JP2011003916A - Resin composition for nano-imprinting, and method of forming fine structure - Google Patents

Resin composition for nano-imprinting, and method of forming fine structure Download PDF

Info

Publication number
JP2011003916A
JP2011003916A JP2010181893A JP2010181893A JP2011003916A JP 2011003916 A JP2011003916 A JP 2011003916A JP 2010181893 A JP2010181893 A JP 2010181893A JP 2010181893 A JP2010181893 A JP 2010181893A JP 2011003916 A JP2011003916 A JP 2011003916A
Authority
JP
Japan
Prior art keywords
resin composition
mold
nanoimprint
forming
following formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010181893A
Other languages
Japanese (ja)
Inventor
Giichi Saito
義一 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010181893A priority Critical patent/JP2011003916A/en
Publication of JP2011003916A publication Critical patent/JP2011003916A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Polyethers (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin composition for nano-imprinting, softening at a low temperature and favorable in preservation stability.SOLUTION: The resin composition contains: a cationic polymerization compound which is crystalline and is solid at normal temperatures; and a photo cationic polymerization initiator.

Description

本発明はナノインプリントに用いられる感光性の樹脂組成物、及び微細構造体の作製方法に関するものである。   The present invention relates to a photosensitive resin composition used for nanoimprinting and a method for producing a microstructure.

近年、半導体素子、マイクロリアクタ、ディスプレイ素子、発光素子、インクジェット記録ヘッド、マイクロセンサなどの微細構造体を高精度で作製する技術として、非特許文献1に記載されている、ナノインプリントと呼ばれる技術が提案されている。これは、所定の微細な凹凸パターンが形成された原盤(一般にモールドと呼ばれる)を、基板に設置した樹脂等にプレス成形してモールドのパターンを樹脂に転写する技術である。   In recent years, a technique called nanoimprint described in Non-Patent Document 1 has been proposed as a technique for manufacturing a fine structure such as a semiconductor element, a microreactor, a display element, a light emitting element, an ink jet recording head, and a microsensor with high accuracy. ing. This is a technique in which a master (generally called a mold) on which a predetermined fine concavo-convex pattern is formed is press-molded onto a resin or the like placed on a substrate, and the mold pattern is transferred to the resin.

ナノインプリントには一般的に、熱ナノインプリント方式とUVナノインプリント方式がある。熱ナノインプリントは熱可塑性樹脂が設置された基板を加熱して軟化させてからモールドをプレス成形して樹脂にパターンを転写する方式である。一方UVナノインプリントは基板上の感光性樹脂にモールドをプレスした状態で紫外線を照射して、感光性樹脂を硬化させた後にモールドを除去して樹脂にパターンを転写する方式である。   In general, the nanoimprint includes a thermal nanoimprint method and a UV nanoimprint method. Thermal nanoimprinting is a system in which a substrate on which a thermoplastic resin is placed is heated and softened, and then a mold is pressed to transfer a pattern onto the resin. On the other hand, the UV nanoimprint is a system in which a mold is pressed on a photosensitive resin on a substrate, irradiated with ultraviolet rays, the photosensitive resin is cured, the mold is removed, and a pattern is transferred to the resin.

また、感光性樹脂を熱で軟化させてからモールドをプレス成形した後に紫外線を照射することで感光性樹脂を硬化させ、モールドを除去して樹脂にパターンを転写するという、熱ナノインプリントとUVナノインプリントとを組み合わせた方式も提案されている。この方法は、常温ではモールドのパターンを転写することが困難な、常温で固体もしくは高粘度の感光性樹脂に対しても、加熱により軟化させることで低圧・短時間で容易にパターンを転写することができる。そのため、様々な感光性樹脂の種類に対してナノインプリントを適用できるという利点がある。   Also, thermal nanoimprinting and UV nanoimprinting, in which the photosensitive resin is softened with heat and then the mold is pressed and then irradiated with ultraviolet rays to cure the photosensitive resin, remove the mold, and transfer the pattern to the resin. A combination of these methods has also been proposed. This method can easily transfer a pattern in a low pressure and in a short time by softening by heating even a solid or high viscosity photosensitive resin at room temperature, which is difficult to transfer the mold pattern at room temperature. Can do. Therefore, there is an advantage that nanoimprint can be applied to various types of photosensitive resins.

特許文献1には、軟化点が低温であるエポキシ樹脂を含む、UVナノインプリントに適したカチオン重合型の感光性樹脂組成物が開示されている。   Patent Document 1 discloses a cationic polymerization type photosensitive resin composition suitable for UV nanoimprint, which includes an epoxy resin having a softening point at a low temperature.

ナノインプリント応用事例集(株式会社情報機構、2007年9月18日)Nanoimprint Application Cases (Information Organization Co., Ltd., September 18, 2007)

特開2008−142940号公報JP 2008-142940 A

しかしながら、特許文献1に記載の感光性樹脂組成物は、主成分のエポキシ樹脂の軟化点が低温であるために、基板に塗布した場合、その塗布表面を乾燥状態にすることができず、付着物等が発生しやすくなるという懸念がある。また吸着した付着物は除去しづらいため、パターン転写後の形状に影響を及ぼす可能性がある。   However, since the photosensitive resin composition described in Patent Document 1 has a softening point of the main component epoxy resin at a low temperature, the coated surface cannot be dried when applied to a substrate. There is a concern that kimono and the like are likely to occur. In addition, the adhering adhering matter is difficult to remove, which may affect the shape after pattern transfer.

一方、常温で固体のモノマー及び/又はプレポリマーをナノインプリントによりパターニングする場合、通常樹脂のガラス転移温度以上に加熱して樹脂を軟化させて行う。しかし、従来ナノインプリントで用いられている常温で固体のモノマー及び/又はプレポリマーの場合、十分なモールドへの充填性や残膜厚の薄さを達成するためには、加熱温度や印加圧力を高める、印加する時間を長くするなどの対策が必要な場合がある。しかし加熱温度や印加圧力の増大は基板やモールド及びモールド表面に成膜されている離型剤などの破損や劣化を招く場合がある。また、加熱、加圧時間の延長は当然、プロセス全体に必要な時間が増えるという問題がある。そこで、ガラス転移温度が比較的低い常温で固体のモノマー及び/又はプレポリマーを用いた場合、加熱により粘度が低くなりやすいため、上述したモールドへの充填性や残膜厚は改善される。しかし一般に、ガラス転移温度が常温に近くなるに従い、樹脂はブロッキングを起こしやすくなるため、固体状態での保存安定性に劣ることとなる。   On the other hand, when patterning a solid monomer and / or prepolymer at room temperature by nanoimprinting, it is usually performed by heating the glass transition temperature or higher of the resin to soften the resin. However, in the case of monomers and / or prepolymers that are solid at room temperature, which are conventionally used in nanoimprinting, in order to achieve sufficient mold filling properties and thin residual film thickness, the heating temperature and applied pressure are increased. In some cases, it is necessary to take a measure such as extending the application time. However, an increase in heating temperature or applied pressure may cause damage or deterioration of the substrate, the mold, and the release agent formed on the mold surface. In addition, the extension of the heating and pressurizing time naturally has a problem that the time required for the entire process increases. Thus, when a solid monomer and / or prepolymer is used at room temperature having a relatively low glass transition temperature, the viscosity tends to be lowered by heating, so that the above-described mold filling property and remaining film thickness are improved. However, generally, as the glass transition temperature approaches normal temperature, the resin tends to cause blocking, resulting in poor storage stability in the solid state.

本発明は上記に鑑みなされたものであって、保存安定性に優れ、ナノインプリント法により低圧・短時間で容易にパターンを作製することが可能な感光性樹脂組成物を提供することを目的の一つとする。   The present invention has been made in view of the above, and an object of the present invention is to provide a photosensitive resin composition having excellent storage stability and capable of easily producing a pattern at a low pressure in a short time by a nanoimprint method. I will.

本発明の一例は、結晶性を有する常温で固体のカチオン重合性の化合物と、光カチオン重合開始剤と、を含むナノインプリント用樹脂組成物である。   An example of the present invention is a resin composition for nanoimprinting, which includes a cationically polymerizable compound that is crystalline at room temperature and is solid, and a cationic photopolymerization initiator.

また本発明の一例は、結晶性を有する常温で固体のカチオン重合性の化合物と、光カチオン重合開始剤と、を含む樹脂組成物を基板上に提供する工程と、前記樹脂組成物を加熱することにより、前記樹脂組成物を溶融させる工程と、型をもつ原盤の前記型を、溶融された前記樹脂組成物に押し付ける工程と、前記型が押し付けられた状態で前記樹脂組成物に光を照射し、前記樹脂組成物を硬化させることにより、微細構造体を形成する工程と、を有することを特徴とする微細構造体の形成方法である。   An example of the present invention includes a step of providing a resin composition containing a crystalline cationically polymerizable compound having a crystallinity at room temperature and a photocationic polymerization initiator on a substrate, and heating the resin composition. A step of melting the resin composition, a step of pressing the mold of the master having a mold against the molten resin composition, and irradiating the resin composition with light while the mold is pressed And a step of forming a microstructure by curing the resin composition.

本発明によれば、保存安定性に優れ、ナノインプリント法により低圧・短時間で容易にパターンを作製することが可能な感光性樹脂組成物を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the photosensitive resin composition which is excellent in storage stability and can produce a pattern easily by low pressure and a short time by the nanoimprint method can be provided.

本発明による微細構造体の製造方法の一例を示す模式的断面図。The typical sectional view showing an example of the manufacturing method of the fine structure by the present invention. 本発明による微細構造体の製造方法の一例を示す模式的断面図。The typical sectional view showing an example of the manufacturing method of the fine structure by the present invention. 本発明による液体吐出ヘッドの製造方法を説明するための図。4A and 4B are diagrams for explaining a method of manufacturing a liquid discharge head according to the present invention.

まず、本発明で用いられるナノインプリント用樹脂組成物について説明する。   First, the resin composition for nanoimprints used in the present invention will be described.

本発明で用いられるナノインプリント用樹脂組成物は、結晶性を有する常温で固体のカチオン重合性の化合物であるモノマーおよび/又はプレポリマーと、光カチオン重合開始剤と、を含んでいる。   The resin composition for nanoimprinting used in the present invention contains a monomer and / or prepolymer that is a cationically polymerizable compound that is crystalline at room temperature and a photocationic polymerization initiator.

結晶性を有するカチオン重合性のモノマーおよび/又はプレポリマーは、X線回折により多数の結晶のピークを示し、融点は常温より高くシャープであり、融点以上の温度では分子間相互作用が殆ど無くなり極端に粘度が低い性質を有するものである。また、結晶性を有するカチオン重合性のモノマーやプレポリマーとは、エポキシ基やビニルエーテル基やオキセタン基を有するモノマーやプレポリマーなどが挙げられるが、これに限られるものではない。   Cationic polymerizable monomers and / or prepolymers having crystallinity show numerous crystal peaks by X-ray diffraction, the melting point is sharper than room temperature, and there is almost no intermolecular interaction at temperatures above the melting point. It has a low viscosity property. Examples of the cationic polymerizable monomer or prepolymer having crystallinity include, but are not limited to, a monomer or prepolymer having an epoxy group, a vinyl ether group, or an oxetane group.

好ましい結晶性エポキシモノマー又はプレポリマーとしては下記式(1)で表される化合物が挙げられる。   Preferred crystalline epoxy monomers or prepolymers include compounds represented by the following formula (1).

[ただし、Gはグリシジル基を示し、nは0以上の数字を示し、Xは式(A)、下記式(B)、および下記式(C)のいずれかにより表される基を示す。] [However, G represents a glycidyl group, n represents a number of 0 or more, and X represents a group represented by any one of the following formula (A), the following formula (B), and the following formula (C). ]

(ただし、R〜Rはそれぞれ水素原子、ハロゲン原子または炭素数1〜6のアルキル基を示す) (However, R < 1 > -R < 4 > shows a hydrogen atom, a halogen atom, or a C1-C6 alkyl group, respectively.)

(ただし、R〜Rはそれぞれ水素原子、ハロゲン原子または炭素数1〜6のアルキル基を示す) (However, R < 5 > -R < 8 > shows a hydrogen atom, a halogen atom, or a C1-C6 alkyl group, respectively.)

(ただし、R〜R16はそれぞれ水素原子、ハロゲン原子または炭素数1〜6のアルキル基を示し、Yは、酸素原子、硫黄原子、メチレンおよび下記式(a)から選ばれる基又は単結合を示す) (However, R < 9 > -R < 16 > shows a hydrogen atom, a halogen atom, or a C1-C6 alkyl group, respectively, Y is a group or single bond chosen from an oxygen atom, a sulfur atom, a methylene, and following formula (a) Indicate)

(ただし、R17〜R20はそれぞれ水素原子、メチル基を示す) (However, R < 17 > -R < 20 > shows a hydrogen atom and a methyl group, respectively.)

式(1)で表される化合物の例を名称で例示すると、4,4’−ジヒドロキシビフェニルのジグリシジルエーテル、4,4’−ジヒドロキシジフェニルエーテルのジグリシジルエーテル、が挙げられる。また、3,3’,5,5’−テトラメチル−ビスフェノールFのジグリシジルエーテルも挙げられる。   Examples of the compound represented by the formula (1) include, by name, diglycidyl ether of 4,4'-dihydroxybiphenyl and diglycidyl ether of 4,4'-dihydroxydiphenyl ether. Moreover, the diglycidyl ether of 3,3 ', 5,5'-tetramethyl-bisphenol F is also mentioned.

また、4,4’−ジヒドロキシジフェニルスルフィドのジグリシジルエーテル、1,4−ビス(3−メチル−4−ヒドロキシクミル)ベンゼンのジグリシジルエーテル、ヒドロキノンのジグリシジルエーテルなどが挙げられる。その他にも、テレフタル酸のジグリシジルエステルなどが挙げられる。   In addition, diglycidyl ether of 4,4'-dihydroxydiphenyl sulfide, diglycidyl ether of 1,4-bis (3-methyl-4-hydroxycumyl) benzene, diglycidyl ether of hydroquinone, and the like can be given. Other examples include diglycidyl ester of terephthalic acid.

また、特開平8−092231、特開2002−138130、特開2002−338656、特開2004−035762、特開2006−307011に記載のエポキシ樹脂も用いることができる。   Also, epoxy resins described in JP-A-8-092311, JP-A-2002-138130, JP-A-2002-338656, JP-A-2004-035762 and JP-A-2006-307011 can be used.

具体的には東都化成社製YDC−1312、YSLV−50TE、YSLV−80XY、YSLV−80DE、YSLV−90CR、YSLV−120TE、GK−8001、GK−4260(商品名)等が使用可能である。ナガセケムテックス社製デナコールEX−203、デナコールEX−711、デナコールEX−731(商品名)、ジャパンエポキシレジン社製YX4000シリーズ、YL6121シリーズ、YL6640、YL6643、YL6677(商品名)も挙げられる。また、これらのモノマーやプレポリマーは単独で用いてもよいし、二種以上混合して用いてもよい。   Specifically, YDC-1312, YSLV-50TE, YSLV-80XY, YSLV-80DE, YSLV-90CR, YSLV-120TE, GK-8001, GK-4260 (trade name) manufactured by Tohto Kasei Co., Ltd. can be used. Examples also include Denacol EX-203, Denacol EX-711, Denacol EX-731 (trade name) manufactured by Nagase ChemteX Corporation, YX4000 series, YL6121 series, YL6640, YL6643, and YL6667 (trade name) manufactured by Japan Epoxy Resins. These monomers and prepolymers may be used alone or in combination of two or more.

これらの結晶性のモノマーやプレポリマーは、常温では固体として取り扱える。また、その分子量は凡そ300以上3000以下である。   These crystalline monomers and prepolymers can be handled as solids at room temperature. The molecular weight is about 300 or more and 3000 or less.

さらに、ナノインプリントにてパターンを形成する際には、融点以上に加熱することで非常に低粘度になるため、保存時の耐ブロッキング性の向上とナノインプリント時のパターン充填性の向上及び残膜厚の低減を両立させることができる。さらに、常温で固体であることから、長期間の保管の場合に反応が進行して使用時の反応性が低下するなどの問題は起こりにくく、保存安定性が高い。本発明に適用可能なカチオン重合性化合物は、結晶性を有し、上述の特性を享受できれば、上記で例示したエポキシモノマー、プレポリマーに限定されない。   Furthermore, when forming a pattern by nanoimprinting, the viscosity becomes very low by heating above the melting point, so that the blocking resistance during storage and the pattern filling during nanoimprinting are improved and the remaining film thickness is reduced. Reduction can be made compatible. Furthermore, since it is a solid at room temperature, problems such as a reaction progressing during long-term storage and a decrease in reactivity during use are unlikely to occur, and the storage stability is high. The cationically polymerizable compound applicable to the present invention is not limited to the epoxy monomers and prepolymers exemplified above as long as it has crystallinity and can enjoy the above-described characteristics.

光カチオン重合開始剤としては、活性エネルギー線の照射によりカチオンを発生する化合物であれば特に限定されない。好適な例として芳香族ジアゾニウム塩、芳香族ヨードニウム塩、芳香族スルホニウム塩、トリアジン等が挙げられる。具体的にはみどり化学社製BBI−103、BBI−102(商品名)、などが挙げられる。   The photocationic polymerization initiator is not particularly limited as long as it is a compound that generates cations by irradiation with active energy rays. Preferable examples include aromatic diazonium salts, aromatic iodonium salts, aromatic sulfonium salts, triazines and the like. Specific examples include BBI-103 and BBI-102 (trade name) manufactured by Midori Chemical.

また、必要に応じて反応性を向上させる目的で増感剤を加えても良い。増感剤としては、アントラセン誘導体、アントラキノン誘導体、キサントン誘導体、チオキサントン誘導体、ペリレン誘導体、ベンゾフェノン誘導体などが挙げられる。   Moreover, you may add a sensitizer for the purpose of improving the reactivity as needed. Examples of the sensitizer include anthracene derivatives, anthraquinone derivatives, xanthone derivatives, thioxanthone derivatives, perylene derivatives, and benzophenone derivatives.

さらに、本発明の趣旨を損なわない範囲で、必要に応じて密着性向上剤、イオンキャッチャー、無機充填剤等の添加剤を適宜添加することができる。   Furthermore, additives such as an adhesion improver, an ion catcher, and an inorganic filler can be appropriately added as necessary without departing from the spirit of the present invention.

従来の常温で液体の感光性樹脂組成物の場合、それぞれの溶解性を考慮してこれらの感光性樹脂組成物を構成する化合物を組み合わせないと均一な液体が得られなかったり、長期保存時に析出や分離等が発生したりする場合があった。一方、本発明で用いられる感光性樹脂組成物においてはこれらの問題を考慮する必要は無く、従来では使用が困難であった溶媒への溶解性が低い化合物等も用いることができる。   In the case of a conventional photosensitive resin composition that is liquid at normal temperature, a uniform liquid cannot be obtained unless the compounds constituting the photosensitive resin composition are combined in consideration of the respective solubility, or deposited during long-term storage. Or separation may occur. On the other hand, it is not necessary to consider these problems in the photosensitive resin composition used in the present invention, and it is also possible to use a compound having low solubility in a solvent that has been difficult to use in the past.

これらの感光性樹脂組成物を構成している化合物は全て、その融点が50℃以上170℃以下であることが望ましい。これより高いとナノインプリントによって加工する際に相当な高温を必要とし、ナノインプリント装置やモールド、離型剤などへの負荷が大きい。   It is desirable that all of the compounds constituting these photosensitive resin compositions have a melting point of 50 ° C. or higher and 170 ° C. or lower. If it is higher than this, a considerably high temperature is required for processing by nanoimprint, and the load on the nanoimprint apparatus, mold, release agent and the like is large.

続いて、本発明における前記ナノインプリント用樹脂組成物を用いた微細構造体の作製方法について図を用いて説明する。   Then, the manufacturing method of the microstructure using the said resin composition for nanoimprint in this invention is demonstrated using figures.

(1)基板102上に前記の感光性樹脂組成物101を提供し設置する(図1−a)。   (1) Provide and install the photosensitive resin composition 101 on the substrate 102 (FIG. 1-a).

前記感光性樹脂組成物101は粉末状であってもよいし、ペレット状に成形されていてもよい。粉末状の場合、転写するモールドのパターンの粗密や深さに合わせて、基板102上に設置する量や位置を自由に制御でき、パターン転写時の充填効率の向上やパターン形状の改善が可能である。一方ペレット状の場合には取り扱いが容易であり、使用量が常に一定の場合には基板上に設置する量を毎回測定・制御する必要が無いため好適である。   The photosensitive resin composition 101 may be in a powder form or may be formed in a pellet form. In the case of powder, the amount and position of the pattern placed on the substrate 102 can be freely controlled according to the density and depth of the pattern of the mold to be transferred. is there. On the other hand, the pellet form is easy to handle, and when the amount used is always constant, it is not necessary to measure and control the amount installed on the substrate every time.

また、粉末及び基板は、この状態では当然ながら乾燥しているため、常温で液体の感光性樹脂組成物や軟化点が低温の感光性樹脂組成物を基板に塗布した場合に比べて異物の吸着は低減される。   In addition, since the powder and the substrate are naturally dried in this state, the adsorbing of foreign matters is more than when a photosensitive resin composition that is liquid at room temperature or a photosensitive resin composition having a low softening point is applied to the substrate. Is reduced.

(2)次いで、加熱により感光性樹脂組成物101を溶融させる(図1−b)。   (2) Next, the photosensitive resin composition 101 is melted by heating (FIG. 1-b).

感光性樹脂組成物101は結晶性であるため、感光性樹脂組成物101が溶融する温度以上に加熱すると、急激に粘度が低い液体になり、基板上に濡れ広がる。また、溶媒や反応性希釈剤などの揮発性の化合物を含んでいないため、取り扱いが容易であり、使用負荷が低減される。   Since the photosensitive resin composition 101 is crystalline, when heated to a temperature higher than the temperature at which the photosensitive resin composition 101 melts, it rapidly becomes a liquid having a low viscosity and spreads on the substrate. Further, since it does not contain a volatile compound such as a solvent or a reactive diluent, it is easy to handle and the usage load is reduced.

(3)次いで、目的構造物の型が凸形状で形成された活性エネルギー線を透過する原盤であるモールド103の型部を感光性樹脂組成物101に押し付ける(図1−c)。凸形状の幅は、微細な部位で1〜20μm程度、広い部位は50〜200μm程度である。無論これに限定されない。   (3) Next, the mold part of the mold 103, which is a master plate that transmits the active energy rays formed with a convex shape of the target structure, is pressed against the photosensitive resin composition 101 (FIG. 1-c). The width of the convex shape is about 1 to 20 μm at a fine part and about 50 to 200 μm at a wide part. Of course, it is not limited to this.

モールド103の凸形状が形成された側の面を押し付けていく過程で樹脂組成物101をパターン全体に押し広げてモールドの凸部と凸部の間に充填させていく。凸部同士の間は、凸の先端または中間を基準にとれば、凹部となる。また、モールド103を押し付ける際の圧力は樹脂組成物101の物性に従って好適な値をとることができる。例えば0.1〜10MPaである。さらに、樹脂組成物101とモールド103の間に気泡等が残留しないように、これらのナノインプリント工程を真空中又は減圧中で行っても良い。   In the process of pressing the surface of the mold 103 on which the convex shape is formed, the resin composition 101 is spread over the entire pattern and filled between the convex portions of the mold. Between the convex parts, if the convex tip or middle is taken as a reference, it becomes a concave part. Moreover, the pressure at the time of pressing the mold 103 can take a suitable value according to the physical properties of the resin composition 101. For example, it is 0.1-10 MPa. Furthermore, these nanoimprint processes may be performed in a vacuum or in a reduced pressure so that bubbles or the like do not remain between the resin composition 101 and the mold 103.

活性エネルギー線を透過するモールド103としては、樹脂組成物101が硬化するのに必要な活性エネルギー線を一部でも透過すれば良く、ガラス、石英、樹脂等が挙げられる。モールドの耐久性等を鑑み、モールドから転写したレプリカをモールド103として用いても良い。   As the mold 103 that transmits the active energy ray, any part of the active energy ray necessary for the resin composition 101 to cure may be transmitted, and examples thereof include glass, quartz, and resin. In view of the durability of the mold and the like, a replica transferred from the mold may be used as the mold 103.

また、予め必要十分に加熱したモールドを感光性樹脂組成物101に押し付け、感光性樹脂組成物101を溶融させながらプレスを行い、(2)、(3)の工程を簡略化することも可能である。   It is also possible to simplify the steps (2) and (3) by pressing a mold that has been heated sufficiently and in advance against the photosensitive resin composition 101 and performing pressing while melting the photosensitive resin composition 101. is there.

(4)次いで、前記感光性樹脂組成物101に活性エネルギー線104を照射することで、硬化させ、硬化物を得る(図1−d)。   (4) Next, the photosensitive resin composition 101 is irradiated with an active energy ray 104 to be cured to obtain a cured product (FIG. 1-d).

活性エネルギー線104としては樹脂組成物101を硬化させるものであれば、特に限定されない。例えば紫外線、可視光線、赤外線、X線、γ線等が挙げられる。この中では紫外線が好ましく用いられる。また、樹脂組成物101は加熱されているため、硬化反応は常温での露光に比べて促進される。さらに硬化反応を促進することを目的として、活性エネルギー線の照射後もしばらく加熱状態を保持しても良い。   The active energy ray 104 is not particularly limited as long as the resin composition 101 is cured. For example, ultraviolet rays, visible rays, infrared rays, X-rays, γ rays and the like can be mentioned. Among these, ultraviolet rays are preferably used. Moreover, since the resin composition 101 is heated, the curing reaction is accelerated as compared to exposure at normal temperature. Further, for the purpose of accelerating the curing reaction, the heated state may be maintained for a while after irradiation with the active energy ray.

(5)前記モールド103を感光性樹脂組成物101から取り除く(図1−e)。   (5) The mold 103 is removed from the photosensitive resin composition 101 (FIG. 1-e).

モールド103を取り除く方法は剥離、溶解、融解等が挙げられるが、複数回用いることができることから、剥離が望ましい。また剥離時に樹脂組成物101の一部がモールド103に付着することを防止するために、モールド103に離型剤を塗布する等の離型処理を施しても良い。離型剤の例としては、1H,1H,2H,2H−パーフルオロオクチルトリクロロシラン、1H,1H,2H,2H−パーフルオロデシルトリクロロシラン、1H,1H,2H,2H−パーフルオロドデシルトリクロロシランが挙げられる。また、1H,1H,2H,2H−パーフルオロオクチルトリメトキシシラン、1H,1H,2H,2H−パーフルオロデシルトリメトキシシラン、1H,1H,2H,2H−パーフルオロドデシルトリメトキシシランが挙げられる。また、1H,1H,2H,2H−パーフルオロオクチルトリエトキシシラン、1H,1H,2H,2H−パーフルオロデシルトリエトキシシラン、1H,1H,2H,2H−パーフルオロドデシルトリエトキシシラン等が挙げられる。他に、ダイキン工業社製オプツールシリーズ(商品名)、住友スリーエム社製ノベックEGC−1720(商品名)、ティーアンドケー社製NANOSシリーズ(商品名)、ダイヤモンドライクカーボン(DLC)等を挙げることができる。離型処理の方法としては、ディッピング、スピンコート、スリットコート、スプレーコート、蒸着等、用いる離型剤に応じて好適な方法で行うことができる。   As a method for removing the mold 103, peeling, melting, melting, and the like can be given. In order to prevent a part of the resin composition 101 from adhering to the mold 103 during peeling, a mold release treatment such as applying a mold release agent to the mold 103 may be performed. Examples of mold release agents include 1H, 1H, 2H, 2H-perfluorooctyltrichlorosilane, 1H, 1H, 2H, 2H-perfluorodecyltrichlorosilane, and 1H, 1H, 2H, 2H-perfluorododecyltrichlorosilane. Can be mentioned. Further, 1H, 1H, 2H, 2H-perfluorooctyltrimethoxysilane, 1H, 1H, 2H, 2H-perfluorodecyltrimethoxysilane, 1H, 1H, 2H, 2H-perfluorododecyltrimethoxysilane can be mentioned. Further, 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane, 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane, 1H, 1H, 2H, 2H-perfluorododecyltriethoxysilane and the like can be mentioned. . Other examples include OPTOOL series (trade name) manufactured by Daikin Industries, Novec EGC-1720 (trade name) manufactured by Sumitomo 3M, NANOS series (trade name) manufactured by T & K, diamond-like carbon (DLC), etc. Can do. The mold release treatment can be performed by a suitable method depending on the mold release agent used, such as dipping, spin coating, slit coating, spray coating, and vapor deposition.

これにより微細構造体を得ることができる。本発明の微細構造体の作製方法は、半導体素子、マイクロ流体チップ、ディスプレイ素子、インクジェット記録ヘッド、マイクロセンサ等の作製に好適な方法である。   Thereby, a fine structure can be obtained. The method for manufacturing a microstructure of the present invention is a method suitable for manufacturing a semiconductor element, a microfluidic chip, a display element, an ink jet recording head, a microsensor, and the like.

また、原盤としてのモールドを取り除かずに、エポキシ皮膜が形成された原盤自体を部品として、上記の分野に利用することも可能である。   Moreover, it is also possible to use the master itself on which the epoxy film is formed as a component in the above field without removing the mold as the master.

(実施例1)
表1に示す各化合物の固体をメノウ乳鉢で粉砕し、混合した粉末を感光性樹脂組成物とした。
Example 1
The solid of each compound shown in Table 1 was pulverized in an agate mortar, and the mixed powder was used as a photosensitive resin composition.

次いで、モールドの離型処理として以下を行った。NTT−ATナノファブリケーション社製ナノインプリント用石英モールドNIM−PH3000(商品名)をハーベス社製離型剤デュラサーフHD−1101TH(商品名)にディッピングした。そして24時間室温で静置した後、住友スリーエム社製ノベックHFE−7100(商品名)でリンスを行い、余剰の離型剤を除去した。   Next, the following was performed as a mold release treatment. A quartz mold NIM-PH3000 (trade name) for nanoimprinting manufactured by NTT-AT Nanofabrication Co., Ltd. was dipped on a release agent Durasurf HD-1101TH (trade name) manufactured by Harves. And after standing still at room temperature for 24 hours, it rinsed with Sumitomo 3M Novec HFE-7100 (brand name), and the excess mold release agent was removed.

次いで、4インチのシリコン基板上に前記樹脂組成物の粉末を20mg設置した。そしてリソテックジャパン社製ナノインプリント装置LTNIP−2000(商品名)にてシリコン基板を130℃に加熱し、前記樹脂組成物を溶融させた。次いで、前記石英モールドを用いて、3.5MPaの圧力で前記樹脂組成物にプレスした。プレスした状態で15秒間保持した後、前期樹脂組成物に対して露光量1000mJ/cmで紫外線の照射を行った。次いで、前記石英モールドを離型し、基板を常温まで冷却して微細構造体パターンを得た。 Next, 20 mg of the resin composition powder was placed on a 4-inch silicon substrate. And the silicon substrate was heated at 130 degreeC with the nanoimprint apparatus LTNIP-2000 (brand name) by a Risotech Japan company, and the said resin composition was fuse | melted. Next, the resin composition was pressed at a pressure of 3.5 MPa using the quartz mold. After being held for 15 seconds in the pressed state, the resin composition was irradiated with ultraviolet rays at an exposure amount of 1000 mJ / cm 2 . Next, the quartz mold was released, and the substrate was cooled to room temperature to obtain a fine structure pattern.

作製されたパターンの外観及び断面を走査型電子顕微鏡にて観察し、パターンの形状及び残膜厚さを調べた。その結果パターンに窪み等は見られず、残膜厚は平均17nmであった。   The appearance and cross section of the produced pattern were observed with a scanning electron microscope, and the shape of the pattern and the remaining film thickness were examined. As a result, no depressions or the like were found in the pattern, and the remaining film thickness was 17 nm on average.

また、前記感光性樹脂組成物の粉末を1ヶ月間常温で保管した後に目視にて観察したところ、粉末の外観に変化は見られなかった。   Further, when the powder of the photosensitive resin composition was stored at room temperature for 1 month and observed visually, no change was observed in the appearance of the powder.

(比較例1)
表2に示す各化合物の固体をメノウ乳鉢で粉砕し、混合した粉末を調整したものを感光性樹脂組成物とした以外は、実施例1と同様にナノインプリントを行った。
(Comparative Example 1)
Nanoimprinting was performed in the same manner as in Example 1 except that the solid of each compound shown in Table 2 was pulverized in an agate mortar and the mixed powder was prepared as a photosensitive resin composition.

作製されたパターンの外観及び断面を走査型電子顕微鏡にて観察し、パターン形状及び残膜厚さを調べた。その結果パターンに窪みは見られず、残膜厚は平均233nmであった。   The appearance and cross section of the produced pattern were observed with a scanning electron microscope, and the pattern shape and the remaining film thickness were examined. As a result, no depression was observed in the pattern, and the remaining film thickness was 233 nm on average.

また、前記感光性樹脂組成物の粉末を1ヶ月間常温で保管した後に目視にて観察したところ、ブロッキングを起こし、粉末は固着していた。   Moreover, when the powder of the said photosensitive resin composition was stored visually at normal temperature for one month, when it observed visually, blocking occurred and the powder was adhering.

(実施例2)
サーマル型のインクジェット記録ヘッドの作製
まず、インク液滴を吐出するためのインク吐出口、及びインク吐出口にインクを供給するためのインク流路のパターンが形成された石英モールド203を用意した(図2−a)。モールドの離型処理として、石英モールド203をハーベス社製離型剤デュラサーフHD−1101TH(商品名)にディッピングした。そして24時間室温で静置した後、住友スリーエム社製ノベックHFE−7100(商品名)でリンスを行い、余剰の離型剤を除去した。モールド203は、図3(a)に示される斜視図のようにヘッドの形状に合わせて立体的に形成されているものである。
(Example 2)
Fabrication of Thermal Inkjet Recording Head First, a quartz mold 203 was prepared in which an ink ejection port for ejecting ink droplets and an ink flow path pattern for supplying ink to the ink ejection port were formed (see FIG. 2-a). As a mold release treatment, the quartz mold 203 was dipped in a release agent Durasurf HD-1101TH (trade name) manufactured by Harves. And after leaving still at room temperature for 24 hours, it rinsed with the Sumitomo 3M company make Novec HFE-7100 (brand name), and the excess mold release agent was removed. The mold 203 is three-dimensionally formed according to the shape of the head as shown in the perspective view of FIG.

次いで、表1に示す各化合物を粉砕、混合した25mgの粉末201を4インチのシリコン基板202上に設置した(図2−b)。次いで、リソテックジャパン社製ナノインプリント装置LTNIP−2000(商品名)にてシリコン基板202を130℃に加熱し、感光性樹脂組成物201を溶融させた(図2−c)。次いで、石英モールド203を用いて、3.5MPaの圧力で樹脂組成物201にプレスした(図2−d)。プレスした状態で15秒間保持した後、樹脂組成物201に対して露光量1000mJ/cmで紫外線の照射を行った(図2−e)。次いで、石英モールド203を離型し、基板を常温まで冷却してインク吐出口及びインク流路が形成された樹脂組成物201を得た(図2−f)。 Next, 25 mg of powder 201 obtained by pulverizing and mixing each compound shown in Table 1 was placed on a 4-inch silicon substrate 202 (FIG. 2B). Next, the silicon substrate 202 was heated to 130 ° C. with a nanoimprint apparatus LTNIP-2000 (trade name) manufactured by RISOTEC JAPAN, and the photosensitive resin composition 201 was melted (FIG. 2C). Next, the resin composition 201 was pressed with a pressure of 3.5 MPa using a quartz mold 203 (FIG. 2D). After holding for 15 seconds in the pressed state, the resin composition 201 was irradiated with ultraviolet rays at an exposure amount of 1000 mJ / cm 2 (FIG. 2E). Next, the quartz mold 203 was released, and the substrate was cooled to room temperature to obtain a resin composition 201 in which ink discharge ports and ink flow paths were formed (FIG. 2-f).

次いで、反応性イオンエッチング法(RIE)にて酸素で樹脂組成物201に対してエッチングを行い、残膜を除去した。さらに、インク吐出用のエネルギーを発生するエネルギー発生素子として電気熱変換素子206及びインクを供給するためのインク供給口(図示せず)が形成されたシリコン基板205に樹脂組成物201を貼り合わせた(図2−g)。   Next, the residual film was removed by etching the resin composition 201 with oxygen by reactive ion etching (RIE). Furthermore, the resin composition 201 was bonded to a silicon substrate 205 on which an electrothermal conversion element 206 and an ink supply port (not shown) for supplying ink were formed as energy generating elements for generating ink discharge energy. (FIG. 2-g).

次いで、樹脂組成物201を支持していたシリコン基板205を除去し、サーマル型のインクジェット記録ヘッドを完成させた(図2−h)。図3(b)にも示されるようにモールドの型部は流路208、吐出口207となり、流路形成部材209が形成される。吐出口207は所定方向に配列され、それに対応するエネルギー発生素子206が設けられている。   Next, the silicon substrate 205 supporting the resin composition 201 was removed, and a thermal ink jet recording head was completed (FIG. 2-h). As shown in FIG. 3B, the mold part becomes the flow path 208 and the discharge port 207, and the flow path forming member 209 is formed. The discharge ports 207 are arranged in a predetermined direction, and energy generation elements 206 corresponding to the discharge ports are provided.

101 201 感光性樹脂組成物
102 202 基板
103 203 モールド
101 201 Photosensitive resin composition 102 202 Substrate 103 203 Mold

Claims (9)

結晶性を有する常温で固体のカチオン重合性の化合物と、光カチオン重合開始剤と、を含むナノインプリント用樹脂組成物。   A resin composition for nanoimprinting, which comprises a cationically polymerizable compound that is crystalline at normal temperature and a photocationic polymerization initiator. 前記光カチオン重合開始剤の増感剤を含むことを特徴とする請求項1に記載のナノインプリント用樹脂組成物。   The sensitizer of the said photocationic polymerization initiator is included, The resin composition for nanoimprints of Claim 1 characterized by the above-mentioned. 前記カチオン重合性の化合物と、前記光カチオン重合開始剤と、前記増感剤と、の融点が、それぞれ50℃以上170℃以下であることを特徴とする請求項2に記載のナノインプリント用樹脂組成物。   The resin composition for nanoimprint according to claim 2, wherein melting points of the cationically polymerizable compound, the photocationic polymerization initiator, and the sensitizer are 50 ° C or higher and 170 ° C or lower, respectively. object. 前記カチオン重合性の化合物が式(1)で表されることを特徴とする請求項1乃至3のいずれか1項に記載のナノインプリント用樹脂組成物。

[ただし、Gはグリシジル基を示し、nは0以上の数字を示し、Xは式(A)、下記式(B)、および下記式(C)のいずれかにより表される基を示す。]

(ただし、R〜Rはそれぞれ水素原子、ハロゲン原子または炭素数1〜6のアルキル基を示す。)

(ただし、R〜Rはそれぞれ水素原子、ハロゲン原子または炭素数1〜6のアルキル基を示す。)
(ただし、R〜R16はそれぞれ水素原子、ハロゲン原子または炭素数1〜6のアルキル基を示し、Yは、酸素原子、硫黄原子、メチレンおよび下記式(a)から選ばれる基又は単結合を示す。)

(ただし、R17〜R20はそれぞれ水素原子、メチル基を示す。)
4. The nanoimprint resin composition according to claim 1, wherein the cationically polymerizable compound is represented by Formula (1). 5.

[However, G represents a glycidyl group, n represents a number of 0 or more, and X represents a group represented by any one of the following formula (A), the following formula (B), and the following formula (C). ]

(However, R < 1 > -R < 4 > shows a hydrogen atom, a halogen atom, or a C1-C6 alkyl group, respectively.)

(However, R < 5 > -R < 8 > shows a hydrogen atom, a halogen atom, or a C1-C6 alkyl group, respectively.)
(However, R < 9 > -R < 16 > shows a hydrogen atom, a halogen atom, or a C1-C6 alkyl group, respectively, Y is a group or single bond chosen from an oxygen atom, a sulfur atom, a methylene, and following formula (a) Is shown.)

(However, R < 17 > -R < 20 > shows a hydrogen atom and a methyl group, respectively.)
前記ナノインプリント用樹脂組成物が粉末状であることを特徴とする請求項1乃至4のいずれか1項に記載のナノインプリント用樹脂組成物。   The nanoimprint resin composition according to any one of claims 1 to 4, wherein the nanoimprint resin composition is in a powder form. 前記カチオン重合性の化合物の分子量が、300以上3000以下であることを特徴とする請求項1乃至5のいずれか1項に記載の樹脂組成物。   6. The resin composition according to claim 1, wherein the molecular weight of the cationically polymerizable compound is 300 or more and 3000 or less. 請求項1から6のいずれか1項に記載の樹脂組成物を基板上に提供する工程と、
前記樹脂組成物を加熱することにより、前記樹脂組成物を溶融させる工程と、
型をもつ原盤の前記型を、溶融された前記樹脂組成物に押し付ける工程と、
前記型が押し付けられた状態で前記樹脂組成物に光を照射し、前記樹脂組成物を硬化させることにより、微細構造体を形成する工程と、
を有することを特徴とする微細構造体の形成方法。
Providing the resin composition according to any one of claims 1 to 6 on a substrate;
Melting the resin composition by heating the resin composition;
Pressing the mold of the master with the mold against the molten resin composition;
Irradiating the resin composition with light in a state where the mold is pressed to cure the resin composition, thereby forming a fine structure;
A method for forming a microstructure characterized by comprising:
請求項1から6のいずれか1項に記載の樹脂組成物を基板上に提供する工程と、
前記樹脂組成物が溶融する温度以上に加熱された、型をもつ原盤、の前記型を、前記樹脂組成物に押し付けることにより、前記樹脂組成物を溶融させる工程と、
前記型が押し付けられた状態で前記樹脂組成物に光を照射し、前記樹脂組成物を硬化させることにより、微細構造体を形成する工程と、
を有することを特徴とする微細構造体の形成方法。
Providing the resin composition according to any one of claims 1 to 6 on a substrate;
A step of melting the resin composition by pressing the mold of a master having a mold heated to a temperature at which the resin composition is melted or higher, against the resin composition;
Irradiating the resin composition with light in a state where the mold is pressed to cure the resin composition, thereby forming a fine structure;
A method for forming a microstructure characterized by comprising:
前記樹脂組成物を硬化させて硬化物を得た後に、前記原盤を前記硬化物から除去する工程を有することを特徴とする請求項7または8に記載の微細構造体の形成方法。   The method for forming a microstructure according to claim 7 or 8, further comprising a step of removing the master from the cured product after curing the resin composition to obtain a cured product.
JP2010181893A 2010-08-16 2010-08-16 Resin composition for nano-imprinting, and method of forming fine structure Pending JP2011003916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010181893A JP2011003916A (en) 2010-08-16 2010-08-16 Resin composition for nano-imprinting, and method of forming fine structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010181893A JP2011003916A (en) 2010-08-16 2010-08-16 Resin composition for nano-imprinting, and method of forming fine structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009144608A Division JP4617387B2 (en) 2009-06-17 2009-06-17 Manufacturing method of fine structure

Publications (1)

Publication Number Publication Date
JP2011003916A true JP2011003916A (en) 2011-01-06

Family

ID=43561564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010181893A Pending JP2011003916A (en) 2010-08-16 2010-08-16 Resin composition for nano-imprinting, and method of forming fine structure

Country Status (1)

Country Link
JP (1) JP2011003916A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11549020B2 (en) 2019-09-23 2023-01-10 Canon Kabushiki Kaisha Curable composition for nano-fabrication

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11549020B2 (en) 2019-09-23 2023-01-10 Canon Kabushiki Kaisha Curable composition for nano-fabrication

Similar Documents

Publication Publication Date Title
US11958233B2 (en) Cationic polymerizable compositions and methods of use thereof
US9861452B2 (en) Low-viscosity liquid radiation curable dental aligner mold resin compositions for additive manufacturing
WO2011125335A1 (en) Pattern forming method and pattern substrate manufacturing method
JP5335717B2 (en) Resist composition arranging apparatus and pattern forming body manufacturing method
BR112012014900B1 (en) substrate-based additive manufacturing process
KR20100121462A (en) Curable composition for nanoimprint and pattern-forming method
US20150298365A1 (en) Method for producing microstructure and photocurable composition for nanoimprinting
JP4617387B2 (en) Manufacturing method of fine structure
WO2016200972A1 (en) Liquid, hybrid uv/vis radiation curable resin compositions for additive fabrication
JP2022510865A (en) 3D printing ink with low polymerization shrinkage
JP2012216799A (en) Functional liquid discharge device, functional liquid discharge method, and imprint system
WO2017033427A1 (en) Patterning material, patterning method and patterning device
KR20110089818A (en) Resin composition for photocurable imprinting, method for forming pattern and etching mask
TW200530755A (en) Photocurable composition for producing cured articles having high clarity and improved mechanical properties
JP5012462B2 (en) Photocurable composition for stereolithography, carbonized article, and method for producing the same
WO2019117723A1 (en) Compositions and methods for high-temperature jetting of viscous thermosets to create solid articles via additive fabrication
JP2011003916A (en) Resin composition for nano-imprinting, and method of forming fine structure
WO2019124232A1 (en) Photocurable resin composition
CN111324009A (en) Photocurable composition and use thereof
JP5761860B2 (en) Imprint system and imprint method
US20100159405A1 (en) Method of manufacturing structure and method of manufacturing ink jet head
JP5040518B2 (en) Active energy ray-curable resin composition and cured product thereof
JP2016124927A (en) Active ray curable composition including photobase generating agent and active ray curable type inkjet ink
JP2010169831A (en) Resin composition for hybrid lens, and hybrid lens