JP2011003803A - 半導体レーザ及びそれを用いた光モジュール - Google Patents

半導体レーザ及びそれを用いた光モジュール Download PDF

Info

Publication number
JP2011003803A
JP2011003803A JP2009146899A JP2009146899A JP2011003803A JP 2011003803 A JP2011003803 A JP 2011003803A JP 2009146899 A JP2009146899 A JP 2009146899A JP 2009146899 A JP2009146899 A JP 2009146899A JP 2011003803 A JP2011003803 A JP 2011003803A
Authority
JP
Japan
Prior art keywords
reflectance
reflective film
semiconductor laser
laser
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009146899A
Other languages
English (en)
Inventor
Reio Mochida
励雄 持田
Yasunari Maeda
泰成 前多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
QD Laser Inc
Original Assignee
QD Laser Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by QD Laser Inc filed Critical QD Laser Inc
Priority to JP2009146899A priority Critical patent/JP2011003803A/ja
Priority to PCT/JP2010/059747 priority patent/WO2010147035A1/ja
Publication of JP2011003803A publication Critical patent/JP2011003803A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0284Coatings with a temperature dependent reflectivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/341Structures having reduced dimensionality, e.g. quantum wires
    • H01S5/3412Structures having reduced dimensionality, e.g. quantum wires quantum box or quantum dash

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

【課題】一定の動作電流において、動作温度の変化に伴う光出力の変動を抑制することが可能な半導体レーザを提供すること。
【解決手段】本発明は、複数の量子ドット36を有する量子ドット活性層14と量子ドット活性層14を挟む下部クラッド層12、上部クラッド層16とを含む半導体層18と、量子ドット活性層14から出射されるレーザ光の出射端面35を覆うように半導体層18の端面28に設けられた反射膜32aと、を具備し、反射膜32aは、動作電流を一定にした場合におけるレーザ光の光出力の温度依存を打ち消すように変化する反射率を有する半導体レーザである。
【選択図】図1

Description

本発明は、半導体レーザ及びそれを用いた光モジュールに関する。
例えば、通信用等に用いられている半導体レーザは、動作温度が上昇すると発光効率が低下するため、光出力が低下してしまう。
近年、特許文献1、非特許文献1のように、量子ドットを有する半導体レーザが開発されている。量子ドットを有する半導体レーザにおいても、動作温度が上昇すると発光効率が低下し、光出力は低下してしまう。
特開2001−85665号公報 Electronics Letters 2007 Vol. 43 pp 670-672
従来の半導体レーザでは、半導体レーザに供給する動作電流を制御することで、動作温度が上昇した場合でも所定の光出力が得られるようにしている。即ち、半導体レーザの光出力をモニタ用フォトダイオードでモニタリングし、そのモニタリング結果をフィードバックして動作電流を制御することで、半導体レーザから所定の光出力を得ている。
しかしながら、このような構成の場合、モニタ用フォトダイオードやフィードバックに用いるAPC(Auto Power Control)回路を設けるため、コストが増加してしまう。
本発明は、上記課題に鑑みなされたものであり、動作電流を一定にした場合におけるレーザ光の出力の温度依存を抑制することが可能な半導体レーザ及びそれを用いた光モジュールを提供することを目的とする。
本発明は、複数の量子ドットを有する活性層と前記活性層を挟む2つのクラッド層とを含む半導体層と、前記活性層から出射されるレーザ光の出射端面を覆うように前記半導体層の端面に設けられた反射膜と、を具備し、前記反射膜は、動作電流を一定にした場合における前記レーザ光の出力の温度依存を打ち消すように変化する反射率を有することを特徴とする半導体レーザである。本発明によれば、動作電流を一定にした場合でもレーザ光の出力の温度依存を抑制することができる。
上記構成において、前記レーザ光の波長の温度依存性を利用し、前記反射膜の反射率に前記レーザ光の出力の温度依存を打ち消すような前記レーザ光の波長に対する波長依存性を持たせる構成とすることができる。この構成によれば、動作電流を一定にした場合におけるレーザ光の出力の温度依存を打ち消すように変化する反射率を有する反射膜を容易に得ることができる。
上記構成において、前記反射膜の反射率は、前記レーザ光の波長が長くなるに従い低下する構成とすることができる。また、上記構成において、動作温度範囲の下限における前記反射膜の反射率と上限における前記反射膜の反射率との差が10%以上である構成とすることができる。
上記構成において、前記反射膜の反射率は、動作温度範囲に亘って変化する構成とすることができる。この構成によれば、半導体レーザの動作温度全域に亘り、レーザ光の出力の温度依存を抑制できる。
上記構成において、前記反射膜は、誘電体多層膜である構成とすることができる。この構成によれば、反射膜の反射率の波長依存性を容易に変化させることができる。
本発明は、前記半導体レーザと、前記半導体レーザから所定の光出力を得るため、前記半導体レーザの動作温度によらず一定の動作電流を供給する電流供給回路と、を具備することを特徴とする光モジュールである。本発明によれば、前記半導体レーザを用いているため、モニタ用フォトダイオードやAPC回路を用いなくても、レーザ光の出力の温度依存を抑制することができる。よって、レーザ光の出力の温度依存を抑制しつつ、低コスト化を実現することができる。
上記構成において、前記電流供給回路は、前記半導体レーザの光出力をフィードバックしていない構成とすることができる。
本発明の半導体レーザによれば、動作電流を一定にした場合でもレーザ光の出力の温度依存を抑制することができる。また、本発明の光モジュールによれば、レーザ光の出力の温度依存を抑制しつつ、低コスト化を実現することができる。
図1(a)及び図1(b)は実施例1に係る量子ドットレーザの断面模式図である。 図2は量子ドット活性層の1層分のドット層を示した図である。 図3は比較例に係る量子ドットレーザの電流−光出力特性を示す図である。 図4は一定の光出力を得るための電流の温度依存性を示す図である。 図5は反射膜の反射率ごとについて、一定の光出力を得るための電流の温度依存性を示す図である。 図6は比較例に係る量子ドットレーザにおけるレーザ光の発振波長の温度依存性を示す図である。 図7は反射膜の反射率の波長依存性を示す図である。 図8は表1に示す構造に係る誘電体多層膜の波長−反射率特性を示す図である。 図9は図8で求めた誘電体多層膜の波長−反射率特性を、図5に重ね合わせた図である。 図10は実施例2に係る光モジュールのブロック図である。
以下、図面を参照して、本発明の実施例について説明する。
図1(a)及び図1(b)は、実施例1に係る量子ドットレーザ100の断面模式図である。図1(a)は、レーザ光の出射方向に対して垂直方向の断面模式図であり、図1(b)は平行方向の断面模式図である。図1(a)のように、量子ドットレーザ100は、n型GaAs基板10上に、n型AlGaAs層からなる下部クラッド層12、量子ドットを8層積層した量子ドット活性層14、及びp型AlGaAs層からなる上部クラッド層16が順次積層された半導体層18を有する。下部クラッド層12の膜厚は2700nmで、上部クラッド層16の膜厚は2400nmである。
図2は量子ドット活性層14の1層分のドット層34を示した図である。図2のように、量子ドット36は0.8nm厚のInAsにより形成される。量子ドット36間に膜厚3.6nmのInGaAs層38が形成される。量子ドット36及びInGaAs層38を覆うように、膜厚14nmのアンドープGaAs層40が形成される。アンドープGaAs層40上に膜厚10nmのp型GaAs層42、膜厚12nmのアンドープGaAs層44が順次形成される。アンドープGaAs層40、p型GaAs層42、及びアンドープGaAs層44はバリア層46を構成する。
図1(a)に戻り、上部クラッド層16は孤立しており、リッジ部20を形成している。リッジ部20の幅は2μm、長さは0.3mmである。つまり、量子ドットレーザ100は、リッジ構造を有している。リッジ部20の両側には、凹部22が形成されている。上部クラッド層16上にはp電極24が形成され、n型GaAs基板10裏面にはn電極26が形成されている。
量子ドット活性層14は、屈折率の低い下部クラッド層12と上部クラッド層16とに挟まれている。このため、半導体層18を伝搬する光は、量子ドット活性層14近傍に閉じ込められる。一方、リッジ部20下の量子ドット活性層14近傍を伝搬する光に対する等価屈折率は、リッジ部20両側の凹部22下の量子ドット活性層14近傍を伝搬する光に対する等価屈折率より大きい。このため、量子ドット活性層14近傍を伝搬する光はリッジ部20下の量子ドット活性層14近傍に閉じ込められる。ここで、等価屈折率とは、伝搬する光が感じる屈折率のことである。
図1(b)のように、半導体層18の前後の端面28、30にはそれぞれ、反射膜32a、32bが設けられている。このため、量子ドット活性層14近傍に閉じ込められた光は、半導体層18の端面28、30で反射される。このようにして誘導放出される光はレーザ光として、出射端面35から外部に出射される。反射膜32aの反射率は、出射端面35から出射されるレーザ光に対して波長依存性を有し、レーザ光の波長が長くなるに従い低下する構成をしている。一方、反射膜32bの反射率は固定である。反射膜32aの詳細については後述する。
ここで、比較例として、図1(a)及び図1(b)に示した構造で、出射端面35側である半導体層18の端面28に設けられた反射膜32aの反射率を36%、反対側の端面30に設けられた反射膜32bの反射率を94%と固定した量子ドットレーザを説明する。
図3は、比較例に係る量子ドットレーザの各温度における電流−光出力特性を示す図である。動作温度が30℃(図3中の破線)、70℃(図3中の実線)、85℃(図3中の一点鎖線)、100℃(図3中の二点鎖線)のそれぞれについて3回の測定結果を示す。図3のように、例えば、10mWの光出力を得るのに要する電流は、動作温度が上昇するに従い増加する。このように、電流−光出力特性は温度依存性を有する。
図4は、図3に示した電流−光出力特性について、横軸を動作温度(℃)、縦軸を10mWの光出力を得るのに必要な電流(mA)として表した図である。図4中の丸印は測定値であり、破線はレート方程式を用いたシミュレーションによる計算値である。図4のように、測定値と計算値とはほぼ一致し、共に動作温度が上昇するに従い電流が増加している。特に、80℃近辺を境に電流の増加が著しい。このように、上記のシミュレーション方法は適当なシミュレーション方法であることが言える。
そこで、上記のシミュレーション方法を用い、半導体層18の端面28に設けた反射膜32aの反射率ごとに、電流−光出力特性の温度依存性を計算した。図5は、横軸を動作温度(℃)、縦軸を反射膜32aの反射率(%)として、各反射率について、10mWの光出力に要する電流(mA)の温度依存性を表している。図5のように、例えば、比較例に係る量子ドットレーザで用いた36%の反射率の場合、図5中の破線のように、動作温度の上昇により10mWの光出力に要する電流が上昇することが読み取れ、これは、図4に示した結果とも一致する。また、反射膜32aの反射率が36%の場合に限らず、他の反射率の場合であっても、動作温度が上昇すると電流は増加する。このように、反射膜32aの反射率が一定の場合、動作温度が上昇するに従い、10mWの光出力に要する電流は増加する。言い換えると、反射膜32aの反射率が一定の場合、供給する電流を一定に保つと、動作温度が上昇するに連れて、光出力は低下する。
ここで、図5において、一定の電流、例えば45mAの場合に着目すると、図5中の矢印のように、動作温度が上昇するに連れて反射率が低下する軌跡を有する。即ち、矢印のように温度上昇に対して反射膜32aの反射率を変化させれば、45mAの一定の電流で10mWの一定の光出力を得られることが分かる。つまり、矢印のように反射膜32aの反射率を変化させれば、電流を一定にした場合の光出力の温度依存を打ち消すことができ、温度上昇によらず一定の電流により一定の光出力を得ることができる。
また、レーザ光の発振波長は温度依存性を有する。比較例に係る量子ドットレーザは、図6に示すような、動作温度−波長特性を有する。図6中の丸印は10mWの光出力の場合の中心波長の変化を表し、三角印は7mWの光出力の場合の中心波長の変化を表している。図6のように、動作温度の上昇に伴い、レーザ光の発振波長は長波長側に、0.42nm/℃の割合でシフトする。
このように、レーザ光の波長は温度依存性を有するため、動作温度をレーザ光の波長で表すことが可能である。したがって、図7のように、図5における横軸の動作温度(℃)を、レーザ光の波長(nm)に置き換えることが可能となる。即ち、図7中の矢印のようにレーザ光の波長の変化に対して反射膜32aの反射率を変化させれば、温度上昇によらず一定の電流により一定の光出力を得ることができる。
反射膜32aを誘電体多層膜により形成する場合、誘電体多層膜の層構造を変えることで、反射率の波長依存性を変化させることができる。そこで、表1に示す構造の誘電体多層膜について、波長−反射率特性のシミュレーションを行った。表1のように、シミュレーションを行った誘電体多層膜は、GaAs基板上に、厚さ222nmのSiO膜と、厚さ192nmのAl膜と、を交互に8層づつ形成している。
Figure 2011003803
図8は、表1の構造の誘電体多層膜の波長−反射率特性のシミュレーション結果である。図8のように、波長が1275nmで反射率が70%程度で、波長が1315nmで反射率が50%程度となり、波長が長波長になるに従い、反射率は低下していく。このときの、波長が1275nmから1315nmにおける反射率の変化率は、0.5%/nm以上である。
図9は、図8で求めた表1の構造の誘電体多層膜についての波長−反射率特性のシミュレーション結果を、図5で求めたシミュレーション結果に重ね合わせた図である。図9のように、表1の構造の誘電体多層膜の反射率によれば、10mWの光出力を得るのに要する電流について、動作温度の上昇に伴う変化を小さくすることができる。言い換えると、電流を一定にした場合に、動作温度の上昇に伴う光出力の変動を小さくすることができる。したがって、図1(a)及び図1(b)に示した実施例1に係る量子ドットレーザ100において、半導体層18の端面28に設ける反射膜32aに、図8の反射率の波長依存性を有する表1の構造の誘電体多層膜を用いることで、レーザ光の出力の温度依存を打ち消す方向に働き、一定の電流において、動作温度の上昇に伴うレーザ光の出力の変動を小さくすることができる。
以上説明してきたように、実施例1によれば、図1(a)及び図1(b)のように、複数の量子ドットを有する量子ドット活性層14と、量子ドット活性層14を挟む下部クラッド層12と上部クラッド層16と、からなる半導体層18を有する。半導体層18の端面28には、量子ドット活性層14から出射されるレーザ光の出射端面35を覆うように反射膜32aが設けられている。そして、反射膜32aに表1の構造の誘電体多層膜を用い、動作電流を一定にした場合におけるレーザ光の出力の温度依存を打ち消すように反射率を変化させる。これにより、動作電流を一定にした場合でもレーザ光の出力の温度依存を抑制することができる。即ち、一定の動作電流において、動作温度の上昇に伴うレーザ光の出力の変動を小さくすることができる。特に、図5の矢印のように反射膜32aの反射率を変化させた場合は、一定の動作電流において、動作温度によらず一定の光出力を得ることができる。
従来から半導体レーザに用いられている量子井戸レーザでは、動作電流を一定にした場合での、動作温度の上昇に伴うレーザ光の出力の低下が激しいため、反射膜の反射率を変化させて、レーザ光の出力の温度依存を抑制することは難しい。しかしながら、量子ドットレーザでは、動作電流が一定の場合における、動作温度の上昇に伴うレーザ光の出力の低下が緩やかなため、反射膜の反射率を変化させることで、レーザ光の出力の温度依存を抑制することが可能となる。このような理由から、実施例1に係る量子ドットレーザ100の構造に限らず、他の構造の量子ドットレーザにおいても、反射膜の反射率を変化させることで、レーザ光の出力の温度依存を抑制することができる。
図6のように、レーザ光の波長は温度依存性を有することから、この波長の温度依存性を利用し、図5の矢印のような動作温度の変化に応じて変化する反射率を、図7のような波長の変化に応じて変化する反射率に置き換え、反射膜32aの反射率に、レーザ光の出力の温度依存を打ち消すような、レーザ光の波長に対する波長依存性を持たせるようにする。前述したように、反射率の波長依存性は、反射膜32aとなる誘電体多層膜の層構造を変化させることで容易に変化させることができる。よって、実施例1によれば、動作電流を一定にした場合におけるレーザ光の出力の温度依存を打ち消すように変化する反射率を有する反射膜32aを容易に得ることができる。
図8のように、反射膜32aの反射率は、波長が1275nmの場合に70%程度で、1315nmの場合に50%程度である。つまり、反射膜32aの反射率は、レーザ光の波長が長くなるに従い低下し、1275nmから1315nmにおける反射率の変化率は0.5%/nm以上である。波長が1275nmは量子ドットレーザ100の動作温度範囲の下限に対応する波長であり、1315nmは動作温度範囲の上限に対応する波長であることから、動作温度範囲の下限と上限とにおける反射率の差は20%程度である。一般的に、量子ドットレーザの特性変動の要因を排除するため、動作温度範囲内において反射率が変化しない反射膜を用いる。これに対し、実施例1によれば、上述のように変化する反射率を有する反射膜32aを用いることで、図9のように、動作電流を一定にした場合における動作温度の変化に伴うレーザ光の出力の変動を小さくすることができ、レーザ光の出力の温度依存を抑制することができる。
したがって、レーザ光の出力の温度依存を抑制するという点から、量子ドットレーザ100の動作温度範囲の下限における反射膜32aの反射率と上限における反射膜32aの反射率との差が10%以上である場合が好ましく、20%以上である場合がより好ましく、30%以上である場合がさらに好ましい。また、動作温度の上限における反射膜32aの反射率は0%より大きい場合が好ましい。
反射膜32aの反射率は、動作温度範囲の下限において、75%から90%の範囲内であることがより好ましい。図9に示すように、動作温度が0℃(動作温度範囲の下限値)の場合の反射率が75%から90%の範囲である場合は、動作温度が100℃(動作温度範囲の上限値)まで上昇した場合でも、反射率を適切に変化させることで、一定の電流において一定の光出力(10mW)を得ることが可能となる。かかる観点から、動作温度範囲の上限における反射率は、50%から85%の範囲内であることがより好ましい。
量子ドットレーザ100の動作温度全域に亘ってレーザ光の出力の温度依存を抑制するため、反射膜32aの反射率を動作温度範囲に亘って変化させることが好ましい。
反射膜32aは、誘電体多層膜からなる場合を例に挙げたが、これに限られる訳ではない。動作電流を一定にした場合における、レーザ光の出力の温度依存を打ち消すように反射率が変化すれば、誘電体多層膜以外により反射膜32aが形成される場合でもよい。また、反射膜32aが設けられた端面28に反対側の端面30に設けられた反射膜32bの反射率は固定である場合を説明したが、反射膜32bの反射率が変化する場合でもよい。
実施例2は、実施例1に係る量子ドットレーザ100を備える光モジュールの例である。図10は、実施例2に係る光モジュール200のブロック図である。図10のように、光モジュール200は、実施例1に係る量子ドットレーザ100、電流供給回路50、及び入力部52を有する。入力部52は、外部からの送信データ信号54を受信し、電流供給回路50に送信データ信号を出力する。電流供給回路50は、送信データ信号に基づき、量子ドットレーザ100に動作電流56を供給する。電流供給回路50から供給される動作電流56は、量子ドットレーザ100の動作温度によらず、一定の大きさである。量子ドットレーザ100は、動作電流56に応じた光出力のレーザ光58を出射する。
このように、実施例2に係る光モジュール200は、実施例1に係る量子ドットレーザ100と、量子ドットレーザ100から所定の光出力を得るため、一定の大きさの動作電流56を量子ドットレーザ100に供給する電流供給回路50と、を有する。実施例1に係る量子ドットレーザ100は、前述したように、動作電流を一定にした場合でもレーザ光の出力の温度依存を抑制することができる。したがって、量子ドットレーザ100の動作温度によらず一定の大きさの動作電流56を供給する電流供給回路50を用いても、動作温度の変化に伴う、量子ドットレーザ100からのレーザ光の出力の変動は抑制される。よって、実施例2によれば、モニタ用フォトダイオードやAPC回路が不要となり、レーザ光の出力の温度依存を抑制しつつ、低コスト化が可能となる。また、モニタ用フォトダイオードやAPC回路が設けられていないことから、電流供給回路50は、量子ドットレーザ100の光出力をフィードバックしていない。
以上、本発明の好ましい実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
10 基板
12 下部クラッド層
14 量子ドット活性層
16 上部クラッド層
18 半導体層
20 リッジ部
22 凹部
24 p電極
26 n電極
28 端面
30 端面
32a 反射膜
32b 反射膜
34 ドット層
35 出射端面
36 量子ドット
38 InGaAs層
40 アンドープGaAs層
42 p型GaAs層
44 アンドープGaAs層
46 バリア層
50 電流供給回路
52 入力部
54 送信データ信号
56 動作電流
58 レーザ光
100 量子ドットレーザ
200 光モジュール

Claims (8)

  1. 複数の量子ドットを有する活性層と前記活性層を挟む2つのクラッド層とを含む半導体層と、
    前記活性層から出射されるレーザ光の出射端面を覆うように前記半導体層の端面に設けられた反射膜と、を具備し、
    前記反射膜は、動作電流を一定にした場合における前記レーザ光の出力の温度依存を打ち消すように変化する反射率を有することを特徴とする半導体レーザ。
  2. 前記レーザ光の波長の温度依存性を利用し、前記反射膜の反射率に前記レーザ光の出力の温度依存を打ち消すような前記レーザ光の波長に対する波長依存性を持たせることを特徴とする請求項1記載の半導体レーザ。
  3. 前記反射膜の反射率は、前記レーザ光の波長が長くなるに従い低下することを特徴とする請求項2記載の半導体レーザ。
  4. 動作温度範囲の下限における前記反射膜の反射率と上限における前記反射膜の反射率との差が10%以上であることを特徴とする請求項1から3のいずれか一項記載の半導体レーザ。
  5. 前記反射膜の反射率は、動作温度範囲に亘って変化することを特徴とする請求項1から4のいずれか一項記載の半導体レーザ。
  6. 前記反射膜は、誘電体多層膜であることを特徴とする請求項1から5のいずれか一項記載の半導体レーザ。
  7. 請求項1から6のいずれか一項記載の半導体レーザと、
    前記半導体レーザから所定の光出力を得るため、前記半導体レーザの動作温度によらず一定の動作電流を供給する電流供給回路と、を具備することを特徴とする光モジュール。
  8. 前記電流供給回路は、前記半導体レーザの光出力をフィードバックしていないことを特徴とする請求項7記載の光モジュール。
JP2009146899A 2009-06-19 2009-06-19 半導体レーザ及びそれを用いた光モジュール Pending JP2011003803A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009146899A JP2011003803A (ja) 2009-06-19 2009-06-19 半導体レーザ及びそれを用いた光モジュール
PCT/JP2010/059747 WO2010147035A1 (ja) 2009-06-19 2010-06-09 半導体レーザ及びそれを用いた光モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009146899A JP2011003803A (ja) 2009-06-19 2009-06-19 半導体レーザ及びそれを用いた光モジュール

Publications (1)

Publication Number Publication Date
JP2011003803A true JP2011003803A (ja) 2011-01-06

Family

ID=43356356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009146899A Pending JP2011003803A (ja) 2009-06-19 2009-06-19 半導体レーザ及びそれを用いた光モジュール

Country Status (2)

Country Link
JP (1) JP2011003803A (ja)
WO (1) WO2010147035A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9235000B2 (en) 2013-04-17 2016-01-12 Fujitsu Limited Optical semiconductor apparatus
US9755111B2 (en) 2013-06-05 2017-09-05 Nitto Optical Co., Ltd. Active region containing nanodots (also referred to as “quantum dots”) in mother crystal formed of zinc blende-type (also referred to as “cubic crystal-type”) AlyInxGal-y-xN Crystal (y[[□]][≧] 0, x > 0) grown on Si substrate, and light emitting device using the same (LED and LD)
US11764546B2 (en) 2020-11-13 2023-09-19 Denso Corporation Semiconductor laser device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4140001A1 (de) * 2020-04-24 2023-03-01 ams-OSRAM International GmbH Halbleiterlaser und lidar-system sowie laser-system mit dem halbleiterlaser

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3728305A1 (de) * 1987-08-25 1989-03-09 Standard Elektrik Lorenz Ag Halbleiterlaser mit konstanter differentieller quantenausbeute oder konstanter optischer ausgangsleistung

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9235000B2 (en) 2013-04-17 2016-01-12 Fujitsu Limited Optical semiconductor apparatus
US9755111B2 (en) 2013-06-05 2017-09-05 Nitto Optical Co., Ltd. Active region containing nanodots (also referred to as “quantum dots”) in mother crystal formed of zinc blende-type (also referred to as “cubic crystal-type”) AlyInxGal-y-xN Crystal (y[[□]][≧] 0, x > 0) grown on Si substrate, and light emitting device using the same (LED and LD)
US11764546B2 (en) 2020-11-13 2023-09-19 Denso Corporation Semiconductor laser device

Also Published As

Publication number Publication date
WO2010147035A1 (ja) 2010-12-23

Similar Documents

Publication Publication Date Title
JP5824802B2 (ja) 面発光型半導体レーザ、面発光型半導体レーザ装置、光伝送装置および情報処理装置
US8472492B2 (en) Vertical cavity surface emitting laser element, vertical cavity surface emitting laser array element, vertical cavity surface emitting laser device, light source device, and optical module
US8767788B2 (en) Semiconductor laser device
JP5075292B2 (ja) 電子素子、面発光レーザ、面発光レーザアレイ、光源、および光モジュール
WO2018168430A1 (ja) 半導体レーザ装置、半導体レーザモジュール及び溶接用レーザ光源システム
WO2010147035A1 (ja) 半導体レーザ及びそれを用いた光モジュール
US8233514B2 (en) Semiconductor laser device
EP3425755B1 (en) Surface light emitting laser
JP2005268298A (ja) 半導体レーザ
JP2018098419A (ja) 半導体レーザ、光源ユニット、通信システム及び波長多重光通信システム
US20200280176A1 (en) Semiconductor optical amplifier, semiconductor optical amplification device, optical output device, and distance measuring device
JP2003204110A (ja) 半導体レーザ装置およびこれを用いた半導体レーザモジュール
JP3718212B2 (ja) 半導体発光素子
JP2010045249A (ja) 半導体発光素子およびその製造方法
KR100754956B1 (ko) 반도체 레이저장치 및 레이저시스템
US6798798B2 (en) Semiconductor laser apparatus and fabrication method of same, and semiconductor laser module
JP2021158268A (ja) 半導体発光素子
TWI634715B (zh) 端面射出型半導體雷射
JP7295739B2 (ja) 半導体レーザ素子およびチップオンサブマウント
JP2011114167A (ja) 半導体レーザ装置
JP2018082060A (ja) 光伝送装置
WO2003100930A1 (fr) Module laser
JP2003179298A (ja) 半導体レーザモジュール、および半導体レーザモジュールの設計方法
JP6581419B2 (ja) 分布帰還型横マルチモード半導体レーザ素子
WO2011043174A1 (ja) 光半導体装置及びそれを用いた光モジュール