明の特徴事項である薄膜シールドの除去方法は、(露出した)薄膜シールドの除去すべき部分を第一電極と第二電極との間に配置し且つ該第一電極及び第二電極の両方に接触させ、電極間距離を1〜10mmとし、該超極細同軸ケーブル1本当りのパルス電流の電力量を5×10-4〜1Jとしてパルス電流を流すことにより該薄膜シールドを溶融、蒸発させて除去することからなる。なお、パルス電流の電力量は0.5×(コンデンサ容量、F)×(電圧、V)2として計算した値である。 The terminal processing method of the present invention is characterized only by the method for removing the thin film shield of the ultrafine coaxial cable. The method for removing a thin film shield, which is a feature of the present invention, includes disposing a portion of the (exposed) thin film shield to be removed between the first electrode and the second electrode, and both the first electrode and the second electrode. The thin film shield is melted and evaporated by flowing the pulse current with the distance between the electrodes being 1 to 10 mm and the electric energy of the pulse current per one ultrafine coaxial cable being 5 × 10 −4 to 1 J. Removing. The electric energy of the pulse current is a value calculated as 0.5 × (capacitor capacity, F) × (voltage, V) 2 .

本発明の端末加工方法においては、パルス電流を用いるので薄膜シールドに瞬間的に電力量5×10-4〜1Jの電流を流すことができ、その結果として薄膜シールドの厚さに影響されること無しで第一電極と第二電極との間の薄膜シールドの全周を瞬間的に溶融、蒸発させて完全に除去することができ、またそのような電流を流しても瞬間的なパルス電流であるので薄膜シールドの下地である誘電体層の樹脂を劣化させることがない。 In the terminal processing method of the present invention, since a pulse current is used, an electric current of 5 × 10 −4 to 1 J can be instantaneously passed through the thin film shield, and as a result, the thickness of the thin film shield is affected. The entire circumference of the thin-film shield between the first electrode and the second electrode can be instantaneously melted and evaporated without being removed, and even if such a current is passed, the instantaneous pulse current Therefore, the resin of the dielectric layer which is the base of the thin film shield is not deteriorated.

本発明の端末加工方法においてパルス電流を流す条件については、電極間距離は薄膜シールドの除去すべき長さと同一であり、通常は1〜10mm程度、好ましくは3〜8mm程度、より好ましくは4〜7mm程度である。また、超極細同軸ケーブル1本当りのパルス電流の電力量は5×10-4〜1J、好ましくは5×10-3〜5×10-1J、より好ましくは2×10-2〜2×10-1J程度である。超極細同軸ケーブル1本当りのパルス電流の電力量が5×10-4J未満である場合には、薄膜シールドの除去が不完全になる傾向があり、逆に超極細同軸ケーブル1本当りのパルス電流の電力量が1Jを超える場合には、薄膜シールドの下地である誘電体層の樹脂を劣化させる傾向がある。なお、この程度のパルス電流の電力量を得るための充電電圧については100〜1000V程度、好ましくは400〜600V程度、より好ましくは450〜550V程度である。充電電圧が1000Vを超える場合には電極の消耗が多くなり、薄膜シールドの下地の誘電体層の樹脂の劣化が生じる傾向があり、逆に100V未満である場合には除去不良が生じる傾向がある。また、コンデンサ容量については厳格な制限はなく、充電電圧との相関関係(反比例)で超極細同軸ケーブル1本当りのパルス電流の電力量が5×10-4〜1Jとなるようにする。即ち、充電電圧を下げるためにはコンデンサ容量を大きくする必要がある。 In the terminal processing method of the present invention, the condition for flowing the pulse current is the same as the length to be removed from the thin film shield, and is usually about 1 to 10 mm, preferably about 3 to 8 mm, more preferably 4 to 4 mm. It is about 7 mm. In addition, the electric energy of the pulse current per ultra-fine coaxial cable is 5 × 10 −4 to 1 J, preferably 5 × 10 −3 to 5 × 10 −1 J, more preferably 2 × 10 −2 to 2 ×. It is about 10 -1 J. If the amount of pulsed current per ultra-fine coaxial cable is less than 5 × 10 -4 J, the removal of the thin-film shield tends to be incomplete, and conversely, per ultra-fine coaxial cable. When the electric energy of the pulse current exceeds 1 J, the resin of the dielectric layer that is the base of the thin film shield tends to be deteriorated. In addition, about the charging voltage for obtaining the electric energy of such a pulse current, it is about 100-1000V, Preferably it is about 400-600V, More preferably, it is about 450-550V. When the charging voltage exceeds 1000 V, the electrode wears out, and the resin of the dielectric layer underlying the thin film shield tends to deteriorate. Conversely, when the charging voltage is less than 100 V, removal failure tends to occur. . Moreover, there is no strict restriction | limiting about a capacitor | condenser capacity | capacitance, It is made for the electric energy of the pulse current per super fine coaxial cable to be 5 * 10 < -4 > -1J by correlation (inverse proportion) with charging voltage. That is, in order to reduce the charging voltage, it is necessary to increase the capacitor capacity.

以下に図面に基づいて本発明を説明する。
図1は本発明の端末加工方法で用いるパルス電流発生装置の一構成例を示す回路図であり、1は第一電極、2は第二電極である。図1には充電電圧0〜1000V、コンデンサ容量0.1〜2.0μFの場合が示されており、電極間距離については示されていないが、1〜10mmで端末加工を実施した。
The present invention will be described below with reference to the drawings.
FIG. 1 is a circuit diagram showing a configuration example of a pulse current generator used in the terminal processing method of the present invention, wherein 1 is a first electrode and 2 is a second electrode. FIG. 1 shows a case where the charging voltage is 0 to 1000 V and the capacitor capacity is 0.1 to 2.0 μF. Although the inter-electrode distance is not shown, the terminal processing was performed at 1 to 10 mm.

端末加工に使用した超極細同軸ケーブルは、その場銀繊維強化銅合金(銀含有量約10%)からなる外径30μmの内部導体の外周にポリアミドとABS樹脂とのポリマーアロイからなる誘電体層を形成して外径を80μmとし、このようにして形成された被覆電線の外周面を塩酸でエッチング処理し、その上から、無電解メッキにより銅からなる厚さ2μmの薄膜シールド層(金属メッキ層)を形成したものである。本発明の端末加工方法の主題は薄膜シールドの除去であるので、保護被覆層の形成及び保護被覆層の除去を行わない場合の超極細同軸ケーブルについて端末加工した。   The ultra-fine coaxial cable used for terminal processing is a dielectric layer made of a polymer alloy of polyamide and ABS resin on the outer periphery of an inner conductor with an outer diameter of 30 μm made of an in situ silver fiber reinforced copper alloy (silver content of about 10%). The outer diameter of the coated electric wire thus formed is etched with hydrochloric acid, and a thin-film shield layer (metal plating) made of copper is formed by electroless plating thereon. Layer). Since the subject of the terminal processing method of this invention is removal of a thin film shield, the terminal process was carried out about the ultrafine coaxial cable in the case where formation of a protective coating layer and removal of a protective coating layer are not performed.

図2は本発明の実施の態様を説明するための概略説明図である。図2に示すように、上記の超極細同軸ケーブル10本を0.3mmピッチで平行に並べ、薄膜シールドの除去すべき部分を第一電極1と第二電極2との間に配置し且つ該第一電極1及び第二電極2の両方に接触させた。図2においては、簡略にするために、平行に並べた超極細同軸ケーブルの両端の2本の超極細同軸ケーブルのみを表示し、中間の他の超極細同軸ケーブルは省略してある。   FIG. 2 is a schematic explanatory diagram for explaining an embodiment of the present invention. As shown in FIG. 2, the ten ultra-fine coaxial cables are arranged in parallel at a pitch of 0.3 mm, the portion to be removed of the thin film shield is disposed between the first electrode 1 and the second electrode 2, and the Both the first electrode 1 and the second electrode 2 were brought into contact. In FIG. 2, for the sake of simplicity, only two ultrafine coaxial cables at both ends of the ultrafine coaxial cables arranged in parallel are shown, and the other ultrafine coaxial cables in the middle are omitted.

上記のような配置で、電極間距離を1〜10mmの間で変化させ、充電電圧を0〜1000Vの間で変化させ、コンデンサ容量0.1〜2.0μFの間で変化させてパルス電流を発生させて薄膜シールドの除去の状況を観察した。なお、パルス電流の電力量は0.5×(コンデンサ容量、F)×(電圧、V)2として計算した値である。図2において3は薄膜シールドが除去される前の超極細同軸ケーブルであり、4は薄膜シールドが除去された後の超極細同軸ケーブルである。 With the arrangement as described above, the distance between the electrodes is changed between 1 to 10 mm, the charging voltage is changed between 0 to 1000 V, and the capacitor capacity is changed between 0.1 to 2.0 μF to change the pulse current. The state of removal of the thin film shield was observed. The electric energy of the pulse current is a value calculated as 0.5 × (capacitor capacity, F) × (voltage, V) 2 . In FIG. 2, 3 is the ultrafine coaxial cable before the thin film shield is removed, and 4 is the ultrafine coaxial cable after the thin film shield is removed.

上記の端末加工を行った時の放電条件及び除去の状態は第1表に示す通りである。除去の状態の欄の○は完全に除去された場合、×は除去が不完全又は誘電体層に影響を及ぼした場合を示す。   The discharge conditions and the removal state when the above-described terminal processing is performed are as shown in Table 1. ○ in the column of the removal state indicates that the removal is complete, and × indicates that the removal is incomplete or affects the dielectric layer.

Figure 2011004552
Figure 2011004552

1 第一電極
2 第二電極
3 薄膜シールドが除去される前の超極細同軸ケーブル
4 薄膜シールドが除去された後の超極細同軸ケーブル
DESCRIPTION OF SYMBOLS 1 1st electrode 2 2nd electrode 3 Ultrafine coaxial cable before thin film shield is removed 4 Ultrafine coaxial cable after thin film shield is removed

Claims (3)

内部導体と、該内部導体の外周に設けられた誘電体層と、該誘電体層の外周に設けられた薄膜シールド層とを有する超極細同軸ケーブルを複数本並列に配置し、該薄膜シールドを除去する超極細同軸ケーブルの端末加工方法において、該薄膜シールドの除去すべき部分を第一電極と第二電極との間に配置し且つ該第一電極及び第二電極の両方に接触させ、電極間距離を1〜10mmとし、該超極細同軸ケーブル1本当りのパルス電流の電力量を5×10-4〜1Jとしてパルス電流を流すことにより該薄膜シールドを溶融、蒸発させて除去することを特徴とする超極細同軸ケーブルの端末加工方法。 A plurality of ultrafine coaxial cables having an inner conductor, a dielectric layer provided on the outer periphery of the inner conductor, and a thin film shield layer provided on the outer periphery of the dielectric layer are arranged in parallel, In a method of processing an end of a superfine coaxial cable to be removed, a portion to be removed of the thin film shield is disposed between the first electrode and the second electrode, and is brought into contact with both the first electrode and the second electrode. The thin film shield is melted and evaporated to be removed by passing the pulse current with an inter-distance of 1 to 10 mm and a pulse current of 5 × 10 −4 to 1 J per ultra-fine coaxial cable. A terminal processing method for a featured ultra-fine coaxial cable. 内部導体と、該内部導体の外周に設けられた誘電体層と、該誘電体層の外周に設けられた薄膜シールド層と、該薄膜シールド層の外周に設けられた保護被覆層とを有する超極細同軸ケーブルを複数本並列に配置し、該超極細同軸ケーブルの端部となる部分の保護被覆層を除去して薄膜シールドを露出させた後、該露出した薄膜シールドを除去する超極細同軸ケーブルの端末加工方法において、該露出した薄膜シールドの除去すべき部分を第一電極と第二電極との間に配置し且つ該第一電極及び第二電極の両方に接触させ、電極間距離を1〜10mmとし、該超極細同軸ケーブル1本当りのパルス電流の電力量を5×10-4〜1Jとしてパルス電流を流すことにより該薄膜シールドを溶融、蒸発させて除去することを特徴とする超極細同軸ケーブルの端末加工方法。 An ultra conductor having an inner conductor, a dielectric layer provided on the outer periphery of the inner conductor, a thin film shield layer provided on the outer periphery of the dielectric layer, and a protective coating layer provided on the outer periphery of the thin film shield layer An ultra-fine coaxial cable in which a plurality of micro-coaxial cables are arranged in parallel and the thin-film shield is exposed by removing the protective coating layer at the end of the ultra-fine-coaxial cable and then removing the exposed thin-film shield In this terminal processing method, a portion to be removed of the exposed thin film shield is disposed between the first electrode and the second electrode and is brought into contact with both the first electrode and the second electrode. The thin-film shield is melted and evaporated to be removed by passing a pulse current with a pulse current of 5 × 10 −4 to 1 J with a pulse current of 5 × 10 −4 to 1 J. Ultra-fine coaxial cable Terminal processing method Le. 電極間距離を3〜8mmとし、超極細同軸ケーブル1本当りのパルス電流の電力量を2×10-2〜2×10-1Jとしてパルス電流を流すことにより該薄膜シールドを溶融、蒸発させて除去する請求項1又は2に記載の超極細同軸ケーブルの端末加工方法。 The thin-film shield is melted and evaporated by passing the pulse current with a distance between the electrodes of 3 to 8 mm and a pulse current of 2 × 10 −2 to 2 × 10 −1 J per ultrafine coaxial cable. The method for processing an end of a super fine coaxial cable according to claim 1 or 2, wherein the terminal is removed.
JP2009146904A 2009-06-19 2009-06-19 Terminal processing method for super-extra-fine coaxial cable Pending JP2011004552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009146904A JP2011004552A (en) 2009-06-19 2009-06-19 Terminal processing method for super-extra-fine coaxial cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009146904A JP2011004552A (en) 2009-06-19 2009-06-19 Terminal processing method for super-extra-fine coaxial cable

Publications (1)

Publication Number Publication Date
JP2011004552A true JP2011004552A (en) 2011-01-06

Family

ID=43562013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009146904A Pending JP2011004552A (en) 2009-06-19 2009-06-19 Terminal processing method for super-extra-fine coaxial cable

Country Status (1)

Country Link
JP (1) JP2011004552A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100803505B1 (en) * 2004-05-14 2008-02-14 다이킨 고교 가부시키가이샤 Rotary compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59156110A (en) * 1983-02-25 1984-09-05 マイクロ電子株式会社 Method of treating terminal of shielded cable
JPS61112516A (en) * 1984-11-02 1986-05-30 シーメンス、アクチエンゲゼルシヤフト Device for peeling wire
JPH10172708A (en) * 1996-12-11 1998-06-26 Matsushita Electric Ind Co Ltd Termination processing method for multilayer shielded wire, and termination processing facilities of the multilayer shielded wire
JP2007265856A (en) * 2006-03-29 2007-10-11 Yoshinokawa Electric Wire & Cable Co Ltd Super-extra-fine coaxial cable and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59156110A (en) * 1983-02-25 1984-09-05 マイクロ電子株式会社 Method of treating terminal of shielded cable
JPS61112516A (en) * 1984-11-02 1986-05-30 シーメンス、アクチエンゲゼルシヤフト Device for peeling wire
JPH10172708A (en) * 1996-12-11 1998-06-26 Matsushita Electric Ind Co Ltd Termination processing method for multilayer shielded wire, and termination processing facilities of the multilayer shielded wire
JP2007265856A (en) * 2006-03-29 2007-10-11 Yoshinokawa Electric Wire & Cable Co Ltd Super-extra-fine coaxial cable and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100803505B1 (en) * 2004-05-14 2008-02-14 다이킨 고교 가부시키가이샤 Rotary compressor

Similar Documents

Publication Publication Date Title
US10057981B2 (en) Stretchable circuit board and method of manufacturing the same
JP4672515B2 (en) Rolled copper alloy foil for bending
JP2942458B2 (en) Manufacturing method and manufacturing equipment for conductor for flat cable
JP2019083205A (en) Shield film, shielded printed wiring board, and method for manufacturing shield film
JP3725722B2 (en) Electric wire terminal processing method and electric wire processed product manufacturing method
JP2006281249A (en) High gloss rolled copper foil for copper-clad laminated substrate, and method for producing the same
JP2007280772A (en) Multicore cable, multicore cable with connector, and manufacturing method thereof
TW201734219A (en) Copper foil for flexible printed circuit board, cooper-clad laminate using same, flexible printed circuit board, and electronic machine whose copper foil contains 0.001~0.05 mass% of Ag and contains total 0.003~0.825 mass% of addition elements selected from more than one of the group of P, Ti, Sn, Ni, Be, Zn, In, and Mg
JP2015138750A (en) Coaxial cable, and flat cable and cable harness using it
WO2013133409A1 (en) Method for manufacturing coaxial cable having attached substrate
WO2009139041A1 (en) Cable harness, cable harness with connector, and connection structure of cable harness
JP2011004552A (en) Terminal processing method for super-extra-fine coaxial cable
JP2016188415A (en) Copper alloy foil for flexible printed circuit board, and copper cladding laminate, flexible printed circuit board and electronic apparatus using the same
CN107484330A (en) High-frequency copper silver hybrid conductive line construction and preparation method thereof
JP5440410B2 (en) Method and apparatus for producing metallized resin film
JP2007262493A (en) Material for flexible printed board and method of manufacturing the same
TW209329B (en)
US20190116663A1 (en) Graphene-Graphane Printed Wiring Board
CN107046763B (en) Copper foil for flexible printed board and copper-clad laminate using same
JP2013055163A (en) Copper foil for flexible printed wiring board, copper-clad laminate, flexible printed wiring board, and electronic apparatus
JP4269374B2 (en) Tin-plated flat conductor manufacturing method and flat cable manufacturing method
JP4059150B2 (en) Copper alloy foil for printed wiring and manufacturing method thereof
JP2007245646A (en) Two-layered film, its manufacturing method and manufacturing method of printed circuit board
JP2015084301A (en) Conductive sheet and method for manufacturing conductive sheet
JP2006253345A (en) High purity electrolytic copper foil and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120412

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20120412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131204