JP2010210324A - Road conditions estimating apparatus and method - Google Patents

Road conditions estimating apparatus and method Download PDF

Info

Publication number
JP2010210324A
JP2010210324A JP2009054968A JP2009054968A JP2010210324A JP 2010210324 A JP2010210324 A JP 2010210324A JP 2009054968 A JP2009054968 A JP 2009054968A JP 2009054968 A JP2009054968 A JP 2009054968A JP 2010210324 A JP2010210324 A JP 2010210324A
Authority
JP
Japan
Prior art keywords
waveform
road surface
angle
electromagnetic wave
surface state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009054968A
Other languages
Japanese (ja)
Other versions
JP5572970B2 (en
Inventor
Mitsunori Nakamura
光範 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009054968A priority Critical patent/JP5572970B2/en
Publication of JP2010210324A publication Critical patent/JP2010210324A/en
Application granted granted Critical
Publication of JP5572970B2 publication Critical patent/JP5572970B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a road conditions estimating apparatus which estimates accurate road conditions even when the distance from a sensor to a road surface fluctuates by the behavior of a vehicle. <P>SOLUTION: A generator 101 generates timing for electromagnetic wave pulse generation. A transmitter 102 generates an electromagnetic wave pulse with timing generated by the generator 101. A receiver 103 receives the electromagnetic wave pulse reflected by an on object under measurement M. A waveform detecting unit 104 detects the waveform of a reflected wave on the basis of the timing provided by the generator 101. An angle measuring/setting unit 105 measures the tilt angle θ of boundary surfaces B1, B2 departing from a transmitting/receiving surface having the transmitter 102 and the receiver 103. A reflection boundary surface position measuring unit 106 measures the position of the boundary surface B1. A waveform characteristics extracting unit 107 extracts waveform characteristics on the basis of the detected waveform, the angle θ, and the position of the boundary surface B1. A road conditions estimating unit 108 estimates road conditions on the basis of the waveform characteristics. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電磁波を用いて路面状況を推定する路面状況推定装置及び方法に関する。   The present invention relates to a road surface state estimating apparatus and method for estimating a road surface state using electromagnetic waves.

自動車の適切な走行を支援するために、次世代の交通社会を担う高度交通システム(ITS)が開発されている。高度交通システムにおいて、路側に設けた路面状況推定装置が路面状態を推定し、走行中の自動車へ路面状況を送信して、自動車の制動制御やトラクション制御、姿勢制御等に利用することが考えられている。このような従来の路面状況推定装置としては、路面上方に固定されたレーザレーダセンサにより路面を二次元走査して、測定点の情報として距離、反射強度を取得し、大気の混濁度を示す視程情報により反射強度を補正して、測定点毎に路面の状況を推定する技術が知られている(例えば、特許文献1)。   In order to support the appropriate driving of automobiles, an advanced transportation system (ITS) that is responsible for the next-generation transportation society has been developed. In intelligent transportation systems, it is conceivable that a road surface condition estimation device provided on the road side estimates the road surface state and transmits the road surface condition to a running vehicle for use in vehicle braking control, traction control, attitude control, etc. ing. As such a conventional road surface state estimating device, a road surface is two-dimensionally scanned by a laser radar sensor fixed above the road surface, distance and reflection intensity are obtained as measurement point information, and visibility indicating atmospheric turbidity is shown. A technique is known in which the reflection intensity is corrected by information and the road surface condition is estimated for each measurement point (for example, Patent Document 1).

特開2001−83078号公報JP 2001-83078 A

しかしながら、上記従来の路面状況推定装置を車載用のセンシングに適用しようとする場合、車両の挙動によりセンサから路面までの距離が変動するので、正確な路面状況を推定することができないという問題点があった。   However, when the conventional road surface condition estimation device is applied to in-vehicle sensing, the distance from the sensor to the road surface varies depending on the behavior of the vehicle, so that there is a problem that an accurate road surface condition cannot be estimated. there were.

上記問題点を解決するために本発明は、路面に電磁波を送信し、路面に反射された電磁波を受信し、受信した電磁波の波形を検出し、路面と送信方向とのなす角度を計測する又は設定し、波形と前記角度とに基づいて波形の特徴を抽出し、波形の特徴に基づいて路面状況を推定することを特徴とする。   In order to solve the above problems, the present invention transmits an electromagnetic wave to a road surface, receives an electromagnetic wave reflected by the road surface, detects a waveform of the received electromagnetic wave, and measures an angle between the road surface and a transmission direction, or It sets, extracts the feature of a waveform based on a waveform and the said angle, and estimates a road surface condition based on the feature of a waveform.

本発明によれば、車両挙動によりセンサから路面までの距離が変化しても、電磁波の送信方向と受信した反射波の特徴に基づいて路面状況を正確に推定することができるという効果がある。   According to the present invention, even if the distance from the sensor to the road surface changes due to vehicle behavior, there is an effect that the road surface condition can be accurately estimated based on the transmission direction of electromagnetic waves and the characteristics of the received reflected wave.

本発明に係る路面状況推定装置の実施例1の構成を示すブロック図である。It is a block diagram which shows the structure of Example 1 of the road surface condition estimation apparatus which concerns on this invention. 電磁波をテラヘルツ波とした場合の実施例1の構成を示す構成図である。It is a block diagram which shows the structure of Example 1 at the time of using electromagnetic waves as a terahertz wave. 電磁波をテラヘルツ波とした場合の実施例1の変形例の構成を示す構成図である。It is a block diagram which shows the structure of the modification of Example 1 at the time of using electromagnetic waves as a terahertz wave. 図2、3における送信用光スイッチ4の詳細例を説明する斜視図である。It is a perspective view explaining the detailed example of the optical switch 4 for transmission in FIG. 図2、3における受信用光スイッチ8の詳細例を説明する斜視図である。It is a perspective view explaining the detailed example of the optical switch 8 for reception in FIG. 実施例1における動作を説明するフローチャートである。3 is a flowchart for explaining an operation in the first embodiment. テラヘルツ送信器の指向特性例を示す図である。It is a figure which shows the directional characteristic example of a terahertz transmitter. 反射面の種類と照射方向に対するテラヘルツ反射波の強度を示す図である。It is a figure which shows the intensity | strength of the terahertz reflected wave with respect to the kind of reflective surface, and an irradiation direction. 実施例2の構成を示すブロック図である。6 is a block diagram illustrating a configuration of Example 2. FIG. 実施例2における動作を説明するフローチャートである。10 is a flowchart illustrating an operation in the second embodiment. 実施例3の構成を示すブロック図である。10 is a block diagram illustrating a configuration of Example 3. FIG. 実施例3における動作を説明するフローチャートである。10 is a flowchart for explaining an operation in the third embodiment. 路面状況とテラヘルツ波の反射波形の特徴との関係を示す図である。It is a figure which shows the relationship between a road surface condition and the characteristic of the reflected waveform of a terahertz wave. 本発明の路面状況推定装置を搭載した車両の側面図である。It is a side view of the vehicle carrying the road surface condition estimation apparatus of this invention. テラヘルツ送信器及び受信器の車体への搭載位置例を示す平面図である。It is a top view which shows the example of the mounting position to the vehicle body of a terahertz transmitter and a receiver. 実施例4の構成を示すブロック図である。FIG. 10 is a block diagram illustrating a configuration of a fourth embodiment. 実施例4における動作を説明するフローチャートである。10 is a flowchart illustrating an operation in the fourth embodiment.

次に図面を参照して、本発明の実施の形態を詳細に説明する。尚、以下に説明する各実施例は、車載用の路面状況推定装置に好適な実施例であるが、路側に設置する定置用にも利用できることは明らかである。   Next, embodiments of the present invention will be described in detail with reference to the drawings. In addition, although each Example demonstrated below is an Example suitable for a vehicle-mounted road surface condition estimation apparatus, it is clear that it can be utilized also for the stationary installation installed in a road side.

図1は、本発明に係る路面状況推定装置の実施例1の構成を示すブロック図である。図1において、路面状況推定装置1は、電磁波パルスの発生タイミングを発生する発生器101と、発生器101で発生されたタイミングで電磁波パルスを計測対象(路面)Mへ送信する送信器102と、計測対象Mで反射された電磁波を受信する受信器103と、受信器103で受信された電磁波から波形を再構成して検出する波形検出部104と、送信器102及び受信器103が設置された面(以下、送受信面と呼ぶ)に対して計測対象Mが傾いている角度θを計測または設定する角度計測/設定部105と、反射境界面位置を計測する反射境界面位置計測部106と、波形検出部104が検出した波形と角度θに基づいて波形の特徴を抽出する波形特徴抽出部107と、波形特徴抽出部107が抽出した特徴に基づいて路面状況を推定する路面状況推定部108とを備えている。   FIG. 1 is a block diagram illustrating a configuration of a road surface condition estimation apparatus according to a first embodiment of the present invention. In FIG. 1, a road surface condition estimation apparatus 1 includes a generator 101 that generates an electromagnetic wave pulse generation timing, a transmitter 102 that transmits the electromagnetic wave pulse to a measurement target (road surface) M at the timing generated by the generator 101, A receiver 103 that receives an electromagnetic wave reflected by the measurement object M, a waveform detector 104 that reconstructs and detects a waveform from the electromagnetic wave received by the receiver 103, and a transmitter 102 and a receiver 103 are installed. An angle measurement / setting unit 105 that measures or sets an angle θ at which the measurement object M is inclined with respect to a plane (hereinafter referred to as a transmission / reception surface), a reflection boundary surface position measurement unit 106 that measures a reflection boundary surface position, A waveform feature extracting unit 107 that extracts a waveform feature based on the waveform detected by the waveform detecting unit 104 and the angle θ, and a road surface condition is estimated based on the feature extracted by the waveform feature extracting unit 107 And a road surface condition estimating unit 108.

角度計測/設定部105は、カメラやレーザレーダ、加速度センサ等の車両に搭載した図示しないセンサの検出信号や、送受信面をチルト可能に車両に取り付けた図示しない取り付け具の設定角度の、いずれか一つ以上の組み合わせから、計測対象Mと送受信面とのなす角度θを計測する。角度計測/設定部105は、角度θの計測値を波形特徴抽出部107へ出力する。   The angle measurement / setting unit 105 is either a detection signal of a sensor (not shown) mounted on a vehicle such as a camera, a laser radar, or an acceleration sensor, or a set angle of a fixture (not shown) attached to the vehicle so that the transmission / reception surface can be tilted. The angle θ between the measurement object M and the transmission / reception surface is measured from one or more combinations. The angle measurement / setting unit 105 outputs the measurement value of the angle θ to the waveform feature extraction unit 107.

反射境界面位置計測部106は、カメラやレーザレーダ、加速度センサ、既知のステージやセンサ設置条件のいずれか一つ以上の組み合わせから、計測対象Mと送受信面との距離を計測する。反射境界面位置計測部106は、計測した距離を波形特徴抽出部107へ出力する。   The reflection boundary surface position measurement unit 106 measures the distance between the measurement target M and the transmission / reception surface from a combination of one or more of a camera, a laser radar, an acceleration sensor, a known stage, and sensor installation conditions. The reflection boundary surface position measurement unit 106 outputs the measured distance to the waveform feature extraction unit 107.

波形特徴抽出部107は、波形検出部104が検出した波形と角度θに基づいて波形の特徴を抽出する。路面状況推定部108は、波形特徴抽出部107が抽出した特徴に基づいて路面状況を推定する。   The waveform feature extraction unit 107 extracts waveform features based on the waveform detected by the waveform detection unit 104 and the angle θ. The road surface state estimation unit 108 estimates the road surface state based on the features extracted by the waveform feature extraction unit 107.

ここで送信器102が放射する電磁波パルスは、路面及び路面に積層される可能性がある水、氷、雪等により一部が反射される波長であればよい。路面に水たまりができたり、凍結したり、積雪した場合、路面は、境界面B1とB2を有することになる。電磁波パルスの波長として、テラヘルツ波(0.1THz〜10THz、1THz=1012Hz)を用いるのが好ましい。テラヘルツ波は、電波と光との間に残された未開拓の電磁波であり、電波と光の双方の性質を有する。テラヘルツ波は、境界面B1で反射されるとともに、一部は内部に浸透して境界面B2で反射されるので、反射波形から道路表面が平滑か散乱性か、あるいは路面の積層状況及び積層物質を推定することができる。 Here, the electromagnetic wave pulse radiated from the transmitter 102 may have a wavelength that is partially reflected by the road surface and water, ice, snow, or the like that may be stacked on the road surface. When puddles are formed on the road surface, frozen, or snow is accumulated, the road surface has boundary surfaces B1 and B2. Terahertz waves (0.1 THz to 10 THz, 1 THz = 10 12 Hz) are preferably used as the wavelength of the electromagnetic wave pulse. Terahertz waves are undeveloped electromagnetic waves left between radio waves and light, and have both radio wave and light properties. The terahertz wave is reflected at the boundary surface B1 and partly penetrates inside and is reflected at the boundary surface B2. Therefore, the road surface is smooth or scattering from the reflected waveform, or the road surface stacking condition and the layered material Can be estimated.

図2は、電磁波をテラヘルツ波とした場合の実施例1の構成を示す構成図である。図2において、路面状況推定装置1は、100fs(1fs=10-15 s)程度のパルス幅のレーザ光を発生するフェムト秒パルスレーザ2と、フェムト秒パルスレーザ2が発生したパルス光を励起用パルス光12と同期検波用パルス光13に分割するハーフミラー3と、励起用パルス光12をテラヘルツ波パルスに変換して放射する送信用光スイッチ4と、送信用光スイッチ4に印加電圧を与えるバイアス5と、ミラー6と、同期検波用パルス光13を時間遅延走査するための可動構造を有するミラー7と、計測対象Mで反射されたテラヘルツ波を受信して同期検波用パルス光13のタイミングで光電流に変換する受信用光スイッチ8と、光電流を増幅する電流アンプ9と、受信波形を再構成してテラヘルツ波の波形を検出する波形検出部10と、波形検出部10が検出した波形に基づいて路面状況を推定するマイクロコンピュータ11とを備えている。 FIG. 2 is a configuration diagram illustrating the configuration of the first embodiment when the electromagnetic wave is a terahertz wave. In FIG. 2, the road surface condition estimation apparatus 1 uses a femtosecond pulse laser 2 that generates laser light having a pulse width of about 100 fs (1 fs = 10 −15 s) and pulse light generated by the femtosecond pulse laser 2 for excitation. An applied voltage is applied to the half mirror 3 that divides the pulse light 12 and the synchronous detection pulse light 13, the transmission optical switch 4 that converts the excitation pulse light 12 into a terahertz pulse and emits it, and the transmission optical switch 4. The bias 5, the mirror 6, the mirror 7 having a movable structure for time-delayed scanning of the synchronous detection pulse light 13, and the timing of the synchronous detection pulse light 13 by receiving the terahertz wave reflected by the measurement target M Receiving optical switch 8 for converting to a photocurrent, a current amplifier 9 for amplifying the photocurrent, and a waveform detector for reconstructing the received waveform and detecting the waveform of the terahertz wave 0, and a microcomputer 11 for estimating the road surface condition based on the waveform of the waveform detector 10 has detected.

フェムト秒パルスレーザ2は、例えば、チタン添加サファイアレーザ(Ti:Al2O3)を用いると、パルス幅12〜100fs,パルス繰り返し周波数10〜80MHz,出力500mW〜2Wが得られる。また、フェムト秒パルスレーザ2として、ファイバーレーザを用いると、パルス幅502〜100fs,パルス繰り返し周波数10〜50MHz,出力30〜300mWが得られる。   For example, when a titanium-added sapphire laser (Ti: Al2O3) is used as the femtosecond pulse laser 2, a pulse width of 12 to 100 fs, a pulse repetition frequency of 10 to 80 MHz, and an output of 500 mW to 2 W are obtained. Further, when a fiber laser is used as the femtosecond pulse laser 2, a pulse width of 502 to 100 fs, a pulse repetition frequency of 10 to 50 MHz, and an output of 30 to 300 mW are obtained.

フェムト秒パルスレーザ2が発生するパルス光の波長は、フェムト秒光パルスをテラヘルツ波に変換する半導体基板(例えば、GaAs)のバンドギャップ(GaAsの場合、Eg=1.42eV)に相当する光の波長以下であり、図4を参照して後述するLT−GaAs基板にフォトキャリアを励起することができる波長である。   The wavelength of the pulsed light generated by the femtosecond pulse laser 2 is that of light corresponding to the band gap (Eg = 1.42 eV in the case of GaAs) of a semiconductor substrate (for example, GaAs) that converts the femtosecond optical pulse into a terahertz wave. This wavelength is equal to or shorter than the wavelength and can excite photocarriers on the LT-GaAs substrate described later with reference to FIG.

図4は、送信用光スイッチ4の詳細例を説明する斜視図である。送信用光スイッチ4は、励起用パルス光12を収束させるレーザ収束レンズ31と、発生したテラヘルツ波パルスを収束させるシリコンレンズ32と、低温成長させたGaAs基板であるLT−GaAs基板33と、アンテナ給電線を兼ねる一対の電極34,35とを備えている。電極34,35との間のギャップの幅dは、例えば5μm〜10μmであり、微少ダイポールアンテナとして作用する。電極34,35間にバイアス電圧Vb(DC〜10kHz,20V程度)を供給するバイアス5が接続されている。この電極34,35のギャップへ励起用パルス光12を照射すると、GaAsの光電効果によりフォトキャリアが生成され、さらに印加電圧によってフォトキャリアが加速されるため、瞬時電流が流れる。この電流の時間微分に比例した電磁波(ETHz(t)∝∂J/∂t)が電極34,35にテラヘルツ波パルスとして発生し、シリコンレンズ32により放射される。LT−GaAs基板33の条件は、キャリア寿命が数psecであることが好ましい。   FIG. 4 is a perspective view illustrating a detailed example of the transmission optical switch 4. The transmission optical switch 4 includes a laser converging lens 31 for converging the excitation pulse light 12, a silicon lens 32 for converging the generated terahertz wave pulse, an LT-GaAs substrate 33 which is a GaAs substrate grown at a low temperature, an antenna A pair of electrodes 34 and 35 also serving as a power supply line is provided. The width d of the gap between the electrodes 34 and 35 is, for example, 5 μm to 10 μm, and acts as a minute dipole antenna. A bias 5 for supplying a bias voltage Vb (DC to 10 kHz, about 20 V) is connected between the electrodes 34 and 35. When the excitation pulse light 12 is irradiated to the gap between the electrodes 34 and 35, photocarriers are generated by the photoelectric effect of GaAs, and further, the photocarriers are accelerated by the applied voltage, so that an instantaneous current flows. An electromagnetic wave (ETHz (t) ∝∂J / ∂t) proportional to the time derivative of this current is generated as a terahertz wave pulse on the electrodes 34 and 35 and is radiated by the silicon lens 32. The LT-GaAs substrate 33 preferably has a carrier lifetime of several psec.

図5は、受信用光スイッチ8の詳細例を説明する斜視図である。受信用光スイッチ8は、送信用光スイッチ4と基本的に同じ構造のものを用いる。送信用光スイッチとの相違は、電極34,35間にバイアス5を接続する代わりに、電流計36が接続されていることである。実際には、電流計36ではなくて、図2に示したように電流アンプ9が接続されている。受信用光スイッチ8は、低温成長させたGaAs基板であるLT−GaAs基板33上の電極34,35は微少ダイポールアンテナとして作用するので、シリコンレンズ32で収束されたテラヘルツ波とレーザ収束レンズ31で収束された同期検波用パルス光13を受けることで、テラヘルツ波を電極34,35の間からなる微少ダイポールアンテナとして作用させ、アンテナに生じる光電流に変換し、テラヘルツ波パルスを受信する。この電流波形を検出するために同期検波を行う。   FIG. 5 is a perspective view illustrating a detailed example of the reception optical switch 8. The reception optical switch 8 has basically the same structure as the transmission optical switch 4. The difference from the transmission optical switch is that an ammeter 36 is connected instead of connecting the bias 5 between the electrodes 34 and 35. Actually, not the ammeter 36 but the current amplifier 9 is connected as shown in FIG. In the receiving optical switch 8, since the electrodes 34 and 35 on the LT-GaAs substrate 33, which is a GaAs substrate grown at a low temperature, act as a minute dipole antenna, the terahertz wave focused by the silicon lens 32 and the laser focusing lens 31 are used. By receiving the focused pulse 13 for synchronous detection, the terahertz wave is caused to act as a minute dipole antenna formed between the electrodes 34 and 35, converted into a photocurrent generated in the antenna, and a terahertz wave pulse is received. Synchronous detection is performed to detect this current waveform.

ここで同期検波の原理を説明する。同期検波用パルス光13のパルス幅が例えば300fsecのとき、すなわちタイムゲートは300fsecより短い時間(30fsec程度の分解能)で同期検波をすることができる。テラヘルツ波パルス幅をたとえば1000fsecと設定した場合、図2のミラー7を少しずつ移動させることによりタイムゲートを少しずつ遅延させてサンプリングする。こうしてサンプリングした各サンプル点をつなげることにより、テラヘルツ波パルスの波形を観測することができる。この技術は、テラヘルツ時間領域分光法(TDS)と呼ばれている。   Here, the principle of synchronous detection will be described. When the pulse width of the synchronous detection pulse light 13 is, for example, 300 fsec, that is, the time gate can perform synchronous detection in a time shorter than 300 fsec (resolution of about 30 fsec). When the terahertz wave pulse width is set to 1000 fsec, for example, sampling is performed with the time gate being gradually delayed by moving the mirror 7 of FIG. 2 little by little. By connecting the sample points thus sampled, the waveform of the terahertz wave pulse can be observed. This technique is called terahertz time domain spectroscopy (TDS).

次に、実際の動作を二つのステップに分けて説明する。まず、同期検波の為に、テラヘルツ波の伝播光路長と同期検波用の光路長を等しくする。つまり、ハーフミラー3によりフェムト秒光パルスを二分割させた地点から、送信用光スイッチ4を経て、計測対象Mへの往復距離を加算したものがテラヘルツ波の伝播光路長である。同期検波用光路は、ハーフミラー3によりフェムト秒パルスを二分割させた地点から、ミラー6,ミラー7を経て受信用光スイッチ8に入射する光路長である。ミラー7の位置を調整して、テラヘルツ波の伝播光路長と同期検波用光路長を等しくする。   Next, the actual operation will be described in two steps. First, for synchronous detection, the propagation optical path length of the terahertz wave is made equal to the optical path length for synchronous detection. That is, the propagation optical path length of the terahertz wave is obtained by adding the round trip distance from the point where the femtosecond optical pulse is divided into two by the half mirror 3 to the measurement target M via the transmission optical switch 4. The optical path for synchronous detection is an optical path length incident on the receiving optical switch 8 through the mirror 6 and the mirror 7 from the point where the femtosecond pulse is divided into two by the half mirror 3. The position of the mirror 7 is adjusted so that the propagation optical path length of the terahertz wave is equal to the optical path length for synchronous detection.

次いで、テラヘルツ波パルスを観測するため、同期検波用走査器であるミラー7の位置を移動させることで、上記の遅延時間を走査する。30fsec程度の分解能を出すため、一ステップあたり10μmの光路変位動作をさせる。変位量の最大は、必要なパルス波形の取得時間によって定まり、例えば100psec間の波形をサンプリングしたい場合は光速に基づき、変位量の最大値を30mmと定める。   Next, in order to observe the terahertz wave pulse, the delay time is scanned by moving the position of the mirror 7 which is a synchronous detection scanner. In order to obtain a resolution of about 30 fsec, an optical path displacement operation of 10 μm is performed per step. The maximum amount of displacement is determined by the required acquisition time of the pulse waveform. For example, when sampling a waveform for 100 psec, the maximum value of the amount of displacement is set to 30 mm based on the speed of light.

最後に、一ステップあたりの変位量と光速に基づきサンプリング点間の間隔時間を定め、サンプリング点ごとの振幅に基づき、テラヘルツ波反射波形を検出する。この部分が図2の波形検出部10である。   Finally, an interval time between sampling points is determined based on the amount of displacement per step and the speed of light, and a terahertz wave reflection waveform is detected based on the amplitude at each sampling point. This portion is the waveform detector 10 in FIG.

次に、テラヘルツ波パルスの反射を用いた路面状況推定を説明する。図2に示すように、計測対象Mは、物質M2(例えばコンクリート)の表面に、物質M1(例えば氷または雪)の層が形成されたものが存在するとする。この計測対象Mに、テラヘルツ波パルスを照射すると、テラヘルツ波の一部は、空気と物質M1との境界である境界面B1で反射され、残りは物質M1の内部へ進入する。物質M1の内部へ進入したテラヘルツ波パルスは、物質M1で吸収されながら物質M1と物質M2との境界である境界面B2に達して一部が反射され、残りが物質M2に吸収される。   Next, estimation of road surface conditions using reflection of terahertz wave pulses will be described. As shown in FIG. 2, it is assumed that the measurement object M includes a material M2 (for example, concrete) on which a layer of the material M1 (for example, ice or snow) is formed. When this measurement object M is irradiated with a terahertz wave pulse, a part of the terahertz wave is reflected at the boundary surface B1 which is a boundary between air and the substance M1, and the rest enters the inside of the substance M1. The terahertz wave pulse that has entered the inside of the substance M1 reaches the boundary surface B2, which is the boundary between the substance M1 and the substance M2, while being absorbed by the substance M1, and a part of it is reflected, and the rest is absorbed by the substance M2.

従って、波形検出部10の出力には、境界面B1による反射の波形21と、境界面B2による反射の波形22とが得られる。実際には、多重反射により、波形22の後にも振幅の小さい波形が続くが、これらを無視してもかまわない。波形21と波形22との時間差Δtは、物質M1の厚さをD,その屈折率をng ,光速をcとすれば、次の式となる。   Accordingly, the waveform detection unit 10 outputs the waveform 21 reflected by the boundary surface B1 and the waveform 22 reflected by the boundary surface B2. Actually, a waveform having a small amplitude continues after the waveform 22 due to multiple reflection, but these may be ignored. The time difference Δt between the waveform 21 and the waveform 22 is expressed by the following equation, where D is the thickness of the substance M1, ng is its refractive index, and c is the speed of light.

Δt=(1/c)×2ng ×D
尚、厚さDが0の場合、言い換えれば、計測対象Mが積層状態でない場合には、Δtは0となり、波形21と波形22との時間差は無くなり、反射波形の種類は1つしか検出されないことは明らかである。従って、反射波形の種類の数に基づいて、路面状態が積層状態か非積層状態かを判別することができるとともに、反射波形のΔtにより路面舗装の上に形成された積層の厚さDを測定することができる。
Δt = (1 / c) × 2 ng × D
When the thickness D is 0, in other words, when the measurement object M is not in a laminated state, Δt is 0, there is no time difference between the waveform 21 and the waveform 22, and only one reflected waveform type is detected. It is clear. Therefore, it is possible to determine whether the road surface state is a laminated state or a non-laminated state based on the number of types of the reflected waveform, and measure the thickness D of the laminated layer formed on the road pavement based on the reflected waveform Δt. can do.

図1と図2との対応は以下の通りである。発生器101及び送信器102が送信用光スイッチ4、受信器103が受信用光スイッチ8及び電流アンプ9,波形検出部104が波形検出部10にそれぞれ対応する。また図1の角度計測/設定部105と反射境界面位置計測部106と波形特徴抽出部107と路面状況推定部108とは、図2のマイクロコンピュータ11により実現されている。このため、マイクロコンピュータ11には、カメラやレーザレーダ、加速度センサ、既知のステージやセンサ設置条件のいずれか一つ以上の組み合わせから、計測対象Mと送受信面とのなす角度θを計測するプログラムと、カメラやレーザレーダ、加速度センサ、既知のステージやセンサ設置条件のいずれか一つ以上の組み合わせから、計測対象Mと送受信器との距離を計測するプログラムと、波形検出部10が検出した波形と角度θに基づいて波形の特徴を抽出するプログラムと、抽出した波形の特徴に基づいて路面状況を推定するプログラムとを備えている。   The correspondence between FIG. 1 and FIG. 2 is as follows. The generator 101 and the transmitter 102 correspond to the transmission optical switch 4, the receiver 103 corresponds to the reception optical switch 8, the current amplifier 9, and the waveform detection unit 104 correspond to the waveform detection unit 10, respectively. Further, the angle measurement / setting unit 105, the reflection boundary surface position measurement unit 106, the waveform feature extraction unit 107, and the road surface condition estimation unit 108 in FIG. 1 are realized by the microcomputer 11 in FIG. For this reason, the microcomputer 11 includes a program for measuring an angle θ between the measurement target M and the transmission / reception surface from a combination of one or more of a camera, a laser radar, an acceleration sensor, a known stage, and sensor installation conditions. A program for measuring the distance between the measuring object M and the transmitter / receiver from a combination of at least one of a camera, laser radar, acceleration sensor, known stage and sensor installation conditions, and a waveform detected by the waveform detector 10 A program for extracting waveform features based on the angle θ and a program for estimating road surface conditions based on the extracted waveform features are provided.

図3は、電磁波をテラヘルツ波とした場合の実施例1の変形例の構成を示す構成図である。図2のハーフミラー3,ミラー6,及びミラー7に代えて、同期検波用パルス光13を発生するフェムト秒パルスレーザ15と、フェムト秒パルスレーザ2とフェムト秒パルスレーザ15との間の互いに異なるパルス発生繰返周期の差が一定なるように制御するタイミング制御部14とを設けている。   FIG. 3 is a configuration diagram illustrating a configuration of a modified example of the first embodiment when the electromagnetic wave is a terahertz wave. Instead of the half mirror 3, the mirror 6 and the mirror 7 of FIG. 2, the femtosecond pulse laser 15 for generating the synchronous detection pulse light 13, and the femtosecond pulse laser 2 and the femtosecond pulse laser 15 are different from each other. And a timing control unit 14 for controlling the difference between the pulse generation repetition periods to be constant.

図2の構成では、ミラー7を移動することにより、同期検波用パルス光13の時間遅延走査を行っていたが、図3の変形例では、フェムト秒パルスレーザ2が発生する励起用パルス光12に対して、フェムト秒パルスレーザ15が発生する同期検波用パルス光13のタイミングを順次ずらす時間遅延走査を電子制御により行っている。このため、路面状況推定装置1の内部で同期検波用パルス光13を遅延させるための可変光路長が不要となり、路面状況推定装置1を小型化して車両搭載性を向上させることができる。   In the configuration of FIG. 2, the time-delayed scanning of the synchronous detection pulsed light 13 is performed by moving the mirror 7. In the modified example of FIG. 3, the excitation pulsed light 12 generated by the femtosecond pulsed laser 2 is used. On the other hand, time-delayed scanning that sequentially shifts the timing of the synchronous detection pulsed light 13 generated by the femtosecond pulse laser 15 is performed by electronic control. This eliminates the need for a variable optical path length for delaying the synchronous detection pulsed light 13 inside the road surface condition estimating apparatus 1, reducing the size of the road surface condition estimating apparatus 1 and improving the vehicle mountability.

図6は、実施例1における路面状況推定装置1の動作を説明するフローチャートである。まず、ステップ(以下、ステップをSと略す)10において、所定の周期で繰り返し発生器101でフェムト秒パルス光を発生させ、送信器102でテラヘルツ波パルスを計測対象Mへ送出する。次いでS12で、発生器101が発生したタイミングに基づいて受信器103が計測対象Mからの反射テラヘルツ波パルスを受信する。そして波形検出部104が受信波形を再構成して検出する。   FIG. 6 is a flowchart for explaining the operation of the road surface condition estimation apparatus 1 according to the first embodiment. First, in step (hereinafter, step is abbreviated as S) 10, femtosecond pulse light is repeatedly generated by a generator 101 at a predetermined cycle, and a terahertz wave pulse is transmitted to a measurement object M by a transmitter 102. Next, in S <b> 12, the receiver 103 receives the reflected terahertz wave pulse from the measurement target M based on the timing generated by the generator 101. Then, the waveform detector 104 reconstructs and detects the received waveform.

次いでS14において、角度計測/設定部105が、受信波形に基づいて境界面の角度を計測、または送信器102及び受信器103の車体に対する角度を設定することにより、境界面B1,B2の送受信器設定面に対する角度を測定する。また反射境界面位置計測部106が境界面B1,B2の位置を計測する。   Next, in S14, the angle measurement / setting unit 105 measures the angle of the boundary surface based on the received waveform, or sets the angle of the transmitter 102 and the receiver 103 with respect to the vehicle body, thereby transmitting / receiving the boundary surfaces B1, B2. Measure the angle to the setting surface. The reflection boundary surface position measurement unit 106 measures the positions of the boundary surfaces B1 and B2.

次いでS16において、波形特徴抽出部107が、境界面の角度と検出波形に応じて、反射波形の特徴を抽出し、抽出した特徴により路面状況を推定する。具体的には、反射面の種類と送受信面と反射面との角度により、例えば図8に示すように反射面の種類を6種類に分類する。この分類は、反射面が散乱面であるか平滑面であるかの2分類と、反射面と送受信面が並行で正反射か、5゜の斜め入射か、10゜の斜め入射かの3分類があり、2×3=6通りの分類に対して、反射波の強度をグラフ表示したものが図8である。   Next, in S16, the waveform feature extraction unit 107 extracts the feature of the reflected waveform according to the angle of the boundary surface and the detected waveform, and estimates the road surface condition based on the extracted feature. Specifically, for example, as shown in FIG. 8, the types of reflection surfaces are classified into six types according to the types of reflection surfaces and the angles between the transmission / reception surfaces and the reflection surfaces. This classification includes two classifications: the reflection surface is a scattering surface or a smooth surface, and the reflection surface and the transmission / reception surface are parallel reflection, regular reflection, 5 ° oblique incidence, or 10 ° oblique incidence. FIG. 8 is a graph showing the intensity of the reflected wave for 2 × 3 = 6 classifications.

反射面が散乱面の場合には、正反射、5゜斜め入射、10゜斜め入射のいずれも反射波の振幅は、ほぼ同等で変化がない。しかし、平滑面の場合には、正反射が最も反射強度が高く、反射面と送受信面との角度が大きくなるほど反射波の強度は低下する。したがって、送信器102及び受信器103を備える送受信面の角度を車体鉛直下方(0゜)と、鉛直下方から5゜傾けた角度と、鉛直下方から10゜傾けた角度との3種類の角度を角度計測/設定部105により設定可能とする。そして、0゜、5゜、10゜の各角度におけるテラヘルツ波の反射強度を測定することにより、路面が散乱面か平滑面かを推定することができる。   When the reflecting surface is a scattering surface, the amplitude of the reflected wave is almost the same and does not change in any of the regular reflection, 5 ° oblique incidence, and 10 ° oblique incidence. However, in the case of a smooth surface, regular reflection has the highest reflection intensity, and the intensity of the reflected wave decreases as the angle between the reflection surface and the transmission / reception surface increases. Therefore, the angle of the transmission / reception surface provided with the transmitter 102 and the receiver 103 is set to three types of angles: a vehicle body vertical downward (0 °), an angle inclined by 5 ° from the vertical downward, and an angle inclined by 10 ° from the vertical downward. It can be set by the angle measurement / setting unit 105. Then, by measuring the reflection intensity of the terahertz wave at each angle of 0 °, 5 °, and 10 °, it can be estimated whether the road surface is a scattering surface or a smooth surface.

また、図7に示すような、送信用光スイッチ4または送信器102が送信するテラヘルツ波の指向特性と、既知の大気の伝播減衰に基づき、波形検出部104が出力する反射波振幅値を増減する補正を行うことにより、より高精度に特徴量を抽出することができる。即ち、テラヘルツ波の送信アンテナである送信用光スイッチ4または送信器102のアンテナ面と垂直方向、図7でいえば、正反射方向、車体に装備した送信器102の鉛直下方方向の放射強度を1.0とすれば、放射角度に応じて放射強度が減衰する。同様に斜め方向から受信器103へ入射する反射波に対して、受信器103の感度も低下する。このため、予め測定した放射強度分布により、5゜斜め入射時と、10゜斜め入射時の受信強度を補正する。   Further, as shown in FIG. 7, the reflected wave amplitude value output by the waveform detector 104 is increased or decreased based on the directivity characteristics of the terahertz wave transmitted by the transmission optical switch 4 or the transmitter 102 and the known atmospheric propagation attenuation. By performing the correction, the feature amount can be extracted with higher accuracy. That is, the radiation intensity in the direction perpendicular to the antenna surface of the transmission optical switch 4 or the transmitter 102 which is a terahertz wave transmission antenna, in FIG. 7, the specular reflection direction, and the vertical downward direction of the transmitter 102 mounted on the vehicle body. If 1.0, the radiation intensity attenuates according to the radiation angle. Similarly, the sensitivity of the receiver 103 also decreases with respect to the reflected wave incident on the receiver 103 from an oblique direction. For this reason, the received intensity at 5 ° oblique incidence and 10 ° oblique incidence is corrected by the radiation intensity distribution measured in advance.

また、鉛直下方の正反射面からの反射に比べて、斜め方向からの反射は、送信器102から受信器103に戻る経路の長さが(1/cosθ)倍となり、この長さが増えた分だけ、空気による電磁波吸収が増加して減衰するので、この分も補正する。   In addition, the reflection from the oblique direction is (1 / cosθ) times the length of the path returning from the transmitter 102 to the receiver 103, and this length is increased, compared to the reflection from the regular reflection surface vertically below. The amount of electromagnetic wave absorption by the air is increased and attenuated by this amount, so this amount is also corrected.

以上説明した実施例1によれば、車両挙動によりセンサから路面までの距離が変化しても、電磁波の送信方向と受信した反射波の特徴に基づいて路面状況を正確に推定することができるという効果がある。   According to the first embodiment described above, even if the distance from the sensor to the road surface changes due to vehicle behavior, the road surface condition can be accurately estimated based on the transmission direction of the electromagnetic wave and the characteristics of the received reflected wave. effective.

また実施例1によれば、電磁波としてテラヘルツ波パルスを使用しているので、路面が積雪や凍結による積層状態であっても正確に路面状況を推定することができるという効果がある。   Further, according to the first embodiment, since the terahertz wave pulse is used as the electromagnetic wave, there is an effect that the road surface condition can be accurately estimated even when the road surface is in a stacked state due to snow accumulation or freezing.

また実施例1によれば、路面に電磁波を照射する角度を変えて反射波の強度を測定することにより、路面が平滑面か散乱面かを推定することができるという効果がある。   Further, according to the first embodiment, there is an effect that it is possible to estimate whether the road surface is a smooth surface or a scattering surface by changing the angle at which the electromagnetic wave is applied to the road surface and measuring the intensity of the reflected wave.

図9は、本発明に係る路面状況推定装置の実施例2の構成を示すブロック図である。本実施例では、実施例1の構成に、反射波形補正部109が追加されている。その他の構成は、図1と同様であるので、同じ構成要素には同じ符号を付与して、重複する説明を省略する。   FIG. 9 is a block diagram showing a configuration of the second embodiment of the road surface condition estimating apparatus according to the present invention. In the present embodiment, a reflected waveform correction unit 109 is added to the configuration of the first embodiment. Since other configurations are the same as those in FIG. 1, the same components are denoted by the same reference numerals, and redundant description is omitted.

反射波形補正部109は、波形特徴抽出部107が抽出した波形の特徴に基づいて、反射波形を補正する構成要素である。   The reflected waveform correcting unit 109 is a component that corrects the reflected waveform based on the waveform feature extracted by the waveform feature extracting unit 107.

次に、図10のフローチャートを参照して、本実施例の動作を説明する。S10〜S16は、図6の実施例1と同様である。次に、図10に基づいて、実施例1と異なる部分を説明する。S18において、反射波形補正部109は、波形特徴抽出部107が抽出した反射波形の特徴に基づいて、反射波形を補正する。具体的には、正反射である場合は、反射波形は送信波形と類似性が高いため、複数波形の合成は送信波形をモデルにしたマッチングにより時刻を合わせて反射波の補正を行う。また、散乱面での反射である場合は、反射波形は送信波形と類似性が低く、複数時間組み合わせると散乱波形が復元されにくいため、送受信面を正反射、5゜斜め、10゜斜めとした3通りの送受信面の角度設定の違いで送受信した結果から、反射面が散乱体であることを識別し、積算による反射率の算出を行う。   Next, the operation of this embodiment will be described with reference to the flowchart of FIG. S10 to S16 are the same as those in the first embodiment shown in FIG. Next, a different part from Example 1 is demonstrated based on FIG. In S18, the reflected waveform correcting unit 109 corrects the reflected waveform based on the reflected waveform feature extracted by the waveform feature extracting unit 107. Specifically, in the case of regular reflection, the reflected waveform is highly similar to the transmission waveform, and therefore, the synthesis of a plurality of waveforms corrects the reflected wave by matching the time with matching using the transmission waveform as a model. In the case of reflection on the scattering surface, the reflection waveform is low in similarity with the transmission waveform, and the scattering waveform is difficult to be restored when combined for a plurality of hours. From the result of transmission / reception with the difference in the angle setting of the three transmission / reception surfaces, the reflection surface is identified as a scatterer, and the reflectance is calculated by integration.

以上説明した実施例2によれば、車両挙動によりセンサから路面までの距離が変化しても、電磁波の送信方向と受信した反射波の特徴に基づいて路面状況を正確に推定することができるという効果がある。   According to the second embodiment described above, even if the distance from the sensor to the road surface changes due to vehicle behavior, the road surface condition can be accurately estimated based on the electromagnetic wave transmission direction and the characteristics of the received reflected wave. effective.

また実施例2によれば、電磁波としてテラヘルツ波パルスを使用しているので、路面が積雪や凍結による積層状態であっても正確に路面状況を推定することができるという効果がある。   Further, according to the second embodiment, since the terahertz wave pulse is used as the electromagnetic wave, there is an effect that the road surface condition can be accurately estimated even when the road surface is in a stacked state due to snow accumulation or freezing.

また実施例2によれば、路面に電磁波を照射する角度を変えて反射波の強度を測定することにより、路面が平滑面か散乱面かを推定することができるという効果がある。   Further, according to the second embodiment, there is an effect that it is possible to estimate whether the road surface is a smooth surface or a scattering surface by changing the angle at which the electromagnetic wave is applied to the road surface and measuring the intensity of the reflected wave.

さらに実施例2によれば、反射波形の特徴に基づいて反射波形を補正しているので、更に正確に路面状況を推定することができる。   Furthermore, according to the second embodiment, since the reflected waveform is corrected based on the characteristics of the reflected waveform, the road surface condition can be estimated more accurately.

図11は、本発明に係る路面状況推定装置の実施例3の構成を示すブロック図である。本実施例は、実施例1の構成に、車両運動量算出部110と、散乱算出部111とが追加されている。その他の構成は、図1と同様であるので、同じ構成要素には同じ符号を付与して、重複する説明を省略する。   FIG. 11: is a block diagram which shows the structure of Example 3 of the road surface condition estimation apparatus which concerns on this invention. In this embodiment, a vehicle momentum calculation unit 110 and a scattering calculation unit 111 are added to the configuration of the first embodiment. Since other configurations are the same as those in FIG. 1, the same components are denoted by the same reference numerals, and redundant description is omitted.

車両運動量算出部110は、角度計測/設定部105と反射境界面位置計測部106に接続され、車速や3軸加速度、操舵、加減速操作等に基づいて、車両のピッチング、ローリング、ヨーイングを計算する。   The vehicle momentum calculation unit 110 is connected to the angle measurement / setting unit 105 and the reflective boundary surface position measurement unit 106, and calculates the pitching, rolling, and yawing of the vehicle based on vehicle speed, three-axis acceleration, steering, acceleration / deceleration operations, and the like. To do.

散乱算出部111は、波形検出部104、角度計測/設定部105、反射境界面位置計測部106及び路面状況推定部108に接続されている。そして、散乱算出部111は、計測又は設定した送受信面の角度、反射面の位置、及び反射波形から、反射波の散乱度合いを算出する。   The scattering calculation unit 111 is connected to the waveform detection unit 104, the angle measurement / setting unit 105, the reflection boundary surface position measurement unit 106, and the road surface condition estimation unit 108. Then, the scattering calculation unit 111 calculates the degree of scattering of the reflected wave from the measured or set angle of the transmitting / receiving surface, the position of the reflecting surface, and the reflected waveform.

次に、図12のフローチャートを参照して、実施例3の動作を説明する。S10〜S12の動作は、実施例1と同様である。S20において、車両運動量算出部110は、車両のピッチング、ローリング、ヨーイングを算出し、角度計測/設定部105は、路面と送受信面との路面鉛直方向と送信面鉛直方向との角度差を計測または設定し、反射境界面位置計測部106は、送受信面と路面との距離を計測し、得られた反射波の反射角度情報として、散乱算出部111へ送出する。   Next, the operation of the third embodiment will be described with reference to the flowchart of FIG. The operations in S10 to S12 are the same as those in the first embodiment. In S20, the vehicle momentum calculation unit 110 calculates the pitching, rolling, and yawing of the vehicle, and the angle measurement / setting unit 105 measures the angle difference between the road surface vertical direction and the transmission surface vertical direction between the road surface and the transmission / reception surface. Then, the reflection boundary surface position measurement unit 106 measures the distance between the transmission / reception surface and the road surface, and sends it to the scattering calculation unit 111 as reflection angle information of the obtained reflected wave.

次いでS22において、散乱算出部111は、波形検出部104が検出した受信波形と角度情報から散乱の度合いを計算する。なお、このとき計算に過去の反射波及び角度を用いるとより高精度に判別できる。また、テラヘルツTDS方式であるので、境界面B1及びB2がある場合には、路面の積層情報を個々に判別すると、より高精度に検出できる。   Next, in S <b> 22, the scattering calculation unit 111 calculates the degree of scattering from the received waveform and angle information detected by the waveform detection unit 104. At this time, if a past reflected wave and angle are used for the calculation, the determination can be made with higher accuracy. In addition, because of the terahertz TDS method, when there are boundary surfaces B1 and B2, it is possible to detect with higher accuracy if the road surface stacking information is individually determined.

次いでS24において、路面状況推定部108は、図13に示すように、予め記憶した複数の路面状態モデルを参照して、計測対象物Mで反射された反射波の散乱度合い及び反射波形の種類の数に応じて、路面状況を推定する。   Next, in S24, the road surface condition estimation unit 108 refers to a plurality of road surface state models stored in advance as shown in FIG. 13, and determines the degree of scattering of the reflected wave reflected by the measurement object M and the type of the reflected waveform. The road surface condition is estimated according to the number.

図13において、路面状況が基準となる乾燥路面である場合には、散乱面であり、散乱度合いは、最も大きく(散乱度1)、非積層面であり、反射波形は、図2,3の波形21のみが検出され、波形22は検出されないので、波形種類の数は1である。   In FIG. 13, when the road surface condition is a standard dry road surface, it is a scattering surface, the scattering degree is the largest (scattering degree 1), it is a non-laminated surface, and the reflected waveform is as shown in FIGS. Since only the waveform 21 is detected and the waveform 22 is not detected, the number of waveform types is one.

路面状況がペイント式白線の場合、平滑面であり、散乱度合いは2番目に大きく(散乱度2)、非積層面であり、反射波形は、図2,3の波形21のみが検出され、波形22は検出されないので、波形種類の数は1である。   When the road surface condition is a paint-type white line, it is a smooth surface, the degree of scattering is the second largest (scattering degree 2), it is a non-laminated surface, and only the waveform 21 of FIGS. Since 22 is not detected, the number of waveform types is one.

路面状況が溶融式白線の場合、平滑面であり、散乱度合いは2番目に小さく(散乱度3)、非積層面であり、反射波形は、図2,3の波形21のみが検出され、波形22は検出されないので、波形種類の数は1である。   When the road surface condition is a melt-type white line, it is a smooth surface, the degree of scattering is the second smallest (scattering degree 3), a non-laminated surface, and only the waveform 21 in FIGS. Since 22 is not detected, the number of waveform types is one.

路面状況が湿潤の場合、平滑面であり、散乱度合いは最も小さく(散乱度4)、非積層面であり、反射波形は、図2,3の波形21のみが検出され、波形22は検出されないので、波形種類の数は1である。   When the road surface condition is wet, the surface is smooth, the degree of scattering is the smallest (scattering degree 4), the surface is a non-laminated surface, and only the waveform 21 in FIGS. 2 and 3 is detected, and the waveform 22 is not detected. Therefore, the number of waveform types is one.

路面状況が積雪の場合、散乱面であり、散乱度合いは最も大きく(散乱度1)、積層面であり、反射波形は、図2,3の波形21及び波形22が検出され、波形種類の数は2である。   When the road surface condition is snowy, it is a scattering surface, the scattering degree is the largest (scattering degree 1), the laminated surface, and the reflected waveforms are detected as waveforms 21 and 22 in FIGS. Is 2.

路面状況が凍結の場合、散乱面であり、散乱度合いは2番目に大きく(散乱度2)、積層面であり、反射波形は、図2,3の波形21及び波形22が検出され、波形種類の数は2である。   When the road surface condition is frozen, it is a scattering surface, the degree of scattering is the second largest (scattering degree 2), it is a laminated surface, and the reflected waveforms are detected as waveforms 21 and 22 in FIGS. Is two.

図14は、本発明の路面状況推定装置を搭載した車両の側面図である。サイドミラーの位置に車体の鉛直下方に向けて送信器102及び受信器103が設置されている。そして、路面の凹凸による車両運動が送信器102及び受信器103を設けた送受信面と路面との傾きθが形成される様子を示している。   FIG. 14 is a side view of a vehicle equipped with the road surface condition estimating apparatus of the present invention. A transmitter 102 and a receiver 103 are installed at the position of the side mirror toward the vertically lower side of the vehicle body. The vehicle motion due to the unevenness of the road surface shows a state in which an inclination θ between the transmission / reception surface provided with the transmitter 102 and the receiver 103 and the road surface is formed.

本実施例では、図11の角度計測/設定部105は、車両運動量算出部110が算出した車両のピッチングまたはローリングにより、図14の角度θを得ることができる。   In the present embodiment, the angle measurement / setting unit 105 in FIG. 11 can obtain the angle θ in FIG. 14 by the pitching or rolling of the vehicle calculated by the vehicle momentum calculation unit 110.

図15は、図11の送信器102及び受信器103の車体50への搭載位置を示す平面図である。搭載位置としては、左サイドミラーの位置51,車体前部の位置52,53,54,55,56,右サイドミラーの位置57,車体後部58,59の位置が可能である。41〜44は検知エリアの例である。   FIG. 15 is a plan view showing mounting positions of the transmitter 102 and the receiver 103 in FIG. 11 on the vehicle body 50. As the mounting positions, a position 51 of the left side mirror, positions 52, 53, 54, 55, 56 of the front part of the vehicle body, a position 57 of the right side mirror, and positions of the rear parts 58, 59 of the vehicle body are possible. Reference numerals 41 to 44 are examples of detection areas.

以上説明した実施例3によれば、車両挙動によりセンサから路面までの距離が変化しても、電磁波の送信方向と受信した反射波の特徴に基づいて路面状況を正確に推定することができるという効果がある。   According to the third embodiment described above, even if the distance from the sensor to the road surface changes due to vehicle behavior, the road surface condition can be accurately estimated based on the transmission direction of the electromagnetic wave and the characteristics of the received reflected wave. effective.

また実施例3によれば、電磁波としてテラヘルツ波パルスを使用しているので、路面が積雪や凍結による積層状態であっても正確に路面状況を推定することができるという効果がある。   Further, according to the third embodiment, since the terahertz wave pulse is used as the electromagnetic wave, there is an effect that the road surface condition can be accurately estimated even when the road surface is in a stacked state due to snow accumulation or freezing.

また実施例3によれば、路面に電磁波を照射する角度を変えて反射波の強度を測定することにより、路面が平滑面か散乱面かを推定することができるという効果がある。   Further, according to the third embodiment, there is an effect that it is possible to estimate whether the road surface is a smooth surface or a scattering surface by changing the angle at which the electromagnetic wave is applied to the road surface and measuring the intensity of the reflected wave.

さらに実施例3によれば、反射波の散乱度を算出し、予め記憶した路面状況毎の散乱度及び波形種類の数とを照合して、路面状況を正確に推定することができるという効果がある。   Further, according to the third embodiment, the degree of scattering of reflected waves is calculated, and the degree of road surface condition can be accurately estimated by comparing the degree of scattering and the number of waveform types for each road surface condition stored in advance. is there.

図16は、本発明に係る路面状況推定装置の実施例4の構成を示すブロック図である。本実施例は、実施例3の構成に、波形補正部112と、補正パラメータ算出部113と、レンズ114と、方向調整手段115とが追加されている。その他の構成は、図11と同様であるので、同じ構成要素には同じ符号を付与して、重複する説明を省略する。   FIG. 16: is a block diagram which shows the structure of Example 4 of the road surface condition estimation apparatus which concerns on this invention. In this embodiment, a waveform correction unit 112, a correction parameter calculation unit 113, a lens 114, and a direction adjustment unit 115 are added to the configuration of the third embodiment. Since other configurations are the same as those in FIG. 11, the same reference numerals are given to the same components, and redundant descriptions are omitted.

波形補正部112は、波形特徴抽出部107が抽出した反射波形の特徴に基づいて、送信器102が送信するテラヘルツ波のビーム径、ビーム送信方向、及び発生器101aから受信器103に至る遅延光路115の遅延時間を補正パラメータ算出部113へ指示する。   The waveform correction unit 112 is based on the reflected waveform feature extracted by the waveform feature extraction unit 107, the beam diameter of the terahertz wave transmitted by the transmitter 102, the beam transmission direction, and the delay optical path from the generator 101a to the receiver 103. The delay time 115 is instructed to the correction parameter calculation unit 113.

補正パラメータ算出部113は、波形補正部112から指示されたテラヘルツ波パルスのビーム径、ビーム送信方向、及び遅延光路115の遅延時間と、車両運動量算出部110からの車体のピッチング量及びローリング量に応じて、テラヘルツ波パルスのビーム径、ビーム送信方向、及び同期検波用の遅延光路115の長さを変更する。   The correction parameter calculation unit 113 sets the beam diameter of the terahertz wave pulse instructed from the waveform correction unit 112, the beam transmission direction, the delay time of the delay optical path 115, and the pitching amount and rolling amount of the vehicle body from the vehicle momentum calculation unit 110. Accordingly, the beam diameter of the terahertz wave pulse, the beam transmission direction, and the length of the delay optical path 115 for synchronous detection are changed.

レンズ114は、補正パラメータ算出部113の出力にしたがって、レンズ位置もしくは屈折率を変化させ、テラヘルツ波パルスビーム径を調整する。このレンズ114は、送信用光スイッチ4の詳細を説明した図4におけるシリコンレンズ32と同一のものであっても良いし、シリコンレンズ32に加えて、さらにレンズ114を備えることもできる。レンズ114は、レンズ位置を調節する図示しないレンズ位置調節器または屈折率調節器が設けられ、送信器102から放射されたテラヘルツ波パルスビームが路面の位置に形成するビーム径の大きさを調節する。  The lens 114 adjusts the terahertz pulse beam diameter by changing the lens position or refractive index according to the output of the correction parameter calculation unit 113. This lens 114 may be the same as the silicon lens 32 in FIG. 4 illustrating the details of the transmission optical switch 4, or may further include a lens 114 in addition to the silicon lens 32. The lens 114 is provided with a lens position adjuster or a refractive index adjuster (not shown) that adjusts the lens position, and adjusts the size of the beam diameter formed by the terahertz wave pulse beam emitted from the transmitter 102 at the position of the road surface. .

なお、このレンズ114は光学的に平行光に近いビーム径を設定すればよく、凸レンズでなくてもいくつかのレンズを組み合わせてもよい。また可視光と同じ屈折率のレンズ材料を用いることで、可視カメラを組み合わせてもよい。   The lens 114 may be set to have a beam diameter that is optically close to that of parallel light, and may be a combination of several lenses instead of a convex lens. Moreover, you may combine a visible camera by using the lens material of the same refractive index as visible light.

方向調整器115は、補正パラメータ算出部113の出力にしたがって、送信波パルスの送信方向を2次元または3次元に調整する装置である。例えば多角形回転ミラー(ポリゴンミラー)のような形状であれば、高速でパルスの方位走査が可能である。また、送受信アンテナを動かしてメカニカルに方向を調整する方法であっても、方向に応じた位相差を伴うビーム走査を行うアンテナ技術で代用してもよい。   The direction adjuster 115 is a device that adjusts the transmission direction of the transmission wave pulse in two dimensions or three dimensions according to the output of the correction parameter calculation unit 113. For example, in the case of a shape such as a polygon rotating mirror (polygon mirror), pulse azimuth scanning is possible at high speed. Moreover, even if it is the method of moving a transmission / reception antenna and adjusting a direction mechanically, you may substitute with the antenna technique which performs the beam scanning with a phase difference according to a direction.

次に図17のフローチャートを参照して、本実施例の動作を説明する。S10〜S24までは、実施例3と同様である。S26において、波形補正部112は、波形特徴抽出部107が抽出した反射波形の特徴量について、予め記憶した図13に示したような路面状況毎の波形特徴との類似度若しくは路面の反射率を高精度に算出し、更に散乱度を算出するための検知領域の設定を行う。具体的には、もし車両運動の影響で反射強度が十分えられなかった場合は、図示しない時系列データ及び角度情報の蓄積に基づいて、正反射方向にパルス送信方向を調整するように方向調整器115へ指示する。   Next, the operation of this embodiment will be described with reference to the flowchart of FIG. Steps S10 to S24 are the same as in the third embodiment. In S26, the waveform correction unit 112 calculates the similarity with the waveform feature for each road surface condition as shown in FIG. 13 or the reflectance of the road surface with respect to the feature amount of the reflected waveform extracted by the waveform feature extraction unit 107. The detection area is set for calculation with high accuracy and for calculating the degree of scattering. Specifically, if the reflection intensity is not sufficiently obtained due to the influence of the vehicle motion, the direction adjustment is performed so that the pulse transmission direction is adjusted in the regular reflection direction based on accumulation of time series data and angle information (not shown). To the instrument 115.

また、図示しない天候計測やロードノイズ計測等によって、例えば白線と路面の差異が見えにくいと判定し、散乱度の差異をより高感度にする必要がある場合は、ビーム径を絞り、微小な凹凸でも散乱を観測できるようにする。図示しないロードノイズ計測等の手段に応じて、白線と路面の差異が見えやすいと判定した場合はビーム径を広げ、より広い範囲を観測する。   In addition, if it is determined that the difference between the white line and the road surface is difficult to see by weather measurement or road noise measurement (not shown), and the difference in the degree of scattering needs to be made more sensitive, the beam diameter is narrowed down and small unevenness But make it possible to observe scattering. When it is determined that the difference between the white line and the road surface is easy to see according to a means such as road noise measurement (not shown), the beam diameter is expanded and a wider range is observed.

加えて、例えば車両の積載荷重のバランスが悪い場合や極端に凹凸が大きく車両のピッチングの影響が長い周期にわたる場合等で、路面と送受信面の距離が大きく変化する場合は、遅延光路115で観測領域や観測中心距離を変更する。尚、遅延光路115を用いずに、本願発明者による「特開2007−292701号公報;波形観測方法と波形観測装置」に示す発生器のパルス列を時間で変化する手法をとってもよい。   In addition, for example, when the distance between the road surface and the transmission / reception surface changes greatly, such as when the load balance of the vehicle is poor or when the unevenness of the vehicle is extremely large and the pitching effect of the vehicle extends over a long period, observation is performed with the delay optical path 115. Change the region and observation center distance. Instead of using the delay optical path 115, a method of changing the pulse train of the generator as shown in “Japanese Patent Application Laid-Open No. 2007-292701; Waveform Observation Method and Waveform Observation Device” by the present inventor may be taken.

以上説明した実施例4によれば、車両挙動によりセンサから路面までの距離が変化しても、電磁波の送信方向と受信した反射波の特徴に基づいて路面状況を正確に推定することができるという効果がある。   According to the fourth embodiment described above, even if the distance from the sensor to the road surface changes due to vehicle behavior, the road surface condition can be accurately estimated based on the transmission direction of the electromagnetic wave and the characteristics of the received reflected wave. effective.

また実施例4によれば、電磁波としてテラヘルツ波パルスを使用しているので、路面が積雪や凍結による積層状態であっても正確に路面状況を推定することができるという効果がある。   Further, according to the fourth embodiment, since the terahertz wave pulse is used as the electromagnetic wave, there is an effect that the road surface condition can be accurately estimated even when the road surface is in a stacked state due to snow accumulation or freezing.

また実施例4によれば、路面に電磁波を照射する角度を変えて反射波の強度を測定することにより、路面が平滑面か散乱面かを推定することができるという効果がある。   Further, according to the fourth embodiment, there is an effect that it is possible to estimate whether the road surface is a smooth surface or a scattering surface by changing the angle at which the electromagnetic wave is irradiated onto the road surface and measuring the intensity of the reflected wave.

また実施例4によれば、反射波の散乱度を算出し、予め記憶した路面状況毎の散乱度及び波形種類の数とを照合して、路面状況を正確に推定することができるという効果がある。   According to the fourth embodiment, the degree of scattering of reflected waves is calculated, and the degree of road surface condition can be accurately estimated by comparing the degree of scattering and the number of waveform types for each road surface condition stored in advance. is there.

さらに実施例4によれば、テラヘルツ波のビーム径、ビーム送信方向、及び同期検波用の遅延光路長を路面の反射状況に応じて補正することができるので、車両の積荷バランスや路面の凹凸が極端に悪い場合であっても正確に路面状況を推定することができるという効果がある。   Furthermore, according to the fourth embodiment, the terahertz wave beam diameter, the beam transmission direction, and the delay optical path length for synchronous detection can be corrected according to the reflection state of the road surface. Even if it is extremely bad, the road surface condition can be estimated accurately.

1 路面状況推定装置
101 発生器
102 送信器
103 受信器
104 波形検出部
105 角度計測/設定部
106 反射境界面位置計測部
107 波形特徴抽出部
108 路面状況推定部
DESCRIPTION OF SYMBOLS 1 Road surface condition estimation apparatus 101 Generator 102 Transmitter 103 Receiver 104 Waveform detection part 105 Angle measurement / setting part 106 Reflective boundary surface position measurement part 107 Waveform feature extraction part 108 Road surface condition estimation part

Claims (8)

電磁波を発生する電磁波発生手段と、
路面に電磁波を送信する送信手段と、
路面に反射された電磁波を受信する受信手段と、
受信された電磁波の波形を検出する波形検出手段と、
前記路面と前記送信手段とのなす角度を計測する又は設定する角度計測/設定手段と、
前記波形検出手段が検出した前記波形と前記角度計測/設定手段が計測または設定した前記角度に基づいて、前記波形の特徴を抽出する波形特徴抽出手段と、
前記波形の特徴に基づいて、路面状況を推定する路面状況推定手段と、
を備えたことを特徴とする路面状況推定装置。
Electromagnetic wave generating means for generating electromagnetic waves;
Transmission means for transmitting electromagnetic waves to the road surface;
Receiving means for receiving electromagnetic waves reflected on the road surface;
Waveform detection means for detecting the waveform of the received electromagnetic wave;
An angle measuring / setting means for measuring or setting an angle between the road surface and the transmitting means;
Waveform feature extraction means for extracting features of the waveform based on the waveform detected by the waveform detection means and the angle measured or set by the angle measurement / setting means;
Road surface condition estimating means for estimating the road surface condition based on the characteristics of the waveform;
A road surface condition estimating apparatus comprising:
前記波形特徴抽出手段は、前記波形の強度を波形の特徴として抽出し、
前記路面状況推定手段は、前記角度と前記波形の強度に基づいて、前記路面状況を推定することを特徴とする請求項1に記載の路面状況推定装置。
The waveform feature extraction means extracts the intensity of the waveform as a waveform feature,
The road surface state estimation device according to claim 1, wherein the road surface state estimation unit estimates the road surface state based on the angle and the intensity of the waveform.
前記波形特徴抽出部が抽出した前記波形の特徴に基づいて、路面で反射された波形の補正を行う反射波形補正手段を更に備えたことを特徴とする請求項2に記載の路面状況推定装置。   The road surface state estimation apparatus according to claim 2, further comprising a reflected waveform correction unit that corrects a waveform reflected on the road surface based on the waveform feature extracted by the waveform feature extraction unit. 前記波形特徴抽出手段は、更に前記波形の種類の数を波形の特徴として抽出し、
前記路面状況推定手段は、前記波形の種類の数に基づいて、前記路面状況を推定することを特徴とする請求項2または請求項3に記載の路面状況推定装置。
The waveform feature extraction means further extracts the number of types of the waveform as waveform features,
The road surface state estimation device according to claim 2 or 3, wherein the road surface state estimation unit estimates the road surface state based on the number of types of the waveform.
前記波形検出手段が検出した前記波形の散乱度合いを計算する散乱算出部を更に備え、
前記路面状況推定手段は、前記波形の散乱度合いに基づいて、前記路面状況を推定することを特徴とする請求項2乃至請求項4の何れか1項に記載の路面状況推定装置。
A scatter calculator that calculates the degree of scattering of the waveform detected by the waveform detector;
5. The road surface state estimation device according to claim 2, wherein the road surface state estimation unit estimates the road surface state based on a degree of scattering of the waveform.
前記路面状況推定手段は、前記波形の種類の数及び前記波形の散乱度合いに基づいて、前記路面状況が、凍結、積雪、湿潤、乾燥の何れであるか、あるいは路面の白線部であるか否かを推定することを特徴とする請求項5に記載の路面状況推定装置。   The road surface condition estimating means determines whether the road surface condition is frozen, snowy, wet, or dry, or a white line portion of the road surface, based on the number of types of the waveform and the degree of scattering of the waveform. The road surface state estimating device according to claim 5, wherein the road surface state estimating device is estimated. 前記電磁波は、0.1THz以上10THz以下のテラヘルツ帯域のパルス波であることを特徴とする請求項1乃至請求項6の何れか1項に記載の路面状況推定装置。   The road surface state estimation device according to any one of claims 1 to 6, wherein the electromagnetic wave is a pulse wave in a terahertz band of 0.1 THz to 10 THz. 電磁波を路面に送信し路面に反射された電磁波を受信して路面状況を推定する路面状況推定方法において、
受信した電磁波の波形を検出し、
前記路面と電磁波送信方向とのなす角度を計測又は設定し、
検出した前記波形と計測または設定した前記角度とに基づいて、前記波形の特徴を抽出し、
抽出した波形の特徴に基づいて、路面状況を推定することを特徴とする路面状況推定方法。
In the road surface condition estimation method for estimating the road surface condition by transmitting the electromagnetic wave to the road surface and receiving the electromagnetic wave reflected on the road surface,
Detect the waveform of the received electromagnetic wave,
Measure or set the angle between the road surface and the electromagnetic wave transmission direction,
Based on the detected waveform and the measured or set angle, extract the characteristics of the waveform,
A road surface state estimation method, wherein a road surface state is estimated based on the extracted waveform characteristics.
JP2009054968A 2009-03-09 2009-03-09 Road surface condition estimating apparatus and method Expired - Fee Related JP5572970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009054968A JP5572970B2 (en) 2009-03-09 2009-03-09 Road surface condition estimating apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009054968A JP5572970B2 (en) 2009-03-09 2009-03-09 Road surface condition estimating apparatus and method

Publications (2)

Publication Number Publication Date
JP2010210324A true JP2010210324A (en) 2010-09-24
JP5572970B2 JP5572970B2 (en) 2014-08-20

Family

ID=42970662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009054968A Expired - Fee Related JP5572970B2 (en) 2009-03-09 2009-03-09 Road surface condition estimating apparatus and method

Country Status (1)

Country Link
JP (1) JP5572970B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117542A1 (en) * 2011-03-02 2012-09-07 トヨタ自動車株式会社 Laser radar device
WO2013176165A1 (en) * 2012-05-23 2013-11-28 市光工業株式会社 Vehicle rearview mirror system, and vehicle provided with said vehicle rearview mirror system
WO2018139413A1 (en) * 2017-01-27 2018-08-02 株式会社ブリヂストン Method for measuring the thickness of water on ice

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201288A (en) * 1995-01-24 1996-08-09 Mitsubishi Electric Corp Detector for state of road surface
JP2002107292A (en) * 2000-10-02 2002-04-10 Mitsubishi Electric Corp Road surface state detector
JP2002148184A (en) * 2000-11-08 2002-05-22 Toshiba Corp Road surface condition detecting device and traffic flow detecting device
JP2003050198A (en) * 2001-08-03 2003-02-21 Omron Corp Apparatus and method for discriminating road surface
JP2007057362A (en) * 2005-08-24 2007-03-08 Nagoya Electric Works Co Ltd Method and apparatus for measuring characteristic value
JP2008241459A (en) * 2007-03-27 2008-10-09 Institute Of National Colleges Of Technology Japan Method and apparatus for measuring road surface condition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201288A (en) * 1995-01-24 1996-08-09 Mitsubishi Electric Corp Detector for state of road surface
JP2002107292A (en) * 2000-10-02 2002-04-10 Mitsubishi Electric Corp Road surface state detector
JP2002148184A (en) * 2000-11-08 2002-05-22 Toshiba Corp Road surface condition detecting device and traffic flow detecting device
JP2003050198A (en) * 2001-08-03 2003-02-21 Omron Corp Apparatus and method for discriminating road surface
JP2007057362A (en) * 2005-08-24 2007-03-08 Nagoya Electric Works Co Ltd Method and apparatus for measuring characteristic value
JP2008241459A (en) * 2007-03-27 2008-10-09 Institute Of National Colleges Of Technology Japan Method and apparatus for measuring road surface condition

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117542A1 (en) * 2011-03-02 2012-09-07 トヨタ自動車株式会社 Laser radar device
JPWO2012117542A1 (en) * 2011-03-02 2014-07-07 トヨタ自動車株式会社 Laser radar equipment
JP5541410B2 (en) * 2011-03-02 2014-07-09 トヨタ自動車株式会社 Laser radar equipment
US8994928B2 (en) 2011-03-02 2015-03-31 Toyota Jidosha Kabushiki Kaisha Laser radar device
WO2013176165A1 (en) * 2012-05-23 2013-11-28 市光工業株式会社 Vehicle rearview mirror system, and vehicle provided with said vehicle rearview mirror system
JP2013244752A (en) * 2012-05-23 2013-12-09 Ichikoh Ind Ltd Vehicular inner mirror system, and vehicle including the same
US9827908B2 (en) 2012-05-23 2017-11-28 Ichikoh Industries, Ltd. Vehicle rearview mirror system, and vehicle provided with said vehicle rearview mirror system
WO2018139413A1 (en) * 2017-01-27 2018-08-02 株式会社ブリヂストン Method for measuring the thickness of water on ice
JP2018119929A (en) * 2017-01-27 2018-08-02 株式会社ブリヂストン Method for measuring thickness of water on ice
CN110226077A (en) * 2017-01-27 2019-09-10 株式会社普利司通 The measurement method of the thickness of water on ice
EP3575743A4 (en) * 2017-01-27 2020-11-04 Bridgestone Corporation Method for measuring the thickness of water on ice
US10900893B2 (en) 2017-01-27 2021-01-26 Bridgestone Corporation Method of measuring height of water on ice

Also Published As

Publication number Publication date
JP5572970B2 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
US20220035032A1 (en) Lidar system and method
US7359057B2 (en) Method and apparatus for measuring small shifts in optical wavelengths
CA2838226C (en) Remote measurement of shallow depths in semi-transparent media
US11035935B2 (en) Optoelectronic surveying device
JP2018119986A (en) Optical distance meter without multiple-view scanner under bright circumference background light
JP5472675B2 (en) Non-contact film thickness measuring device
US7570372B2 (en) Optical device for measuring the thickness of an at least partially transparent medium
CN107533127A (en) The apparatus and method of improved laser scanning
AU2014202002B2 (en) Apparatus and Method for Determining a Vehicle Feature
JPH10507428A (en) Sensor for visibility detection and fogging detection by rain
JPH07234280A (en) Device and method for measuring visibility and present weather
JP2002524731A (en) Speckle mitigation for coherent detectors using wideband signals
JP5572970B2 (en) Road surface condition estimating apparatus and method
US20220018764A1 (en) Method for determining the distance and reflectivity of an object surface
Zha et al. Ranging precision for underwater laser proximity pulsed laser target detection
KR101879641B1 (en) Turbidity Measuring Method By Using Airbone Bathymetry LIDAR Wave Form Analysis
WO2014038527A1 (en) Vehicle radar device, and method of controlling detection range of same
Abdelazim et al. Coherent Doppler lidar for wind sensing
CN112904308B (en) Laser radar system and method for detecting cloud phase state and cloud water content
US11650294B2 (en) Fabry-pérot element in lidar device
JPH08247940A (en) Road surface state detection device
JPH11304909A (en) Laser radar with electro-optical correction device for signal light
WO2020128593A1 (en) Measure of the degree of crystallinity of a polymer coating on a metal substrate
JP2001174557A (en) All-weather optical range finder and range finding method
US11433903B2 (en) Road condition sensor and method for detecting the state condition of the roadway

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140616

R151 Written notification of patent or utility model registration

Ref document number: 5572970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees