JP2011001248A - Method for producing silicon single crystal - Google Patents

Method for producing silicon single crystal Download PDF

Info

Publication number
JP2011001248A
JP2011001248A JP2009147809A JP2009147809A JP2011001248A JP 2011001248 A JP2011001248 A JP 2011001248A JP 2009147809 A JP2009147809 A JP 2009147809A JP 2009147809 A JP2009147809 A JP 2009147809A JP 2011001248 A JP2011001248 A JP 2011001248A
Authority
JP
Japan
Prior art keywords
temperature
melt
neck
pulling
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009147809A
Other languages
Japanese (ja)
Other versions
JP2011001248A5 (en
JP5182234B2 (en
Inventor
Masao Saito
正夫 齊藤
Keiichi Takanashi
啓一 高梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2009147809A priority Critical patent/JP5182234B2/en
Priority to US12/819,930 priority patent/US20100319612A1/en
Publication of JP2011001248A publication Critical patent/JP2011001248A/en
Publication of JP2011001248A5 publication Critical patent/JP2011001248A5/ja
Application granted granted Critical
Publication of JP5182234B2 publication Critical patent/JP5182234B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a silicon single crystal for improving a success rate of forming a neck portion and achieving higher efficiency of the process by appropriately controlling a melt temperature upon forming a neck to a temperature suitable for forming a neck portion.SOLUTION: The method for producing a silicon single crystal by a Czochralski method is provided, wherein a pulling step includes neck trial pulling for trial formation of a neck portion before a neck pulling step for forming a neck portion after a seed crystal 101 is dipped in a melt, and by the changes in a diameter of the seed crystal 101 after the neck trial pulling, whether the temperature of the melt is appropriate or not for formation of the neck portion is determined.

Description

本発明は、シリコン単結晶の製造方法に関し、特に、チョクラルスキー法を用いたシリコン単結晶の製造方法に関する。   The present invention relates to a method for producing a silicon single crystal, and more particularly to a method for producing a silicon single crystal using the Czochralski method.

半導体デバイスの製造に使用されるシリコンウェーハは、主にチョクラルスキー法(CZ法)により成長させたシリコン単結晶インゴットをスライスすることによって得られる。CZ法とは、石英坩堝内に収容された多結晶シリコン融液に種結晶を漬け、種結晶および石英坩堝を互いに逆方向に回転させながら種結晶を引き上げることにより、その下にシリコン(Si)の単結晶を成長させる方法である。   A silicon wafer used for manufacturing a semiconductor device is obtained by slicing a silicon single crystal ingot grown mainly by the Czochralski method (CZ method). In the CZ method, a seed crystal is immersed in a polycrystalline silicon melt accommodated in a quartz crucible, and the seed crystal and the quartz crucible are rotated in opposite directions, and the seed crystal is pulled up, and silicon (Si) is formed below the seed crystal. This is a method for growing a single crystal.

一般に、種結晶を融液に漬すと、種結晶は急激な熱衝撃を受けるために、種結晶先端部に転位が発生してしまう。この転位を除去するためには、成長界面形状を融液に対して凸形にする必要があり、この成長界面を凸形にするため、成長直径を小さくして、表面からの熱の放出を大きくする必要がある。図1(a)〜(e)はこのプロセスを説明するための模式図であり、種結晶101を引き上げるにつれ、融液102に浸漬させた際に発生した転位103が減少する様子が描かれている。このプロセスは、一般に、ネッキングと呼ばれている。   In general, when a seed crystal is immersed in a melt, the seed crystal is subjected to a rapid thermal shock, so that dislocation occurs at the tip of the seed crystal. In order to remove this dislocation, it is necessary to make the growth interface shape convex with respect to the melt, and in order to make this growth interface convex, the growth diameter is reduced to release heat from the surface. It needs to be bigger. FIGS. 1A to 1E are schematic diagrams for explaining this process. As the seed crystal 101 is pulled up, the dislocation 103 generated when immersed in the melt 102 is reduced. Yes. This process is generally called necking.

このネッキングプロセスで重要なポイントは、融液の温度設定である。従来は、図2および図3に示すように、温度センサ206、ヒータ制御システム207およびヒータ208を具える装置を用いて、温度センサ206(例えば放射温度計等)で融液表面の温度を監視し、適正温度で安定していることを確認してから(301)、種結晶201を融液202に漬し、一定時間経過した段階で、再度温度センサ206により温度が最適かどうかを判断した後(302)、ネッキングを行っていた。   An important point in this necking process is the temperature setting of the melt. Conventionally, as shown in FIG. 2 and FIG. 3, the temperature sensor 206 (for example, a radiation thermometer) is used to monitor the surface temperature of the melt using a device including a temperature sensor 206, a heater control system 207, and a heater 208. After confirming that the temperature is stable at an appropriate temperature (301), the seed crystal 201 is immersed in the melt 202, and when a certain time has elapsed, the temperature sensor 206 again determines whether the temperature is optimal. Later (302), necking was performed.

融液の温度がネック部形成に適さない温度であった場合には、適正温度範囲内になるよう、上記温度センサ206の測定値および目標温度をヒータ制御システム207へフィードバック(303)し、これによりシリコン融液温度を安定化していた。   When the temperature of the melt is not suitable for forming the neck portion, the measured value of the temperature sensor 206 and the target temperature are fed back to the heater control system 207 so as to be within the appropriate temperature range (303). As a result, the silicon melt temperature was stabilized.

しかしながら、製造条件の変更等によって、ネック形成可能なシリコン融液温度と温度センサによる測定値との間には誤差が生じ、ネック形状が不安定になるおそれがあった。一例として、上記温度センサが放射温度計である場合には、温度計窓の曇り等によって、測定値と実際の温度とが異なる場合がある。具体的には、シリコン融液温度が高すぎる場合は、ネック形成時にネックが融液から切り離されてしまい、一方、シリコン融液温度が低い場合には、ネック形状が細くならず、ネックが形成できないという問題があった。   However, due to changes in manufacturing conditions, an error occurs between the silicon melt temperature at which the neck can be formed and the measured value by the temperature sensor, and the neck shape may become unstable. As an example, when the temperature sensor is a radiation thermometer, the measured value may differ from the actual temperature due to fogging of the thermometer window. Specifically, if the silicon melt temperature is too high, the neck will be cut off from the melt when forming the neck, while if the silicon melt temperature is low, the neck shape will not become thin and the neck will be formed. There was a problem that I could not.

また、近年の半導体シリコンウェーハの大口径化に伴い、融液温度のより一層正確な制御が求められるようになっており、温度センサよりも高精度の温度制御手段が必要とされていた。   Further, with the recent increase in the diameter of semiconductor silicon wafers, more accurate control of the melt temperature has been required, and a temperature control means with higher accuracy than a temperature sensor has been required.

本発明の目的は、ネック形成時の融液温度を、ネック部形成に適した温度となるよう適切に制御することによって、ネック部の形成の成功率を向上させ、プロセスの効率化を図ったシリコン単結晶の製造方法を提供することにある。   The object of the present invention is to improve the success rate of the formation of the neck portion and improve the efficiency of the process by appropriately controlling the melt temperature at the time of neck formation so as to be a temperature suitable for the neck portion formation. The object is to provide a method for producing a silicon single crystal.

上記目的を達成するため、本発明の要旨構成は以下のとおりである。
(1)多結晶シリコン原料を坩堝内に充填し、加熱融解させることにより多結晶シリコン融液を形成する融解工程と、前記融液に種結晶を浸漬させ、所定の温度および引き上げ速度条件下で前記種結晶を上方に引き上げながら所定形状のシリコン単結晶を形成する引き上げ工程とを具えるチョクラルスキー法によるシリコン単結晶の製造方法であって、前記引き上げ工程は、所定の温度に設定された前記融液に前記種結晶を浸漬させた後、ネック部形成のためのネック本引きを行う前に、ネック部を試し形成するためのネック試し引きを行うことを含み、該ネック試し引き後の種結晶の直径の変化から、前記融液の温度がネック部形成に適した温度であるかを判定することを特徴とするシリコン単結晶の製造方法。
In order to achieve the above object, the gist of the present invention is as follows.
(1) A polycrystalline silicon raw material is filled in a crucible and melted by heating to form a polycrystalline silicon melt; a seed crystal is immersed in the melt; and under a predetermined temperature and pulling speed condition A method for producing a silicon single crystal by a Czochralski method comprising a pulling step of forming a silicon single crystal having a predetermined shape while pulling up the seed crystal upward, wherein the pulling step is set at a predetermined temperature. After immersing the seed crystal in the melt, and before performing neck pulling for forming the neck part, performing neck test pulling for trial formation of the neck part, and after the neck test pulling A method for producing a silicon single crystal, comprising determining whether the temperature of the melt is a temperature suitable for neck formation from a change in the diameter of a seed crystal.

(2)前記判定の結果、前記融液の温度がネック部形成に適さない温度であると判定された場合には、前記融液の温度を調整することによって前記融液を安定化させた後、再度ネック試し引きを行う上記(1)に記載のシリコン単結晶の製造方法。   (2) If it is determined as a result of the determination that the temperature of the melt is not suitable for neck formation, the melt is stabilized by adjusting the temperature of the melt The method for producing a silicon single crystal according to the above (1), wherein neck trial pulling is performed again.

(3)前記判定の結果、前記融液の温度を1回以上調整した場合には、前記融液の温度を計測している温度センサの値を補正する上記(1)または(2)に記載のシリコン単結晶の製造方法。   (3) As a result of the determination, when the temperature of the melt is adjusted once or more, the value of the temperature sensor that measures the temperature of the melt is corrected. A method for producing a silicon single crystal.

(4)前記判定の結果、前記融液の温度がネック部形成に適する温度であると判定された場合には、ネック試し引きに引き継いでネック本引きを行う上記(1)、(2)または(3)に記載のシリコン単結晶の製造方法。   (4) As a result of the determination, when it is determined that the temperature of the melt is a temperature suitable for forming a neck portion, the neck main pulling is performed by taking over the neck trial pulling (1), (2) or The method for producing a silicon single crystal according to (3).

(5)前記温度センサが、放射温度計である上記(3)または(4)に記載のシリコン単結晶の製造方法。   (5) The method for producing a silicon single crystal according to (3) or (4), wherein the temperature sensor is a radiation thermometer.

(6)前記融液の温度の調整は、調整後の融液の温度をT[℃]、調整前の融液の温度をT[℃]、温度補正係数をH[℃/mm]、試し引きの目標直径をP[mm]、ネック試し引き後の種結晶の直径をX[mm]としたとき、
=T+H×(X−P)
H=0.95
の式にしたがって行われる上記(2)〜(5)のいずれか一に記載のシリコン単結晶の製造方法。
(6) The melt temperature is adjusted by adjusting the melt temperature after adjustment to T 1 [° C.], the melt temperature before adjustment to T 0 [° C.], and the temperature correction coefficient to H [° C./mm]. When the target diameter of the trial pull is P [mm] and the diameter of the seed crystal after the neck trial pull is X [mm],
T 1 = T 0 + H × (X−P)
H = 0.95
The method for producing a silicon single crystal according to any one of (2) to (5), which is performed according to the formula:

(7)前記温度センサの値の補正は、補正後の表示温度をT[℃]、補正後の融液温度換算係数をk、補正前の表示温度をT[℃]、補正前の融液温度換算係数をk’、初期目標温度をT[℃]、最終目標温度をT[℃]としたとき、
=kT
k=k’×T/T
の式にしたがって行われる上記(3)〜(6)のいずれか一に記載のシリコン単結晶の製造方法。
(7) The temperature sensor value is corrected by correcting the display temperature after correction to T 3 [° C.], the melt temperature conversion coefficient after correction to k, the display temperature before correction to T 2 [° C.], and the value before correction. When the melt temperature conversion coefficient is k ′, the initial target temperature is T 4 [° C.], and the final target temperature is T 5 [° C.],
T 3 = kT 2
k = k ′ × T 4 / T 5
The method for producing a silicon single crystal according to any one of (3) to (6), which is performed according to the formula:

本発明によれば、チョクラルスキー法における単結晶引き上げ工程が、所定の温度に設定された融液に種結晶を浸漬させた後、ネック部形成のためのネック本引きを行う前に、ネック部を試し形成するためのネック試し引きを行うことを含み、このネック試し引き後の種結晶の直径の変化から、前記融液の温度がネック部形成に適した温度であるかを判定することによって、ネック部の形成の成功率を向上させ、プロセスの効率化を図ったシリコン単結晶の製造方法を提供することができる。   According to the present invention, after the single crystal pulling step in the Czochralski method immerses the seed crystal in the melt set at a predetermined temperature, before the neck main pulling for forming the neck portion, And determining whether or not the temperature of the melt is suitable for forming the neck portion from the change in the diameter of the seed crystal after the neck trial pulling. Thus, it is possible to provide a method for producing a silicon single crystal that improves the success rate of formation of the neck portion and improves the efficiency of the process.

図1(a)〜(e)は、ネッキングプロセスを説明するための模式図である。FIGS. 1A to 1E are schematic diagrams for explaining a necking process. 図2は、従来の融液温度制御装置を示す模式図である。FIG. 2 is a schematic diagram showing a conventional melt temperature control device. 図3は、従来の融液温度制御方法を示すフロー図である。FIG. 3 is a flowchart showing a conventional melt temperature control method. 図4は、本発明に従うネック試し引きの様子を示す模式的断面図である。FIG. 4 is a schematic cross-sectional view showing the state of neck trial pulling according to the present invention. 図5は、直径計測システムを含む融液温度制御装置を示す模式図である。FIG. 5 is a schematic diagram showing a melt temperature control apparatus including a diameter measurement system. 図6は、本発明に従う融液温度制御方法を示すフロー図である。FIG. 6 is a flowchart showing a melt temperature control method according to the present invention.

次に、本発明のシリコン単結晶の製造方法の実施形態について図面を参照しながら説明する。本発明に従うシリコン単結晶の製造方法は、図4に示すように、多結晶シリコン原料を坩堝104内に充填し、加熱融解させることにより多結晶シリコン融液102を形成する融解工程と、融液102に種結晶101を浸漬させ、所定の温度および引き上げ速度条件下で種結晶101を上方に引き上げながら所定形状のシリコン単結晶を形成する引き上げ工程とを具えるチョクラルスキー法によるシリコン単結晶の製造方法であって、この引き上げ工程は、所定の温度に設定された融液102に種結晶101を浸漬させた後、ネック部形成のためのネック本引きを行う前に、ネック部を試し形成するためのネック試し引きを行うことを含み、このネック試し引き後の種結晶下部105の直径の変化から、融液102の温度がネック部形成に適した温度であるかを判定することを特徴とし、かかる構成を有することにより、ネック部形成の成功率を向上させ、プロセスの効率化を図ることができるものである。   Next, an embodiment of a method for producing a silicon single crystal of the present invention will be described with reference to the drawings. As shown in FIG. 4, the method for producing a silicon single crystal according to the present invention includes a melting step of filling a polycrystalline silicon raw material into a crucible 104 and heating and melting it to form a polycrystalline silicon melt 102; A seed crystal 101 is immersed in 102, and a pulling step of forming a silicon single crystal having a predetermined shape while pulling the seed crystal 101 upward at a predetermined temperature and a pulling speed condition. This is a manufacturing method, and in this pulling process, after the seed crystal 101 is immersed in the melt 102 set to a predetermined temperature, the neck portion is trial-formed before the neck main pulling for forming the neck portion is performed. The temperature of the melt 102 is suitable for forming the neck portion from the change in the diameter of the seed crystal lower portion 105 after the neck trial pulling. And characterized by determining whether the temperature, by having such a configuration, to improve the success rate of the neck portion forming, in which it is possible to improve the efficiency of the process.

ここで、「ネック部形成に適した温度」とは、シリコン融液に種結晶を接触させて種結晶を所定の引き上げ速度で引き上げた場合に、種結晶下端部の直径が変化しない温度のことを言う。   Here, the “temperature suitable for forming the neck portion” is a temperature at which the diameter of the lower end portion of the seed crystal does not change when the seed crystal is brought into contact with the silicon melt and the seed crystal is pulled at a predetermined pulling speed. Say.

図5および図6は、それぞれ、上述した従来の図2の装置にカメラ109を備える直径計測システム110を加えた装置の模式図およびフロー図であり、上記試し引き後の種結晶下部105の直径は、このカメラ109により計測される(403)。また、融液102の温度は、温度センサ106により監視され(401,402)、これら測定結果の両方は、ヒータ制御システム107にフィードバックされる(404)。   FIGS. 5 and 6 are a schematic diagram and a flow diagram, respectively, of a device obtained by adding a diameter measuring system 110 having a camera 109 to the conventional device of FIG. 2 described above, and the diameter of the lower seed crystal 105 after the trial pulling. Is measured by the camera 109 (403). The temperature of the melt 102 is monitored by the temperature sensor 106 (401, 402), and both of these measurement results are fed back to the heater control system 107 (404).

このようにして計測された、ネック試し引き後の種結晶下部105の直径の傾向データ、平均値、最大値および最小値と、パラメータで設定した融液温度安定判定許容直径とを比較し、判定の結果、融液102の温度がネック部形成に適さない温度であると判定された場合には、融液102の温度を調整することによって融液を安定化させた後、再度ネック試し引きを行うのが好ましい。このとき、試し引きで形成した不適な種結晶下部105は、融液に溶解させることで再利用することができる。   The diameter trend data, average value, maximum value and minimum value of the seed crystal lower portion 105 after neck trial pulling thus measured are compared with the melt temperature stability determination allowable diameter set by the parameter to determine As a result, when it is determined that the temperature of the melt 102 is not suitable for forming the neck portion, the melt is stabilized by adjusting the temperature of the melt 102 and then the neck test pull is performed again. It is preferred to do so. At this time, the unsuitable seed crystal lower portion 105 formed by trial pulling can be reused by dissolving in the melt.

融液102の温度の調整は、調整後の融液の温度をT[℃]、調整前の融液の温度をT[℃]、温度補正係数をH[℃/mm]、試し引きの目標直径をP[mm]、ネック試し引き後の種結晶の直径をX[mm]としたとき、
=T+H×(X−P)
H=0.95
の式にしたがって行われるのが好ましい。なお、この温度補正係数Hは、実験により得られた値である。
The temperature of the melt 102 is adjusted by adjusting the melt temperature to T 1 [° C.], the melt temperature before adjustment T 0 [° C.], the temperature correction coefficient H [° C./mm], and trial pulling. When the target diameter is P [mm] and the diameter of the seed crystal after the neck trial pull is X [mm],
T 1 = T 0 + H × (X−P)
H = 0.95
Is preferably carried out according to the formula: The temperature correction coefficient H is a value obtained through experiments.

一方、判定の結果、融液102の温度がネック部形成に適する温度であると判定された場合には、ネック試し引きに引き継いでネック本引きを行うのが好ましい。   On the other hand, if it is determined as a result of the determination that the temperature of the melt 102 is a temperature suitable for forming the neck portion, it is preferable to carry out neck neck pulling in succession to neck trial pulling.

判定の結果、融液102の温度を1回以上調整した場合には、融液の温度を計測している温度センサの値を補正するのが好ましい。この補正は、補正後の表示温度をT[℃]、補正後の融液温度換算係数をk、補正前の表示温度をT[℃]、補正前の融液温度換算係数をk’、初期目標温度をT[℃]、最終目標温度をT[℃]としたとき、
=kT
k=k’×T/T
の式にしたがって行われるのが好ましい。
As a result of the determination, when the temperature of the melt 102 is adjusted at least once, it is preferable to correct the value of the temperature sensor that measures the temperature of the melt. In this correction, the corrected display temperature is T 3 [° C.], the melt temperature conversion coefficient after correction is k, the display temperature before correction is T 2 [° C.], and the melt temperature conversion coefficient before correction is k ′. When the initial target temperature is T 4 [° C.] and the final target temperature is T 5 [° C.]
T 3 = kT 2
k = k ′ × T 4 / T 5
Is preferably carried out according to the formula:

温度センサとしては、熱伝対や放射温度計等を用いることができ、特に、装置への取り付けの容易さ、メンテナンス等の観点から、放射温度計を用いるのがより好ましい。   As the temperature sensor, a thermocouple, a radiation thermometer, or the like can be used. In particular, it is more preferable to use a radiation thermometer from the viewpoint of ease of attachment to the apparatus, maintenance, and the like.

上述したところは、一例として示されたものであって、本発明はこの実施形態に限定されるものではない。   The above description is given as an example, and the present invention is not limited to this embodiment.

(実施例1)
実施例1は図5に示す装置を用い、坩堝内にシリコン原料を充填し、炉内圧:2666Pa、アルゴンガスの雰囲気内で加熱溶融してシリコン融液を形成した。このシリコン融液の温度は放射温度計で測定し、約1420℃程度となるよう調整した。その後、種結晶を前記融液へ浸し、種結晶の回転速度12rpm、坩堝の回転速度15rpm、引き上げ速度1〜2mm/minで同一雰囲気中で種結晶を引き上げることによりネック試し引きを行った。この際、ネック試し引き後の種結晶の直径の変化から、融液の温度がネック部形成に適した温度であるかを判定し、判定の結果、融液の温度がネック部形成に適さない温度であると判定した場合には、融液の温度がネック部形成に適する温度になるまで、融液の温度を調整することによって前記融液を安定化させた。融液の温度の調整は、調整後の融液の温度をT[℃]、調整前の融液の温度をT[℃]、温度補正係数をH[℃/mm]、試し引きの目標直径をP[mm]、ネック試し引き後の種結晶の直径をX[mm]としたとき、
=T+H×(X−P)
H=0.95
の式にしたがって行い、この直径Xはカメラによる画像から測定した。
判定の結果、前記融液の温度を1回以上調整した場合には、前記融液の温度を計測している放射温度計の値を補正し、この補正は、補正後の表示温度をT[℃]、補正後の融液温度換算係数をk、補正前の表示温度をT[℃]、補正前の融液温度換算係数をk’、初期目標温度をT[℃]、最終目標温度をT[℃]としたとき、
=kT
k=k’×T/T
の式にしたがって行った。ここでは、T=1450,T=1452とした。
Example 1
In Example 1, a silicon raw material was filled in a crucible using the apparatus shown in FIG. 5, and a silicon melt was formed by heating and melting in an atmosphere of furnace internal pressure: 2666 Pa and argon gas. The temperature of this silicon melt was measured with a radiation thermometer and adjusted to about 1420 ° C. Thereafter, the seed crystal was immersed in the melt, and the neck test pulling was performed by pulling the seed crystal in the same atmosphere at a seed crystal rotation speed of 12 rpm, a crucible rotation speed of 15 rpm, and a pulling speed of 1 to 2 mm / min. At this time, it is determined from the change in the diameter of the seed crystal after the trial pulling of the neck whether the temperature of the melt is suitable for forming the neck portion. As a result of the determination, the temperature of the melt is not suitable for forming the neck portion. When it was determined that the temperature was high, the melt was stabilized by adjusting the temperature of the melt until the temperature of the melt reached a temperature suitable for neck formation. The melt temperature is adjusted by adjusting the melt temperature after adjustment to T 1 [° C], the melt temperature before adjustment to T 0 [° C], the temperature correction coefficient to H [° C / mm], When the target diameter is P [mm] and the diameter of the seed crystal after the neck trial pull is X [mm],
T 1 = T 0 + H × (X−P)
H = 0.95
This diameter X was measured from an image taken by a camera.
As a result of the determination, when the temperature of the melt is adjusted at least once, the value of the radiation thermometer that measures the temperature of the melt is corrected, and this correction is performed by changing the display temperature after correction to T 3. [° C], the melt temperature conversion coefficient after correction, k, the display temperature before correction is T 2 [° C], the melt temperature conversion coefficient before correction is k ′, the initial target temperature is T 4 [° C], and the final When the target temperature is T 5 [° C]
T 3 = kT 2
k = k ′ × T 4 / T 5
It was performed according to the following formula. Here, T 4 = 1450 and T 5 = 1452 were used.

(比較例1)
上記ネック試し引きを行わないこと以外は、実施例1と同様の方法によりネック部を形成した。
(Comparative Example 1)
A neck portion was formed by the same method as in Example 1 except that the neck trial pulling was not performed.

(評価)
実施例1および比較例1の製造方法によりネック部を30個形成し、そのうち適正範囲の直径で形成できたものをネック形成成功として、そのネック形成成功率をそれぞれ計算したものを表1に示す。
(Evaluation)
Table 1 shows the results of calculating the neck formation success rate by forming 30 neck portions by the manufacturing method of Example 1 and Comparative Example 1 and determining that the neck formation successes were those that could be formed with a diameter in an appropriate range. .

Figure 2011001248
Figure 2011001248

表1の結果から、本発明に従う方法により製造されたネック部は、ネック試し引きを行わない比較例よりも、ネック形成成功率が向上していることがわかる。   From the results of Table 1, it can be seen that the neck portion manufactured by the method according to the present invention has a higher neck formation success rate than the comparative example in which the neck trial pulling is not performed.

本発明によれば、引き上げ工程が、所定の温度に設定された融液に種結晶を浸漬させた後、ネック部形成のためのネック本引きを行う前に、ネック部を試し形成するためのネック試し引きを行うことを含み、このネック試し引き後の種結晶の直径の変化から、前記融液の温度がネック部形成に適した温度であるかを判定することによって、ネック部形成の成功率を向上させ、プロセスの効率化を図ったシリコン単結晶の製造方法を提供することができる。   According to the present invention, the pulling step is for tentatively forming the neck portion after immersing the seed crystal in the melt set at a predetermined temperature and before performing the neck pulling for forming the neck portion. Successful neck formation by determining whether the temperature of the melt is suitable for neck formation from the change in the diameter of the seed crystal after neck trial pulling. It is possible to provide a method for producing a silicon single crystal with improved efficiency and improved process efficiency.

101 種結晶
102 融液
103 転位
104 坩堝
105 種結晶下部
106 温度センサ
107 ヒータ制御システム
108 ヒータ
109 カメラ
110 直径測定システム
DESCRIPTION OF SYMBOLS 101 Seed crystal 102 Melt 103 Dislocation 104 Crucible 105 Seed crystal lower part 106 Temperature sensor 107 Heater control system 108 Heater 109 Camera 110 Diameter measurement system

Claims (7)

多結晶シリコン原料を坩堝内に充填し、加熱融解させることにより多結晶シリコン融液を形成する融解工程と、前記融液に種結晶を浸漬させ、所定の温度および引き上げ速度条件下で前記種結晶を上方に引き上げながら所定形状のシリコン単結晶を形成する引き上げ工程とを具えるチョクラルスキー法によるシリコン単結晶の製造方法であって、
前記引き上げ工程は、所定の温度に設定された前記融液に前記種結晶を浸漬させた後、ネック部形成のためのネック本引きを行う前に、ネック部を試し形成するためのネック試し引きを行うことを含み、該ネック試し引き後の種結晶の直径の変化から、前記融液の温度がネック部形成に適した温度であるかを判定することを特徴とするシリコン単結晶の製造方法。
A melting process for forming a polycrystalline silicon melt by filling a polycrystalline silicon raw material in a crucible and heating and melting the seed crystal, immersing the seed crystal in the melt, and performing the seed crystal under a predetermined temperature and pulling speed condition A method for producing a silicon single crystal by the Czochralski method, comprising a pulling step of forming a silicon single crystal having a predetermined shape while pulling upward.
In the pulling step, after immersing the seed crystal in the melt set at a predetermined temperature, before performing neck pulling for neck portion formation, neck test pulling for trial formation of the neck portion is performed. And determining whether or not the temperature of the melt is a temperature suitable for forming the neck portion from the change in the diameter of the seed crystal after the neck trial pulling. .
前記判定の結果、前記融液の温度がネック部形成に適さない温度であると判定された場合には、前記融液の温度を調整することによって前記融液を安定化させた後、再度ネック試し引きを行う請求項1に記載のシリコン単結晶の製造方法。   As a result of the determination, when it is determined that the temperature of the melt is not suitable for forming the neck portion, the melt is stabilized by adjusting the temperature of the melt, and then the neck is again formed. The method for producing a silicon single crystal according to claim 1, wherein trial pulling is performed. 前記判定の結果、前記融液の温度を1回以上調整した場合には、前記融液の温度を計測している温度センサの値を補正する請求項1または2に記載のシリコン単結晶の製造方法。   The production of a silicon single crystal according to claim 1 or 2, wherein when the temperature of the melt is adjusted at least once as a result of the determination, the value of a temperature sensor that measures the temperature of the melt is corrected. Method. 前記判定の結果、前記融液の温度がネック部形成に適する温度であると判定された場合には、ネック試し引きに引き継いでネック本引きを行う請求項1、2または3に記載のシリコン単結晶の製造方法。   The silicon unit according to claim 1, 2 or 3, wherein, as a result of the determination, if it is determined that the temperature of the melt is a temperature suitable for neck formation, the neck main pulling is performed in succession to the neck trial pulling. Crystal production method. 前記温度センサが、放射温度計である請求項3または4に記載のシリコン単結晶の製造方法。   The method for producing a silicon single crystal according to claim 3 or 4, wherein the temperature sensor is a radiation thermometer. 前記融液の温度の調整は、調整後の融液の温度をT[℃]、調整前の融液の温度をT[℃]、温度補正係数をH[℃/mm]、試し引きの目標直径をP[mm]、ネック試し引き後の種結晶の直径をX[mm]としたとき、
=T+H×(X−P)
H=0.95
の式にしたがって行われる請求項2〜5のいずれか一項に記載のシリコン単結晶の製造方法。
The melt temperature is adjusted by adjusting the melt temperature to T 1 [° C.], the melt temperature before adjustment to T 0 [° C.], the temperature correction coefficient to H [° C./mm], and trial pulling. When the target diameter is P [mm] and the diameter of the seed crystal after the neck trial pull is X [mm],
T 1 = T 0 + H × (X−P)
H = 0.95
The method for producing a silicon single crystal according to any one of claims 2 to 5, which is performed according to the formula:
前記温度センサの値の補正は、補正後の表示温度をT[℃]、補正後の融液温度換算係数をk、補正前の表示温度をT[℃]、補正前の融液温度換算係数をk’、初期目標温度をT[℃]、最終目標温度をT[℃]としたとき、
=kT
k=k’×T/T
の式にしたがって行われる請求項3〜6のいずれか一項に記載のシリコン単結晶の製造方法。
The correction of the temperature sensor value is T 3 [° C.] after the corrected display temperature, k is the melt temperature conversion coefficient after correction, T 2 [° C.] is the display temperature before correction, and the melt temperature before correction. When the conversion coefficient is k ′, the initial target temperature is T 4 [° C.], and the final target temperature is T 5 [° C.],
T 3 = kT 2
k = k ′ × T 4 / T 5
The method for producing a silicon single crystal according to any one of claims 3 to 6, which is performed according to the formula:
JP2009147809A 2009-06-22 2009-06-22 Method for producing silicon single crystal Active JP5182234B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009147809A JP5182234B2 (en) 2009-06-22 2009-06-22 Method for producing silicon single crystal
US12/819,930 US20100319612A1 (en) 2009-06-22 2010-06-21 Method of producing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009147809A JP5182234B2 (en) 2009-06-22 2009-06-22 Method for producing silicon single crystal

Publications (3)

Publication Number Publication Date
JP2011001248A true JP2011001248A (en) 2011-01-06
JP2011001248A5 JP2011001248A5 (en) 2012-03-01
JP5182234B2 JP5182234B2 (en) 2013-04-17

Family

ID=43559546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009147809A Active JP5182234B2 (en) 2009-06-22 2009-06-22 Method for producing silicon single crystal

Country Status (1)

Country Link
JP (1) JP5182234B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098824A1 (en) * 2011-01-20 2012-07-26 信越半導体株式会社 Method for measurement of temperature of melt, radiation thermometer, and process for production of silicon single crystals

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252388A (en) * 1990-02-28 1991-11-11 Shin Etsu Handotai Co Ltd Automatic control of neck part growth of single crystal by cz method
JPH08301689A (en) * 1995-05-02 1996-11-19 Komatsu Electron Metals Co Ltd Detection of optimum melting liquid temperature in production process of semiconductor single crystal
JP2001019588A (en) * 1999-07-12 2001-01-23 Sumitomo Metal Ind Ltd Method for controlling diameter of single crystal and device for growing crystal
JP2001130996A (en) * 1999-11-02 2001-05-15 Toshiba Ceramics Co Ltd Method for growing single crystal
JP2001130995A (en) * 1999-10-29 2001-05-15 Sumitomo Metal Ind Ltd Method of pulling silicon single crystal
JP2004043252A (en) * 2002-07-12 2004-02-12 Komatsu Electronic Metals Co Ltd Method and apparatus for manufacturing single crystal semiconductor
JP2007326736A (en) * 2006-06-07 2007-12-20 Sumco Corp Method for producing silicon single crystal
JP2008063165A (en) * 2006-09-05 2008-03-21 Sumco Corp Manufacturing method of silicon single crystal

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252388A (en) * 1990-02-28 1991-11-11 Shin Etsu Handotai Co Ltd Automatic control of neck part growth of single crystal by cz method
JPH08301689A (en) * 1995-05-02 1996-11-19 Komatsu Electron Metals Co Ltd Detection of optimum melting liquid temperature in production process of semiconductor single crystal
JP2001019588A (en) * 1999-07-12 2001-01-23 Sumitomo Metal Ind Ltd Method for controlling diameter of single crystal and device for growing crystal
JP2001130995A (en) * 1999-10-29 2001-05-15 Sumitomo Metal Ind Ltd Method of pulling silicon single crystal
JP2001130996A (en) * 1999-11-02 2001-05-15 Toshiba Ceramics Co Ltd Method for growing single crystal
JP2004043252A (en) * 2002-07-12 2004-02-12 Komatsu Electronic Metals Co Ltd Method and apparatus for manufacturing single crystal semiconductor
JP2007326736A (en) * 2006-06-07 2007-12-20 Sumco Corp Method for producing silicon single crystal
JP2008063165A (en) * 2006-09-05 2008-03-21 Sumco Corp Manufacturing method of silicon single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098824A1 (en) * 2011-01-20 2012-07-26 信越半導体株式会社 Method for measurement of temperature of melt, radiation thermometer, and process for production of silicon single crystals

Also Published As

Publication number Publication date
JP5182234B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
US20200291541A1 (en) Method, device, system, and computer storage medium for crystal growing control
US20200255972A1 (en) Method, device, system, and computer storage medium for crystal growing control
WO2012127703A1 (en) Method for producing sic single crystals and production device
JPWO2004018742A1 (en) Method for producing silicon single crystal
JP5052493B2 (en) Method for producing silicon single crystal
JP4858019B2 (en) Method for producing silicon single crystal
KR20100102844A (en) Method and apparatus for manufacturing high quality silicon single crystal
JP5353295B2 (en) Single crystal manufacturing method
JP2011093770A (en) Resistivity calculation program and method for producing single crystal
JP4857920B2 (en) Method for producing silicon single crystal
JP5182234B2 (en) Method for producing silicon single crystal
TW202113167A (en) Scalmgo4 single crystal, preparation method for same, and free-standing substrate
JP6395302B2 (en) Single crystal silicon pulling apparatus and single crystal silicon pulling method
JP2007308335A (en) Method for pulling single crystal
TWI613334B (en) Automatic crystal growth method with high success rate
US20100319612A1 (en) Method of producing silicon single crystal
KR101540235B1 (en) Apparutus and Method for Manufacturing Single Crystal Ingot
JP5223513B2 (en) Single crystal manufacturing method
KR101540863B1 (en) Apparatus for controlling diameter of single crystal ingot and Ingot growing apparatus having the same and method thereof
JP7077991B2 (en) CZ silicon single crystal manufacturing method
US20200149186A1 (en) Method, device, system, and computer storage medium for crystal growing control
JP2011032106A (en) Method for producing silicon single crystal
JP2011001248A5 (en)
CN114761626B (en) Single crystal production system and single crystal production method
KR101494533B1 (en) Pulling speed control system of growing apparatus for silicon single crystal and manufacturing method for the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121231

R150 Certificate of patent or registration of utility model

Ref document number: 5182234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250