JP2011002487A - Method of manufacturing diffraction grating, diffraction grating, and spectral analysis device using the same - Google Patents

Method of manufacturing diffraction grating, diffraction grating, and spectral analysis device using the same Download PDF

Info

Publication number
JP2011002487A
JP2011002487A JP2009143071A JP2009143071A JP2011002487A JP 2011002487 A JP2011002487 A JP 2011002487A JP 2009143071 A JP2009143071 A JP 2009143071A JP 2009143071 A JP2009143071 A JP 2009143071A JP 2011002487 A JP2011002487 A JP 2011002487A
Authority
JP
Japan
Prior art keywords
diffraction grating
exposure
pitch
pitch dimension
repeated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009143071A
Other languages
Japanese (ja)
Inventor
Yoshinori Nakayama
義則 中山
Jiro Yamamoto
治朗 山本
Hiroyuki Koshi
裕之 越
Yoshisada Ehata
佳定 江畠
Tatsuya Tanaka
辰也 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2009143071A priority Critical patent/JP2011002487A/en
Publication of JP2011002487A publication Critical patent/JP2011002487A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a diffraction grating reducing the occurrence of abnormal peaks of diffraction light occurring by repeated exposure to allow sharp spectroscopy with few abnormal peaks, and to provide a highly precise spectral analysis device by using the diffraction grating.SOLUTION: In manufacturing a diffraction grating with a fixed pitch by repeated exposure, exposure is repeated while setting a relationship between the pitch dimension of the diffraction grating to be manufactured and a repeated exposure cycle with a small-angle deflection to achieve a ratio P/S of 0.1 or higher between the pitch dimension P to be exposed and the repeated exposure cycle S with the small-angle deflection, the occurrence of the abnormal peaks of diffraction light occurring by exposure is reduced, and consequently, the diffraction grating allowing sharp spectroscopy with few abnormal peaks is obtained.

Description

本発明は、試料の成分分析を行う分光分析に用いる回折格子の作製方法、回折格子、およびそれを用いた分光分析装置に関する。   The present invention relates to a method for manufacturing a diffraction grating used for spectroscopic analysis for analyzing a component of a sample, a diffraction grating, and a spectroscopic analysis apparatus using the diffraction grating.

近年、分光分析を活用する分野は、バイオ分野や医用および半導体までより広範囲に及び、高精度な計測が必要となる。この分光分析の計測精度は、分光に用いる回折格子の精度で決定される。
しかし、数センチメートル以上の広い面積を一様な精度で、かつ微細なピッチ寸法を有する回折格子を作製することは困難である。一方、半導体素子の微細加工技術では数センチメートル以下の狭い領域で微細な加工を実現し、その領域を繰り返し反復する技術が開発されている。そこで特許文献1で、同様の技術課題を有する光学素子である光ファイバ加工において半導体素子の微細加工技術を応用した、繰り返し露光による回折格子の作製方法が提案されている。
In recent years, the field of using spectroscopic analysis covers a wider range from the bio field to medical and semiconductor fields, and requires highly accurate measurement. The measurement accuracy of this spectroscopic analysis is determined by the accuracy of the diffraction grating used for spectroscopy.
However, it is difficult to produce a diffraction grating having a wide area of several centimeters or more with uniform accuracy and a fine pitch dimension. On the other hand, in the microfabrication technology for semiconductor elements, a technology has been developed that realizes microfabrication in a narrow region of several centimeters or less and repeats that region repeatedly. Therefore, Patent Document 1 proposes a method for manufacturing a diffraction grating by repeated exposure, in which a fine processing technique of a semiconductor element is applied to optical fiber processing which is an optical element having a similar technical problem.

特開2001−242313号公報JP 2001-242313 A

しかし、上述のような従来技術の繰り返し露光により作製した回折格子を用いた分光分析には、以下の課題を有する。
図1に示す分光分析装置の光源1からの光15はスリット2を通過した後、回折格子3により分光されて特定の波長の回折光16のみがスリット4を通過した後、分析用に用いられる。分光分析用として繰り返し露光により作製した回折格子を用いる場合、繰り返し露光時の繰り返しパターン間で隣接する回折格子パターンに位置ずれ誤差が生じるために、図5に示すように、本来の回折格子パターンからの回折光100の他に繰り返し露光の繰り返しピッチ寸法を反映した異常光101が本来分析に必要な回折光100の周囲に生じる。この結果、異常光も試料分析に反映されてしまうために分析精度が悪化してしまう。そこで特許文献1に示されるような回折格子では、露光を複数回に分けておのおのの露光においてその繰り返しの位置をずらして繰り返し露光を多重に行い、繰り返しパターン間で隣接する回折格子パターン位置ずれ誤差をパターン全体で緩和させる方法が考えられている。
However, the spectroscopic analysis using the diffraction grating produced by the conventional repeated exposure as described above has the following problems.
The light 15 from the light source 1 of the spectroscopic analysis apparatus shown in FIG. 1 passes through the slit 2 and is then split by the diffraction grating 3 so that only the diffracted light 16 having a specific wavelength passes through the slit 4 and is used for analysis. . When a diffraction grating produced by repeated exposure is used for spectroscopic analysis, a positional error occurs between adjacent diffraction patterns at the time of repeated exposure. Therefore, as shown in FIG. In addition to the diffracted light 100, the extraordinary light 101 reflecting the repeated pitch size of repeated exposure is generated around the diffracted light 100 that is originally required for analysis. As a result, abnormal light is also reflected in the sample analysis, so that the analysis accuracy is deteriorated. Therefore, in the diffraction grating as shown in Patent Document 1, the exposure is divided into a plurality of times, the repeated position is shifted and the repeated exposure is performed multiple times, and the adjacent diffraction grating pattern misalignment error is repeated between the repeated patterns. A method is considered to alleviate the phenomenon as a whole pattern.

このような回折格子では、以下の課題がある。
繰り返し露光を多重に行い繰り返しパターン間で隣接する回折格子パターン位置ずれ誤差をパターン全体で緩和させると、図6に示すように多重間の位置ずれ誤差が多重間で変動するので異常光101の強度が多重露光を用いない場合に比べて減少する。しかし、異常光のピーク波長は繰り返し露光のピッチ寸法に起因しているために多重露光を用いない従来の異常光のピーク波長と同じである。このために本来の回折光波長に近い波長位置の異常光ほどその強度は大きいので、多重露光を用いても回折光波長に近い波長位置の異常光をなくすことはできない。高精度な分析を行うためには、この回折光波長に近い波長位置の異常光の強度を本来の分析に用いる回折光の強度に比べ10−5以下に抑える必要がある。
Such a diffraction grating has the following problems.
When repeated exposure is performed in a multiple manner and an adjacent diffraction grating pattern misalignment error between repetitive patterns is alleviated in the entire pattern, the misalignment error between the multiples varies between the multiples as shown in FIG. Decreases compared to the case where multiple exposure is not used. However, the peak wavelength of extraordinary light is the same as the peak wavelength of conventional extraordinary light that does not use multiple exposure because it is due to the pitch size of repeated exposure. For this reason, since the intensity of the extraordinary light at the wavelength position closer to the original diffracted light wavelength is higher, the extraordinary light at the wavelength position near the diffracted light wavelength cannot be eliminated even by using multiple exposure. In order to perform highly accurate analysis, it is necessary to suppress the intensity of the extraordinary light at a wavelength position close to the diffracted light wavelength to 10 −5 or less compared to the intensity of the diffracted light used for the original analysis.

本発明の主たる目的は、異常光の発生を抑えた微細でかつ一様な回折格子の作製方法、回折格子、およびそれを用いた分光分析装置を提供することにある。   A main object of the present invention is to provide a method for producing a fine and uniform diffraction grating in which generation of abnormal light is suppressed, a diffraction grating, and a spectroscopic analyzer using the same.

本発明の回折格子およびそれを用いた分光分析装置は、半導体素子の微細加工技術を応用した繰り返し露光により作製した回折格子において、繰り返し露光のピッチ寸法に起因した異常光のピーク波長を本来の回折光波長から遠ざけた波長位置にずらして異常光の分析精度への影響を抑えたことを特徴とする。   The diffraction grating of the present invention and the spectroscopic analysis apparatus using the same are the diffraction gratings produced by repeated exposure applying the microfabrication technology of semiconductor elements. It is characterized by suppressing the influence on the analysis accuracy of abnormal light by shifting to a wavelength position away from the light wavelength.

異常光のピーク波長を分析用回折光の波長から遠ざけた波長位置にずらす原理を以下に述べる。異常光の波長をλG、回折格子の回折光の波長λp、回折格子のピッチ寸法P、繰り返し露光のピッチ寸法S、回折光の回折次数n、異常光の次数mとすると、異常光の波長λGと回折格子の回折光の波長λpの間には、次の(1)式の関係がある。

λG = λp( 1 ± nP / mS) (1)

ここで、回折格子の回折光の波長λp、回折格子のピッチ寸法P、回折光の回折次数n、異常光の次数mは予め決まった値なので、繰り返し露光のピッチ寸法Sの値を調整することで、異常光の出現波長を調整することが可能である。また、異常光のピーク強度は一般的な回折格子のフラウンホーファ回折原理に基づき回折光の強度減衰に重畳されたものとなるために、回折光の波長から遠ざかるほどに異常光は波長差に応じてそのピーク強度は減衰する。即ち、本発明の回折格子およびそれを用いた分光分析装置は、繰り返し露光により作製した回折格子において繰り返し露光のピッチ寸法を適切な値に設定することにより、異常光の波長を本来の回折光波長から遠ざけた波長にずらして、異常光の分析精度への影響を抑えたことを特徴とする。
The principle of shifting the peak wavelength of the extraordinary light to a wavelength position away from the wavelength of the diffracted light for analysis will be described below. If the wavelength of the extraordinary light is λ G , the wavelength of the diffracted light λ p , the pitch dimension P of the diffraction grating, the pitch dimension S of repeated exposure, the diffraction order n of the diffracted light, and the order m of the extraordinary light, There is a relationship of the following equation (1) between the wavelength λ G and the wavelength λ p of the diffracted light of the diffraction grating.

λ G = λ p (1 ± nP / mS) (1)

Here, since the wavelength λ p of the diffraction light of the diffraction grating, the pitch dimension P of the diffraction grating, the diffraction order n of the diffraction light, and the order m of the extraordinary light are predetermined values, the value of the pitch dimension S for repeated exposure is adjusted. Thus, it is possible to adjust the appearance wavelength of abnormal light. Also, since the peak intensity of extraordinary light is superimposed on the intensity attenuation of the diffracted light based on the Fraunhofer diffraction principle of a general diffraction grating, the extraordinary light increases depending on the wavelength difference as the distance from the wavelength of the diffracted light increases. Its peak intensity is attenuated. That is, the diffraction grating of the present invention and the spectroscopic analysis apparatus using the same set the wavelength of the extraordinary light to the original diffracted light wavelength by setting the pitch dimension of the repeated exposure to an appropriate value in the diffraction grating manufactured by repeated exposure. It is characterized by suppressing the influence on the analysis accuracy of extraordinary light by shifting to a wavelength away from the light.

本発明の回折格子の作製方法は、一定ピッチの回折格子を繰り返し露光により作製する方法において、回折格子のピッチ寸法Pと繰り返し露光の繰り返し領域のピッチ寸法Sとの比P/Sが0.1以上となるように設定して、繰り返し露光を行うものである。   The method for producing a diffraction grating according to the present invention is a method for producing a diffraction grating having a constant pitch by repeated exposure, wherein the ratio P / S between the pitch dimension P of the diffraction grating and the pitch dimension S of the repeated exposure repeated region is 0.1. It sets so that it may become above, and repeats exposure.

また、本発明の回折格子の作製方法は、一定ピッチの回折格子を繰り返し露光により作製する方法において、回折格子のピッチ寸法Pと繰り返し露光の繰り返し領域のピッチ寸法Sとの比P/Sが0.1以上となるように設定し、かつ、繰り返し露光の境界位置を変えた多重露光を併用して、繰り返し露光を行うものである。   Also, the diffraction grating manufacturing method of the present invention is a method of manufacturing a diffraction grating with a constant pitch by repeated exposure, and the ratio P / S between the pitch dimension P of the diffraction grating and the pitch dimension S of the repeated exposure repeated region is 0. Repeat exposure is performed by using multiple exposure that is set to be 1 or more and the boundary position of repeated exposure is changed.

また、本発明の回折格子の作製方法は、分光分析に使用する一定ピッチの回折格子を繰り返し露光により作製する方法において、繰り返し領域の繰り返しピッチ寸法に起因する分光ピーク波長と分光分析波長の差の絶対値が分光分析波長の10分の1以上となるように繰り返し領域の繰り返しピッチ寸法を設定して、繰り返し露光を行うものである。   In addition, the method for producing a diffraction grating according to the present invention is a method for producing a diffraction grating having a constant pitch used for spectroscopic analysis by repeated exposure. Repeated exposure is performed by setting the repeat pitch dimension of the repeat region so that the absolute value becomes 1/10 or more of the spectral analysis wavelength.

さらに、本発明の回折格子の作製方法は、一定ピッチの回折格子をラインアンドスペースパターン単位で繰り返し露光により作製する方法において、露光すべき回折格子のピッチ寸法Pとラインアンドスペースパターンを形成する電子ビームの小角偏向の繰り返し露光周期Sとの比P/Sが0.1以上となるように設定して、小角偏向を繰り返して電子ビーム露光を行うものである。
その際に、露光の単位となる前記ラインアンドスペースパターンの寸法を、回折格子の格子直線に垂直な方向の長さに比べて、回折格子の格子直線方向の長さを大きくしてもよい。
Furthermore, the method for producing a diffraction grating according to the present invention is a method for producing a diffraction grating with a constant pitch by repeated exposure in units of line and space patterns, and an electron that forms a line and space pattern with a pitch dimension P of the diffraction grating to be exposed. The electron beam exposure is performed by repeating the small angle deflection by setting the ratio P / S of the small angle deflection of the beam to the repeated exposure cycle S to be 0.1 or more.
At this time, the length of the line-and-space pattern as a unit of exposure may be made longer than the length in the direction perpendicular to the grating line of the diffraction grating.

また、本発明の回折格子は、繰り返し露光により作製した一定ピッチの回折格子において、回折格子のピッチ寸法Pと繰り返し領域のピッチ寸法Sとの比P/Sが0.1以上であるものである。   In the diffraction grating of the present invention, the ratio P / S between the pitch dimension P of the diffraction grating and the pitch dimension S of the repeated region is 0.1 or more in a constant pitch diffraction grating manufactured by repeated exposure. .

また、本発明の分光分析装置は、光源からの光を回折格子で分光したのち試料に照射してその透過特性から試料の成分を分析する分光分析装置において、前記回折格子として、繰り返し露光で作製した一定ピッチの回折格子であり、回折格子のピッチ寸法Pと繰り返し領域のピッチ寸法Sとの比P/Sが0.1以上である回折格子を用いたものである。   The spectroscopic analyzer of the present invention is a spectroscopic analyzer that analyzes a component of a sample from its transmission characteristics after diffusing light from a light source with a diffraction grating, and producing the diffraction grating by repeated exposure. A diffraction grating having a constant pitch, in which a ratio P / S between the pitch dimension P of the diffraction grating and the pitch dimension S of the repeating region is 0.1 or more, is used.

本発明によれば、半導体素子の微細加工技術を応用した繰り返し露光により作製した回折格子により、微細でかつ一様な回折格子が実現でき、繰り返し露光のピッチ寸法を適切な値に設定することにより異常光の波長を本来の回折光波長から遠ざけた波長にずらし、異常光の強度を大きく減らすことが可能となり、あるいは計測精度に影響を及ぼさない波長範囲外に遠ざけることが可能となる。そして、異常光の分析精度への影響を抑えた回折格子を実現することで、異常光の発生を抑えた微細でかつ一様な回折格子の作製方法、回折格子、およびそれを用いた分光分析装置を提供できる。   According to the present invention, a fine and uniform diffraction grating can be realized by a diffraction grating produced by repeated exposure applying a microfabrication technique for semiconductor elements, and the pitch dimension of repeated exposure can be set to an appropriate value. By shifting the wavelength of the extraordinary light to a wavelength away from the original diffracted light wavelength, the intensity of the extraordinary light can be greatly reduced, or it can be moved out of the wavelength range that does not affect the measurement accuracy. And by realizing a diffraction grating that suppresses the influence on the analysis accuracy of extraordinary light, a method for producing a fine and uniform diffraction grating that suppresses the generation of extraordinary light, the diffraction grating, and spectroscopic analysis using the same Equipment can be provided.

本発明の分光分析装置を示した概略図である。It is the schematic which showed the spectroscopic analyzer of this invention. 本発明の回折格子の作製方法を示す作製プロセスフロー図である。It is a manufacturing process flowchart which shows the manufacturing method of the diffraction grating of this invention. 回折格子の作製に用いた電子ビーム露光装置の概略図である。It is the schematic of the electron beam exposure apparatus used for preparation of a diffraction grating. 従来の回折格子の電子ビーム露光方法の概略図である。It is the schematic of the electron beam exposure method of the conventional diffraction grating. 従来の回折格子の分光特性図である。It is a spectral characteristic figure of the conventional diffraction grating. 従来の回折格子の分光特性図である。It is a spectral characteristic figure of the conventional diffraction grating. 従来の分光分析装置の分光測定結果を示す図である。It is a figure which shows the spectroscopic measurement result of the conventional spectroscopic analyzer. 回折格子の電子ビーム多重露光方法の概略図である。It is the schematic of the electron beam multiple exposure method of a diffraction grating. 本発明の第一の実施例における回折格子の電子ビーム露光方法の概略図である。It is the schematic of the electron beam exposure method of the diffraction grating in the 1st Example of this invention. 本発明の第一の実施例における回折格子の分光特性図である。It is a spectral characteristic figure of the diffraction grating in the 1st example of the present invention. 本発明の第一の実施例における分光分析装置の分光測定結果を示す図である。It is a figure which shows the spectroscopic measurement result of the spectroscopic analyzer in the 1st Example of this invention. 本発明の第二の実施例における回折格子の電子ビーム露光方法の概略図である。It is the schematic of the electron beam exposure method of the diffraction grating in the 2nd Example of this invention. 本発明の第三の実施例における回折格子の電子ビーム露光方法の概略図である。It is the schematic of the electron beam exposure method of the diffraction grating in the 3rd Example of this invention. 本発明の第三の実施例における回折格子の分光特性図である。It is a spectral characteristic figure of the diffraction grating in the 3rd example of the present invention. 回折格子のピッチ寸法Pと繰り返し露光周期Sとの比P/Sに対する、異常光の強度の関係を示す図である。It is a figure which shows the relationship of the intensity | strength of abnormal light with respect to ratio P / S of the pitch dimension P of a diffraction grating, and the repeated exposure period S.

以下、本発明の実施の形態について、図面を参照して、詳細に説明する。
まず、図1は、本発明に関わる分光分析装置の概略図である。
(1)光源1から発生する光15はスリット2を通過し回折格子3に入射された後、回折格子により分光される。このとき分析に必要な回折光16の波長は、回折格子3のピッチ寸法と回折格子の角度によって決定される。
(2)上記により選択された回折光16はミラー5,7,8やハーフミラー6によって2光波に分割される。
(3)上記2光波の片方は、分析試料セル10に入射され、もう一方の光は参照セル9に入射され、それぞれの光はレンズ11,12を通渇した後、それぞれの検出器13,14でその強度が測定される。
(4)上記2つの検出器で測定された強度をデータ解析ユニットで比較参照して分析試料の透過強度としてデータ解析ユニットに記録される。
(5)前記項目(1)の回折格子のピッチ寸法と回折格子の角度によって決定された回折波長と前記項目(4)の分析試料の透過強度とから各回折波長に対する分析試料の透過強度特性がデータ解析ユニットに記録される。
(6)上記データの分析により分析試料の成分が解析される。
上記のように、本装置の分光特性精度は回折格子の分光特性で決定される。すなわち、回折格子による回折光が急峻な波長特性でかつその波長周辺に異常ピークを持たない光学特性を有することが要求される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
First, FIG. 1 is a schematic diagram of a spectroscopic analysis apparatus according to the present invention.
(1) The light 15 generated from the light source 1 passes through the slit 2 and is incident on the diffraction grating 3, and then is split by the diffraction grating. At this time, the wavelength of the diffracted light 16 required for analysis is determined by the pitch dimension of the diffraction grating 3 and the angle of the diffraction grating.
(2) The diffracted light 16 selected as described above is split into two light waves by the mirrors 5, 7, 8 and the half mirror 6.
(3) One of the two light waves is incident on the analysis sample cell 10, the other light is incident on the reference cell 9, and each light is depleted through the lenses 11, 12, and then each detector 13, At 14 the intensity is measured.
(4) The intensity measured by the two detectors is compared and referenced by the data analysis unit, and recorded as the transmission intensity of the analysis sample in the data analysis unit.
(5) From the diffraction wavelength determined by the pitch size of the diffraction grating of the item (1) and the angle of the diffraction grating and the transmission intensity of the analysis sample of the item (4), the transmission intensity characteristic of the analysis sample for each diffraction wavelength is Recorded in the data analysis unit.
(6) The components of the analysis sample are analyzed by analyzing the above data.
As described above, the spectral characteristic accuracy of the present apparatus is determined by the spectral characteristic of the diffraction grating. That is, the diffracted light from the diffraction grating is required to have a steep wavelength characteristic and an optical characteristic that does not have an abnormal peak around the wavelength.

回折格子は図2に示すように、以下のプロセスで作製する。
(1)シリコン基板17上にレジスト18を塗布し、(2)電子ビームにて一定のピッチ寸法のラインアンドスペースパターンを露光したのちレジストを現像する。次に、(3)このレジストをマスクにドライエッチングにより一定のピッチ寸法のラインアンドスペースパターンをシリコン基板に転写する。その後、(4)レジストを除去して、(5)表面にAlなどの金属薄膜19を蒸着して回折格子が完成する。この回折格子を直接図1の分光分析装置に装着することも可能であるが、この回折格子をモールドとしてレプリカを作製して分光分析装置に装着した場合でも同じ光学特性が得られる。
次に、本発明の特徴である繰り返し露光法による電子ビーム露光方法についてピッチ寸法0.833μm、50mm角の回折格子の露光を例に従来の露光法を図3および図4により説明する。まず、電子銃20から発生した電子ビーム21は第1マスク22を通過した後、転写レンズ23,25により第2マスク27に照射されパターン寸法制御系36および可変成形偏向器24の制御により開口26で所望のビーム寸法に成形された後、縮小レンズ28,29および対物レンズ32,33により縮小される。この電子ビームを小角偏向制御系37と小角偏向器30、および大角偏向制御系38と大角偏向器31を組み合わせて基板34の所望の位置に照射させる。小角偏向器30と大角偏向器31の最大偏向領域はそれぞれ60μm角と1mm角である。上記偏向器の領域外の位置にはステージ移動制御系39とステージ35による移動を組み合わせることにより任意の領域の露光が可能である。ピッチ寸法0.833μm、50mm角の回折格子の露光にあたり、従来は小角偏向器と大角偏向器の最大偏向領域は大きく設定するほうが偏向およびステージを用いた移動回数が少なくなり、その結果露光時間が短くなるので、図4に示すように40μm角40内においてピッチ寸法0.833μmのラインアンドスペースパターン42を小角偏向器30にてビーム位置を制御して露光し、それを超える領域には大角偏向器により小角偏向中心を40μm横にずらして同様に40μm角41内においてピッチ寸法0.833μmのラインアンドスペースパターンを小角偏向器にてビーム位置を制御して露光する。これを縦横に繰り返し大角偏向領域最大の1mm角まで露光した後、ステージを横に1mm移動して同様に小角および大角偏向により隣接の1mm角を露光し、これを縦横に繰り返すことにより、ピッチ寸法0.833μmのラインアンドスペースパターンを50mm角全面に露光する。すなわち、縦横方向に40μm角をそれぞれ1250回繰り返し露光により50mm角全面に露光したことになる。露光した基板は図2の作製プロセスに従って、ピッチ寸法0.833μmのラインアンドスペースパターンを基板に転写し表面にAlを蒸着して回折格子が完成する。
As shown in FIG. 2, the diffraction grating is manufactured by the following process.
(1) A resist 18 is applied on the silicon substrate 17, and (2) a line and space pattern having a constant pitch dimension is exposed with an electron beam, and then the resist is developed. Next, (3) a line and space pattern having a constant pitch dimension is transferred to the silicon substrate by dry etching using this resist as a mask. Thereafter, (4) the resist is removed, and (5) a metal thin film 19 such as Al is deposited on the surface to complete the diffraction grating. Although it is possible to directly attach this diffraction grating to the spectroscopic analysis apparatus of FIG. 1, the same optical characteristics can be obtained even when a replica is manufactured using this diffraction grating as a mold and is attached to the spectroscopic analysis apparatus.
Next, the conventional exposure method will be described with reference to FIGS. 3 and 4 by taking the exposure of a diffraction grating having a pitch dimension of 0.833 μm and a 50 mm square as an example of the electron beam exposure method by the repeated exposure method which is a feature of the present invention. First, the electron beam 21 generated from the electron gun 20 passes through the first mask 22 and is then irradiated onto the second mask 27 by the transfer lenses 23 and 25, and the aperture 26 is controlled by the pattern dimension control system 36 and the variable shaping deflector 24. After the beam is formed into a desired beam size, it is reduced by the reduction lenses 28 and 29 and the objective lenses 32 and 33. The electron beam is irradiated to a desired position on the substrate 34 by combining the small angle deflection control system 37 and the small angle deflector 30, and the large angle deflection control system 38 and the large angle deflector 31. The maximum deflection areas of the small angle deflector 30 and the large angle deflector 31 are 60 μm square and 1 mm square, respectively. By combining the movement of the stage movement control system 39 and the stage 35 at a position outside the area of the deflector, exposure of an arbitrary area is possible. For exposure of diffraction gratings with a pitch size of 0.833μm and a 50mm square, the maximum deflection area of the small-angle deflector and large-angle deflector is conventionally set to be large, and the number of times of movement using the deflection and the stage is reduced. As a result, the exposure time is shortened. Therefore, as shown in FIG. 4, a line and space pattern 42 having a pitch size of 0.833 μm is exposed within a 40 μm square 40 by controlling the beam position with a small angle deflector 30, and a region beyond that is exposed by a large angle deflector. Similarly, the center of the small-angle deflection is shifted by 40 μm, and a line-and-space pattern with a pitch size of 0.833 μm is exposed within the 40-μm square 41 by controlling the beam position with the small-angle deflector. After repeating this process vertically and horizontally to the maximum 1 mm square in the large angle deflection area, the stage is moved 1 mm horizontally, and the adjacent 1 mm square is similarly exposed by small and large angle deflections. A 0.833 μm line and space pattern is exposed on the entire surface of 50 mm square. In other words, the entire surface of 50 mm square was exposed by repeated exposure of 40 μm square in the vertical and horizontal directions 1250 times each. The exposed substrate is transferred with a line and space pattern having a pitch size of 0.833 μm to the substrate according to the manufacturing process of FIG.

この回折格子を分光計に搭載してその分光特性を調べたところ図5のような分光特性が得られた。横軸は分光波長であり、縦軸は分光強度を示す。回折波長200nm近傍にピッチ寸法0.833μmのラインアンドスペースパターンからの回折光100の中心にその周辺に(1)式から導出される小角偏向の40μm周期の繰り返し露光を反映した異常ピーク101が回折波長の0.02倍(0.833/40 = 0.02)の周期で出現した。本来の回折波長200nmのピークに対し波長幅±10nmの範囲に10本の異常ピークが含まれ異常ピークの最大強度も回折光の90%以上であった。このためこの回折格子を図1の分光分析装置に搭載し図1の試料セルに試料を装着して成分分析を行ったところ図7の吸収スペクトルが得られた。吸収スペクトルピークは観測されているが詳細なスペクトルピークの分離が十分にできず試料の成分分析ができなかった。   When this diffraction grating was mounted on a spectrometer and its spectral characteristics were examined, the spectral characteristics shown in FIG. 5 were obtained. The horizontal axis represents the spectral wavelength, and the vertical axis represents the spectral intensity. An anomalous peak 101 reflecting the repeated exposure of the small-angle deflection derived from the equation (1) at the center of the diffracted light 100 from the line-and-space pattern with a pitch size of 0.833 μm in the vicinity of the diffraction wavelength of 200 nm reflects the 40 μm period repeated diffraction wavelength. Appeared at a cycle of 0.02 times (0.833 / 40 = 0.02). Ten abnormal peaks were included in the wavelength range of ± 10 nm with respect to the original peak with a diffraction wavelength of 200 nm, and the maximum intensity of the abnormal peak was 90% or more of the diffracted light. Therefore, when this diffraction grating was mounted on the spectroscopic analyzer shown in FIG. 1 and a sample was mounted on the sample cell shown in FIG. 1, component analysis was performed, and the absorption spectrum shown in FIG. 7 was obtained. Although the absorption spectrum peak was observed, the detailed spectrum peak could not be sufficiently separated, and the component analysis of the sample could not be performed.

そこで、従来の方法として電子ビーム露光において露光を図8のように多重露光を行った。すなわち1回あたりの照射量を1/2に設定して2回に分け2回目の小角偏向位置44を1回目の露光の小角偏向位置43に対して20μm横にずらして繰り返し露光を行った。この露光により作製した回折格子をこの回折格子を分光計に搭載してその分光特性を調べたところ図6のような分光特性が得られた。横軸は分光波長であり、縦軸は分光強度を示す。図5と同様に回折波長200nm近傍にピッチ寸法0.833μmのラインアンドスペースパターンからの回折光100を中心にその周辺に(1)式から導出される小角偏向の40μm周期の繰り返し露光を反映した異常ピーク101が回折波長の0.02倍(0.833/40 = 0.02)の周期で出現したが、異常ピークの最大強度は回折光の80%になった。このためこの回折格子を図1の分光分析装置に搭載し図1の試料セルに試料を装着して成分分析を行ったところ図7と同様に吸収スペクトルにおいてスペクトルピークの分離が十分にできず試料の成分分析ができなかった。   Therefore, as a conventional method, multiple exposure was performed in electron beam exposure as shown in FIG. That is, the irradiation amount per time was set to 1/2 and divided into two times, and the second small-angle deflection position 44 was shifted 20 μm laterally with respect to the small-angle deflection position 43 of the first exposure, and repeated exposure was performed. When the diffraction grating produced by this exposure was mounted on a spectrometer and its spectral characteristics were examined, the spectral characteristics shown in FIG. 6 were obtained. The horizontal axis represents the spectral wavelength, and the vertical axis represents the spectral intensity. Similar to FIG. 5, anomaly reflecting 40 μm period repeated exposure of small angle deflection derived from equation (1) around the diffraction light 100 from a line and space pattern with a pitch of 0.833 μm near the diffraction wavelength of 200 nm. Peak 101 appeared at a period of 0.02 times the diffraction wavelength (0.833 / 40 = 0.02), but the maximum intensity of the abnormal peak was 80% of the diffracted light. For this reason, this diffraction grating was mounted on the spectroscopic analyzer shown in FIG. 1 and a sample was mounted on the sample cell shown in FIG. 1, and component analysis was performed. Could not be analyzed.

次に、本発明の実施例1では、電子ビーム露光において露光を図9のように露光すべきピッチ寸法(P)0.833μmのラインアンドスペースパターン47と小角偏向の繰り返し露光周期(S)の関係において、(1)式の露光すべきピッチ寸法と小角偏向の繰り返し露光周期と比が0.1以上になるように設定して露光を行った。すなわち、ピッチ寸法0.833μm、50mm角の回折格子の露光にあたり、図9に示すように5μm角45内のピッチ寸法0.833μmのラインアンドスペースパターン47を小角偏向器30にてビーム位置を制御して露光し、それを超える領域には大角偏向器31により小角偏向中心を5μm横にずらして同様に5μm角46をピッチ寸法0.833μmのラインアンドスペースパターンを小角偏向器30にてビーム位置を制御して露光する。これを縦横に繰り返し大角偏向領域最大の1mm角まで露光した後、ステージ35を横に1mm移動して同様に小角および大角偏向により隣接の1mm角を露光し、これ縦横に繰り返すことにより、ピッチ寸法0.833μmのラインアンドスペースパターンを50mm角全面に露光する。すなわち、縦横方向に5μm角をそれぞれ10000回繰り返し露光により50mm角全面に露光したことになる。この露光により作製した回折格子を分光計に搭載してその分光特性を調べたところ図10のような分光特性が得られた。横軸は分光波長であり、縦軸は分光強度を示す。回折波長200nm近傍に異常ピークが見られなかった。(1)式から導出される小角偏向の5μm周期の繰り返し露光を反映した異常ピークは回折波長の0.17倍(0.833/5 = 0.17)の230nm近傍に出現するはずであるが、回折波長200nmから離れているために異常ピークの最大強度は回折光の10−5以下になった。このため本発明の回折格子を図1の分光分析装置に搭載し図1の試料セルに試料を装着して成分分析を行ったところ、図11に示すように吸収スペクトルにおいてすべての波長領域で明確なスペクトルピークの分離ができ試料の高精度成分分析が可能となった。 Next, in Example 1 of the present invention, the relationship between the line-and-space pattern 47 having a pitch dimension (P) of 0.833 μm and the repeated exposure cycle (S) of small-angle deflection in the electron beam exposure as shown in FIG. The exposure was performed by setting the ratio of the pitch size to be exposed and the repeated exposure cycle of small-angle deflection to 0.1 or more in equation (1). That is, when exposing a diffraction grating having a pitch dimension of 0.833 μm and a 50 mm square, a line-and-space pattern 47 having a pitch dimension of 0.833 μm within a 5 μm square 45 is controlled by a small-angle deflector 30 as shown in FIG. After exposure, the large-angle deflector 31 shifts the small-angle deflection center by 5 μm to the area beyond it, and similarly controls the beam position of the line-and-space pattern with a pitch dimension of 0.833 μm by the small-angle deflector 30. To expose. After repeating this vertically and horizontally to the maximum 1 mm square of the large angle deflection area, the stage 35 is moved 1 mm horizontally and the adjacent 1 mm square is similarly exposed by small and large angle deflections. A 0.833 μm line and space pattern is exposed on the entire surface of 50 mm square. In other words, the entire surface of 50 mm square was exposed by repeated exposure of 5 μm square in the vertical and horizontal directions 10,000 times each. When the diffraction grating produced by this exposure was mounted on a spectrometer and the spectral characteristics were examined, the spectral characteristics shown in FIG. 10 were obtained. The horizontal axis represents the spectral wavelength, and the vertical axis represents the spectral intensity. No abnormal peak was observed near the diffraction wavelength of 200 nm. Anomalous peak reflecting repeated exposure of 5 μm period of small angle deflection derived from equation (1) should appear near 230 nm, 0.17 times the diffraction wavelength (0.833 / 5 = 0.17), but far from the diffraction wavelength of 200 nm Therefore, the maximum intensity of the abnormal peak was 10 −5 or less of the diffracted light. Therefore, when the diffraction grating of the present invention is mounted on the spectroscopic analysis apparatus of FIG. 1 and a sample is mounted on the sample cell of FIG. 1, component analysis is performed. As shown in FIG. 11, the absorption spectrum clearly shows all wavelength regions. The spectral peaks can be separated and the sample can be analyzed with high accuracy.

次に、電子ビーム露光において上記と同様ピッチ寸法0.833μmのラインアンドスペースパターン50mm角の回折格子の露光を例に、本発明の実施例2の露光法を説明する。図12のように露光すべきピッチ寸法(P)0.833μmのラインアンドスペースパターン50と小角偏向の繰り返し露光周期(S)の関係において、(1)式の露光すべきピッチ寸法と回折格子の格子直線に垂直な方向の小角偏向の繰り返し露光周期との比が0.1以上になるように設定して露光を行った。すなわちピッチ寸法0.833μm、50mm角の回折格子の露光にあたり、図12に示すように横5μm×縦20μm角48内のピッチ寸法0.833μmのラインアンドスペースパターン50を小角偏向器30にてビーム位置を制御して露光し、それを超える領域には大角偏向器31により回折格子の格子直線に垂直な方向に小角偏向中心を5μm横にずらして同様に横5μm×縦20μm角49をピッチ寸法0.833μmのラインアンドスペースパターンを小角偏向器30にてビーム位置を制御して露光する。同様に縦方向には20μm縦にずらして繰り返し大角偏向領域最大の1mm角まで露光した後、ステージ35を横に1mm移動して同様に小角および大角偏向により隣接の1mm角を露光し、これ縦横に繰り返すことにより、ピッチ寸法0.833μmのラインアンドスペースパターンを50mm角全面に露光する。すなわち、横方向に5μmピッチで10000回、縦方向に20μmピッチで2500回繰り返し露光により50mm角全面に露光したことになる。
この露光により作製した回折格子を分光計に搭載してその分光特性を調べたところ図10と同じ分光特性が得られた。横軸は分光波長であり、縦軸は分光強度を示す。回折波長200nm近傍に異常ピークが見られなかった。実施例1で述べた場合と同様に回折格子の格子直線に垂直な方向の小角偏向の5μm周期の繰り返し露光を反映した異常ピークは回折波長の0.17倍(0.833/5 = 0.17)の230nm近傍に出現するはずであるが、回折波長200nmから離れているために異常ピークの最大強度は回折光の10−5以下になった。このためこの回折格子を図1の分光分析装置に搭載し図1の試料セルに試料を装着して成分分析を行ったところ図11に示すように吸収スペクトルにおいてすべての波長領域で明確なスペクトルピークの分離ができ試料の高精度成分分析が可能となった。
上記のように回折現象に影響のない縦方向の繰り返しピッチを20μmピッチとすることで実施例1に比べて光学特性には変化を与えずに縦方向に20μmピッチで2500回繰り返し露光と、実施例1に比べて四分の一の露光時間で回折格子を作製できた。つまり、露光の単位となるラインアンドスペースパターン50の寸法を、回折格子の格子直線に垂直な方向の長さに比べて、回折格子の格子直線方向の長さを大きくすることにより、露光時間を短くすることができる。
Next, the exposure method according to the second embodiment of the present invention will be described by taking exposure of a 50 mm square line-and-space pattern having a pitch size of 0.833 μm as an example in the electron beam exposure. As shown in FIG. 12, in the relationship between the line-and-space pattern 50 having a pitch dimension (P) of 0.833 μm to be exposed and the repeated exposure period (S) of small angle deflection, the pitch dimension to be exposed and the grating of the diffraction grating in the equation (1) The exposure was performed by setting the ratio of the small-angle deflection repeated exposure cycle in the direction perpendicular to the straight line to 0.1 or more. That is, when exposing a diffraction grating having a pitch size of 0.833 μm and a 50 mm square, a line and space pattern 50 having a pitch size of 0.833 μm within a horizontal 5 μm × vertical 20 μm square 48 as shown in FIG. Exposure is controlled and the area beyond that is shifted by 5 μm laterally in the direction perpendicular to the grating line of the diffraction grating by the large-angle deflector 31, and similarly 5 μm wide × 20 μm long 49 squares with a pitch size of 0.833 μm The line and space pattern is exposed by controlling the beam position with the small-angle deflector 30. Similarly, the vertical direction is shifted 20 μm vertically and repeatedly exposed to the maximum 1 mm square of the large angle deflection area, then the stage 35 is moved 1 mm horizontally to similarly expose the adjacent 1 mm square by small angle and large angle deflection. By repeating the above, a line and space pattern having a pitch size of 0.833 μm is exposed on the entire surface of 50 mm square. That is, the entire surface of 50 mm square was exposed by repeated exposure at a pitch of 5 μm in the horizontal direction and 10,000 times at a pitch of 2500 μm in the vertical direction at a pitch of 20 μm.
When the diffraction grating produced by this exposure was mounted on a spectrometer and its spectral characteristics were examined, the same spectral characteristics as in FIG. 10 were obtained. The horizontal axis represents the spectral wavelength, and the vertical axis represents the spectral intensity. No abnormal peak was observed near the diffraction wavelength of 200 nm. Similar to the case described in Example 1, the abnormal peak reflecting the repeated exposure of 5 μm period of small-angle deflection in the direction perpendicular to the grating line of the diffraction grating is around 230 nm, which is 0.17 times the diffraction wavelength (0.833 / 5 = 0.17). Although it should appear, since it is away from the diffraction wavelength of 200 nm, the maximum intensity of the abnormal peak is 10 −5 or less of the diffracted light. For this reason, this diffraction grating was mounted on the spectroscopic analyzer shown in FIG. 1 and a sample was mounted on the sample cell shown in FIG. 1, and component analysis was performed. As shown in FIG. The sample can be separated and the high-accuracy component analysis of the sample is possible.
As described above, the repetition pitch in the vertical direction that does not affect the diffraction phenomenon is set to 20 μm, so that the optical characteristics are not changed compared to Example 1, and the exposure is repeated 2500 times at a pitch of 20 μm in the vertical direction. Compared to Example 1, a diffraction grating could be fabricated with an exposure time of one quarter. In other words, the exposure time can be reduced by increasing the length of the diffraction grating in the grating linear direction compared to the length of the line and space pattern 50 as a unit of exposure in the direction perpendicular to the diffraction grating grating straight line. Can be shortened.

同様に、電子ビーム露光においてピッチ寸法0.555μmのラインアンドスペースパターン50mm角の回折格子の露光を例に、本発明の実施例3の露光法を説明する。ピッチ寸法と小角偏向の繰り返し露光周期の関係において、(1)式の露光すべきピッチ寸法(P)と小角偏向の繰り返し露光周期(S)との比が0.1以上になるように設定して露光を行った。すなわち、ピッチ寸法0.555μm、50mm角の回折格子の露光にあたり、図13に示すように5μm角51内のピッチ寸法0.555μmのラインアンドスペースパターン53を小角偏向器30にてビーム位置を制御して露光し、それを超える領域には大角偏向器31により小角偏向中心を5μm横にずらして同様に5μm角52をピッチ寸法0.555μmのラインアンドスペースパターンを小角偏向器30にてビーム位置を制御して露光する。これを縦横に繰り返し大角偏向領域最大の1mm角まで露光した後、ステージ35を横に1mm移動して同様に小角および大角偏向により隣接の1mm角を露光し、これ縦横に繰り返すことにより、ピッチ寸法0.555μmのラインアンドスペースパターンを50mm角全面に露光する。すなわち、縦横方向に5μm角をそれぞれ10000回繰り返し露光により50mm角全面に露光したことになる。この露光により作製した回折格子を分光計に搭載してその分光特性を調べたところ図14に示すように、回折波長200nm近傍に異常ピークが見られなかった。(1)式から導出される小角偏向の5μm周期の繰り返し露光を反映した異常ピークは回折波長の0.11倍(0.555/5 = 0.11)の230nm近傍に出現するはずであるが、回折波長200nmから離れているために異常ピークの最大強度は回折光の10−5以下になった。
さらに、電子ビーム露光において露光を図8と同様に、以下のように多重露光を行った。すなわち、1回あたりの照射量を1/2に設定して2回に分け2回目の小角偏向位置を1回目の露光の小角偏向位置に対して横に2.5μm横にずらして露光を行った。この露光により作製した回折格子を分光計に搭載してその分光特性を調べたところ、異常ピークの最大強度はさらに改善され回折光の10−6以下になった。
Similarly, the exposure method according to the third embodiment of the present invention will be described by taking exposure of a diffraction grating having a 50 mm square line-and-space pattern with a pitch size of 0.555 μm as an example. In the relationship between the pitch dimension and the repeated exposure cycle of small angle deflection, exposure is performed such that the ratio of the pitch size (P) to be exposed and the repeated exposure cycle (S) of small angle deflection in equation (1) is 0.1 or more. Went. That is, when exposing a diffraction grating having a pitch size of 0.555 μm and a 50 mm square, a line and space pattern 53 having a pitch size of 0.555 μm in a 5 μm square 51 is controlled by a small angle deflector 30 as shown in FIG. After exposure, the large-angle deflector 31 shifts the small-angle deflection center by 5 μm laterally, and similarly controls the beam position of the 5 μm-square 52 and line-and-space pattern with a pitch size of 0.555 μm by the small-angle deflector 30. To expose. After repeating this vertically and horizontally to the maximum 1 mm square of the large angle deflection area, the stage 35 is moved 1 mm horizontally and the adjacent 1 mm square is similarly exposed by small and large angle deflections. A line and space pattern of 0.555 μm is exposed on the entire surface of 50 mm square. In other words, the entire surface of 50 mm square was exposed by repeated exposure of 5 μm square in the vertical and horizontal directions 10,000 times each. The diffraction grating produced by this exposure was mounted on a spectrometer and the spectral characteristics were examined. As shown in FIG. 14, no abnormal peak was observed near the diffraction wavelength of 200 nm. Anomalous peak reflecting repeated exposure of 5μm period of small angle deflection derived from equation (1) should appear near 230nm, 0.11 times the diffraction wavelength (0.555 / 5 = 0.11), but far from the diffraction wavelength 200nm Therefore, the maximum intensity of the abnormal peak was 10 −5 or less of the diffracted light.
Further, in the electron beam exposure, multiple exposure was performed as follows in the same manner as in FIG. In other words, exposure was performed by setting the irradiation amount per time to 1/2 and dividing the second small angle deflection position by 2.5 μm horizontally with respect to the small angle deflection position of the first exposure. . When the diffraction grating produced by this exposure was mounted on a spectrometer and its spectral characteristics were examined, the maximum intensity of the abnormal peak was further improved to 10 −6 or less of the diffracted light.

本発明の実施例によれば、半導体微細加工に用いられる電子ビーム露光による繰り返し露光を用いた回折格子の作製により、ピッチ寸法1μm以下のラインアンドスペースパターンを高精度に作製することが可能であり、繰り返し露光で生じる回折光の異常ピークの発生を抑制し、急峻で異常ピークに少ない分光が可能な回折格子が実現できるので、この回折格子で用いることで高精度な分光分析を行うことができる。さらに、多重露光を併用することで異常ピークの強度を減少し、より異常ピークの影響の少ない分光が可能な回折格子が実現できる。   According to the embodiment of the present invention, it is possible to produce a line and space pattern with a pitch dimension of 1 μm or less with high accuracy by producing a diffraction grating using repetitive exposure by electron beam exposure used for semiconductor microfabrication. Since it is possible to realize a diffraction grating that suppresses the occurrence of an abnormal peak of diffracted light that occurs due to repeated exposure and is capable of performing spectroscopic analysis with a steep and few abnormal peak, high-accuracy spectroscopic analysis can be performed by using this diffraction grating. . Furthermore, by using multiple exposure in combination, the intensity of the abnormal peak can be reduced, and a diffraction grating capable of performing spectroscopy with less influence of the abnormal peak can be realized.

なお、本発明の実施例による回折格子を、図1に示した分光分析装置に直接搭載させたが、本発明による回折格子を母材にそのレプリカを作製してもその光学特性は変わらず、本発明による回折格子を母材にしたレプリカを分光分析装置に搭載させても上記実施例と同様の効果があることは言うまでも無い。   Although the diffraction grating according to the embodiment of the present invention was directly mounted on the spectroscopic analysis apparatus shown in FIG. 1, even if the replica was made using the diffraction grating according to the present invention as a base material, its optical characteristics did not change, It goes without saying that the same effect as in the above embodiment can be obtained even if a replica using the diffraction grating according to the present invention as a base material is mounted on the spectroscopic analyzer.

上記実施例を含めて、露光すべき回折格子のピッチ寸法(P)と小角偏向の繰り返し露光周期(S)との比P/Sに対する、異常ピークの対回折光の強度比を求めたところ、図15のような結果が得られた。露光すべき回折格子のピッチ寸法(P)と小角偏向の繰り返し露光周期(S)との比P/Sが大きくなるにつれて異常ピークの強度は減少していくが、異常光の強度を本来の分析に用いる回折光の強度に比べて10−5以下に抑えるためには、P/Sを0.1以上とする必要がある。 Including the above examples, the ratio of the intensity of the diffracted light to the abnormal peak with respect to the ratio P / S of the pitch dimension (P) of the diffraction grating to be exposed and the repeated exposure period (S) of small-angle deflection was determined. The result as shown in FIG. 15 was obtained. As the ratio P / S between the pitch dimension (P) of the diffraction grating to be exposed and the repeated exposure period (S) of small-angle deflection increases, the intensity of the abnormal peak decreases, but the intensity of the abnormal light is originally analyzed. In order to suppress the intensity of diffracted light used in the above to 10 −5 or less, P / S needs to be 0.1 or more.

本発明によれば、(1)式において繰り返し露光のピッチ寸法Sの値を調整することで異常光の出現波長を制御することが可能である。即ち、本発明の回折格子およびそれを用いた分光分析装置は、半導体素子の微細加工技術を応用した電子ビーム露光装置による繰り返し露光による回折格子の作製において、繰り返し露光のピッチ寸法である電子ビームの偏向領域を適切な値に設定することにより、異常光の波長を本来の回折光波長から遠ざけた波長にずらして異常光の分析精度への影響を抑えた回折格子の作製が可能となる。   According to the present invention, it is possible to control the appearance wavelength of abnormal light by adjusting the value of the pitch dimension S for repeated exposure in the equation (1). That is, the diffraction grating of the present invention and the spectroscopic analysis apparatus using the diffraction grating of the present invention can produce an electron beam having a pitch dimension of repeated exposure in the production of a diffraction grating by repeated exposure by an electron beam exposure apparatus applying a microfabrication technique for semiconductor elements. By setting the deflection region to an appropriate value, it is possible to manufacture a diffraction grating that suppresses the influence on the analysis accuracy of the extraordinary light by shifting the wavelength of the extraordinary light to a wavelength far from the original diffraction light wavelength.

また、この回折格子の作製に当たり分析に必要な回折格子のピッチ寸法などからを予め電子ビームの偏向領域を適切な値に設定することにより所望の分光分析装置に最適な回折格子の作製ができる。   In addition, by setting the deflection region of the electron beam to an appropriate value in advance from the pitch size of the diffraction grating necessary for the analysis in manufacturing the diffraction grating, it is possible to manufacture the optimum diffraction grating for a desired spectroscopic analyzer.

1…光源、2,4…スリット、3…回折格子、5,7,8…ミラー、6…ハーフミラー、9…参照セル、10…試料セル、11,12…レンズ、13,14…検出器、15…光、16…回折光、17…シリコン基板、18…レジスト、19…金属膜、20…電子銃、21…電子ビーム、22…第1マスク、23,25…転写レンズ、24…可変成形偏向器、26…開口、27…第2マスク、28,29…縮小レンズ、30…小角偏向器、31…大角偏向器、32,33…対物レンズ、34…基板、35…ステージ、36…パターン寸法制御系、37…小角偏向制御系、38…大角偏向制御系、39…ステージ移動制御系、40,45,48…小角偏向領域、41,46,49…隣接小角偏向領域、42,47,50,53,56…回折格子ラインアンドスペースパターン、43,51…露光1回目の小角偏向領域、44,52…露光2回目の小角偏向領域、100…回折光、101…異常光。   DESCRIPTION OF SYMBOLS 1 ... Light source, 2, 4 ... Slit, 3 ... Diffraction grating, 5, 7, 8 ... Mirror, 6 ... Half mirror, 9 ... Reference cell, 10 ... Sample cell, 11, 12 ... Lens, 13, 14 ... Detector 15 ... light, 16 ... diffracted light, 17 ... silicon substrate, 18 ... resist, 19 ... metal film, 20 ... electron gun, 21 ... electron beam, 22 ... first mask, 23,25 ... transfer lens, 24 ... variable Molding deflector, 26 ... aperture, 27 ... second mask, 28, 29 ... reduction lens, 30 ... small angle deflector, 31 ... large angle deflector, 32, 33 ... objective lens, 34 ... substrate, 35 ... stage, 36 ... Pattern dimension control system, 37 ... small angle deflection control system, 38 ... large angle deflection control system, 39 ... stage movement control system, 40, 45, 48 ... small angle deflection area, 41, 46, 49 ... adjacent small angle deflection area, 42, 47 , 50, 53, 56 ... diffraction grating line N and space pattern, 43, 51... First exposure small angle deflection area, 44, 52... Exposure second small angle deflection area, 100... Diffracted light, 101.

Claims (11)

一定ピッチの回折格子を繰り返し露光により作製する方法において、
回折格子のピッチ寸法Pと繰り返し露光の繰り返し領域のピッチ寸法Sとの比P/Sが0.1以上となるように設定して、繰り返し露光を行うことを特徴とする回折格子の作製方法。
In a method of producing a constant pitch diffraction grating by repeated exposure,
A method for producing a diffraction grating, characterized in that a repeated exposure is performed by setting a ratio P / S between a pitch dimension P of the diffraction grating and a pitch dimension S of a repeated exposure repeated area to be 0.1 or more.
請求項1記載の回折格子の作製方法において、
回折格子のピッチ寸法が1μm以下であり、繰り返し領域のピッチ寸法が10μm以下である回折格子の作製方法。
In the manufacturing method of the diffraction grating of Claim 1,
A method for manufacturing a diffraction grating, wherein the pitch dimension of the diffraction grating is 1 μm or less and the pitch dimension of the repeating region is 10 μm or less.
一定ピッチの回折格子を繰り返し露光により作製する方法において、
回折格子のピッチ寸法Pと繰り返し露光の繰り返し領域のピッチ寸法Sとの比P/Sが0.1以上となるように設定し、かつ、繰り返し露光の境界位置を変えた多重露光を併用して、繰り返し露光を行うことを特徴とする回折格子の作製方法。
In a method of producing a constant pitch diffraction grating by repeated exposure,
The ratio P / S of the pitch dimension P of the diffraction grating and the pitch dimension S of the repeated exposure repeated area is set to be 0.1 or more, and multiple exposures with different repeated exposure boundary positions are used in combination. A method for producing a diffraction grating, wherein repeated exposure is performed.
分光分析に使用する一定ピッチの回折格子を繰り返し露光により作製する方法において、
繰り返し領域の繰り返しピッチ寸法に起因する分光ピーク波長と分光分析波長の差の絶対値が分光分析波長の10分の1以上となるように繰り返し領域の繰り返しピッチ寸法を設定して、繰り返し露光を行うことを特徴とする回折格子の作製方法。
In a method of producing a constant pitch diffraction grating used for spectroscopic analysis by repeated exposure,
Repeat exposure is performed by setting the repeat pitch dimension of the repeat area so that the absolute value of the difference between the spectral peak wavelength and the spectroscopic analysis wavelength resulting from the repeat pitch dimension of the repeat area is 1/10 or more of the spectroscopic analysis wavelength. A method for manufacturing a diffraction grating.
請求項1から4の何れか1つに記載の回折格子の作製方法において、
上記繰り返し露光が電子ビーム露光法により行われる回折格子の作製方法。
In the manufacturing method of the diffraction grating as described in any one of Claim 1 to 4,
A method for producing a diffraction grating, wherein the repeated exposure is performed by an electron beam exposure method.
一定ピッチの回折格子をラインアンドスペースパターン単位で繰り返し露光により作製する方法において、
露光すべき回折格子のピッチ寸法Pとラインアンドスペースパターンを形成する電子ビームの小角偏向の繰り返し露光周期Sとの比P/Sが0.1以上となるように設定して、小角偏向を繰り返して電子ビーム露光を行うことを特徴とする回折格子の作製方法。
In a method of repeatedly producing a diffraction grating with a constant pitch by line and space pattern unit,
Repeated small-angle deflection by setting the ratio P / S between the pitch P of the diffraction grating to be exposed and the small-angle deflection repetition exposure period S of the electron beam forming the line and space pattern to be 0.1 or more. A method for manufacturing a diffraction grating, wherein electron beam exposure is performed.
請求項6記載の回折格子の作製方法において、
露光の単位となる前記ラインアンドスペースパターンを、回折格子の格子直線に垂直な方向の長さに比べて、回折格子の格子直線方向の長さを大きくしたことを特徴とする回折格子の作製方法。
In the manufacturing method of the diffraction grating according to claim 6,
A method for producing a diffraction grating, wherein the line-and-space pattern serving as an exposure unit has a length in the grating linear direction of the diffraction grating larger than a length in a direction perpendicular to the grating straight line of the diffraction grating .
繰り返し露光により作製した一定ピッチの回折格子において、
回折格子のピッチ寸法Pと繰り返し領域のピッチ寸法Sとの比P/Sが0.1以上であることを特徴とする回折格子。
In a constant pitch diffraction grating produced by repeated exposure,
A diffraction grating, wherein the ratio P / S of the pitch dimension P of the diffraction grating and the pitch dimension S of the repeating region is 0.1 or more.
請求項8記載の回折格子において、
回折格子のピッチ寸法は1μm以下であり、繰り返し領域のピッチ寸法が10μm以下である回折格子。
The diffraction grating according to claim 8, wherein
A diffraction grating in which the pitch dimension of the diffraction grating is 1 μm or less and the pitch dimension of the repeating region is 10 μm or less.
光源からの光を回折格子で分光したのち試料に照射してその透過特性から試料の成分を分析する分光分析装置において、
前記回折格子として、繰り返し露光で作製した一定ピッチの回折格子であり、回折格子のピッチ寸法Pと繰り返し領域のピッチ寸法Sとの比P/Sが0.1以上である回折格子を用いたことを特徴とする分光分析装置。
In a spectroscopic analyzer that analyzes the components of a sample from its transmission characteristics by irradiating the sample with light from a light source and then diffracting it with a diffraction grating.
As the diffraction grating, a diffraction grating having a constant pitch produced by repeated exposure and having a ratio P / S of the pitch dimension P of the diffraction grating to the pitch dimension S of the repeating region of 0.1 or more was used. A spectroscopic analyzer characterized by.
請求項10記載の分光分析装置において、
前記回折格子のピッチ寸法は1μm以下であり、前記繰り返し領域のピッチ寸法が10μm以下である回折格子を用いたことを特徴とする分光分析装置。
The spectroscopic analyzer according to claim 10.
A spectroscopic analyzer using a diffraction grating having a pitch dimension of 1 μm or less and a pitch dimension of the repeating region of 10 μm or less.
JP2009143071A 2009-06-16 2009-06-16 Method of manufacturing diffraction grating, diffraction grating, and spectral analysis device using the same Pending JP2011002487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009143071A JP2011002487A (en) 2009-06-16 2009-06-16 Method of manufacturing diffraction grating, diffraction grating, and spectral analysis device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009143071A JP2011002487A (en) 2009-06-16 2009-06-16 Method of manufacturing diffraction grating, diffraction grating, and spectral analysis device using the same

Publications (1)

Publication Number Publication Date
JP2011002487A true JP2011002487A (en) 2011-01-06

Family

ID=43560514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009143071A Pending JP2011002487A (en) 2009-06-16 2009-06-16 Method of manufacturing diffraction grating, diffraction grating, and spectral analysis device using the same

Country Status (1)

Country Link
JP (1) JP2011002487A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021038919A1 (en) * 2019-08-29 2021-03-04 株式会社日立ハイテク Diffraction grating, manufacturing method for diffraction grating, and photomask
CN112735963A (en) * 2020-12-22 2021-04-30 长江存储科技有限责任公司 Method and apparatus for analyzing semiconductor structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021038919A1 (en) * 2019-08-29 2021-03-04 株式会社日立ハイテク Diffraction grating, manufacturing method for diffraction grating, and photomask
JPWO2021038919A1 (en) * 2019-08-29 2021-03-04
CN114174872A (en) * 2019-08-29 2022-03-11 株式会社日立高新技术 Diffraction grating, method for manufacturing diffraction grating, and photomask
CN114174872B (en) * 2019-08-29 2023-10-17 株式会社日立高新技术 Diffraction grating, method for manufacturing diffraction grating, and photomask
JP7499260B2 (en) 2019-08-29 2024-06-13 株式会社日立ハイテク Diffraction grating, method for manufacturing the diffraction grating, and photomask
CN112735963A (en) * 2020-12-22 2021-04-30 长江存储科技有限责任公司 Method and apparatus for analyzing semiconductor structure

Similar Documents

Publication Publication Date Title
TWI735056B (en) Methods and apparatus for predicting performance of a measurement method, measurement method and apparatus
JP6727327B2 (en) Method and apparatus for generating illuminating radiation
TWI701519B (en) Spectral feature control apparatus
TW201809863A (en) Metrology methods, metrology apparatus and device manufacturing method
WO2012157697A1 (en) Diffraction grating manufacturing method, spectrophotometer, and semiconductor device manufacturing method
Cocco et al. Wavefront preserving X-ray optics for Synchrotron and Free Electron Laser photon beam transport systems
KR102651507B1 (en) How to measure parameters of a lithography process
JP2014501937A (en) Lithographic method and apparatus
DE102014226269A1 (en) Wavefront measuring device, projection lens with such a measuring device and with such a measuring device cooperating optical wavefront manipulator
US8411251B2 (en) Optical element and illumination optics for microlithography
JP2019511000A (en) Lighting system and metrology system
CN115398563A (en) Soft X-ray optics with improved filtering
JP2018537718A (en) Method and system for printing an array of geometric elements
IL292444A (en) Method and apparatus for efficient high harmonic generation
CN102540298B (en) Soft X-ray double-frequency gratings and manufacture method thereof
JP5948558B2 (en) Spectrometer
Mercurio et al. Real-time spatial characterization of micrometer-sized X-ray free-electron laser beams focused by bendable mirrors
JP2011002487A (en) Method of manufacturing diffraction grating, diffraction grating, and spectral analysis device using the same
CN110244395A (en) A kind of production method of the double angle balzed grating,s of plane
JP7459115B2 (en) Wavefront sensors and related metrology equipment
US20100304279A1 (en) Manufacturing method of phase shift mask, creating method of mask data of phase shift mask, and manufacturing method of semiconductor device
Voronov et al. Fabrication of x-ray gratings by direct write maskless lithography
Kolesnikov et al. Fabrication and application of plane and concave varied line-space gratings for the vacuum spectral domain by interference lithography
CN111936935A (en) Method and system for printing large periodic patterns by overlapping exposure fields
JP2011106842A (en) Diffraction grating spectrometer