JP2011001584A - Method for extracting and separating rare earth elements - Google Patents

Method for extracting and separating rare earth elements Download PDF

Info

Publication number
JP2011001584A
JP2011001584A JP2009144445A JP2009144445A JP2011001584A JP 2011001584 A JP2011001584 A JP 2011001584A JP 2009144445 A JP2009144445 A JP 2009144445A JP 2009144445 A JP2009144445 A JP 2009144445A JP 2011001584 A JP2011001584 A JP 2011001584A
Authority
JP
Japan
Prior art keywords
rare earth
organic phase
earth elements
extracted
aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009144445A
Other languages
Japanese (ja)
Other versions
JP5499353B2 (en
Inventor
Yasuhito Sugahara
泰人 須ケ原
Kazuaki Sakaki
一晃 榊
Takehisa Minowa
武久 美濃輪
Hirochika Osanawa
弘親 長縄
Koshiro Shimojo
晃司郎 下条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Japan Atomic Energy Agency
Original Assignee
Shin Etsu Chemical Co Ltd
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Japan Atomic Energy Agency filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2009144445A priority Critical patent/JP5499353B2/en
Priority to AU2010202408A priority patent/AU2010202408B2/en
Priority to US12/813,698 priority patent/US8177881B2/en
Priority to MYPI2010002724A priority patent/MY147986A/en
Priority to CA2707933A priority patent/CA2707933C/en
Priority to EP11177979.9A priority patent/EP2388343B1/en
Priority to EP11178001.1A priority patent/EP2388344B1/en
Priority to CN201010278408.7A priority patent/CN101928829B/en
Priority to EP10251108.6A priority patent/EP2264196B1/en
Publication of JP2011001584A publication Critical patent/JP2011001584A/en
Application granted granted Critical
Publication of JP5499353B2 publication Critical patent/JP5499353B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for extracting and separating rare earth elements which can satisfactory extract and separate adjacent rare earth elements such as neodymium/praseodymium.SOLUTION: An organic phase with diglycol amide acid as an extract and low-polar alcohol as a solvent and a water phase composed of an aqueous solution comprising two or more of rare earth elements are contacted under an acid condition at the pH of ≤3, and solvent extraction is performed using a countercurrent multistage mixer-settler. A rare earth element solution 1, an organic phase 2 and an alkali aqueous solution 3 are introduced from respective pipings into an extraction part A, and acid aqueous solutions 4, 6 are introduced from the respective pipings into a scrub part B and a back-extraction part C. A water phase 5 comprising the rare earth element(s) not extracted into the organic phase and remaining and an aqueous solution 7 into which the rare earth element(s) extracted into the organic phase is back-extracted are recovered.

Description

本発明は、希土類元素、特に軽希土類元素(La,Ce,Pr,Nd,Sm,Eu)の中の少なくとも2種以上、又は該軽希土類元素の中の少なくとも1種以上とそれ以外の希土類元素(Yを含む)の少なくとも1種以上を抽出・分離する方法に関する。   The present invention provides at least two or more rare earth elements, particularly light rare earth elements (La, Ce, Pr, Nd, Sm, Eu), or at least one of the light rare earth elements and other rare earth elements. The present invention relates to a method for extracting and separating at least one of (including Y).

近年、Nd磁石を代表とする希土類磁石は、ハードディスク用やエアコン用、ハイブリッド車等に使用される各種モーターやセンサー等に広く使用されるようになっている。
しかし、希土類磁石の原料である希土類元素の現状は、その産出国がほぼ限定されており、近い将来需要が供給を上回ることも予想され、資源的な危機が叫ばれている。そこで、希土類磁石の生産時に発生する磁石粉末や屑及び不良スクラップ、更には市中より回収された製品から有価物である希土類元素の再生(リサイクル)、新たな希土類鉱床の探査や開発が強く求められている。
In recent years, rare earth magnets typified by Nd magnets are widely used in various motors and sensors used in hard disks, air conditioners, hybrid vehicles, and the like.
However, the current state of rare earth elements, which are raw materials for rare earth magnets, is almost limited in their producing countries, and it is expected that demand will exceed supply in the near future. Therefore, there is a strong demand for magnet powder, scraps and defective scrap generated during the production of rare earth magnets, as well as for the recycling (recycling) of valuable rare earth elements from products collected from the city, exploration and development of new rare earth deposits. It has been.

希土類磁石に用いられる希土類元素は、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、テルビウム(Tb)、ジスプロシウム(Dy)等が挙げられるが、これら希土類元素の分離には、イオン交換樹脂法(固−液抽出法)や溶媒抽出法(液−液抽出法)が知られている。工業的な希土類元素の精製分離には、連続的な工程により効率的に大量処理が可能であるため、主に溶媒抽出法が用いられている。
溶媒抽出法とは、分離を目的とする金属元素を含む水溶液からなる水相と特定の金属元素を抽出する抽出剤及びそれを希釈するための有機溶媒からなる有機相を接触させることで、金属元素を抽出剤に抽出させて分離する方法である。
Examples of rare earth elements used in rare earth magnets include cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), terbium (Tb), dysprosium (Dy), and the like. Known ion exchange resin methods (solid-liquid extraction methods) and solvent extraction methods (liquid-liquid extraction methods). In industrial refining and separation of rare earth elements, a solvent extraction method is mainly used because large-scale processing can be efficiently performed by a continuous process.
The solvent extraction method is a method in which an aqueous phase composed of an aqueous solution containing a metal element intended for separation is brought into contact with an organic phase composed of an extractant for extracting a specific metal element and an organic solvent for diluting it. In this method, an element is extracted by an extractant and separated.

従来、その抽出剤としてはTBP(燐酸トリブチル)、カルボン酸(バーサティックアシッド10)、燐酸エステル、ホスホン酸化合物、ホスフィン酸化合物等が用いられている。例えば、燐酸エステルとしてはジ−2−エチルヘキシルリン酸[di−2−ethylhexyl−phosphoric−acid(D2EHPA)]等が使用され、ホスホン酸化合物としては2−エチルヘキシルリン酸モノ−2−エチルヘキシルエステル[2−ethylhexyl−phosphoric acid−mono−2−ethylhexyl ester(PC−88A:大八化学工業社製商品名)]等が使用され、ホスフィン酸化合物としてはビス(2,4,4−トリメチルペンチル)リン酸[bis(2,4,4−trimethylpentyl)phosphoric acid(Cyanex272:American Cyanamid社製商品名]等が市販され、一般的に使用されている。   Conventionally, TBP (tributyl phosphate), carboxylic acid (versaic acid 10), phosphoric acid ester, phosphonic acid compound, phosphinic acid compound, and the like are used as the extractant. For example, di-2-ethylhexyl-phosphoric acid (D2EHPA) or the like is used as the phosphate ester, and 2-ethylhexyl phosphate mono-2-ethylhexyl ester [2 -Ethylhexyl-phosphoric acid-mono-2-ethylhexyl ester (PC-88A: trade name, manufactured by Daihachi Chemical Industry Co., Ltd.)] and the like, and bis (2,4,4-trimethylpentyl) phosphoric acid as the phosphinic acid compound [Bis (2,4,4-trimethylpentyl) phosphoric acid (Cyanex 272: product name manufactured by American Cyanamid Co., Ltd.] and the like are commercially available and generally used.

溶媒抽出法の分離効率は、抽出剤の性能、特に分離係数によって決まる。即ち、分離係数が大きいほど溶媒抽出法の分離効率は高くなり、分離工程の簡略化、分離設備の小規模化となり、結果的に工程の効率化及びコストダウンに繋がる。一方、分離係数が小さいと、分離工程が複雑となり、更に分離設備が大規模となってしまう。   The separation efficiency of the solvent extraction method depends on the performance of the extractant, particularly the separation factor. That is, the larger the separation factor, the higher the separation efficiency of the solvent extraction method, and the simplification of the separation process and the reduction in the size of the separation equipment, resulting in process efficiency and cost reduction. On the other hand, if the separation factor is small, the separation process becomes complicated and the separation equipment becomes large.

現在、市販され実用化されている抽出剤のうちで希土類元素に対する分離係数が大きいと言われるPC−88Aでも、隣接した元素間の分離係数は小さく、例えば、希土類元素の中でも最も分離が困難とも言われるネオジム/プラセオジムの分離係数は2より小さく、約1.4である。この分離係数は、ネオジム/プラセオジムを分離するために十分なものではなく、それらを十分な純度で分離するためには、大規模な設備が必要となり、多大なコストがかかることになる。そのため、これら元素を精製・分離する際には、従来よりも分離係数の大きな抽出剤及び抽出・分離方法の開発が待望されている。   Currently, PC-88A, which is said to have a large separation coefficient for rare earth elements among commercially available extractants, has a small separation coefficient between adjacent elements. For example, it may be the most difficult separation among rare earth elements. The neodymium / praseodymium separation factor referred to is less than 2 and about 1.4. This separation factor is not sufficient for separating neodymium / praseodymium, and in order to separate them with sufficient purity, a large-scale facility is required and a large cost is required. Therefore, when these elements are refined and separated, the development of an extractant and an extraction / separation method having a larger separation factor than before has been awaited.

希土類元素、特に軽希土類元素であるランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)に対し分離係数の大きな抽出剤としては、ジグリコールアミド酸が知られている(特許文献1:特開2007−327085号公報)。その抽出剤を用いて溶媒抽出を行うことにより、希土類元素、特に軽希土類元素の抽出・分離工程は、効率化を図ることができる。しかし、それを用いた希土類元素の抽出・分離方法は、実験レベルにおいて良好な結果が得られているものの、ジグリコールアミド酸が、市販、実用化されているD2EHPA、PC−88A、Cyanex272と化学的性質が異なることから、実用化されるべき様々な条件が見出されておらず、工業化に至っていない。   Diglycolamide acid is known as an extractant having a large separation factor for lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), and samarium (Sm), which are rare earth elements, particularly light rare earth elements. (Patent Document 1: Japanese Patent Application Laid-Open No. 2007-327085). By performing solvent extraction using the extractant, the extraction / separation process of rare earth elements, particularly light rare earth elements, can be made more efficient. However, although the extraction / separation method of rare earth elements using it has obtained good results at the experimental level, diglycolamide acid is commercially available and put to practical use with D2EHPA, PC-88A, and Cyanex272. Since various physical properties are different, various conditions to be put into practical use have not been found, and industrialization has not been achieved.

特開2007−327085号公報JP 2007-327085 A

本発明は、上記した問題を解決した希土類元素の抽出・分離方法を提供するもので、従来の抽出・分離方法より、希土類元素、特にネオジム/プラセオジムのように隣接した希土類元素を良好に抽出・分離することができる希土類元素の抽出・分離方法を提供することを目的とする。   The present invention provides a method for extracting / separating rare earth elements that solves the above-mentioned problems, and can extract rare earth elements, particularly adjacent rare earth elements such as neodymium / praseodymium, better than conventional extraction / separation methods. An object of the present invention is to provide a method for extracting and separating rare earth elements that can be separated.

本発明者らは、上記課題を解決するため鋭意検討を重ねた結果、ジグリコールアミド酸を抽出剤とし、溶媒として極性の低いアルコールを用いた有機相と、抽出すべき希土類元素を含む水溶液である水相を、向流多段ミキサーセトラー等を用いて溶媒抽出することで、特にネオジム/プラセオジムのように隣接した軽希土類元素に対し良好な分離性能をもつという、希土類元素の抽出・分離方法を見出し、この方法が、多種の希土類元素混合物から、特定の希土類元素を選択的に分離するに際し有効であることを知見し、本発明をなすに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that an aqueous solution containing diglycolamide acid as an extractant, an organic phase using a low polarity alcohol as a solvent, and a rare earth element to be extracted. A method for extracting and separating rare earth elements that has a good separation performance for adjacent light rare earth elements such as neodymium / praseodymium by solvent extraction of a certain aqueous phase using a countercurrent multistage mixer settler, etc. The present inventors have found that this method is effective in selectively separating a specific rare earth element from a mixture of various rare earth elements, and have made the present invention.

即ち、本発明は、前記問題を解決する方法として下記の希土類元素の抽出・分離方法を提供する。
請求項1:
下記一般式(1)

Figure 2011001584

(式中、R1及びR2は、互いに同一又は異種のアルキル基であり、少なくとも一方は炭素数6以上の直鎖又は分岐鎖状のアルキル基を示す。)
で表されるジグリコールアミド酸を抽出剤とし、下記一般式(2)
n2n+1OH (2)
(式中、nは5〜8の整数である。)
で表される低極性アルコールを溶媒とする有機相と、2種以上の希土類元素を含む水溶液からなる水相とをpH3以下の酸性条件下で接触させることにより、前記希土類元素のうち抽出すべき希土類元素を前記有機相に抽出し、その後この有機相を酸水溶液にて逆抽出することで前記有機相に抽出した希土類元素を回収すると共に、前記有機相に抽出されずに前記水相中に残留した希土類元素を回収することを特徴とする希土類元素の抽出・分離方法。
請求項2:
抽出及び逆抽出処理を向流多段ミキサーセトラーによって行うことを特徴とする請求項1記載の希土類元素の抽出・分離方法。
請求項3:
有機相と水相とを有機相に用いた式(2)の低極性アルコールの引火点より低い温度で接触させることを特徴とする請求項1又は2記載の希土類元素の抽出・分離方法。
請求項4:
水相に含まれる抽出・分離すべき希土類元素が、La,Ce,Pr,Nd,Sm及びEuから選ばれる軽希土類元素の中の少なくとも2種、又は前記軽希土類元素の中の少なくとも1種とそれ以外のYを含む希土類元素の中の少なくとも1種とであることを特徴とする請求項1〜3のいずれか1項記載の希土類元素の抽出・分離方法。
請求項5:
水相に含まれる希土類元素が、Nd及びPrであり、Ndを有機相に抽出すると共に、Prを水相に残留させることによりNdとPrとを分離するようにしたことを特徴とする請求項1〜3のいずれか1項記載の希土類元素の抽出・分離方法。 That is, the present invention provides the following rare earth element extraction / separation method as a method for solving the above problems.
Claim 1:
The following general formula (1)
Figure 2011001584

(In the formula, R 1 and R 2 are the same or different alkyl groups, and at least one of them represents a linear or branched alkyl group having 6 or more carbon atoms.)
As an extractant, diglycolamide acid represented by the following general formula (2)
C n H 2n + 1 OH (2)
(In the formula, n is an integer of 5 to 8.)
It should be extracted from the rare earth elements by contacting an organic phase containing a low polar alcohol represented by the formula (1) and an aqueous phase comprising an aqueous solution containing two or more rare earth elements under acidic conditions of pH 3 or less. A rare earth element is extracted into the organic phase, and then the organic phase is back-extracted with an aqueous acid solution to recover the rare earth element extracted into the organic phase, and not extracted into the organic phase but into the aqueous phase. A method for extracting and separating rare earth elements, which comprises collecting residual rare earth elements.
Claim 2:
2. The method for extracting and separating rare earth elements according to claim 1, wherein the extraction and back-extraction processes are carried out by a countercurrent multistage mixer settler.
Claim 3:
3. The method for extracting and separating rare earth elements according to claim 1 or 2, wherein the organic phase and the aqueous phase are contacted at a temperature lower than the flash point of the low polarity alcohol of the formula (2) using the organic phase.
Claim 4:
The rare earth element to be extracted and separated contained in the aqueous phase is at least two kinds of light rare earth elements selected from La, Ce, Pr, Nd, Sm and Eu, or at least one kind of the light rare earth elements. The method for extracting and separating rare earth elements according to any one of claims 1 to 3, which is at least one of the other rare earth elements containing Y.
Claim 5:
The rare earth element contained in the aqueous phase is Nd and Pr, and Nd is extracted into an organic phase and Pr is left in the aqueous phase to separate Nd and Pr. The method for extracting and separating rare earth elements according to any one of 1 to 3.

本発明の抽出剤・抽出溶剤を用いた抽出方法は、分離係数が大きく、分離効率よく、希土類元素を抽出・分離できるので初期投資が抑えられ、工業的利用価値が大きい。   The extraction method using the extractant / extraction solvent of the present invention has a large separation factor, and can extract and separate rare earth elements with high separation efficiency, so that the initial investment is suppressed and the industrial utility value is great.

向流多段ミキサーセトラーの説明図である。It is explanatory drawing of a countercurrent multistage mixer setter.

本発明において、抽出剤としては、下記一般式(1)

Figure 2011001584

で表されるジグリコールアミド酸を用いる。 In the present invention, as the extractant, the following general formula (1)
Figure 2011001584

The diglycol amide acid represented by these is used.

ここで、R1及びR2は、互いに同一又は異種のアルキル基であるが、少なくとも一方は、炭素数6以上、好ましくは6〜18、より好ましくは7〜12の直鎖又は分岐鎖状のアルキル基である。炭素数が6未満の場合、親油性が十分でないため、有機相の安定性に欠くことになり、水相との分相性が不良となるばかりか、抽出剤自身の水相への溶解が無視できなくなり、抽出剤の役割を果たすことができない。また、炭素数が過剰に大きい場合には、その抽出剤の製造コストが高くなるにも拘わらず、基本性能である抽出能、分離能そのものの向上には寄与しない。なお、R1及びR2については、親油性が確保されるのであれば、一方が炭素数6以上であれば他方は6未満であってもよい。例えば、より好適なものとして、2つのオクチル基(−C817)を導入した化合物、N,N−ジオクチル−3−オキサペンタン−1,5−アミド酸:ジオクチルジグリコールアミド酸[N,N−ジオクチル−3−オキサペンタン−1,5−アミッド酸:ジオクチルジグリコールアミッド酸(N,N−dioctyl−3−oxapentane−1,5−amicacid:dioctyldiglycolamicacid、以下DODGAAと称する)]が挙げられる。 Here, R 1 and R 2 are the same or different alkyl groups, but at least one of them is a straight or branched chain having 6 or more carbon atoms, preferably 6 to 18, more preferably 7 to 12 carbon atoms. It is an alkyl group. If the number of carbon atoms is less than 6, the lipophilicity is not sufficient, so the stability of the organic phase is lacking, the phase separation with the aqueous phase becomes poor, and the dissolution of the extractant itself in the aqueous phase is ignored. Can no longer function as an extractant. In addition, when the carbon number is excessively large, it does not contribute to the improvement of the extraction performance and separation performance itself, which are basic performances, although the production cost of the extraction agent becomes high. As for R 1 and R 2, if the lipophilicity is secured, the other may be less than 6 as long as one is 6 or more carbon atoms. For example, a compound having two octyl groups (—C 8 H 17 ) introduced therein, N, N-dioctyl-3-oxapentane-1,5-amidic acid: dioctyl diglycolamidic acid [N, N-dioctyl-3-oxapentane-1,5-amidic acid: dioctyl diglycolamidic acid (N, N-dioctyl-3-oxapentane-1,5-amicacid: dioctyldiglycamic acid, hereinafter referred to as DODGAA)].

通常の有機相は、抽出剤と無極性溶媒からなる。その無極性溶媒は、水への溶解度が低く、抽出剤への溶解度が高く、比重が軽く、更に抽出能力が向上するのに適したものが選択される。例えば、トルエン、キシレン、ヘキサン、イソドデカン、ケロシン等である。
しかし、トルエン、キシレン、ヘキサン等は、いずれも揮発性が高く、更に、引火点が20℃より低いため、取り扱いに注意が必要である。また、揮発性が低く引火点が20℃より高いイソドデカンやケロシン等は、実操業上の条件である約0.2mol/Lの希土類水溶液を処理するために最低限必要なDODGAA抽出濃度0.4mol/L以上の濃度を用いた場合、分相に時間がかかるため、有機相、水相の流量が制限される。そのため生産性が上げられない。
The normal organic phase consists of an extractant and a nonpolar solvent. As the nonpolar solvent, a solvent that is low in solubility in water, high in solubility in the extractant, light in specific gravity, and further suitable for improving the extraction ability is selected. For example, toluene, xylene, hexane, isododecane, kerosene and the like.
However, since toluene, xylene, hexane, etc. are all highly volatile and the flash point is lower than 20 ° C., they must be handled with care. In addition, isododecane, kerosene, etc., which have a low volatility and a flash point higher than 20 ° C., have a minimum required DODGAA extraction concentration of 0.4 mol for treating a rare earth aqueous solution of about 0.2 mol / L, which is the actual operational condition. When a concentration of / L or higher is used, the phase separation takes time, so the flow rates of the organic phase and the aqueous phase are limited. Therefore, productivity cannot be increased.

そのため、本発明の有機相は、上記ジグリコールアミド酸の溶媒として下記一般式(2)
n2n+1OH (2)
(式中、nは5〜8の整数である。)
で表される直鎖又は分岐鎖状の液状である低極性アルコールを使用する。そうすることで、抽出剤濃度0.4mol/L以上の有機相が得られ、実操業上の希土類水溶液中の希土類元素濃度である約0.2mol/Lの処理が可能である。nが5未満のアルコールの場合、極性・水和性が高く、溶媒抽出において水相中に溶解するため、有機相・水相の分相が十分でなく、加えて、有機相中の抽出剤濃度が不安定となり、その制御をすることができないため適さない。本発明に用いるアルコールは直鎖状、分岐鎖状は問わないが、直鎖状の構造を持つアルコールでnが12以上の場合、室温において固体となってしまうため不適である。また、加温によって液体化したとしても、ジグリコールアミド酸との極性が合わないため、その溶解度が低下し、液のゲル化が起こるため適さない。直鎖状の構造を持つアルコールの場合、好ましくは、5≦n≦8の1−ペンタノール、1−ヘキサノール、1−ヘプタノール、1−オクタノールであり、それらは、水への溶解度が低く、抽出剤であるジグリコールアミド酸への溶解度が高く、比重が軽く、更に引火点も高いため適している。
Therefore, the organic phase of the present invention is represented by the following general formula (2) as a solvent for the diglycolamide acid
C n H 2n + 1 OH (2)
(In the formula, n is an integer of 5 to 8.)
A low-polar alcohol that is a linear or branched liquid represented by the formula: By doing so, an organic phase having an extractant concentration of 0.4 mol / L or more can be obtained, and a treatment of about 0.2 mol / L, which is a rare earth element concentration in the rare earth aqueous solution in actual operation, is possible. When n is less than 5, alcohol is highly polar and hydratable and dissolves in the aqueous phase in solvent extraction, so the organic phase / aqueous phase is not sufficiently separated, and in addition, the extractant in the organic phase Not suitable because the concentration becomes unstable and cannot be controlled. The alcohol used in the present invention may be linear or branched, but if the alcohol has a linear structure and n is 12 or more, it is not suitable because it becomes a solid at room temperature. Further, even if it is liquefied by heating, the polarity with diglycolamide acid does not match, so that its solubility is lowered and the gelation of the liquid occurs, which is not suitable. In the case of an alcohol having a linear structure, 1-pentanol, 1-hexanol, 1-heptanol and 1-octanol with 5 ≦ n ≦ 8 are preferable, and they have low solubility in water and are extracted. It is suitable because of its high solubility in diglycolamide acid, a light specific gravity and high flash point.

本発明の有機相中の抽出剤濃度COは、0.1mol/L≦CO≦1.5mol/Lであることが好ましい。CO<0.1mol/Lの場合、抽出剤濃度が低すぎるため、実操業上の希土類水溶液中の希土類元素濃度の処理が不可となり、実際、0.05mol/L以下の濃度の希土類水溶液しか処理できないため、効率的でなく、結果的に分離設備の大規模化を招き、コスト高となってしまうおそれがある。また、そもそも前記アルコールに対するジグリコールアミド酸自身の溶解度により、抽出剤濃度CO>1.5mol/Lとするのは困難であり、エントレーナーとなるべき溶媒やジオクチルスルホコハク酸ナトリウム等の界面活性剤の添加が必要となり、安定した操業を制御する条件がより複雑化するおそれがある。そのため、効率的な抽出・分離を行うための有機相中の抽出剤濃度COとして、好ましくは0.2mol/L≦CO≦1.0mol/Lである。 The extractant concentration C O in the organic phase of the present invention is preferably 0.1 mol / L ≦ C O ≦ 1.5 mol / L. In the case of C O <0.1 mol / L, the extractant concentration is too low, which makes it impossible to process the rare earth element concentration in the rare earth aqueous solution in actual operation. In fact, the rare earth aqueous solution having a concentration of 0.05 mol / L or less Since it cannot be processed, it is not efficient, resulting in an increase in the scale of the separation equipment, which may increase the cost. In the first place, it is difficult to make the extractant concentration C O > 1.5 mol / L due to the solubility of diglycolamide acid itself in the alcohol, and a solvent such as an entrainer or a surfactant such as sodium dioctylsulfosuccinate. Therefore, conditions for controlling stable operation may become more complicated. Therefore, the extractant concentration C O in the organic phase for efficient extraction / separation is preferably 0.2 mol / L ≦ C O ≦ 1.0 mol / L.

一方、上記抽出剤によって抽出すべき希土類元素は、水溶液として水相中に含まれる。この場合、希土類元素は、水溶性塩、例えば塩化物(PrCl3,NdCl3等)などの形態で使用することができる。 On the other hand, the rare earth element to be extracted by the extractant is contained in the aqueous phase as an aqueous solution. In this case, the rare earth element can be used in the form of a water-soluble salt such as a chloride (PrCl 3 , NdCl 3, etc.).

本発明に用いる抽出剤のジグリコールアミド酸の中でも、特にDODGAAは、軽希土類元素における分離性、軽希土類元素とそれ以外の希土類元素の分離性は非常に優れている。しかし、軽希土類元素以外、即ち、重希土類元素における分離性は、市販、実用化されているD2EHPA、PC−88A、Cyanex272に比べ劣るため、本発明の水相に含まれ、抽出・分離する希土類元素は、軽希土類元素(La,Ce,Pr,Nd,Sm,Eu)の中の少なくとも2種以上、又は、軽希土類元素の少なくとも1種以上とそれ以外の希土類元素(Yを含む)の少なくとも1種以上からなることが好ましい。なお、前記それ以外のYを含む希土類元素としては、Y,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu等が挙げられる。
この場合、本発明においては、特定の希土類元素を前記有機相に抽出し得るもので、例えばNdとPrとの抽出・分離においては、Ndが優先的に有機相に抽出されるものである。
Among the diglycolamide acids of the extractant used in the present invention, DODGAA is particularly excellent in separability in light rare earth elements and separability between light rare earth elements and other rare earth elements. However, separability other than light rare earth elements, that is, heavy rare earth elements, is inferior to D2EHPA, PC-88A, and Cyanex272, which are commercially available and put to practical use. The element is at least two of light rare earth elements (La, Ce, Pr, Nd, Sm, Eu), or at least one of light rare earth elements and other rare earth elements (including Y). It is preferable that it consists of 1 or more types. Examples of other rare earth elements containing Y include Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
In this case, in the present invention, a specific rare earth element can be extracted into the organic phase. For example, in the extraction / separation of Nd and Pr, Nd is preferentially extracted into the organic phase.

溶媒抽出における希土類元素の抽出のし易さは、そのイオン半径に依存し、更に、抽出される元素のうち、イオン半径が小さいものが有機相に抽出される。そのため、例えば、隣り合う2つの軽希土類元素を抽出した場合、下記の通りとなる。
組み合わせ 有機相に抽出される元素
La/Ce Ce
Ce/Pr Pr
Pr/Nd Nd
Nd/Sm Sm
Sm/Eu Eu
The ease of extraction of the rare earth element in the solvent extraction depends on its ionic radius, and among the extracted elements, those having a small ionic radius are extracted into the organic phase. Therefore, for example, when two adjacent light rare earth elements are extracted, the result is as follows.
Element La / Ce Ce extracted in combined organic phase
Ce / Pr Pr
Pr / Nd Nd
Nd / Sm Sm
Sm / Eu Eu

水相に含まれる希土類元素濃度CAは、0.01mol/L≦CA≦0.7mol/Lであることが好ましい。CA<0.01mol/Lの場合、抽出・分離における抽出能、分離能そのものには問題はないが、希土類元素濃度CAが希薄であるため、十分な量の目的物(希土類元素)を得るためには大量の水相が必要となる。その結果、分離設備の大規模化を招き、コスト高を招いてしまうおそれがある。CA>0.7mol/Lの場合、抽出すべき希土類元素濃度につりあう有機相のジグリコールアミド酸濃度を得ることは困難であり、結果、希土類元素濃度に対し抽出剤であるジグリコールアミド酸が十分でないため、有機相の凝固が起こり溶媒抽出による分離精製ができないおそれがある。 The rare earth element concentration C A contained in the aqueous phase is preferably 0.01 mol / L ≦ C A ≦ 0.7 mol / L. In the case of C A <0.01 mol / L, there is no problem in the extraction ability and separation ability itself in the extraction / separation, but since the rare earth element concentration C A is dilute, a sufficient amount of the target substance (rare earth element) can be obtained. A large amount of aqueous phase is required to obtain. As a result, the scale of the separation facility is increased, which may increase the cost. When C A > 0.7 mol / L, it is difficult to obtain a diglycolamide acid concentration in the organic phase that matches the rare earth element concentration to be extracted. Is not sufficient, the organic phase may coagulate and may not be separated and purified by solvent extraction.

ここで、本発明においては、有機相中の抽出剤濃度CO、水相中の希土類元素濃度CAの比率C0/CAを2≦C0/CA≦10とすることが好ましい。比率C0/CA<2であると、希土類元素濃度に対し抽出剤であるジグリコールアミド酸濃度が十分でないため、有機相の凝固が起こり、溶媒抽出による分離精製ができない場合がある。また、比率C0/CA>10であると、基本性能である抽出能、分離能そのものの向上には寄与しないが、水相濃度に対し有機相濃度が高すぎるためコスト高となる。 Here, in the present invention, the ratio C 0 / C A of the extractant concentration C O in the organic phase and the rare earth element concentration C A in the aqueous phase is preferably 2 ≦ C 0 / C A ≦ 10. If the ratio C 0 / C A <2, the concentration of diglycolamide acid as an extractant is not sufficient with respect to the rare earth element concentration, so that the organic phase may coagulate and separation and purification by solvent extraction may not be possible. Further, if the ratio C 0 / C A > 10, it does not contribute to improvement of the basic performance, ie, extraction ability and separation ability itself, but the cost becomes high because the organic phase concentration is too high with respect to the aqueous phase concentration.

また、抽出工程時の抽出層(有機相・水相)のpHは3以下に制御する。pHが3を超えると希土類元素が希土類水酸化物を形成し沈殿物となってしまうため、有機相と水相を接触させる際、抽出・分離が不可となってしまう。結果、分相不良が起こり、抽出工程に問題が発生する。また、pHが強酸の場合、平衡酸濃度を調整する際に使用する塩基等の使用量が多くなるため好ましくなく、抽出工程時の抽出層(有機相・水相)のpHは好ましくは1〜3である。   Further, the pH of the extraction layer (organic phase / aqueous phase) during the extraction step is controlled to 3 or less. If the pH exceeds 3, the rare earth element forms a rare earth hydroxide and becomes a precipitate, so that extraction / separation becomes impossible when the organic phase and the aqueous phase are brought into contact with each other. As a result, phase separation failure occurs and a problem occurs in the extraction process. In addition, when the pH is a strong acid, it is not preferable because the amount of a base used when adjusting the equilibrium acid concentration increases, and the pH of the extraction layer (organic phase / aqueous phase) during the extraction step is preferably 1 to 1. 3.

更に、抽出工程時の抽出層(有機相・水相)の温度は、有機相を構成する前記アルコールの引火点以下に制御する。その温度は、より高いほうが有機相への抽出剤の溶解度が高くなり、有機相−水相の分離が良好となるが、引火点による火災を防止するため、用いる溶媒の引火点を超えないことが必要であり、引火点−(5〜10)℃で制御することが好ましい。   Furthermore, the temperature of the extraction layer (organic phase / aqueous phase) during the extraction step is controlled below the flash point of the alcohol constituting the organic phase. The higher the temperature, the higher the solubility of the extractant in the organic phase and the better the separation of the organic and aqueous phases, but to prevent fires from the flash point, do not exceed the flash point of the solvent used. Is necessary, and the flash point is preferably controlled at − (5 to 10) ° C.

本発明において、抽出剤・希釈剤からなる有機相と、分離すべき希土類元素を含む水溶液とを効率よく接触させ、効率的な抽出・分離を行うために図1に示すような向流多段ミキサーセトラーを用いることが好ましい。
図1において、Aは抽出部、Bはスクラブ部、Cは逆抽出部でそれぞれの段数は適宜設定される。1〜8はミキサーセトラーへの流入、又は流出する流れを示し、配管である。1より希土類元素溶液、2より抽出剤を含有する有機相、3より水酸化ナトリウム水溶液等のアルカリ水溶液、4,6より塩酸水溶液等の酸水溶液を導入し、5より有機相に抽出されずに残留した希土類元素を含む水相、7より有機相に抽出された希土類元素を逆抽出した水溶液を回収する。抽出部Aにおいては水相のpHを希土類元素の種類に応じて調整し、希土類元素を有機相と水相に分離する。スクラブ部Bにおいては、有機相中に少量溶解している水相に残留すべき希土類元素だけを選択的に抽出する酸水溶液を用いて、有機相を洗浄する。逆抽出部Cにおいては、有機相に抽出された希土類元素を酸水溶液中に逆抽出する。また8より希土類元素を逆抽出した抽出剤を循環させ再利用することができる。
In the present invention, in order to efficiently contact an organic phase composed of an extractant / diluent and an aqueous solution containing a rare earth element to be separated for efficient extraction / separation, a countercurrent multistage mixer as shown in FIG. It is preferable to use a settler.
In FIG. 1, A is an extraction unit, B is a scrubbing unit, C is a back extraction unit, and the number of stages is set as appropriate. Reference numerals 1 to 8 denote flows that flow into or out of the mixer settler, and are pipes. Introduce a rare earth element solution from 1, an organic phase containing an extractant from 2, an alkaline aqueous solution such as an aqueous sodium hydroxide solution from 3, and an aqueous acid solution such as an aqueous hydrochloric acid solution from 4 and 6. The aqueous phase containing the remaining rare earth element and the aqueous solution obtained by back extracting the rare earth element extracted into the organic phase from 7 are collected. In the extraction part A, the pH of the aqueous phase is adjusted according to the type of rare earth element, and the rare earth element is separated into an organic phase and an aqueous phase. In the scrubbing section B, the organic phase is washed with an acid aqueous solution that selectively extracts only rare earth elements that should remain in the aqueous phase dissolved in a small amount in the organic phase. In the back extraction unit C, the rare earth element extracted in the organic phase is back extracted into the acid aqueous solution. Further, the extractant from which the rare earth element is back-extracted from 8 can be circulated and reused.

この場合、抽出部Aにおいて、希土類元素溶液1と抽出剤を含有する有機相2とを接触させて抽出を行い、希土類元素溶液1中の特定の希土類元素を有機相2に抽出し、有機相2に抽出されずに残った希土類元素を含む水相5を抽出部Aより排出、回収する。なお、アルカリ水溶液3は平衡酸濃度調整の目的で導入するものである。上記特定の希土類元素を抽出した有機相2はスクラブ部Bに導入され、ここで有機相2中に少量溶解している水相に残るべき希土類元素だけを選択的に抽出するようにpH調整された酸水溶液4(例えば、Nd/Prの抽出・分離の場合、pHを1〜2に調整することによりPrが選択的に分離される)を用いて有機相2を洗浄し、上記水相に残るべき希土類元素だけを選択的に抽出した酸水溶液4は、抽出部Aに導入されると共に、洗浄された有機相2は、逆抽出部Cに導入され、ここで有機相2中の希土類元素を所用のpHに調整された酸水溶液6により逆抽出し、得られた希土類元素を含む水溶液7を排出、回収する。希土類元素が逆抽出された有機相2(8)は抽出部Aに循環される。   In this case, in the extraction part A, the rare earth element solution 1 and the organic phase 2 containing the extractant are brought into contact with each other, extraction is performed, and a specific rare earth element in the rare earth element solution 1 is extracted into the organic phase 2. The aqueous phase 5 containing the rare earth element remaining without being extracted into 2 is discharged and recovered from the extraction unit A. The aqueous alkaline solution 3 is introduced for the purpose of adjusting the equilibrium acid concentration. The organic phase 2 from which the specific rare earth element has been extracted is introduced into the scrubbing section B, where the pH is adjusted so as to selectively extract only the rare earth element that should remain in the aqueous phase dissolved in a small amount in the organic phase 2. The organic phase 2 is washed with an acid aqueous solution 4 (for example, in the case of extraction / separation of Nd / Pr, Pr is selectively separated by adjusting the pH to 1 to 2). The acid aqueous solution 4 that selectively extracts only the rare earth elements to remain is introduced into the extraction section A, and the washed organic phase 2 is introduced into the back extraction section C, where the rare earth elements in the organic phase 2 are introduced. Is back-extracted with an acid aqueous solution 6 adjusted to a desired pH, and the obtained aqueous solution 7 containing rare earth elements is discharged and recovered. The organic phase 2 (8) from which the rare earth element has been back-extracted is circulated to the extraction section A.

以下、実施例と比較例を示して本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

[実施例1]
(希土類金属の相互分離)
本発明による溶媒抽出を行った場合における、混合希土類金属の分離性能を調べる試験を行った。
DODGAAを1−ヘキサノールで溶解し、0.3mol/Lの濃度溶液を調製して有機相とした。
希土類金属として、Pr:Nd=1:1モル比でPr+Nd=0.1mol/Lとなる塩化プラセオジムと塩化ネオジムの混合溶液を調製した。上記有機相100mlと水相100mlを分液漏斗に入れ、室温(20℃)で約20分間振盪し、抽出処理を行い、平衡に達した後、有機相と水相を分離した。更に、有機相100mlは5N−塩酸100mlと共に分液漏斗に入れ、室温(20℃)で約20分間振盪し、有機相に抽出された希土類元素を塩酸水溶液中に逆抽出した。水相と逆抽出した塩酸水溶液中のプラセオジムとネオジムの濃度をICP発光分析装置(ICP−7500:島津製作所(株)製商品名)で測定したところ、[Nd]org.=0.028mol/L、[Nd]aqua=0.022mol/L、[Pr]org.=0.017mol/L、[Pr]aqua=0.033mol/Lであった。この結果から、DODGAA1−ヘキサノール溶液のネオジム/プラセオジムの分離係数は2.5であった。
[Example 1]
(Mutual separation of rare earth metals)
A test was conducted to examine the separation performance of the mixed rare earth metal when the solvent extraction according to the present invention was performed.
DODGAA was dissolved in 1-hexanol to prepare a 0.3 mol / L concentration solution to obtain an organic phase.
As a rare earth metal, a mixed solution of praseodymium chloride and neodymium chloride was prepared so that Pr + Nd = 0.1 mol / L at a Pr: Nd = 1: 1 molar ratio. 100 ml of the organic phase and 100 ml of the aqueous phase were placed in a separatory funnel, shaken at room temperature (20 ° C.) for about 20 minutes, extracted, and after reaching equilibrium, the organic and aqueous phases were separated. Furthermore, 100 ml of the organic phase was placed in a separatory funnel together with 100 ml of 5N hydrochloric acid, and shaken at room temperature (20 ° C.) for about 20 minutes, and the rare earth element extracted into the organic phase was back extracted into an aqueous hydrochloric acid solution. The concentration of praseodymium and neodymium in the aqueous hydrochloric acid solution back-extracted with the aqueous phase was measured with an ICP emission spectrometer (ICP-7500: trade name, manufactured by Shimadzu Corporation), and [Nd] org. = 0.028 mol / L, [Nd] aqua = 0.022 mol / L, [Pr] org. = 0.017 mol / L, [Pr] aqua = 0.033 mol / L. From this result, the neodymium / praseodymium separation factor of the DODGAA1-hexanol solution was 2.5.

[実施例2〜6]
(有機相−水相の分離)
本発明による溶媒抽出を行った場合における、有機相・水相温度と有機相−水相の分離にかかる時間(分相状態)を調べる試験を行った。
DODGAAを1−ヘキサノールで溶解し、0.3mol/Lの濃度溶液を調製して有機相とした。
希土類金属として、Pr:Nd=1:1モル比でPr+Nd=0.1mol/Lとなる塩化プラセオジムと塩化ネオジムの混合溶液を調製した。上記有機相100mlと水相100mlを分液漏斗に入れ、所定の温度で約20分間振盪し、抽出処理を行い、平衡に達した後、有機相と水相を分離した。その有機相・水相温度と有機相−水相の分離にかかる時間(分相状態)を調べた結果を表1に示す。有機相・水相温度が1−ヘキサノール引火点(約63℃)に近いほど有機相−水相の分離にかかる時間が短く、良好な結果となった。
[Examples 2 to 6]
(Separation of organic phase and aqueous phase)
When the solvent extraction according to the present invention was performed, a test was conducted to examine the time (phase separation state) required for separation of the organic phase / aqueous phase temperature and the organic phase-aqueous phase.
DODGAA was dissolved in 1-hexanol to prepare a 0.3 mol / L concentration solution to obtain an organic phase.
As a rare earth metal, a mixed solution of praseodymium chloride and neodymium chloride was prepared so that Pr + Nd = 0.1 mol / L at a Pr: Nd = 1: 1 molar ratio. 100 ml of the organic phase and 100 ml of the aqueous phase were put in a separatory funnel, shaken at a predetermined temperature for about 20 minutes, extracted, and after reaching equilibrium, the organic phase and the aqueous phase were separated. The results of examining the organic phase / aqueous phase temperature and the time (phase separation state) required for separation of the organic phase and the aqueous phase are shown in Table 1. The closer the organic phase / aqueous phase temperature was to the 1-hexanol flash point (about 63 ° C.), the shorter the time required for separation of the organic phase and the aqueous phase, and good results were obtained.

Figure 2011001584
Figure 2011001584

[実施例7〜10、比較例1,2]
(各種溶剤と希土類相互の分離、有機相−水相の分離)
本発明による溶媒抽出を行った場合における、溶剤の種類と希土類相互の分離性能、有機相−水相の分離にかかる時間(分相状態)を調べる試験を行った。
DODGAAを各種溶剤(アルコール)で溶解し、0.3mol/Lの濃度溶液を調製して有機相とした。
希土類金属として、Pr:Nd=1:1モル比でPr+Nd=0.1mol/Lとなる塩化プラセオジムと塩化ネオジムの混合溶液を調製した。上記有機相100mlと水相100mlを分液漏斗に入れ、室温(20℃)で約20分間振盪し、抽出処理を行い、平衡に達した後、有機相と水相を分離した。更に、有機相100mlは5N−塩酸100mlと共に分液漏斗に入れ、室温(20℃)で約20分間振盪し、有機相に抽出された希土類元素を塩酸水溶液中に逆抽出した。水相と逆抽出した塩酸水溶液中のプラセオジムとネオジムの濃度をICP発光分析装置(ICP−7500:島津製作所(株)製商品名)で測定した分離係数(Nd/Pr)と分相状態を表2に示す。DODGAAの溶剤として1−ペンタノール、1−ヘキサノール、1−ヘプタノール、1−オクタノールを用いたネオジム/プラセオジムの分離係数は2.5であった。また、下記式(2)
n2n+1OH (2)
で表されるnの値が5〜8までのアルコールは有機相−水相の分離が可能であったが、n=9(ノナノール)、n=10(デカノール)は有機相−水相の分離ができなかった。
[Examples 7 to 10, Comparative Examples 1 and 2]
(Separation of various solvents and rare earths, separation of organic and aqueous phases)
When the solvent extraction according to the present invention was performed, a test was conducted to examine the type of solvent, the separation performance between rare earths, and the time (phase separation state) required for the separation between the organic phase and the aqueous phase.
DODGAA was dissolved in various solvents (alcohols) to prepare a 0.3 mol / L concentration solution as an organic phase.
As a rare earth metal, a mixed solution of praseodymium chloride and neodymium chloride was prepared so that Pr + Nd = 0.1 mol / L at a Pr: Nd = 1: 1 molar ratio. 100 ml of the organic phase and 100 ml of the aqueous phase were placed in a separatory funnel, shaken at room temperature (20 ° C.) for about 20 minutes, extracted, and after reaching equilibrium, the organic and aqueous phases were separated. Furthermore, 100 ml of the organic phase was placed in a separatory funnel together with 100 ml of 5N hydrochloric acid, and shaken at room temperature (20 ° C.) for about 20 minutes, and the rare earth element extracted into the organic phase was back extracted into an aqueous hydrochloric acid solution. The separation factor (Nd / Pr) and the state of phase separation measured for the concentration of praseodymium and neodymium in an aqueous hydrochloric acid solution back-extracted from the aqueous phase with an ICP emission spectrometer (ICP-7500: trade name, manufactured by Shimadzu Corporation) are shown. It is shown in 2. The neodymium / praseodymium separation factor using 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol as the solvent for DODGAA was 2.5. Moreover, following formula (2)
C n H 2n + 1 OH (2)
Can be separated into an organic phase and an aqueous phase, but n = 9 (nonanol) and n = 10 (decanol) can be separated into an organic phase and an aqueous phase. I could not.

Figure 2011001584
Figure 2011001584

[実施例11]
以下、図1のミキサーセトラー抽出装置を用いた例を示す。
実施例1と同じ0.3mol/LのDODGAA1−ヘキサノール溶液を有機相とし、ネオジム:プラセオジム=1:1モル比でネオジム+プラセオジム=0.1mol/Lとなる塩化ネオジムと塩化プラセオジムの混合溶液を水相とした。
図1において、Aを24段、Bを24段、Cを8段とした向流多段ミキサーセトラーで、上記有機相と水相を混合して室温(20℃)で抽出させ、定常状態に達した後、有機相中の希土類元素を塩酸水溶液中に逆抽出し、水相と逆抽出した塩酸水溶液中のネオジムとプラセオジムの濃度を前記したICP発光分析装置で測定した。逆抽出した塩酸水溶液中のネオジム濃度は0.2mol/L、プラセオジム濃度は0.0002mol/Lで、水相中のプラセオジム濃度は0.04mol/L、ネオジム濃度は0.0002mol/Lであり、逆抽出した塩酸水溶液中のネオジム純度[Nd/(Nd+Pr)]は99.9%であった。この結果から、DODGAA1−ヘキサノール溶液のネオジム/プラセオジムの分離係数は2.5であった。
なお、図1のミキサーセトラー抽出装置において、1より塩化ネオジム+塩化プラセオジムの混合溶液を流量15リットル/hで、2より抽出剤の0.3MのDODGAA1−ヘキサノール溶液を流量6リットル/hで、3より4mol/Lの水酸化ナトリウム水溶液を0.75リットル/hで導入し、5より水相を16.75リットル/hで回収し、6より4mol/Lの塩酸水溶液を流量3リットル/hで導入し、7より逆抽出したネオジムを含む塩酸水溶液を流量3リットル/hで回収した。また、抽出剤は8より循環させ、再利用した。
[Example 11]
Hereinafter, an example using the mixer settler extraction device of FIG. 1 will be shown.
A mixed solution of neodymium chloride and praseodymium chloride in which the same 0.3 mol / L DODGAA 1-hexanol solution as in Example 1 is used as an organic phase and neodymium: praseodymium = 1: 1 molar ratio is neodymium + praseodymium = 0.1 mol / L. It was set as the water phase.
In FIG. 1, the organic phase and the aqueous phase are mixed and extracted at room temperature (20 ° C.) using a countercurrent multi-stage mixer settler with 24 stages for A, 24 stages for B, and 8 stages for C. Then, the rare earth elements in the organic phase were back extracted into an aqueous hydrochloric acid solution, and the concentrations of neodymium and praseodymium in the aqueous hydrochloric acid solution back extracted from the aqueous phase were measured with the above-described ICP emission spectrometer. The neodymium concentration in the back-extracted hydrochloric acid aqueous solution is 0.2 mol / L, the praseodymium concentration is 0.0002 mol / L, the praseodymium concentration in the aqueous phase is 0.04 mol / L, and the neodymium concentration is 0.0002 mol / L. The neodymium purity [Nd / (Nd + Pr)] in the back-extracted hydrochloric acid aqueous solution was 99.9%. From this result, the neodymium / praseodymium separation factor of the DODGAA1-hexanol solution was 2.5.
1, the mixed solution of neodymium chloride + praseodymium chloride from 1 at a flow rate of 15 liters / h, and from 2, the 0.3M DODGAA1-hexanol solution of the extractant at a flow rate of 6 liters / h. 3 from 4 mol / L sodium hydroxide aqueous solution was introduced at 0.75 liter / h, from 5 the aqueous phase was recovered at 16.75 liter / h, and from 6 to 4 mol / L hydrochloric acid aqueous solution was flowed at 3 liter / h. The aqueous hydrochloric acid solution containing neodymium back-extracted from 7 was collected at a flow rate of 3 liter / h. The extractant was circulated from 8 and reused.

[比較例3]
PC−88A−ケロシン溶液が1mol/Lに調整されたものを有機相とし、ネオジム:プラセオジム=1:1モル比でネオジム+プラセオジム=0.1mol/Lとなる塩化ネオジムと塩化プラセオジム混合溶液を水相とした。図1において、Aを72段、Bを72段、Cを8段とした向流多段ミキサーセトラーを用い、実施例11と同様にして、水相と逆抽出した塩酸水溶液中のネオジムとプラセオジムの濃度を前記したICP発光分析装置で測定した。逆抽出した塩酸水溶液中のネオジム濃度は0.2mol/L、プラセオジム濃度は0.0002mol/Lで、水相中のプラセオジム濃度は0.04mol/L、ネオジム濃度は0.0002mol/Lであり、逆抽出した塩酸水溶液中のネオジム純度[Nd/(Nd+Pr)]は99.9%であった。この結果から、PC−88A−ケロシン溶液のネオジム/プラセオジムの分離係数は1.4であった。
なお、抽出剤のPC−88A−ケロシン溶液は実施例と同様に流量6リットル/hで導入した。
[Comparative Example 3]
A PC-88A-kerosene solution adjusted to 1 mol / L is used as the organic phase, and a neodymium chloride and praseodymium chloride mixed solution in which neodymium: praseodymium = 1: 1 molar ratio is neodymium + praseodymium = 0.1 mol / L is water. Phased. In FIG. 1, using a countercurrent multistage mixer settler with 72 stages for A, 72 stages for B, and 8 stages for C, in the same manner as in Example 11, neodymium and praseodymium in a hydrochloric acid aqueous solution back-extracted from the aqueous phase. The concentration was measured with the ICP emission spectrometer described above. The neodymium concentration in the back-extracted hydrochloric acid aqueous solution is 0.2 mol / L, the praseodymium concentration is 0.0002 mol / L, the praseodymium concentration in the aqueous phase is 0.04 mol / L, and the neodymium concentration is 0.0002 mol / L. The neodymium purity [Nd / (Nd + Pr)] in the back-extracted hydrochloric acid aqueous solution was 99.9%. From this result, the neodymium / praseodymium separation factor of the PC-88A-kerosine solution was 1.4.
In addition, the PC-88A-kerosene solution of the extractant was introduced at a flow rate of 6 liter / h as in the example.

以上のように、本発明の分離係数の大きい抽出剤を用いると、同じ純度で同じ量を処理するのに抽出段数が少なくてすみ、初期投資が抑えられる。   As described above, when the extraction agent having a large separation coefficient according to the present invention is used, the number of extraction stages can be reduced to process the same amount with the same purity, and the initial investment can be suppressed.

このように極性の低いアルコールで高濃度DODGAAを溶解し、0.02〜0.5M程度の希土類混合水溶液からミキサーセトラーを用い、溶媒抽出方法により低コストで精製分離が可能となった。この溶媒は極性の低いアルコール同士の混合、又は極性の低いアルコールとアルカン系溶媒の混合でも達成できる。   In this way, high-concentration DODGAA was dissolved with a low-polarity alcohol, and purification and separation at a low cost became possible by a solvent extraction method using a mixer settler from a rare earth mixed aqueous solution of about 0.02 to 0.5M. This solvent can also be achieved by mixing low-polarity alcohols or mixing low-polarity alcohols and alkane solvents.

1 希土類元素溶液又はこれを導入する配管
2 抽出剤を含有する有機相又はこれを導入する配管
3 アルカリ水溶液又はこれを導入する配管
4 酸水溶液又はこれを導入する配管
5 有機相に抽出されずに残留した希土類元素を含む水相又はこれを回収する配管
6 酸水溶液又はこれを導入する配管
7 有機相に抽出された希土類元素を逆抽出した水溶液又はこれを回収する配管
8 抽出剤又はこれを循環させる配管
A 抽出部
B スクラブ部
C 逆抽出部
DESCRIPTION OF SYMBOLS 1 Rare earth element solution or piping which introduces this 2 Organic phase containing extractant or piping which introduces this 3 Alkaline aqueous solution or piping which introduces this 4 Acid aqueous solution or piping which introduces this 5 Without being extracted to the organic phase Aqueous phase containing residual rare earth element or pipe for collecting this 6 Acid aqueous solution or pipe for introducing this 7 Aqueous solution obtained by back-extracting rare earth element extracted in organic phase or pipe for collecting this 8 Extractant or circulating this Piping A Extracting section B Scrub section C Back extraction section

Claims (5)

下記一般式(1)
Figure 2011001584

(式中、R1及びR2は、互いに同一又は異種のアルキル基であり、少なくとも一方は炭素数6以上の直鎖又は分岐鎖状のアルキル基を示す。)
で表されるジグリコールアミド酸を抽出剤とし、下記一般式(2)
n2n+1OH (2)
(式中、nは5〜8の整数である。)
で表される低極性アルコールを溶媒とする有機相と、2種以上の希土類元素を含む水溶液からなる水相とをpH3以下の酸性条件下で接触させることにより、前記希土類元素のうち抽出すべき希土類元素を前記有機相に抽出し、その後この有機相を酸水溶液にて逆抽出することで前記有機相に抽出した希土類元素を回収すると共に、前記有機相に抽出されずに前記水相中に残留した希土類元素を回収することを特徴とする希土類元素の抽出・分離方法。
The following general formula (1)
Figure 2011001584

(In the formula, R 1 and R 2 are the same or different alkyl groups, and at least one of them represents a linear or branched alkyl group having 6 or more carbon atoms.)
As an extractant, diglycolamide acid represented by the following general formula (2)
C n H 2n + 1 OH (2)
(In the formula, n is an integer of 5 to 8.)
It should be extracted from the rare earth elements by contacting an organic phase containing a low polar alcohol represented by the formula (1) and an aqueous phase comprising an aqueous solution containing two or more rare earth elements under acidic conditions of pH 3 or less. A rare earth element is extracted into the organic phase, and then the organic phase is back-extracted with an aqueous acid solution to recover the rare earth element extracted into the organic phase, and not extracted into the organic phase but into the aqueous phase. A method for extracting and separating rare earth elements, which comprises collecting residual rare earth elements.
抽出及び逆抽出処理を向流多段ミキサーセトラーによって行うことを特徴とする請求項1記載の希土類元素の抽出・分離方法。   2. The method for extracting and separating rare earth elements according to claim 1, wherein the extraction and back-extraction processes are carried out by a countercurrent multistage mixer settler. 有機相と水相とを有機相に用いた式(2)の低極性アルコールの引火点より低い温度で接触させることを特徴とする請求項1又は2記載の希土類元素の抽出・分離方法。   3. The method for extracting and separating rare earth elements according to claim 1 or 2, wherein the organic phase and the aqueous phase are contacted at a temperature lower than the flash point of the low polarity alcohol of the formula (2) using the organic phase. 水相に含まれる抽出・分離すべき希土類元素が、La,Ce,Pr,Nd,Sm及びEuから選ばれる軽希土類元素の中の少なくとも2種、又は前記軽希土類元素の中の少なくとも1種とそれ以外のYを含む希土類元素の中の少なくとも1種とであることを特徴とする請求項1〜3のいずれか1項記載の希土類元素の抽出・分離方法。   The rare earth element to be extracted and separated contained in the aqueous phase is at least two kinds of light rare earth elements selected from La, Ce, Pr, Nd, Sm and Eu, or at least one kind of the light rare earth elements. The method for extracting and separating rare earth elements according to any one of claims 1 to 3, which is at least one of the other rare earth elements containing Y. 水相に含まれる希土類元素が、Nd及びPrであり、Ndを有機相に抽出すると共に、Prを水相に残留させることによりNdとPrとを分離するようにしたことを特徴とする請求項1〜3のいずれか1項記載の希土類元素の抽出・分離方法。   The rare earth element contained in the aqueous phase is Nd and Pr, and Nd is extracted into an organic phase and Pr is left in the aqueous phase to separate Nd and Pr. The method for extracting and separating rare earth elements according to any one of 1 to 3.
JP2009144445A 2009-06-17 2009-06-17 Extraction and separation method of rare earth elements Active JP5499353B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2009144445A JP5499353B2 (en) 2009-06-17 2009-06-17 Extraction and separation method of rare earth elements
AU2010202408A AU2010202408B2 (en) 2009-06-17 2010-06-09 Method for extracting and separating rare earth elements
MYPI2010002724A MY147986A (en) 2009-06-17 2010-06-11 Method for extracting and separating rare earth elements
US12/813,698 US8177881B2 (en) 2009-06-17 2010-06-11 Method for extracting and separating rare earth elements
CA2707933A CA2707933C (en) 2009-06-17 2010-06-16 Method for extracting and separating rare earth elements
EP11177979.9A EP2388343B1 (en) 2009-06-17 2010-06-17 Method for extracting and separating rare earth elements
EP11178001.1A EP2388344B1 (en) 2009-06-17 2010-06-17 Method for extracting and separating rare earth elements
CN201010278408.7A CN101928829B (en) 2009-06-17 2010-06-17 Method for extracting and separating rare earth elements
EP10251108.6A EP2264196B1 (en) 2009-06-17 2010-06-17 Method for extracting and separating rare earth elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009144445A JP5499353B2 (en) 2009-06-17 2009-06-17 Extraction and separation method of rare earth elements

Publications (2)

Publication Number Publication Date
JP2011001584A true JP2011001584A (en) 2011-01-06
JP5499353B2 JP5499353B2 (en) 2014-05-21

Family

ID=43559777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009144445A Active JP5499353B2 (en) 2009-06-17 2009-06-17 Extraction and separation method of rare earth elements

Country Status (1)

Country Link
JP (1) JP5499353B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137495A1 (en) * 2011-04-06 2012-10-11 三菱マテリアルテクノ株式会社 Method for recovering rare earth metals
WO2013103099A1 (en) * 2012-01-06 2013-07-11 日立金属株式会社 Method for separating and recovering rare-earth element
EP2614868A1 (en) 2012-01-13 2013-07-17 Shin-Etsu Chemical Co., Ltd. Liquid-liquid extraction unit, multistage liquid-liquid extraction apparatus using the unit, and multistage continuous extraction system for rare earth elements
JP2013173994A (en) * 2012-02-27 2013-09-05 Mitsubishi Materials Techno Corp Metal collecting method
WO2013146472A1 (en) * 2012-03-30 2013-10-03 住友重機械工業株式会社 Method for rare-earth element recovery
KR20130134348A (en) * 2012-05-30 2013-12-10 삼성전자주식회사 Air conditional and method for controlling the same
WO2014157225A1 (en) * 2013-03-25 2014-10-02 独立行政法人産業技術総合研究所 Adsorbent for rare earth element and method for recovering rare earth element
CN113584305A (en) * 2021-07-28 2021-11-02 厦门钨业股份有限公司 Application and method of N, N-dialkyl amide carboxylic acid compounds
CN114702057A (en) * 2022-04-13 2022-07-05 南昌航空大学 Method for preparing 6N grade neodymium chloride by fractional extraction separation process
CN115354157A (en) * 2022-08-01 2022-11-18 遂川和创金属新材料有限公司 Neodymium iron boron waste material extraction edulcoration device
CN115505763A (en) * 2022-09-21 2022-12-23 四川江铜稀土有限责任公司 Extraction method for improving praseodymium-neodymium output and controlling praseodymium content in praseodymium-neodymium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323453A (en) * 1998-05-13 1999-11-26 Mitsui Mining & Smelting Co Ltd Method and device for separating neodymium and praseodymium
JP2007327085A (en) * 2006-06-06 2007-12-20 Japan Atomic Energy Agency Extractant for rare earth metal, and extracting method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323453A (en) * 1998-05-13 1999-11-26 Mitsui Mining & Smelting Co Ltd Method and device for separating neodymium and praseodymium
JP2007327085A (en) * 2006-06-06 2007-12-20 Japan Atomic Energy Agency Extractant for rare earth metal, and extracting method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013026312; Kojiro SHIMOJO et al.: 'Extraction Behavior and Separation of Lanthanides with a Diglycol Amic Acid Derivative and a Nitroge' ANALYTICAL SCIENCES vol. 23 No.12, 2007, 1427〜1430頁, The Japan Society for Analytical Chemistry *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137495A1 (en) * 2011-04-06 2012-10-11 三菱マテリアルテクノ株式会社 Method for recovering rare earth metals
WO2013103099A1 (en) * 2012-01-06 2013-07-11 日立金属株式会社 Method for separating and recovering rare-earth element
US9376736B2 (en) 2012-01-06 2016-06-28 Hitachi Metals, Ltd. Method for separating and recovering rare-earth elements
CN103203120B (en) * 2012-01-13 2016-01-06 信越化学工业株式会社 Liquid-liquid extraction unit, multitple extraction equipment and multi-stage continuous extraction system
EP2614868A1 (en) 2012-01-13 2013-07-17 Shin-Etsu Chemical Co., Ltd. Liquid-liquid extraction unit, multistage liquid-liquid extraction apparatus using the unit, and multistage continuous extraction system for rare earth elements
CN103203120A (en) * 2012-01-13 2013-07-17 信越化学工业株式会社 Liquid-liquid Extraction Unit, Multistage Extraction Apparatus, And Multistage Continuous Extraction System
US10407752B2 (en) 2012-01-13 2019-09-10 Shin-Etsu Chemical Co., Ltd. Liquid-liquid extraction unit, multistage liquid-liquid extraction apparatus using the unit, and multistage continuous extraction system for rare earth elements
RU2621550C2 (en) * 2012-01-13 2017-06-06 Син-Эцу Кемикал Ко., Лтд. Extraction unit "liquid-liquid", multi-stage extraction device "liquid-liquid" which uses this unit, and system of multi-stage continuous extraction for rare-earth elements
AU2013200062B2 (en) * 2012-01-13 2015-05-28 Shin-Etsu Chemical Co., Ltd. Liquid-liquid extraction unit, multistage liquid-liquid extraction apparatus using the unit, and multistage continuous extraction system for rare earth elements
JP2013173994A (en) * 2012-02-27 2013-09-05 Mitsubishi Materials Techno Corp Metal collecting method
WO2013128830A1 (en) * 2012-02-27 2013-09-06 三菱マテリアルテクノ株式会社 Metal recovery process
WO2013146472A1 (en) * 2012-03-30 2013-10-03 住友重機械工業株式会社 Method for rare-earth element recovery
JP2013209689A (en) * 2012-03-30 2013-10-10 Sumitomo Heavy Ind Ltd Method for recovering rare-earth element
KR20130134348A (en) * 2012-05-30 2013-12-10 삼성전자주식회사 Air conditional and method for controlling the same
WO2014157225A1 (en) * 2013-03-25 2014-10-02 独立行政法人産業技術総合研究所 Adsorbent for rare earth element and method for recovering rare earth element
JPWO2014157225A1 (en) * 2013-03-25 2017-02-16 国立研究開発法人産業技術総合研究所 Rare earth element adsorbent and recovery method thereof
US10023937B2 (en) 2013-03-25 2018-07-17 National Institute Of Advanced Industrial Science And Technology Adsorbent for rare earth element and method for recovering rare earth element
CN113584305A (en) * 2021-07-28 2021-11-02 厦门钨业股份有限公司 Application and method of N, N-dialkyl amide carboxylic acid compounds
CN113584305B (en) * 2021-07-28 2023-03-14 福建省长汀金龙稀土有限公司 Application and method of N, N-dialkylamide carboxylic acid compounds
CN114702057A (en) * 2022-04-13 2022-07-05 南昌航空大学 Method for preparing 6N grade neodymium chloride by fractional extraction separation process
CN115354157A (en) * 2022-08-01 2022-11-18 遂川和创金属新材料有限公司 Neodymium iron boron waste material extraction edulcoration device
CN115354157B (en) * 2022-08-01 2023-11-24 江西群鑫强磁新材料股份有限公司 Neodymium iron boron waste material extraction edulcoration device
CN115505763A (en) * 2022-09-21 2022-12-23 四川江铜稀土有限责任公司 Extraction method for improving praseodymium-neodymium output and controlling praseodymium content in praseodymium-neodymium
CN115505763B (en) * 2022-09-21 2023-09-19 中稀(凉山)稀土有限公司 Extraction method for improving praseodymium and neodymium output and controlling praseodymium content in praseodymium and neodymium

Also Published As

Publication number Publication date
JP5499353B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP5499353B2 (en) Extraction and separation method of rare earth elements
JP5392828B2 (en) Extraction and separation method of rare earth elements
AU2010202408B2 (en) Method for extracting and separating rare earth elements
JP2015212423A (en) Extraction and separation method of light rare earth element
Wang et al. Process for the separation of thorium and rare earth elements from radioactive waste residues using Cyanex® 572 as a new extractant
JP5487506B2 (en) Method for synthesizing rare earth metal extractant
JP5299914B2 (en) Extraction and separation method of rare earth elements
JP6194867B2 (en) Extraction separation method
Su et al. Recovery of Sm (III), Co (II) and Cu (II) from waste SmCo magnet by ionic liquid-based selective precipitation process
JP2017531097A (en) Method for selectively recovering rare earth metals present in acidic aqueous phase resulting from treatment of used or discarded permanent magnets
CN102312092B (en) The synthetic method of rare earth metal extractant
Su et al. Purification and enrichment of rare earth in ion-adsorbed rare earth ores using fatty acid based separation processes
CN111575493B (en) Method for removing impurities in high-purity scandium product
Wejman-Gibas et al. solvent extraction of zinc (II) from ammonia leaching solution by LIX 54-100, LIX 84 I and TOA
AU2014256363B2 (en) Method for extracting and separating rare earth elements
CN114737056B (en) Organic extractant, and method and application thereof for recovering metal elements
JPH0662300B2 (en) Yttrium separation method
JPH11100623A (en) Extractant for rare-earth element and extraction method
CN117887986A (en) Synergistic extractant for separating samarium and cobalt in solution, preparation method and application thereof
JPH04131331A (en) Separation of rare earth metal by solvent extraction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140219

R150 Certificate of patent or registration of utility model

Ref document number: 5499353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250