JP2011002420A - Snowfall detector and method of detecting snowfall - Google Patents

Snowfall detector and method of detecting snowfall Download PDF

Info

Publication number
JP2011002420A
JP2011002420A JP2009147669A JP2009147669A JP2011002420A JP 2011002420 A JP2011002420 A JP 2011002420A JP 2009147669 A JP2009147669 A JP 2009147669A JP 2009147669 A JP2009147669 A JP 2009147669A JP 2011002420 A JP2011002420 A JP 2011002420A
Authority
JP
Japan
Prior art keywords
snowfall
data
suspended matter
light
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009147669A
Other languages
Japanese (ja)
Other versions
JP5582732B2 (en
Inventor
Yasusuke Baba
庸介 馬場
Kazunori Ishida
和典 石田
Hideya Uno
秀也 宇野
Kazuyuki Takeda
和幸 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009147669A priority Critical patent/JP5582732B2/en
Publication of JP2011002420A publication Critical patent/JP2011002420A/en
Application granted granted Critical
Publication of JP5582732B2 publication Critical patent/JP5582732B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem in a conventional snowfall detector that an accurate state of snowfall has not been detected since data on suspended matter other than snow such as fallen leaves have also been captured as snowfall data to calculate snowfall intensity, etc.SOLUTION: A pulse laser is projected to suspended matter in a scan domain. In cases where reflected pulse light from the suspended matter is continuously detected, an angle range with the suspended matter positioned therein is found from the number of continuous reflected pulses. The distance to the suspended matter is measured from the length of time between the projecting of the pulse laser and the receiving thereof. The size of the suspended matter is calculated from the angle range (proportioned to the number of continuous detections) and the distance. In cases where the size of the suspended matter is equal to or larger than a prescribed value, the suspended matter is determined to be foreign matter other than snow to exclude the data on the suspended matter from snowfall data.

Description

本発明は、気象観測等に用いられる降雪検知装置および降雪検知方法に関する。   The present invention relates to a snowfall detection device and a snowfall detection method used for weather observation and the like.

従来の降雪検知装置としては、計測領域に投光部から測定光を投射すると共に、その測定光の当たった雪片からの反射光を受光部で受光し、その受光によって発生する検出パルスの計数を行うことによって、降雪強度を算出する技術が開示されている(例えば、特許文献1参照)。   As a conventional snowfall detection device, the measurement light is projected from the light projecting unit to the measurement area, the reflected light from the snowflake on which the measurement light hits is received by the light receiving unit, and the count of detection pulses generated by the light reception is counted. A technique for calculating the snowfall intensity by performing is disclosed (for example, see Patent Document 1).

また、従来の距離計測装置として、パルス光が照射された物体からの反射パルス光を受光し、パルス発生から反射パルス光受光までのパルス光の往復時間を測定して物体までの距離を測定する技術が開示されている(例えば、特許文献2参照)。   Also, as a conventional distance measuring device, the reflected pulse light from the object irradiated with the pulsed light is received, and the distance to the object is measured by measuring the round trip time of the pulsed light from the generation of the pulse to the reception of the reflected pulsed light A technique is disclosed (for example, see Patent Document 2).

特開昭61−175550号公報JP-A-61-175550 特開平6−289135号公報JP-A-6-289135

従来の降雪検知装置は、受光部が受光した反射光が全て雪片からの反射であると想定して降雪強度を算出していたため、雪片以外の異物、例えば落ち葉等のデータを除外して高精度な降雪強度を出力することができないという問題があった。また、従来の装置では雪片の大きさを計測できなかったため、雪片の大きさを加味して降雪強度を算出するという高精度な検知ができなかった。   The conventional snowfall detection device calculates snowfall intensity assuming that all the reflected light received by the light receiving part is reflected from the snowflake, so it excludes foreign matters other than snowflakes, such as fallen leaves, etc. There was a problem that it was not possible to output a strong snowfall intensity. In addition, since the size of the snowflake could not be measured with the conventional apparatus, it was impossible to detect with high accuracy that the snowfall intensity was calculated in consideration of the size of the snowflake.

本発明は、上記のような問題を解決するためになされたものであり、計測領域内の浮遊物の大きさを求めることで、所定値(閾値)以上の大きさと検知された場合は、その浮遊物が雪片以外の異物であると想定して降雪データから除外し、高精度な降雪強度算出を可能とする降雪検知装置を得ること、さらに浮遊物の大きさを検出することが可能な降雪検知方法を得ることを目的としている。   The present invention has been made to solve the above-described problems. When the size of the suspended matter in the measurement region is obtained, if the size is detected to be greater than a predetermined value (threshold), It is assumed that the suspended matter is a foreign object other than snowflakes, and it is excluded from the snowfall data to obtain a snowfall detection device that can calculate snowfall intensity with high accuracy, and snowfall that can detect the size of the suspended matter The purpose is to obtain a detection method.

この発明に係わる降雪検知装置は、レーザ光を投射する投光部、上記投光部を含む平面の所定角度内に上記レーザ光を走査する走査部、上記レーザ光の走査領域にある浮遊物によって反射された上記レーザ光の反射光を検知する受光部、上記反射光のデータから、上記反射光を検出した角度と、上記投光部と上記浮遊物との距離を算出し、上記角度と上記距離のデータを基に上記浮遊物の大きさを求め、上記浮遊物の大きさを反映させた降雪強度を出力する信号処理部を備えたものである。   The snowfall detecting device according to the present invention includes a light projecting unit that projects laser light, a scanning unit that scans the laser light within a predetermined angle of a plane including the light projecting unit, and a floating object in the scanning region of the laser light. A light receiving unit that detects the reflected light of the reflected laser beam, and calculates the angle at which the reflected light is detected and the distance between the light projecting unit and the suspended matter from the data of the reflected light. A signal processing unit is provided that calculates the size of the suspended matter based on the distance data and outputs the snowfall intensity reflecting the size of the suspended matter.

また、この発明に係わる降雪検知方法は、パルスレーザのレーザ光軸を走査して、所定角度内の走査領域に連続的にパルスレーザを投射するステップ、上記走査領域内にある浮遊物によって反射された上記パルスレーザの反射パルスを検出するステップ、上記反射パルスが連続した反射パルス数を検出するステップ、上記反射パルスのデータから、上記投光部から上記浮遊物までの平均計測距離を算出するステップ、上記反射パルス数と上記平均計測距離を基に、上記浮遊物の大きさを算出するステップを含むものである。   Further, the snowfall detection method according to the present invention includes a step of scanning the laser optical axis of the pulse laser and continuously projecting the pulse laser to the scanning area within a predetermined angle, and is reflected by the suspended matter in the scanning area. A step of detecting a reflected pulse of the pulse laser, a step of detecting the number of reflected pulses in which the reflected pulse is continuous, and a step of calculating an average measurement distance from the light projecting unit to the suspended matter from the data of the reflected pulse. The step of calculating the size of the suspended matter based on the number of reflected pulses and the average measured distance is included.

この発明の降雪検知装置によれば、浮遊物の大きさを求めることができるため、浮遊物の大きさを反映させて降雪強度を算出することができ、検出した浮遊物の大きさのデータを、浮遊物が雪に該当する寸法かどうかの判別等に用いることができる。   According to the snowfall detection device of the present invention, since the size of the suspended matter can be obtained, the snowfall intensity can be calculated by reflecting the size of the suspended matter, and the detected suspended matter size data is obtained. It can be used to determine whether or not the floating object has a size corresponding to snow.

また、この発明の降雪検知方法によれば、一つの浮遊物からの連続した反射パルス数と、浮遊物までの平均計測距離から浮遊物の大きさを高精度に検出することができる。   Further, according to the snowfall detection method of the present invention, the size of the suspended matter can be detected with high accuracy from the number of continuous reflected pulses from one suspended matter and the average measurement distance to the suspended matter.

本発明の実施の形態1による降雪検知装置の構成図である。It is a block diagram of the snowfall detection apparatus by Embodiment 1 of this invention. 本発明の実施の形態1の降雪検知装置による雪片の大きさの算出手順について説明するための説明図である。It is explanatory drawing for demonstrating the calculation procedure of the magnitude | size of a snowflake by the snowfall detection apparatus of Embodiment 1 of this invention. 本発明の実施の形態1の降雪検知フローを示すフロー図である。It is a flowchart which shows the snowfall detection flow of Embodiment 1 of this invention. 本発明の実施の形態1の降雪検知装置の設置例を示す配置図である。It is a layout view showing an installation example of the snowfall detection device of Embodiment 1 of the present invention. 本発明の実施の形態2による降雪検知装置の構成図である。It is a block diagram of the snowfall detection apparatus by Embodiment 2 of this invention. 本発明の実施の形態2の雪片の大きさおよび雪片からの反射光強度と雪の融け易さとの関係を表した関係図である。It is a relationship figure showing the relationship between the magnitude | size of the snowflake of Embodiment 2 of this invention, the reflected light intensity from a snowflake, and the ease of melting of snow. 本発明の実施の形態3による降雪検知装置の構成図である。It is a block diagram of the snowfall detection apparatus by Embodiment 3 of this invention. 本発明の実施の形態3の降雪強度算出用の計測範囲例と積雪高さ算出について説明するための説明図である。It is explanatory drawing for demonstrating the measurement range example for snowfall intensity | strength calculation of Embodiment 3 of this invention, and snow cover height calculation. 本発明の実施の形態4による温度条件が加味された降雪検知装置の構成図である。It is a block diagram of the snowfall detection apparatus by which the temperature conditions by Embodiment 4 of this invention were considered.

実施の形態1.
次に、この発明の実施の形態1について、図1〜図4を用いて説明する。
図1の構成図に示すように、本発明の実施の形態1の降雪検知装置10は、主に、投受光部一体型センサ11と、信号処理部12によって構成される。投受光部一体型センサ11は、レーザ光(パルスレーザ)14を投射する投光部と、その投光部を含む平面の所定角度内の計測領域15(または走査領域)にレーザ光14を走査する走査部と、レーザ光14の走査領域にある浮遊物13(雪など)によって反射されたレーザ光の反射光(反射パルス)を受光する受光部とにより構成され、投光部、走査部、受光部が一体化された構成である(以下、センサとする。)。信号処理部12は、反射パルスのデータから、浮遊物13の検知位置(センサ11からの距離、方向。)を算出し、その角度(方向)と距離のデータを基に浮遊物13の大きさを求め、浮遊物13の大きさを反映させた降雪強度信号1aを算出し、外部に出力する反射パルス情報の演算処理部である。なお、この実施の形態1では、レーザ光14は水平面内において走査されるものとする。
Embodiment 1 FIG.
Next, Embodiment 1 of the present invention will be described with reference to FIGS.
As shown in the configuration diagram of FIG. 1, the snowfall detection device 10 according to the first embodiment of the present invention is mainly configured by a light projecting / receiving unit integrated sensor 11 and a signal processing unit 12. The light projecting / receiving unit integrated sensor 11 scans the laser light 14 on a light projecting unit that projects a laser beam (pulse laser) 14 and a measurement region 15 (or scanning region) within a predetermined angle of a plane including the light projecting unit. And a light receiving unit that receives the reflected light (reflected pulse) of the laser beam reflected by the suspended matter 13 (snow or the like) in the scanning region of the laser beam 14, a light projecting unit, a scanning unit, The light receiving unit is integrated (hereinafter referred to as a sensor). The signal processing unit 12 calculates the detection position of the suspended matter 13 (distance and direction from the sensor 11) from the reflected pulse data, and the size of the suspended matter 13 based on the angle (direction) and distance data. This is a calculation processing unit for the reflected pulse information that calculates the snowfall intensity signal 1a reflecting the size of the suspended matter 13 and outputs it to the outside. In the first embodiment, the laser beam 14 is scanned in a horizontal plane.

この実施の形態1の降雪検知装置10では、一つの浮遊物13に続けて照射されたパルスレーザ数を、センサ11にて、連続した反射パルス数として検出することができる。
図2に示すように、計測領域15内に雪片13aが検知される場合において、反射パルス数から雪片13aの大きさ(雪片を球形と考えた場合のほぼ直径とみなせる寸法)を算出する考え方を示す。図2では、計測範囲角度幅(走査角度幅)がθ、計測範囲内でセンサ11が計測する分割点数をN(例えば、θ=30°のとき、N=300など。)、センサ11から雪片13aまでの計測距離の平均値(平均計測距離)がL、一つの雪片13aに連続して照射されたパルスレーザ数、つまりセンサ11が連続して検出する反射パルス数がK(連続検知数とする)である場合に、雪片13aの直径Rは、次の式で示すように表すことができる。
R≒L×(θ/N×K)
ここで、θは、単位半径あたりの角度θの円弧長さを示している。
In the snowfall detection device 10 of the first embodiment, the sensor 11 can detect the number of pulse lasers successively irradiated on one suspended matter 13 as the number of continuous reflected pulses.
As shown in FIG. 2, when a snowflake 13a is detected in the measurement region 15, the idea of calculating the size of the snowflake 13a (a size that can be regarded as a diameter when the snowflake is considered as a sphere) is calculated from the number of reflected pulses. Show. In FIG. 2, the measurement range angle width (scanning angle width) is θ, the number of division points measured by the sensor 11 within the measurement range is N (for example, N = 300 when θ = 30 °), and the sensor 11 to the snowflake. The average value of measurement distances up to 13a (average measurement distance) is L, the number of pulse lasers continuously irradiated to one snowflake 13a, that is, the number of reflected pulses detected continuously by the sensor 11 is K (the number of continuous detections). The diameter R of the snowflake 13a can be expressed as shown in the following equation.
R ≒ L × (θ / N × K)
Here, θ represents the arc length of the angle θ per unit radius.

また、図2の例では、4つのパルスレーザ(レーザ光14a〜14d)が雪片13aに連続して照射されることから、連続した反射パルス数(連続検知数)K=4である。雪片13aの断面が円形であるとすると、雪片13aの直径Rは、反射パルスが計測された角度幅θで、計測距離Lを半径とする円弧の弦の大きさと考えられる。しかし、計測距離Lが最大1.5メートル程度を想定する場合で、計測対象となる浮遊物が雪などの数センチ(5センチ未満)程度の大きさと考えると、弦と円弧との寸法差はほとんどの場合で小さく抑えることができ、Rを円弧の長さと近似することができる。なお、より正確に、Rを円弧ではなく弦の寸法に補正することも、信号処理部12において行うことが可能であることは言うまでもない。 In the example of FIG. 2, since the four pulse lasers (laser beams 14a to 14d) are continuously irradiated on the snowflake 13a, the number of continuous reflected pulses (the number of continuous detections) K = 4. If the cross section of the snowflake 13a is circular, the diameter R of the snowflake 13a is considered to be the size of an arc chord having an angular width θ K in which the reflected pulse is measured and having a measurement distance L as a radius. However, when the measurement distance L is assumed to be about 1.5 meters at the maximum, and the floating object to be measured is considered to be about several centimeters (less than 5 centimeters) such as snow, the dimensional difference between the string and the arc is In most cases, it can be kept small and R can be approximated to the length of the arc. It goes without saying that the signal processing unit 12 can also correct R more precisely to the size of the string instead of the arc.

さらに、計測距離Lを得るためのレーザ光14による距離計測の手段としては様々な方式があり、例えばパルス光を用い、投光から受光までにかかった時間より距離算出を行うことができる。
また、雪片13aが計測領域15内のどの位置にあるかを示す検出方向については、走査周期とレーザ投光のタイミングとを同期することで特定することができる。
Furthermore, there are various methods for measuring the distance with the laser beam 14 to obtain the measurement distance L. For example, the distance can be calculated from the time taken from light projection to light reception using pulsed light.
Further, the detection direction indicating where the snowflake 13a is located in the measurement region 15 can be specified by synchronizing the scanning period and the timing of laser projection.

次に、動作について説明する。図3は、降雪強度算出処理の流れのフローチャートを示す図である。ここで、例えば、降雪強度算出は、一定のまとまった時間(例えば5分間)だけ計測を行い、その結果として一つの降雪強度の値を算出するように行われるものとする。
降雪検知装置を稼動させ、降雪強度算出処理をスタートすると、降雪強度算出周期時間が経過している間、ステップS11に示すように降雪計測が行われる(ループ1)。ここで、投受光部一体型センサ11から計測領域15に向けレーザ光14を一定周期で走査させることにより、計測領域15内にある雪片の検知位置(センサ11からの距離、方向)が求められ、センサ11が受光により得たデータが信号処理部12へ送られる(1走査降雪計測)。なお、信号処理部12へ送られるデータとして、センサ11からの距離、方向以外に、反射光強度も含まれる場合がある。反射光強度のデータを用いて、降雪強度算出時に、同時に雪の積もり易さを判定する方法については、次の実施の形態2において説明する。
Next, the operation will be described. FIG. 3 is a flowchart of the snowfall intensity calculation process. Here, for example, the snowfall intensity calculation is performed so as to measure only a certain unit time (for example, 5 minutes) and to calculate one snowfall intensity value as a result.
When the snowfall detection device is operated and the snowfall intensity calculation process is started, snowfall measurement is performed as shown in step S11 while the snowfall intensity calculation cycle time has elapsed (loop 1). Here, the laser beam 14 is scanned from the light projecting / receiving unit-integrated sensor 11 toward the measurement region 15 at a constant period, whereby the detection position (distance and direction from the sensor 11) of the snowflake in the measurement region 15 is obtained. The data obtained by light reception by the sensor 11 is sent to the signal processing unit 12 (one-scan snowfall measurement). The data sent to the signal processing unit 12 may include reflected light intensity in addition to the distance and direction from the sensor 11. A method of determining the ease of snow accumulation at the same time when calculating the snowfall intensity using the reflected light intensity data will be described in the second embodiment.

降雪計測が始まると、1走査分全部の雪の大きさを算出するループ(ループ2)がスタートし、ステップS12に進む。ステップS12〜19では、雪片13aの検知位置から雪片13aの大きさを算出する。ここで、図2にて、ある雪片13aに対して連続して検知した点数(連続検知数)Kを数える必要があるが、方法としては以下のようになる。
まず、レーザ光14(パルスレーザ)のレーザ光軸を走査して、計測範囲角度幅θの端(角度が0°またはθの位置)から順に、レーザ光14を連続的に投射し、雪片13aが検知されるところまで探す(ステップS12で今回の雪片検出が無く、ステップS17で前回の雪片検出が無しの場合。)。続いて、計測範囲内にある浮遊物によって反射された反射光(反射パルス)が検知され、雪片13aが検知されているところが見つかった場合(ステップS12で有りの場合。)、ステップS15にて連続検知数Kを1加算し、ステップS16にて検知した距離値の積算を行う。以降、雪片13aが検知されなくなるまでステップS15、S16を繰り返すことで雪片13aに対するKと、検出対象となる雪片13aの平均計測距離が求まる。反射パルスが検知されなくなったとき(ステップS12で今回雪片検出無し、ステップS17で前回雪片検出有りの場合。)、ステップS18で雪片13aの検知位置と、連続検知数Kを基に、雪片13aの大きさを算出し、ステップS19にて連続検知数Kと計測距離積算値をリセットする。
When snowfall measurement starts, a loop (loop 2) for calculating the size of snow for one scan starts, and the process proceeds to step S12. In steps S12 to S19, the size of the snowflake 13a is calculated from the detection position of the snowflake 13a. Here, in FIG. 2, it is necessary to count the number of points (continuous detection number) K detected continuously for a certain snowflake 13 a, and the method is as follows.
First, the laser beam axis of the laser beam 14 (pulse laser) is scanned, and the laser beam 14 is continuously projected in order from the end of the measurement range angular width θ (the position where the angle is 0 ° or θ) to obtain a snowflake 13a. Is detected (when there is no current snowflake detection at step S12 and no previous snowflake detection at step S17). Subsequently, when the reflected light (reflected pulse) reflected by the suspended matter in the measurement range is detected and the place where the snowflake 13a is detected is detected (in the case of step S12), the process continues in step S15. The detection number K is incremented by 1, and the distance values detected in step S16 are integrated. Thereafter, by repeating steps S15 and S16 until the snowflake 13a is no longer detected, K for the snowflake 13a and the average measured distance of the snowflake 13a to be detected are obtained. When the reflected pulse is no longer detected (when no snowflake is detected at this time in step S12, and when the previous snowflake detection is detected at step S17), the detected position of the snowflake 13a and the number of consecutive detections K are detected at step S18. The size is calculated, and the continuous detection number K and the measured distance integrated value are reset in step S19.

ここで、連続して反射パルスが検知された場合でも、異なる距離にある二つの雪片を連続検知している可能性があるため、ステップS13で前回雪片検出有りの場合、ステップS14で、前回と今回の計測距離値との差をとり、一定値以上の差がある場合は、別々の雪片を検知したものとみなし、連続検知数のカウントを中断する。なお、ここでの一定値は、例えば、センサ11の距離計測精度を基準として、1.5〜2倍程度で設定することができる。   Here, even if the reflected pulse is detected continuously, there is a possibility that two snowflakes at different distances may be detected continuously. Therefore, in the case where the previous snowflake detection is made in step S13, in step S14, The difference from the current measured distance value is taken, and if there is a difference greater than a certain value, it is considered that separate snowflakes have been detected, and the counting of the continuous detection number is interrupted. The constant value here can be set to about 1.5 to 2 times, for example, with reference to the distance measurement accuracy of the sensor 11.

次に、ステップS18での雪片13aの大きさ算出について説明する。図2において計測範囲角度幅θ[rad]に対してセンサ11で計測する分割点数をN、雪片の検出距離をLとすると、雪片13aの大きさの算出値Rは、上述したとおり、R=L×(θ/N×K)の式にあてはめて得ることができる。
続いて、ステップS21では、こうして得られた雪片13aの大きさを一定値ごとに積算し、降雪強度算出の前データとする。なお、ステップS16、S21の次のループ2は、その雪片の大きさの算出および積算の繰り返し部分を表している。また、降雪強度算出は1走査の単位に行うのではなく、あるまとまった時間(降雪強度算出周期時間:具体的には5分など。)ごとに算出するため、ループ1は降雪強度算出周期時間が経過する間に、走査が繰り返されていることを表している。
Next, calculation of the size of the snowflake 13a in step S18 will be described. In FIG. 2, when the number of division points measured by the sensor 11 with respect to the measurement range angular width θ [rad] is N and the detection distance of the snowflake is L, the calculated value R of the size of the snowflake 13 a is R = It can be obtained by applying the equation of L × (θ / N × K).
Subsequently, in step S21, the size of the snowflake 13a thus obtained is integrated for every fixed value, and used as pre-data for calculating the snowfall intensity. Note that the next loop 2 after steps S16 and S21 represents a repeated portion of calculation and integration of the size of the snowflake. Also, since the snowfall intensity calculation is not performed in units of one scan, but is calculated every certain time (snowfall intensity calculation cycle time: specifically 5 minutes, etc.), loop 1 is the snowfall intensity calculation cycle time. This means that the scanning is repeated while elapses.

最後にステップS22で降雪強度が算出される。ここで、降雪強度算出周期に対してステップS21で積算した雪片13aの大きさRの積算値をΣRと表したとき、調整係数A、B、Cを用いて、降雪強度Sは以下の式で表される。
S=A×ΣR+B×ΣR+C×ΣR
なお、上式は、降雪強度が雪片の長さ要素R、雪片の面積要素R、雪片の体積要素Rに比例するという考えに基づくものである。
また、ステップS21で積算する前にステップS20では、積算する雪片の大きさについて通常雪片としては大きすぎる値(例えば5cm。)の場合、つまり、雪片の大きさ値が除外閾値(所定値)より大きい場合、落ち葉などの雪片以外の異物を計測していると考えられるので、積算対象から除外する。逆に、雪片の大きさ値が除外閾値より小さい場合は、積算対象とすることで、誤検知の影響を抑えることができる。
Finally, the snowfall intensity is calculated in step S22. Here, when the integrated value of the size R of the snowflake 13a accumulated in step S21 with respect to the snowfall intensity calculation cycle is expressed as ΣR, the snowfall intensity S is expressed by the following equation using the adjustment coefficients A, B, and C. expressed.
S = A × ΣR + B × ΣR 2 + C × ΣR 3
The above formula is based on the idea that the snowfall intensity is proportional to the length element R of the snowflake, the area element R 2 of the snowflake, and the volume element R 3 of the snowflake.
In addition, in step S20 before accumulation in step S21, in the case where the size of the accumulated snowflake is a value that is too large as a normal snowflake (for example, 5 cm), that is, the size value of the snowflake is larger than the exclusion threshold (predetermined value). If it is larger, it is considered that foreign matter other than snowflakes such as fallen leaves is being measured, and is excluded from the accumulation target. On the other hand, when the size value of the snowflake is smaller than the exclusion threshold, the influence of false detection can be suppressed by making it an accumulation target.

このように、本発明の降雪検知装置を用いて、パルスレーザのレーザ光軸を走査して、所定角度内の走査領域に連続的にパルスレーザを投射し(ステップS11)、走査領域内にある浮遊物によって反射されたパルスレーザの反射パルスを検出し(ステップS12)、反射パルスが連続した反射パルス数を検出し(ステップS15)、反射パルスのデータから、投光部(センサ)から浮遊物までの平均計測距離を算出し(ステップS16)、反射パルス数と平均計測距離を基に、浮遊物の大きさを算出する(ステップS18)ことにより、浮遊物の大きさを求めることができるため、浮遊物が閾値よりも大きな値であることを検出した場合は、浮遊物が雪以外の異物であると判断して降雪データから除外することができ、雪粒の大きさを反映させた高精度な降雪強度を算出することが可能となる。   As described above, by using the snowfall detection device of the present invention, the laser optical axis of the pulse laser is scanned, and the pulse laser is continuously projected onto the scanning region within a predetermined angle (step S11), and is within the scanning region. The reflected pulse of the pulse laser reflected by the floating object is detected (step S12), the number of reflected pulses in which the reflected pulse continues is detected (step S15), and the floating object is detected from the light projecting unit (sensor) from the reflected pulse data. Since the average measurement distance is calculated (step S16) and the size of the suspended matter is calculated based on the number of reflected pulses and the average measured distance (step S18), the size of the suspended matter can be obtained. If it is detected that the suspended matter is larger than the threshold value, it can be excluded from the snowfall data by judging that the suspended matter is a foreign object other than snow, reflecting the size of the snow particles It is possible to calculate a highly accurate snowfall intensity in.

図4は、本発明の実施の形態1の降雪検知装置の設置例を示す配置図であり、図4(a)は、道路101に面した建物102の屋上に設置された降雪検知装置10が、道路101上(上空)の降雪状態を検知する例を、図4(b)は、鉄道沿線に設けられた鉄塔104に設置された降雪検知装置10が、鉄道のレール103上の降雪状態を検知する例を示している。降雪検知装置10の設置高さは、積雪によって埋まらない程度の高さとする。このように、道路および鉄道の降雪状態を、本発明の降雪検知装置によって正確に検知することができれば、交通の安全を確保でき、気象観測や融雪装置の自動制御に検知した降雪情報を活用することが可能となる。
また、道路や鉄道沿線以外においても、本発明の降雪検知装置を用いて、落ち葉などの異物のデータを除去して正確に降雪状態を検知することによって、気象データとして役立てることが可能となることは言うまでもない。
FIG. 4 is a layout diagram illustrating an installation example of the snow detection device according to the first embodiment of the present invention. FIG. 4 (a) shows the snow detection device 10 installed on the roof of the building 102 facing the road 101. FIG. 4B shows an example of detecting a snowfall state on the road 101 (in the sky). FIG. 4B shows a snowfall state on the rail 103 of the railroad when the snowfall detection device 10 installed on the steel tower 104 provided along the railroad line. An example of detection is shown. The installation height of the snowfall detection device 10 is set to a height that does not fill the snowfall. Thus, if the snowfall state of roads and railways can be accurately detected by the snowfall detection device of the present invention, traffic safety can be secured, and snowfall information detected for weather observation and automatic control of the snowmelt device can be utilized. It becomes possible.
In addition to roads and railway lines, the snow detection device of the present invention can be used as meteorological data by accurately detecting snow conditions by removing foreign matter data such as fallen leaves. Needless to say.

実施の形態2.
図5は、この発明の実施の形態2による降雪検知装置20の構成図である。
上述の実施の形態1と同様の手順で降雪強度を算出するとともに、降雪強度算出過程で得られる雪片の大きさとセンサ21(受光部)で検知されるレーザ反射光強度から雪の積もり易さの度合いを示す雪の積もり易さ信号1bを信号処理部22から出力できる。
雪の積もり易さは、図6に示すように、雪片が大きく、反射光強度が大きい樹枝状の雪では比較的融け易く、逆に、雪片が小さく、反射光強度が小さい球状の雪では比較的溶け難いという性質があることから、雪片の大きさ(大小)およびその反射光強度(強弱)により雪の積もり易さを計測することが可能である。
同じ降雪強度であった場合でも、雪の積もり易さによって積雪量に違いが出るため、実施の形態2では、より詳細に降雪状態を検出することが可能となる。
Embodiment 2. FIG.
FIG. 5 is a block diagram of a snowfall detection device 20 according to Embodiment 2 of the present invention.
The snowfall intensity is calculated according to the same procedure as in the first embodiment, and the ease of snow accumulation is calculated from the size of the snowflake obtained in the snowfall intensity calculation process and the laser reflected light intensity detected by the sensor 21 (light receiving unit). The signal processing unit 22 can output a snow accumulation ease signal 1b indicating the degree.
As shown in FIG. 6, the ease of snow accumulation is relatively easy to melt in dendritic snow with large snowflakes and high reflected light intensity, and conversely with spherical snow with small snowflakes and low reflected light intensity. Therefore, it is possible to measure the ease of snow accumulation based on the size (large and small) of snowflakes and the intensity of reflected light (strong and weak).
Even when the snowfall intensity is the same, the amount of snowfall varies depending on the ease of snow accumulation, and in the second embodiment, the snowfall state can be detected in more detail.

実施の形態3.
図7は、この発明の実施の形態3による降雪検知装置30の構成図である。
上記実施の形態1でのレーザ光走査方向は、水平方向であったが、この実施の形態3では、投受光部一体型センサ31から投射されるレーザ光34は、地面36(水平面とする)に対して垂直な面内で上下方向に走査される。そして、レーザの投射方向が水平よりも下方となる、地面36を含む領域を走査したデータから、積雪高さhを計測できるように構成したことを特徴としている。積雪37の高さは、信号処理部32から積雪高さ信号3cとして外部に出力される。また同装置により、水平面よりも上方となる方向にレーザ光34を投射して得たデータを用いて、実施の形態1と同様に、計測領域35内の浮遊物33を検知し、得られたデータから、信号処理部32にて降雪強度を算出し、降雪強度信号3aを出力することが可能となる。その場合、レーザ光走査範囲(計測領域35、走査角度0°(鉛直方向下向き)からφMAXまでの範囲。)のうち、積雪37が計測範囲に含まれない領域だけのデータを用いる、例えば、鉛直方向φからの走査角度をαとすると、90°<α<φMAXの範囲とすることができる。
Embodiment 3 FIG.
FIG. 7 is a block diagram of a snowfall detection device 30 according to Embodiment 3 of the present invention.
Although the laser beam scanning direction in the first embodiment is a horizontal direction, in the third embodiment, the laser beam 34 projected from the light projecting / receiving unit integrated sensor 31 is the ground surface 36 (the horizontal plane). Are scanned in the vertical direction in a plane perpendicular to the vertical axis. And it is characterized by having comprised so that the snow cover height h can be measured from the data which scanned the area | region including the ground 36 where the projection direction of a laser is below horizontal. The height of the snow cover 37 is output from the signal processing unit 32 to the outside as the snow cover height signal 3c. In addition, using the same apparatus, the floating matter 33 in the measurement region 35 was detected and obtained using the data obtained by projecting the laser beam 34 in a direction above the horizontal plane, as in the first embodiment. It is possible to calculate the snowfall intensity from the data by the signal processing unit 32 and output the snowfall intensity signal 3a. In that case, the data of only the region where the snow cover 37 is not included in the measurement range in the laser beam scanning range (the measurement region 35, the range from the scanning angle 0 ° (downward in the vertical direction) to φ MAX ) is used. When the scanning angle from the vertical direction phi 0 and alpha, may be in the range of 90 ° <α <φ MAX.

次に、積雪高さhの算出手順について図8を用いて説明する。
積雪高さhの算出は、走査角度φ1が地面36を計測可能な最大値となる場合、レーザ光走査範囲のうち地面36が計測範囲に入る方向β(φ<β<φ)にレーザ光43aを投射し、センサ31から積雪37までの距離Lを計測することで、以下の式で求めることができる。ここで、Hはセンサ31の高さとする。図8において、符号34aは、方向βに投射される積雪高さ算出用レーザ光であることを示している。
h=H−cos(β)
実際には、積雪37までの距離Lを計測する際、浮遊物を検知する可能性もあるため、数回計測を行い中間値を計測値とする。このように積雪高さhを計測し、信号処理部32から外部へ、積雪高さ信号3cとして出力される。
以上のように、1台の降雪検知装置で、降雪強度および積雪高さが計測可能であるため、個別に用意する場合に比べ、設置スペースおよびコストの低減に効果がある。
Next, a procedure for calculating the snow cover height h will be described with reference to FIG.
Calculation of snow height h, when the scan angle φ1 becomes the maximum value that can be measured on the ground 36, the laser in the direction of the ground 36 in the laser beam scanning range enters the measurement range β (φ 0 <β <φ 1) By projecting the light 43a and measuring the distance L from the sensor 31 to the snow cover 37, it can be obtained by the following equation. Here, H is the height of the sensor 31. In FIG. 8, reference numeral 34 a indicates a laser beam for calculating snow cover height projected in the direction β.
h = H-cos (β)
Actually, when the distance L to the snow cover 37 is measured, there is a possibility of detecting a suspended matter. Therefore, measurement is performed several times and an intermediate value is set as a measurement value. In this way, the snow cover height h is measured and output from the signal processing unit 32 to the outside as the snow cover height signal 3c.
As described above, since the snowfall intensity and the snow cover height can be measured with one snowfall detection device, the installation space and the cost can be reduced as compared with the case where the snowfall intensity is individually prepared.

実施の形態4.
実施の形態1の図3に示した降雪強度算出フローでは、所定値以上の大きさの浮遊物を検出した場合は、その浮遊物を雪以外の異物であると判断して、降雪データから除外することについて示したが、この実施の形態4では、さらに、雪を観測可能な降雪気温条件を設定しておき、その気温範囲に該当しない場合は、計測領域15内に浮遊物13を確認した場合であっても降雪データとは認識しないように処理を行うものとする。図9に、この実施の形態4の降雪検知装置40の構成図を示す。図9に示すように、本発明の降雪検知装置40は、温度計42を備えており、計測領域15内の気温を、温度計42によって計測することができる。
さらに、信号処理部43に、降雪気温条件44を加えているために、温度計42から得られる気温度データを降雪気温条件44に照らし合わせ、雪が観測されないような暖かい日に、雪以外の浮遊物を雪として検出しないように調整することが可能となる。
Embodiment 4 FIG.
In the snowfall intensity calculation flow shown in FIG. 3 of the first embodiment, when a floating substance having a size greater than or equal to a predetermined value is detected, it is determined that the floating substance is a foreign object other than snow and is excluded from the snowfall data. In the fourth embodiment, a snowfall temperature condition for observing snow is set. If the temperature does not fall within the temperature range, the suspended matter 13 is confirmed in the measurement region 15. Even if it is a case, processing shall be performed so that it is not recognized as snowfall data. In FIG. 9, the block diagram of the snowfall detection apparatus 40 of this Embodiment 4 is shown. As shown in FIG. 9, the snowfall detection device 40 of the present invention includes a thermometer 42, and the temperature in the measurement region 15 can be measured by the thermometer 42.
Further, since the snow temperature condition 44 is added to the signal processing unit 43, the air temperature data obtained from the thermometer 42 is collated with the snow temperature condition 44, and on a warm day when no snow is observed, floating other than snow. It is possible to adjust so that an object is not detected as snow.

このように、降雪気温条件44を加えることで、信号処理部43から出力される降雪強度信号4aを、より正確な値として得ることが可能となる。また、信号処理部43に、外部から気温データを取り込む方法として温度計42を設け、その出力値を得ることを示したが、温度計42をセンサ41と一体とするか、別体とするか等は、温度計の種類等によって設置条件が異なるため、計測に適した配置とすることが望ましいことは言うまでもない。   As described above, by adding the snow temperature condition 44, the snow intensity signal 4a output from the signal processor 43 can be obtained as a more accurate value. In addition, it has been shown that the thermometer 42 is provided in the signal processing unit 43 as a method for taking in the air temperature data from the outside, and the output value is obtained. Whether the thermometer 42 is integrated with the sensor 41 or separated. Needless to say, since the installation conditions differ depending on the type of the thermometer and the like, it is desirable that the arrangement be suitable for measurement.

1a、3a、4a 降雪強度信号
1b 雪の積もり易さ信号
3c 積雪高さ信号
10、20、30、40 降雪検知装置
11、21、31、41 投受光部一体型センサ
12、22、32、43 信号処理部
13、33 浮遊物
13a 雪片
14、14a〜14d、34、34a レーザ光(パルスレーザ)
15、35 計測領域
36 地面
37 積雪
42 温度計
44 降雪気温条件。
DESCRIPTION OF SYMBOLS 1a, 3a, 4a Snowfall intensity signal 1b Easiness of snow accumulation 3c Snowfall height signal 10, 20, 30, 40 Snowfall detection device 11, 21, 31, 41 Light emitting / receiving unit integrated sensor 12, 22, 32, 43 Signal processor 13, 33 Floating matter 13a Snow flakes 14, 14a-14d, 34, 34a Laser light (pulse laser)
15, 35 Measurement area 36 Ground 37 Snow cover 42 Thermometer 44 Snow temperature conditions.

Claims (8)

レーザ光を投射する投光部、上記投光部を含む平面の所定角度内に上記レーザ光を走査する走査部、上記レーザ光の走査領域にある浮遊物によって反射された上記レーザ光の反射光を検知する受光部、上記反射光のデータから、上記反射光を検出した角度と、上記投光部と上記浮遊物との距離を算出し、上記角度と上記距離のデータを基に上記浮遊物の大きさを求め、上記浮遊物の大きさを反映させた降雪強度を出力する信号処理部を備えたことを特徴とする降雪検知装置。   A light projecting unit that projects laser light, a scanning unit that scans the laser light within a predetermined angle of a plane including the light projecting unit, and a reflected light of the laser light reflected by a floating object in the scanning region of the laser light The light receiving unit for detecting the reflected light, the angle at which the reflected light is detected and the distance between the light projecting unit and the floating object are calculated from the data of the reflected light, and the floating object is calculated based on the data on the angle and the distance. And a signal processing unit that outputs a snowfall intensity reflecting the size of the suspended matter. 上記信号処理部は、上記浮遊物の大きさが所定値を超える場合に、上記浮遊物が雪以外の異物であると判別し、上記降雪強度算出のためのデータから除外することを特徴とする請求項1記載の降雪検知装置。   The signal processing unit determines that the suspended matter is a foreign matter other than snow when the size of the suspended matter exceeds a predetermined value, and excludes the suspended matter from the data for calculating the snowfall intensity. The snowfall detection device according to claim 1. 上記信号処理部は、上記浮遊物の大きさのデータと、上記受光部において計測可能である上記反射光の強度データから、雪の積もり易さの度合いを判定することを特徴とする請求項2記載の降雪検知装置。   The said signal processing part determines the degree of the ease of snow accumulation from the magnitude | size data of the said suspended | floating matter, and the intensity data of the said reflected light which can be measured in the said light-receiving part. The snowfall detection device described. 上記レーザ光は、水平面内に投射されることを特徴とする請求項1記載の降雪検知装置。   The snowfall detection device according to claim 1, wherein the laser beam is projected in a horizontal plane. 上記レーザ光は、地面に対して垂直となる面内に投射され、上記信号処理部は、投射方向が水平よりも上方となる領域から、上記降雪強度を算出するためのデータを得ることを特徴とする請求項1記載の降雪検知装置。   The laser beam is projected in a plane perpendicular to the ground, and the signal processing unit obtains data for calculating the snowfall intensity from a region where the projection direction is above horizontal. The snowfall detection device according to claim 1. 上記レーザ光は、地面に対して垂直となる面内に投射され、上記信号処理部は、投射方向が水平よりも下方となり地面を含む領域から、上記地面上の積雪高さを算出するためのデータを得ることを特徴とする請求項1記載の降雪検知装置。   The laser beam is projected in a plane perpendicular to the ground, and the signal processing unit calculates a snow cover height on the ground from a region where the projection direction is lower than horizontal and includes the ground. The snow detection device according to claim 1, wherein data is obtained. 上記信号処理部は、外部から上記走査領域の気温データを取りこみ、上記気温データと降雪が観測可能となる温度条件とを対比し、上記気温データが上記温度条件から外れる場合は、上記浮遊物を雪以外の異物であると判別し、上記降雪強度算出のためのデータから除外することを特徴とする請求項1記載の降雪検知装置。   The signal processing unit captures the temperature data of the scanning region from the outside, compares the temperature data with a temperature condition at which snowfall can be observed, and if the temperature data deviates from the temperature condition, the floating object is removed. The snowfall detection device according to claim 1, wherein the snowfall detection device is determined to be a foreign object other than snow and is excluded from the data for calculating the snowfall intensity. パルスレーザのレーザ光軸を走査して、所定角度内の走査領域に連続的にパルスレーザを投射するステップ、上記走査領域内にある浮遊物によって反射された上記パルスレーザの反射パルスを検出するステップ、上記反射パルスが連続した反射パルス数を検出するステップ、上記反射パルスのデータから、上記投光部から上記浮遊物までの平均計測距離を算出するステップ、上記反射パルス数と上記平均計測距離を基に、上記浮遊物の大きさを算出するステップを含むことを特徴とする降雪検知方法。   Scanning the laser optical axis of the pulse laser and projecting the pulse laser continuously to the scanning area within a predetermined angle; detecting the reflected pulse of the pulse laser reflected by the suspended matter in the scanning area A step of detecting the number of reflected pulses in which the reflected pulses are continuous; a step of calculating an average measurement distance from the light projecting unit to the suspended matter from the data of the reflected pulses; and a step of calculating the number of reflected pulses and the average measured distance. A snowfall detection method characterized by including a step of calculating the size of the suspended matter.
JP2009147669A 2009-06-22 2009-06-22 Snowfall detection device and snowfall detection method Active JP5582732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009147669A JP5582732B2 (en) 2009-06-22 2009-06-22 Snowfall detection device and snowfall detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009147669A JP5582732B2 (en) 2009-06-22 2009-06-22 Snowfall detection device and snowfall detection method

Publications (2)

Publication Number Publication Date
JP2011002420A true JP2011002420A (en) 2011-01-06
JP5582732B2 JP5582732B2 (en) 2014-09-03

Family

ID=43560474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009147669A Active JP5582732B2 (en) 2009-06-22 2009-06-22 Snowfall detection device and snowfall detection method

Country Status (1)

Country Link
JP (1) JP5582732B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015052465A (en) * 2013-09-05 2015-03-19 株式会社デンソー Weather determination system
US9110196B2 (en) 2012-09-20 2015-08-18 Google, Inc. Detecting road weather conditions
US9499172B2 (en) 2012-09-20 2016-11-22 Google Inc. Detecting road weather conditions
JP2017090382A (en) * 2015-11-16 2017-05-25 株式会社デンソーウェーブ Method, device, and program for detecting snow accretion on laser radar device
JP2018159570A (en) * 2017-03-22 2018-10-11 株式会社Ihiエアロスペース Obstacle detection device and obstacle detection method
JP2019148459A (en) * 2018-02-26 2019-09-05 株式会社興和 Snowfall condition discrimination method, control method of snow melting apparatus, visual field state discrimination method, and snowfall characteristic discrimination method
JP2019158846A (en) * 2018-03-16 2019-09-19 株式会社デンソーウェーブ Snow accumulation detection device and snow accumulation detection system
JP2020012716A (en) * 2018-07-18 2020-01-23 株式会社デンソーウェーブ Laser radar system
WO2020262543A1 (en) * 2019-06-28 2020-12-30 株式会社デンソー Ranging device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101883048B1 (en) * 2016-05-24 2018-07-27 영남대학교 산학협력단 Apparatus and method for measuring climatic enviroment
KR101881418B1 (en) * 2017-08-23 2018-07-24 영남대학교 산학협력단 LIDAR Device and Method for Controlling Output Considering Climate Environment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0561598B2 (en) * 1989-09-22 1993-09-06 Takuwa Co Ltd
JPH09292464A (en) * 1996-04-30 1997-11-11 Tokyu Car Corp Method and device for judging dimension of object body and method and device for detecting range by laser radar
JPH1184024A (en) * 1997-09-09 1999-03-26 Hitachi Cable Ltd Snowfall sensor
JP2005083750A (en) * 2003-09-04 2005-03-31 Sekisui Jushi Co Ltd Snowfall/fog detecting device and self-luminous road traffic sign system using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0561598B2 (en) * 1989-09-22 1993-09-06 Takuwa Co Ltd
JPH09292464A (en) * 1996-04-30 1997-11-11 Tokyu Car Corp Method and device for judging dimension of object body and method and device for detecting range by laser radar
JPH1184024A (en) * 1997-09-09 1999-03-26 Hitachi Cable Ltd Snowfall sensor
JP2005083750A (en) * 2003-09-04 2005-03-31 Sekisui Jushi Co Ltd Snowfall/fog detecting device and self-luminous road traffic sign system using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9110196B2 (en) 2012-09-20 2015-08-18 Google, Inc. Detecting road weather conditions
US9499172B2 (en) 2012-09-20 2016-11-22 Google Inc. Detecting road weather conditions
JP2015052465A (en) * 2013-09-05 2015-03-19 株式会社デンソー Weather determination system
JP2017090382A (en) * 2015-11-16 2017-05-25 株式会社デンソーウェーブ Method, device, and program for detecting snow accretion on laser radar device
JP2018159570A (en) * 2017-03-22 2018-10-11 株式会社Ihiエアロスペース Obstacle detection device and obstacle detection method
JP2019148459A (en) * 2018-02-26 2019-09-05 株式会社興和 Snowfall condition discrimination method, control method of snow melting apparatus, visual field state discrimination method, and snowfall characteristic discrimination method
JP2019158846A (en) * 2018-03-16 2019-09-19 株式会社デンソーウェーブ Snow accumulation detection device and snow accumulation detection system
JP7021576B2 (en) 2018-03-16 2022-02-17 株式会社デンソーウェーブ Snow cover detection device and snow cover detection system
JP2020012716A (en) * 2018-07-18 2020-01-23 株式会社デンソーウェーブ Laser radar system
JP7067332B2 (en) 2018-07-18 2022-05-16 株式会社デンソーウェーブ Laser radar system
WO2020262543A1 (en) * 2019-06-28 2020-12-30 株式会社デンソー Ranging device
JP2021009037A (en) * 2019-06-28 2021-01-28 株式会社デンソー Distance measuring device
US11953624B2 (en) 2019-06-28 2024-04-09 Denso Corporation Ranging apparatus

Also Published As

Publication number Publication date
JP5582732B2 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
JP5582732B2 (en) Snowfall detection device and snowfall detection method
JP5092076B2 (en) Laser area sensor
KR101291301B1 (en) Vehicle speed measurement system using image and radar
JP4165524B2 (en) Passing number detection device and method
CN104567713B (en) A kind of multiple spot snow depth measuring method and device
US8072325B2 (en) Trespass detection system
EA020247B1 (en) Method and device for determining the speed of travel and coordinates of vehicles and subsequently identifying same and automatically recording road traffic offences
CN111045021B (en) Intelligent well lid monitoring method and system
JP5246430B2 (en) Obstacle detection method and apparatus
EP3324220B1 (en) Method and system for estimating empirical snow depth
JP4247720B2 (en) Passing number detection device and method
CN106918820B (en) A kind of processing method and processing device of multiple-reflection echoes
KR101157318B1 (en) System for measuring snowfall and method thereof
JP6252722B2 (en) Laser distance measuring method and laser distance measuring apparatus
JP2006194617A (en) Object detection method and device
JP2005156460A (en) Submersion sensing system
CN107784261B (en) Road surface state detection method and device
JP2016153728A (en) Radar signal processing device and radar device
JP2011145812A (en) Laser sensor and detection target determination method using the same
JP5901301B2 (en) Vehicle type identification system
KR20150080840A (en) Distinguish the type precipitation, snow cover sensing apparatus and method
JP5637416B1 (en) Height pattern countermeasure sensor
JP2010210324A (en) Road conditions estimating apparatus and method
JP2007003396A (en) Radar signal processor
CN108332669A (en) Railway sound barrier detection device and its working method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140715

R151 Written notification of patent or utility model registration

Ref document number: 5582732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250