JP2011000544A - Method for regenerating photocatalyst and apparatus for cleaning corrosive gas - Google Patents

Method for regenerating photocatalyst and apparatus for cleaning corrosive gas Download PDF

Info

Publication number
JP2011000544A
JP2011000544A JP2009146021A JP2009146021A JP2011000544A JP 2011000544 A JP2011000544 A JP 2011000544A JP 2009146021 A JP2009146021 A JP 2009146021A JP 2009146021 A JP2009146021 A JP 2009146021A JP 2011000544 A JP2011000544 A JP 2011000544A
Authority
JP
Japan
Prior art keywords
photocatalyst
corrosive gas
color
filter
photocatalytic filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009146021A
Other languages
Japanese (ja)
Other versions
JP5278189B2 (en
Inventor
Yoshihito Watanabe
能仁 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2009146021A priority Critical patent/JP5278189B2/en
Publication of JP2011000544A publication Critical patent/JP2011000544A/en
Application granted granted Critical
Publication of JP5278189B2 publication Critical patent/JP5278189B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for regenerating a photocatalyst that determines the deterioration degree of a photocatalyst member with changes in color of the photocatalyst member and regenerates changes in color and catalytic activity accompanied with the deterioration of a photocatalyst in accordance with determination results and an apparatus for cleaning a corrosive gas having the photocatalyst member to be regenerated with this regeneration method.SOLUTION: The apparatus 1 for cleaning a corrosive gas decomposes and removes the corrosive gas by allowing the corrosive gas to contact the photocatalyst filter 2 of a complex compound where at least one metal out of platinum, silver, copper, and vanadium is supported on titanium oxide. The color of the photocatalyst filter 2 is detected by a color detecting means 3 (color sensor) and a deterioration degree determining means 4 determines the deterioration degree of the photocatalyst based on the changes in color of the photocatalyst filter 2. Based on the determination by the deterioration degree determining means 4, a photocatalyst regenerating means 5 allows a cleaning liquid containing an oxidizing agent to contact the photocatalyst filter 2, thereby regenerating the photocatalyst filter 2.

Description

本発明は、酸化チタンに貴金属(白金、銀、銅、バナジウムの中から少なくとも1つからなる)を担持した複合化合物の光触媒を部材へコートした光触媒部材を洗浄する光触媒再生方法、及び前記光触媒部材が備えられる腐食性ガス浄化装置に関するものである。具体的には、腐食性ガスの浄化に伴う前記光触媒の劣化を前記光触媒部材の色の変化に基づいて判定し、該判定結果に応じて前記光触媒部材を洗浄し、その触媒性能を回復させ、再生する光触媒再生方法、及び腐食性ガス浄化装置に関するものである。   The present invention provides a photocatalyst regeneration method for cleaning a photocatalyst member in which a photocatalyst of a composite compound in which noble metal (made of at least one of platinum, silver, copper, and vanadium) is supported on titanium oxide is coated on the member, and the photocatalyst member The present invention relates to a corrosive gas purification device provided with Specifically, the deterioration of the photocatalyst associated with the purification of the corrosive gas is determined based on a change in the color of the photocatalyst member, the photocatalyst member is washed according to the determination result, and the catalyst performance is recovered. The present invention relates to a regenerating photocatalyst and a corrosive gas purification device.

酸化チタン光触媒は、空気中や水中の有害物質を分解する浄化作用や、抗菌作用、防汚作用を有することが知られている。   Titanium oxide photocatalysts are known to have a purifying action for decomposing harmful substances in the air and water, an antibacterial action, and an antifouling action.

酸化チタン光触媒に、そのバンドギャップ以上のエネルギーを有する光を照射すると、価電子帯から伝導体に電子が励起され、電子−正孔対が生成する。励起された電子が光触媒の表面に拡散して、表面吸着水と反応し、OHラジカルなどの活性酸素種が生成する。そして、この活性酸素種や正孔等が光触媒表面に吸着あるいは衝突した有害物質を分解する。   When the titanium oxide photocatalyst is irradiated with light having energy higher than the band gap, electrons are excited from the valence band to the conductor, and electron-hole pairs are generated. The excited electrons diffuse to the surface of the photocatalyst and react with the surface adsorbed water to generate active oxygen species such as OH radicals. The active oxygen species, holes and the like decompose the harmful substances adsorbed or collided with the photocatalyst surface.

酸化チタンのバンドギャップは、約3.0eVであり、約400nm以下の波長の光を照射することで励起反応が起こり、有害物質を除去することができる。   The band gap of titanium oxide is about 3.0 eV, and an excitation reaction occurs by irradiating light with a wavelength of about 400 nm or less, and harmful substances can be removed.

環境中に存在している腐食性ガス(窒素酸化物ガス、又は硫化水素ガス等)の浄化装置として、酸化チタン光触媒を部材(フィルタ等)にコートした光触媒部材を腐食性ガス除去に使用した場合、光触媒部材の表面に腐食性ガスを分解したときの分解生成物が蓄積する。浄化する腐食性ガスが高濃度である場合や、光触媒を長期に亘って使用した場合、光触媒部材の表面が分解生成物等に覆われてしまい、光触媒の触媒性能が低下する。この状態になると、光触媒部材の表面が顕著に変色する。   When a photocatalyst member coated with titanium oxide photocatalyst (filter, etc.) is used to remove corrosive gas as a purification device for corrosive gas (nitrogen oxide gas, hydrogen sulfide gas, etc.) present in the environment The decomposition products when the corrosive gas is decomposed accumulate on the surface of the photocatalytic member. When the corrosive gas to be purified has a high concentration or when the photocatalyst is used for a long period of time, the surface of the photocatalyst member is covered with decomposition products and the like, and the catalytic performance of the photocatalyst is degraded. In this state, the surface of the photocatalyst member changes significantly.

すなわち、光触媒部材の表面が変色して見栄えが悪くなるともに、腐食性ガスに対する分解能力が低下する。   That is, the surface of the photocatalyst member is discolored and looks bad, and the decomposition ability with respect to corrosive gas is reduced.

そこで、光触媒の触媒能力を回復するために、光触媒部材の定期洗浄が行われている。そして、この定期洗浄の際に触媒能力の確認を行い、触媒能力の低下が確認された場合には、触媒能力回復操作が行われている。   Therefore, in order to recover the catalytic ability of the photocatalyst, the photocatalyst member is periodically cleaned. Then, the catalyst capacity is confirmed during the regular cleaning, and when a decrease in the catalyst capacity is confirmed, a catalyst capacity recovery operation is performed.

例えば、特許文献1に記載の光触媒の再生方法では、定期的に光触媒シートを洗浄し、その表面に吸着した大気汚染物質の酸化生成物を溶出させて光触媒活性を回復させたうえで、さらに触媒能力の確認を行い、必要に応じて光触媒シートにアルカリ剤を添加し、再使用時における光触媒の除染機能を高めている。   For example, in the method for regenerating a photocatalyst described in Patent Document 1, the photocatalyst sheet is periodically washed, the oxidation product of air pollutants adsorbed on the surface is eluted to recover the photocatalytic activity, and then the catalyst is further recovered. The capacity is confirmed, and an alkali agent is added to the photocatalyst sheet as necessary to enhance the decontamination function of the photocatalyst during reuse.

また、近年、高出力の青色LED(Light Emitting Diode)、純緑色LEDが利用できるようになり、発光素子に3原色LEDを用いたフルカラーセンサが開発されている(例えば、非特許文献1、2)。   In recent years, high-output blue LEDs (Light Emitting Diodes) and pure green LEDs have become available, and full-color sensors using three primary color LEDs as light emitting elements have been developed (for example, Non-Patent Documents 1 and 2). ).

カラーセンサとは、検出体からの反射光を光の3原色であるR(赤)、G(緑)、B(青)の各成分に分解し、その比率により色を判別するセンサである。   A color sensor is a sensor that separates reflected light from a detection body into components of R (red), G (green), and B (blue), which are the three primary colors of light, and determines the color based on the ratio.

3原色LEDを用いたフルカラーセンサは、単色光を用いた場合と比較して、微妙な色差を検出できる利点を有する。微妙な色差は、白熱ランプを用いたフルカラーセンサでも検出可能であるが、3原色LEDを用いたフルカラーセンサは、長寿命、低消費電力、発熱が少ないという利点を備えている。   A full-color sensor using three primary color LEDs has an advantage that a subtle color difference can be detected as compared with the case of using monochromatic light. Subtle color differences can be detected by a full-color sensor using an incandescent lamp, but a full-color sensor using three primary color LEDs has the advantages of long life, low power consumption, and low heat generation.

特開平10−305214号公報JP-A-10-305214

野村光俊、柴田克也“3原色LEDを用いたSA1J−F形ファイバ型フルカラーセンサの開発”、[online]、平成11年12月1日、IDEC REVIEW、[平成21年4月27日検索]、インターネット<URL:http://www.idec.com/jpja/technology_solution/tech_resources/pdfs2/IRV_1999_13.pdf>Mitsutoshi Nomura, Katsuya Shibata “Development of SA1J-F Fiber Type Full Color Sensor Using Three Primary Color LEDs”, [online], December 1, 1999, IDEC REVIEW, [Search April 27, 2009], Internet <URL: http: // www. idec. com / jpja / technology_solution / tech_resources / pdfs2 / IRV_1999_13. pdf> “デジタルカラー判別センサ CZ”、[online]、[平成21年4月27日検索]、インターネット<URL:http://www.keyence.co.jp/switch/color/cz/menu/236/>“Digital Color Discriminating Sensor CZ”, [online], [Search on April 27, 2009], Internet <URL: http: // www. keyence. co. jp / switch / color / cz / menu / 236 />

上記従来技術において、光触媒部材の表面に付着した腐食性ガス由来の物質は、単純な水洗浄により除去することができる。しかし、腐食性ガスが高濃度である場合や、光触媒部材を長期に亘って使用した場合、変色の度合いも大きく、単純な水洗浄では光触媒性能が回復しないことがある。また、水洗浄において、触媒性能が回復した場合においても、光触媒部材表面の変色は完全に回復しないこともある。   In the above prior art, the substance derived from the corrosive gas attached to the surface of the photocatalyst member can be removed by simple water washing. However, when the corrosive gas has a high concentration or when the photocatalyst member is used for a long period of time, the degree of discoloration is large, and the photocatalytic performance may not be recovered by simple water washing. Further, even when the catalyst performance is recovered by washing with water, the discoloration of the surface of the photocatalyst member may not be completely recovered.

そこで、本発明は、光触媒の触媒活性を回復するとともに、光触媒部材表面の変色を回復することができる光触媒再生方法及びこの光触媒再生方法により再生される光触媒部材を備えた腐食ガス浄化装置を提供することを目的としている。   Therefore, the present invention provides a photocatalyst regeneration method capable of recovering the catalytic activity of the photocatalyst and recovering the discoloration of the surface of the photocatalyst member, and a corrosive gas purification device provided with the photocatalyst member regenerated by the photocatalyst regeneration method. The purpose is that.

上記目的を達成する本発明の光触媒再生方法は、酸化チタンに白金、銀、銅、バナジウムのうち少なくとも1つの金属を担持した複合化合物の光触媒において、前記光触媒の色の変化に基づいて、前記光触媒の劣化度を判定し、該判定に基づいて、前記光触媒を酸化剤を含んだ洗浄液に接触させ、前記光触媒を再生することを特徴としている。   The photocatalyst regeneration method of the present invention that achieves the above object is the photocatalyst of a composite compound in which at least one metal of platinum, silver, copper, and vanadium is supported on titanium oxide, based on the change in color of the photocatalyst. It is characterized in that the photocatalyst is regenerated by contacting the photocatalyst with a cleaning solution containing an oxidant based on the determination.

また、上記目的を達成する本発明の腐食性ガス浄化装置は、酸化チタンに白金、銀、銅バナジウムのうち少なくとも1つの金属を担持した複合化合物の光触媒に腐食性ガスを接触させることにより、腐食性ガスを分解除去する腐食性ガス浄化装置であり、前記光触媒の色を検出する色検出手段と、該検出手段により検出される前記光触媒の色の変化に基づいて、前記光触媒の劣化度を判定する劣化度判定手段と、該劣化度判定手段の判定に基づいて、前記光触媒に酸化剤を含んだ洗浄液を接触させ、前記光触媒を再生する光触媒再生手段と、を備えたことを特徴としている。   Further, the corrosive gas purifying apparatus of the present invention that achieves the above object is provided by contacting corrosive gas with a photocatalyst of a composite compound in which at least one metal of platinum, silver, and copper vanadium is supported on titanium oxide. A corrosive gas purification device that decomposes and removes a toxic gas, a color detection means for detecting the color of the photocatalyst, and a degree of deterioration of the photocatalyst based on a change in the color of the photocatalyst detected by the detection means And a photocatalyst regeneration unit that regenerates the photocatalyst by bringing the photocatalyst into contact with a cleaning liquid containing an oxidant based on the determination of the degradation degree determination unit.

以上の発明によれば、光触媒の触媒活性を一定以上に維持することができる。   According to the above invention, the catalytic activity of the photocatalyst can be maintained above a certain level.

本発明の実施例に係る腐食性ガス浄化装置の概略図。1 is a schematic view of a corrosive gas purification device according to an embodiment of the present invention. 本発明の実施例1に係る洗浄を行った後の光触媒フィルタの触媒活性を示す図。The figure which shows the catalytic activity of the photocatalyst filter after wash | cleaning which concerns on Example 1 of this invention. 本発明の実施例5に係る洗浄を行った後の光触媒フィルタの触媒活性を示す図。The figure which shows the catalytic activity of the photocatalyst filter after wash | cleaning which concerns on Example 5 of this invention. 本発明の実施例1に係る洗浄を繰り返した後の光触媒フィルタの触媒活性を示す図。The figure which shows the catalytic activity of the photocatalyst filter after repeating washing | cleaning which concerns on Example 1 of this invention. 本発明の実施例5に係る洗浄を繰り返した後の光触媒フィルタの触媒活性を示す図。The figure which shows the catalytic activity of the photocatalyst filter after repeating washing | cleaning which concerns on Example 5 of this invention.

本発明は、酸化チタンに貴金属(白金、銀、銅、バナジウムの中から少なくとも1つからなる)を担持した複合化合物の光触媒を部材にコートした光触媒部材を腐食性ガスの分解に使用した場合に、腐食性ガスの分解に伴い腐食性ガスに対する分解能力が低下するとともに、担持金属に起因して光触媒部材が変色する課題を解決するものである。   The present invention relates to a case where a photocatalyst member coated with a photocatalyst of a composite compound in which noble metal (made of at least one of platinum, silver, copper and vanadium) is supported on titanium oxide is used for decomposition of corrosive gas. This solves the problem that the decomposition ability of the corrosive gas is reduced with the decomposition of the corrosive gas, and the photocatalyst member is discolored due to the supported metal.

光触媒の触媒活性を回復するため行う光触媒部材洗浄の際に、光触媒部材の表面の変色を回復させることにより、光触媒部材の変色により触媒能力の劣化度を判定することが可能となり、効率的に光触媒部材を洗浄することができる。   When cleaning the photocatalyst member to recover the catalytic activity of the photocatalyst, by recovering the discoloration of the surface of the photocatalyst member, it becomes possible to determine the degree of degradation of the catalyst ability by the discoloration of the photocatalyst member, and efficiently the photocatalyst The member can be cleaned.

すなわち、腐食性ガスの濃度や分解時間で光触媒部材の洗浄時期が異なるが、本発明の光触媒再生方法及び本発明の光触媒再生方法で再生される光触媒部材を備えた腐食ガス洗浄装置によれば、光触媒部材の変色判定を予め設定しておいた変色度合いへの到達の有無により判断することができるので、適切な洗浄周期で光触媒部材のメンテナンスが可能となる。したがって、腐食性ガス浄化装置において、光触媒部材の腐食性ガスの分解能力を一定能力以上に維持できる効果を有する。   That is, although the photocatalyst member cleaning time differs depending on the concentration and decomposition time of the corrosive gas, according to the photocatalyst regeneration method of the present invention and the corrosive gas cleaning device provided with the photocatalyst member regenerated by the photocatalyst regeneration method of the present invention, Since the photocatalyst member discoloration determination can be made based on whether or not the degree of discoloration set in advance has been reached, maintenance of the photocatalyst member can be performed with an appropriate cleaning cycle. Therefore, the corrosive gas purification device has an effect that the decomposition ability of the photocatalytic member can be maintained at a certain level or higher.

以下、具体的に実施例を挙げて本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with specific examples.

本発明の実施例では光触媒部材として、セラミックフィルタの表面に酸化チタン光触媒をコートした光触媒フィルタを例として示すが、光触媒部材の形態は実施例の形態に限定されず、例えば、ガラス板や金属板の表面に光触媒をコートした光触媒部材や、布等に固定化した光触媒部材にも適用できる。さらには、光触媒そのものを光触媒部材として用いてもよい。   In the embodiment of the present invention, as a photocatalyst member, a photocatalyst filter in which the surface of a ceramic filter is coated with a titanium oxide photocatalyst is shown as an example. It can also be applied to a photocatalyst member coated with a photocatalyst on the surface, or a photocatalyst member fixed to a cloth or the like. Further, the photocatalyst itself may be used as the photocatalyst member.

(実施例1)
本発明の実施例に係る腐食性ガス浄化装置について図1を参照して詳細に説明する。
Example 1
A corrosive gas purification apparatus according to an embodiment of the present invention will be described in detail with reference to FIG.

本発明の実施例に係る腐食性ガス浄化装置1は、光触媒フィルタ2、色検出手段3(以後、カラーセンサとする)、劣化度判定手段4、光触媒洗浄手段5、及び制御部6を備える。   A corrosive gas purification apparatus 1 according to an embodiment of the present invention includes a photocatalytic filter 2, a color detection unit 3 (hereinafter referred to as a color sensor), a deterioration degree determination unit 4, a photocatalyst cleaning unit 5, and a control unit 6.

光触媒フィルタ2は、発泡構造体のセラミック担体に、酸化チタン光触媒をコートしたもので、空隙がランダムに配列した三次元構造を持っている。本実施例では、90×70×40mm光触媒フィルタ2を使用した。この光触媒フィルタ2で腐食性ガスを浄化すると、光触媒フィルタ2の表面に腐食性ガス由来の物質が蓄積する。光触媒フィルタ2の色は、未使用品で、ほぼ白色である。そして、腐食性ガス由来の物質の蓄積に伴って、黒緑色に変色する。   The photocatalytic filter 2 is obtained by coating a ceramic support of a foam structure with a titanium oxide photocatalyst, and has a three-dimensional structure in which voids are randomly arranged. In this example, a 90 × 70 × 40 mm photocatalytic filter 2 was used. When the corrosive gas is purified by the photocatalytic filter 2, substances derived from the corrosive gas accumulate on the surface of the photocatalytic filter 2. The color of the photocatalytic filter 2 is an unused product and is almost white. As the substance derived from the corrosive gas accumulates, the color changes to blackish green.

カラーセンサ3は、公知のものを用いればよい(例えば、非特許文献1、2)。特に、3原色LEDを用いたカラーセンサ3であると、長寿命で発熱が少ないため好ましい。   A known color sensor 3 may be used (for example, Non-Patent Documents 1 and 2). In particular, the color sensor 3 using three primary color LEDs is preferable because it has a long life and generates little heat.

カラーセンサ3により、光触媒フィルタ2の色の変化を検出することができる。そして、検出された色に基づいて、光触媒フィルタ2の劣化度を劣化度判定手段4が判定する。   The color sensor 3 can detect a change in the color of the photocatalytic filter 2. Then, based on the detected color, the deterioration degree determination means 4 determines the deterioration degree of the photocatalytic filter 2.

劣化度判定手段4は、カラーセンサ3により検出された色に基づいて光触媒フィルタ2の劣化度を判定する。劣化度の判定方法としては、カラーセンサ3により検出された色が、予め設定した変色度合いに到達したか否かを判断することにより劣化度を評価する方法が挙げられる。   The deterioration degree determination means 4 determines the deterioration degree of the photocatalytic filter 2 based on the color detected by the color sensor 3. As a method for determining the degree of deterioration, there is a method for evaluating the degree of deterioration by determining whether or not the color detected by the color sensor 3 has reached a preset degree of discoloration.

光触媒洗浄手段5は、劣化度判定手段4が判定した劣化度に基づいて、触媒フィルタ2を洗浄する必要があると判断された場合、光触媒フィルタ2を洗浄する。光触媒フィルタ2の洗浄方法は、図1に示すように、光触媒フィルタ2に酸化剤を含んだ洗浄液を噴霧する装置が挙げられる。その他、光触媒フィルタ2を酸化剤を含んだ洗浄液に浸漬する装置でもよい。   The photocatalyst cleaning means 5 cleans the photocatalyst filter 2 when it is determined that the catalyst filter 2 needs to be cleaned based on the deterioration degree determined by the deterioration degree determination means 4. As a method for cleaning the photocatalytic filter 2, as shown in FIG. 1, an apparatus for spraying a cleaning liquid containing an oxidizing agent onto the photocatalytic filter 2 can be used. In addition, the apparatus which immerses the photocatalyst filter 2 in the washing | cleaning liquid containing an oxidizing agent may be sufficient.

制御部6は、劣化度判定手段4の判定した劣化度に基づいて、光触媒フィルタ2を洗浄する必要があるか否かを判断し、光触媒洗浄手段5の制御を行う。なお、劣化度判定手段4が判定した劣化度を図示省略の劣化度表示手段(警報ランプ等)で表示し、この表示に基づいて光触媒フィルタ2を洗浄してもよい。   The control unit 6 determines whether or not the photocatalyst filter 2 needs to be cleaned based on the deterioration degree determined by the deterioration degree determination unit 4 and controls the photocatalyst cleaning unit 5. Note that the deterioration degree determined by the deterioration degree determination means 4 may be displayed by a deterioration degree display means (alarm lamp or the like) (not shown), and the photocatalytic filter 2 may be washed based on this display.

本発明の実施例では、光触媒フィルタ2を酸化剤を含んだ洗浄液に浸漬する方法で光触媒フィルタを再生した。   In the Example of this invention, the photocatalyst filter was reproduced | regenerated by the method of immersing the photocatalyst filter 2 in the washing | cleaning liquid containing an oxidizing agent.

光触媒フィルタ2を洗浄する洗浄液は、ビーカ中に純水1Lを入れ、約5%の次亜塩素酸ナトリウム溶液(花王株式会社製 塩素系キッチンハイター)を10mL添加し、濃度500ppmの次亜塩素酸ナトリウム水溶液を調製し用いた。   As a cleaning liquid for cleaning the photocatalytic filter 2, 1L of pure water is put into a beaker, and 10mL of about 5% sodium hypochlorite solution (chlorine kitchen hitter manufactured by Kao Corporation) is added, and hypochlorous acid having a concentration of 500ppm. An aqueous sodium solution was prepared and used.

この溶液に腐食性ガス由来の物質が蓄積した光触媒フィルタ2を30分浸漬させた。その後、光触媒フィルタ2を溶液から引き上げ、水を切った後、水道水の流水ですすぎ洗いを実施した。洗い終わった光触媒フィルタ2は、乾燥機中で120℃、3時間乾燥させた。   The photocatalytic filter 2 in which the substance derived from the corrosive gas was accumulated in this solution was immersed for 30 minutes. Thereafter, the photocatalytic filter 2 was pulled up from the solution, drained, and then rinsed with running tap water. The washed photocatalytic filter 2 was dried in a dryer at 120 ° C. for 3 hours.

(実施例2)
本発明の実施例2に係る腐食性ガス浄化装置は、本発明の実施例1に係る腐食性ガス浄化装置1と同じである。よって、実施例1に係る腐食性ガス浄化装置1を構成する手段と同じものについては、同じ符号を付し、その詳細な説明は省略する。
(Example 2)
The corrosive gas purification apparatus according to Embodiment 2 of the present invention is the same as the corrosive gas purification apparatus 1 according to Embodiment 1 of the present invention. Therefore, the same means as those constituting the corrosive gas purification device 1 according to the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

劣化度判定手段4が判定した劣化度に基づいて、光触媒フィルタ2を洗浄する必要があると判断された場合、光触媒フィルタ2を洗浄する。   If it is determined that the photocatalytic filter 2 needs to be cleaned based on the deterioration level determined by the deterioration level determination means 4, the photocatalytic filter 2 is cleaned.

実施例1と同様の方法で、濃度500ppmの次亜塩素酸ナトリウム水溶液を得た。この溶液に腐食性ガス由来の物質が蓄積した光触媒フィルタ2を15分浸漬させた。その後、実施例1と同様の方法で光触媒フィルタ2のすすぎ洗い、乾燥を行った。   A sodium hypochlorite aqueous solution having a concentration of 500 ppm was obtained in the same manner as in Example 1. The photocatalytic filter 2 in which the substance derived from the corrosive gas was accumulated in this solution was immersed for 15 minutes. Thereafter, the photocatalytic filter 2 was rinsed and dried in the same manner as in Example 1.

(実施例3)
本発明の実施例3に係る腐食性ガス浄化装置は、本発明の実施例1に係る腐食性ガス浄化装置1と同じである。よって、実施例1に係る腐食性ガス浄化装置1を構成する手段と同じものについては、同じ符号を付し、その詳細な説明は省略する。
(Example 3)
The corrosive gas purification apparatus according to Embodiment 3 of the present invention is the same as the corrosive gas purification apparatus 1 according to Embodiment 1 of the present invention. Therefore, the same means as those constituting the corrosive gas purification device 1 according to the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

劣化度判定手段4が判定した劣化度に基づいて、光触媒フィルタ2を洗浄する必要があると判断された場合、光触媒フィルタ2を洗浄する。   If it is determined that the photocatalytic filter 2 needs to be cleaned based on the deterioration level determined by the deterioration level determination means 4, the photocatalytic filter 2 is cleaned.

ビーカ中に水道水1Lを入れ、約5%の次亜塩素酸ナトリウム溶液(花王株式会社製 塩素系キッチンハイター)を10mL添加し、濃度500ppmの次亜塩素酸ナトリウム水溶液を得た。この溶液に腐食性ガス由来の物質が蓄積した光触媒フィルタ2を30分浸漬させた。その後、実施例1と同様の方法で光触媒フィルタ2のすすぎ洗い、乾燥を行った。   1 L of tap water was put into a beaker, and 10 mL of an about 5% sodium hypochlorite solution (chlorine kitchen hitter manufactured by Kao Corporation) was added to obtain an aqueous sodium hypochlorite solution having a concentration of 500 ppm. The photocatalytic filter 2 in which the substance derived from the corrosive gas was accumulated in this solution was immersed for 30 minutes. Thereafter, the photocatalytic filter 2 was rinsed and dried in the same manner as in Example 1.

(実施例4)
本発明の実施例4に係る腐食性ガス浄化装置は、本発明の実施例1に係る腐食性ガス浄化装置1と同じである。よって、実施例1に係る腐食性ガス浄化装置1を構成する手段と同じものについては、同じ符号を付し、その詳細な説明は省略する。
Example 4
The corrosive gas purification apparatus according to Example 4 of the present invention is the same as the corrosive gas purification apparatus 1 according to Example 1 of the present invention. Therefore, the same means as those constituting the corrosive gas purification device 1 according to the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

劣化度判定手段4が判定した劣化度に基づいて、光触媒フィルタ2を洗浄する必要があると判断された場合、光触媒フィルタ2を洗浄する。   If it is determined that the photocatalytic filter 2 needs to be cleaned based on the deterioration level determined by the deterioration level determination means 4, the photocatalytic filter 2 is cleaned.

実施例3と同様の方法で、濃度500ppmの次亜塩素酸ナトリウム水溶液を得た。この溶液に腐食性ガス由来の物質が蓄積した光触媒フィルタ2を15分浸漬させた。その後、実施例1と同様の方法で光触媒フィルタ2のすすぎ洗い、乾燥を行った。   A sodium hypochlorite aqueous solution having a concentration of 500 ppm was obtained in the same manner as in Example 3. The photocatalytic filter 2 in which the substance derived from the corrosive gas was accumulated in this solution was immersed for 15 minutes. Thereafter, the photocatalytic filter 2 was rinsed and dried in the same manner as in Example 1.

実施例1〜4の洗浄方法で洗浄した光触媒フィルタ2について、目視で色を観察し、未使用の光触媒フィルタ2と比較して、光触媒フィルタ2表面に蓄積した腐食性ガス(窒素酸化物ガス又は、硫化水素ガス)由来の物質がどの程度除去され、光触媒フィルタ2が脱色されたかを判定した。その結果を表1に示す。   About the photocatalyst filter 2 cleaned by the cleaning method of Examples 1 to 4, the color was visually observed, and compared with the unused photocatalyst filter 2, the corrosive gas (nitrogen oxide gas or It was determined how much the substance derived from hydrogen sulfide gas) was removed and the photocatalytic filter 2 was decolorized. The results are shown in Table 1.

Figure 2011000544
Figure 2011000544

次亜塩素酸ナトリウムを使用した洗浄条件である実施例1〜4すべてにおいて、優れた脱色効果が確認され、未使用品と同等レベルまで光触媒フィルタ2の色が回復した。このことから、光触媒フィルタ2表面に蓄積した腐食性ガス由来の物質は、純水及び水道水に次亜塩素酸ナトリウムを溶解させた水溶液に15分浸漬することで未使用品と同等なレベルまで脱色されることがわかる。   In all of Examples 1 to 4 which are washing conditions using sodium hypochlorite, an excellent decoloring effect was confirmed, and the color of the photocatalytic filter 2 was restored to a level equivalent to that of an unused product. From this, corrosive gas-derived substances accumulated on the surface of the photocatalytic filter 2 are immersed in an aqueous solution in which sodium hypochlorite is dissolved in pure water and tap water to a level equivalent to that of an unused product. It turns out that it is decolored.

(実施例5)
本発明の実施例5に係る腐食性ガス浄化装置は、本発明の実施例1に係る腐食性ガス浄化装置1と同じである。よって、実施例1に係る腐食性ガス浄化装置1を構成する手段と同じものについては、同じ符号を付し、その詳細な説明は省略する。
(Example 5)
The corrosive gas purification apparatus according to Embodiment 5 of the present invention is the same as the corrosive gas purification apparatus 1 according to Embodiment 1 of the present invention. Therefore, the same means as those constituting the corrosive gas purification device 1 according to the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

劣化度判定手段4が判定した劣化度に基づいて、光触媒フィルタ2を洗浄する必要があると判断された場合、光触媒フィルタ2を洗浄する。   If it is determined that the photocatalytic filter 2 needs to be cleaned based on the deterioration level determined by the deterioration level determination means 4, the photocatalytic filter 2 is cleaned.

ビーカ中に約40℃の純水1Lを入れ、過炭酸ナトリウム入り洗剤(花王株式会社製 酸素系キッチンハイター)を10g添加し、過炭酸ナトリウムを含んだ水溶液を得た。この溶液に腐食性ガス由来の物質が蓄積した光触媒フィルタ2を15分浸漬させた。その後、実施例1と同様の方法で光触媒フィルタ2のすすぎ洗い、乾燥を行った。   1 L of pure water of about 40 ° C. was put into a beaker, and 10 g of a detergent containing sodium percarbonate (oxygen kitchen hitter manufactured by Kao Corporation) was added to obtain an aqueous solution containing sodium percarbonate. The photocatalytic filter 2 in which the substance derived from the corrosive gas was accumulated in this solution was immersed for 15 minutes. Thereafter, the photocatalytic filter 2 was rinsed and dried in the same manner as in Example 1.

(実施例6)
本発明の実施例6に係る腐食性ガス浄化装置は、本発明の実施例1に係る腐食性ガス浄化装置1と同じである。よって、実施例1に係る腐食性ガス浄化装置1を構成する手段と同じものについては、同じ符号を付し、その詳細な説明は省略する。
(Example 6)
The corrosive gas purification apparatus according to Embodiment 6 of the present invention is the same as the corrosive gas purification apparatus 1 according to Embodiment 1 of the present invention. Therefore, the same means as those constituting the corrosive gas purification device 1 according to the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

劣化度判定手段4が判定した劣化度に基づいて、光触媒フィルタ2を洗浄する必要があると判断された場合、光触媒フィルタ2を洗浄する。   If it is determined that the photocatalytic filter 2 needs to be cleaned based on the deterioration level determined by the deterioration level determination means 4, the photocatalytic filter 2 is cleaned.

ビーカ中に約40℃の水道水1Lを入れ、過炭酸ナトリウム入り洗剤(花王株式会社製 酸素系キッチンハイター)を10g添加し、過炭酸ナトリウムを含んだ水溶液を得た。   1 L of tap water of about 40 ° C. was put into a beaker, and 10 g of a detergent containing sodium percarbonate (oxygen kitchen hitter manufactured by Kao Corporation) was added to obtain an aqueous solution containing sodium percarbonate.

この溶液に腐食性ガス由来の物質が蓄積した光触媒フィルタ2を15分浸漬させた。その後、実施例1と同様の方法で光触媒フィルタ2のすすぎ洗い、乾燥を行った。   The photocatalytic filter 2 in which the substance derived from the corrosive gas was accumulated in this solution was immersed for 15 minutes. Thereafter, the photocatalytic filter 2 was rinsed and dried in the same manner as in Example 1.

(実施例7)
本発明の実施例7に係る腐食性ガス浄化装置は、本発明の実施例1に係る腐食性ガス浄化装置1と同じである。よって、実施例1に係る腐食性ガス浄化装置1を構成する手段と同じものについては、同じ符号を付し、その詳細な説明は省略する。
(Example 7)
The corrosive gas purification apparatus according to Example 7 of the present invention is the same as the corrosive gas purification apparatus 1 according to Example 1 of the present invention. Therefore, the same means as those constituting the corrosive gas purification device 1 according to the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

劣化度判定手段4が判定した劣化度に基づいて、光触媒フィルタ2を洗浄する必要があると判断された場合、光触媒フィルタ2を洗浄する。   If it is determined that the photocatalytic filter 2 needs to be cleaned based on the deterioration level determined by the deterioration level determination means 4, the photocatalytic filter 2 is cleaned.

実施例6同様の方法で、過炭酸ナトリウムを含んだ水溶液を得た。この溶液に腐食性ガス由来の物質が蓄積した光触媒フィルタ2を30分浸漬させた。その後、実施例1と同様の方法で光触媒フィルタ2のすすぎ洗い、乾燥を行った。   In the same manner as in Example 6, an aqueous solution containing sodium percarbonate was obtained. The photocatalytic filter 2 in which the substance derived from the corrosive gas was accumulated in this solution was immersed for 30 minutes. Thereafter, the photocatalytic filter 2 was rinsed and dried in the same manner as in Example 1.

(実施例8)
本発明の実施例8に係る腐食性ガス浄化装置は、本発明の実施例1に係る腐食性ガス浄化装置1と同じである。よって、実施例1に係る腐食性ガス浄化装置1を構成する手段と同じものについては、同じ符号を付し、その詳細な説明は省略する。
(Example 8)
The corrosive gas purification apparatus according to Example 8 of the present invention is the same as the corrosive gas purification apparatus 1 according to Example 1 of the present invention. Therefore, the same means as those constituting the corrosive gas purification device 1 according to the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

劣化度判定手段4が判定した劣化度に基づいて、光触媒フィルタ2を洗浄する必要があると判断された場合、光触媒フィルタ2を洗浄する。   If it is determined that the photocatalytic filter 2 needs to be cleaned based on the deterioration level determined by the deterioration level determination means 4, the photocatalytic filter 2 is cleaned.

ビーカ中に約40℃の純水1Lを入れ、過炭酸ナトリウム入り洗剤(花王株式会社製 酸素系キッチンハイター)を4g添加し、過炭酸ナトリウムを含んだ水溶液を得た。   1 L of pure water at about 40 ° C. was placed in a beaker, and 4 g of a detergent containing sodium percarbonate (oxygen kitchen hitter manufactured by Kao Corporation) was added to obtain an aqueous solution containing sodium percarbonate.

この溶液に腐食性ガス由来の物質が蓄積した光触媒フィルタ2を15分浸漬させた。その後、実施例1と同様の方法で光触媒フィルタ2のすすぎ洗い、乾燥を行った。   The photocatalytic filter 2 in which the substance derived from the corrosive gas was accumulated in this solution was immersed for 15 minutes. Thereafter, the photocatalytic filter 2 was rinsed and dried in the same manner as in Example 1.

(実施例9)
本発明の実施例9に係る腐食性ガス浄化装置は、本発明の実施例1に係る腐食性ガス浄化装置1と同じである。よって、実施例1に係る腐食性ガス浄化装置1を構成する手段と同じものについては、同じ符号を付し、その詳細な説明は省略する。
Example 9
The corrosive gas purification apparatus according to Embodiment 9 of the present invention is the same as the corrosive gas purification apparatus 1 according to Embodiment 1 of the present invention. Therefore, the same means as those constituting the corrosive gas purification device 1 according to the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

劣化度判定手段4が判定した劣化度に基づいて、光触媒フィルタ2を洗浄する必要があると判断された場合、光触媒フィルタ2を洗浄する。   If it is determined that the photocatalytic filter 2 needs to be cleaned based on the deterioration level determined by the deterioration level determination means 4, the photocatalytic filter 2 is cleaned.

ビーカ中に約40℃の水道水1Lを入れ、過炭酸ナトリウム入り洗剤(花王株式会社製 酸素系キッチンハイター)を4g添加し、過炭酸ナトリウムを含んだ水溶液を得た。この溶液に腐食性ガス由来の物質が蓄積した光触媒フィルタ2を15分浸漬させた。その後、実施例1と同様の方法で光触媒フィルタ2のすすぎ洗い、乾燥を行った。   1 L of tap water at about 40 ° C. was put into a beaker, and 4 g of detergent containing sodium percarbonate (oxygen kitchen hitter manufactured by Kao Corporation) was added to obtain an aqueous solution containing sodium percarbonate. The photocatalytic filter 2 in which the substance derived from the corrosive gas was accumulated in this solution was immersed for 15 minutes. Thereafter, the photocatalytic filter 2 was rinsed and dried in the same manner as in Example 1.

(実施例10)
本発明の実施例10に係る腐食性ガス浄化装置は、本発明の実施例1に係る腐食性ガス浄化装置1と同じである。よって、実施例1に係る腐食性ガス浄化装置1を構成する手段と同じものについては、同じ符号を付し、その詳細な説明は省略する。
(Example 10)
The corrosive gas purification apparatus according to Example 10 of the present invention is the same as the corrosive gas purification apparatus 1 according to Example 1 of the present invention. Therefore, the same means as those constituting the corrosive gas purification device 1 according to the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

劣化度判定手段4が判定した劣化度に基づいて、光触媒フィルタ2を洗浄する必要があると判断された場合、光触媒フィルタ2を洗浄する。   If it is determined that the photocatalytic filter 2 needs to be cleaned based on the deterioration level determined by the deterioration level determination means 4, the photocatalytic filter 2 is cleaned.

実施例9同様の方法で、過炭酸ナトリウムを含んだ水溶液を得た。この溶液に腐食性ガス由来の物質が蓄積した光触媒フィルタ2を30分浸漬させた。その後、実施例1と同様の方法で光触媒フィルタ2のすすぎ洗い、乾燥を行った。   In the same manner as in Example 9, an aqueous solution containing sodium percarbonate was obtained. The photocatalytic filter 2 in which the substance derived from the corrosive gas was accumulated in this solution was immersed for 30 minutes. Thereafter, the photocatalytic filter 2 was rinsed and dried in the same manner as in Example 1.

実施例5〜10の洗浄方法で洗浄した光触媒フィルタ2について、目視で色を観察し、未使用の光触媒フィルタ2と比較して、光触媒フィルタ2表面に蓄積した腐食性ガス(窒素酸化物ガス又は、硫化水素ガス)由来の物質がどの程度除去され、光触媒フィルタ2が脱色されたかを判定した。その結果を表2に示す。   About the photocatalyst filter 2 cleaned by the cleaning methods of Examples 5 to 10, the color was visually observed, and compared with the unused photocatalyst filter 2, corrosive gas accumulated on the surface of the photocatalyst filter 2 (nitrogen oxide gas or It was determined how much the substance derived from hydrogen sulfide gas) was removed and the photocatalytic filter 2 was decolorized. The results are shown in Table 2.

Figure 2011000544
Figure 2011000544

過炭酸ナトリウムを使用した洗浄条件である実施例5〜10すべてにおいて、優れた脱色効果が確認され、未使用品と同等レベルまで光触媒フィルタ2の色が回復した。このことから、光触媒フィルタ2表面に蓄積した腐食性ガス由来の物質は、純水又は水道水1Lに過炭酸ナトリウム4gを溶解させた水溶液に15分浸漬することで未使用品と同等なレベルまで脱色されることがわかる。   In all of Examples 5 to 10 which are washing conditions using sodium percarbonate, an excellent decoloring effect was confirmed, and the color of the photocatalytic filter 2 was restored to a level equivalent to that of an unused product. From this, the corrosive gas-derived substance accumulated on the surface of the photocatalytic filter 2 is immersed in an aqueous solution in which 4 g of sodium percarbonate is dissolved in 1 L of pure water or tap water to a level equivalent to that of an unused product. It turns out that it is decolored.

以上、実施例1〜4、実施例5〜10いずれの洗浄条件においても、光触媒フィルタ2表面に蓄積した腐食性ガス由来物質の除去及び光触媒フィルタ2の変色を回復することが可能である。   As described above, it is possible to remove the corrosive gas-derived substances accumulated on the surface of the photocatalytic filter 2 and recover the discoloration of the photocatalytic filter 2 under any of the cleaning conditions of Examples 1 to 4 and Examples 5 to 10.

次亜塩素酸ナトリウムを使用する場合、使用する水のpHによっては、有害かつ腐食性を有する塩素ガスが発生する場合があるので、過炭酸ナトリウムを使用するほうがより好ましい。   When sodium hypochlorite is used, depending on the pH of the water used, harmful and corrosive chlorine gas may be generated, so it is more preferable to use sodium percarbonate.

次に、実施例1及び実施例5で示した洗浄方法で洗浄した光触媒フィルタ2を使用してガス浄化試験を行い、実施例1及び実施例5で示した洗浄方法によって光触媒フィルタ2のガス浄化性能がどの程度回復するかを評価した。   Next, a gas purification test is performed using the photocatalyst filter 2 washed by the washing method shown in Example 1 and Example 5, and the gas purification of the photocatalyst filter 2 by the washing method shown in Example 1 and Example 5 is performed. We evaluated how much the performance recovered.

ガス浄化試験は、腐食性ガスとして硫化水素ガスを用いた。そして、有効容積1m3のアクリル試験室内で試験を行った。
試験室内に腐食性ガス浄化装置1をセットしておき、外部配管より硫化水素ガスを注入する。試験室内の硫化水素ガス濃度はおよそ500ppbとした。内部のガス濃度を均一にするため、小型ファンを使用して試験室内の空気を攪拌した状態で、腐食性ガス浄化装置1の運転を開始した。
In the gas purification test, hydrogen sulfide gas was used as a corrosive gas. The test was conducted in an acrylic test chamber having an effective volume of 1 m 3 .
The corrosive gas purification device 1 is set in the test chamber, and hydrogen sulfide gas is injected from the external pipe. The hydrogen sulfide gas concentration in the test chamber was about 500 ppb. In order to make the internal gas concentration uniform, the operation of the corrosive gas purification apparatus 1 was started in a state where the air in the test chamber was stirred using a small fan.

運転開始直前から試験室内の硫化水素ガス濃度の経時変化を硫化水素連続測定装置により測定した。この連続測定結果より、次亜塩素酸ナトリウム洗浄液及び、過炭酸ナトリウム洗浄液による光触媒フィルタ2の浄化性能回復状況を評価した。   The change over time in the hydrogen sulfide gas concentration in the test chamber was measured with a hydrogen sulfide continuous measuring device immediately before the start of operation. From this continuous measurement result, the recovery performance of the photocatalytic filter 2 with the sodium hypochlorite cleaning solution and the sodium percarbonate cleaning solution was evaluated.

比較として、未使用の光触媒フィルタ2と腐食性ガス由来の物質が蓄積した洗浄前のフィルタ2の浄化性能も同様の試験方法で試験した。   As a comparison, the purification performance of the unused photocatalyst filter 2 and the filter 2 before cleaning in which substances derived from corrosive gas accumulated were also tested by the same test method.

次亜塩素酸ナトリウム洗浄液で洗浄した(実施例1の洗浄方法)結果を図2に、過炭酸ナトリウム洗浄液で洗浄した(実施例5の洗浄方法)結果を図3に示す。   FIG. 2 shows the results of washing with a sodium hypochlorite washing solution (washing method of Example 1), and FIG. 3 shows the results of washing with a sodium percarbonate washing solution (washing method of Example 5).

図2に示すように、未使用の光触媒フィルタ2(初期値:△)では、およそ500ppbの硫化水素ガスを22分で10ppb以下にすることができる。一方、腐食性ガス由来の物質が蓄積した光触媒フィルタ2(腐食ガス由来の物質蓄積:○)では、およそ500ppbの硫化水素ガスが10ppb以下になるまでに37分かかっている。このことから、腐食性ガス由来の物質が光触媒フィルタ2表面に蓄積することで、光触媒フィルタ2の腐食性ガスに対する浄化性能が低下していることがわかる。   As shown in FIG. 2, in the unused photocatalytic filter 2 (initial value: Δ), approximately 500 ppb of hydrogen sulfide gas can be reduced to 10 ppb or less in 22 minutes. On the other hand, in the photocatalytic filter 2 in which the substance derived from the corrosive gas is accumulated (accumulation of the substance derived from the corrosive gas: ◯), it takes 37 minutes for the hydrogen sulfide gas of about 500 ppb to become 10 ppb or less. From this, it is understood that the purification performance of the photocatalytic filter 2 against the corrosive gas is deteriorated by the accumulation of the substance derived from the corrosive gas on the surface of the photocatalytic filter 2.

そして、腐食性ガス由来の物質が蓄積した光触媒フィルタ2を次亜塩素酸ナトリウム水溶液で洗浄した後の光触媒フィルタ2では、およそ500ppbの硫化水素ガスが17分後に10ppb以下となっている。このことから、腐食性ガス由来の物質が光触媒フィルタ2表面に蓄積することで、光触媒フィルタ2の腐食性ガスに対する浄化機能が低下するが、次亜塩素酸ナトリウム洗浄液で洗浄することで腐食性ガス由来の物質を除去することができ、光触媒フィルタ2の浄化性能を未使用の光触媒フィルタ2の浄化性能レベルまで回復することができる。   In the photocatalytic filter 2 after the photocatalytic filter 2 in which the substance derived from the corrosive gas is accumulated is washed with an aqueous sodium hypochlorite solution, the hydrogen sulfide gas of about 500 ppb becomes 10 ppb or less after 17 minutes. From this, accumulation of substances derived from corrosive gas on the surface of the photocatalytic filter 2 reduces the purification function of the photocatalytic filter 2 with respect to the corrosive gas, but the corrosive gas is washed by washing with a sodium hypochlorite cleaning solution. The derived material can be removed, and the purification performance of the photocatalytic filter 2 can be recovered to the purification performance level of the unused photocatalytic filter 2.

同様に、図3に示すように、過炭酸ナトリウム洗浄液においても次亜塩素酸ナトリウム洗浄液と同様の効果が得られる。   Similarly, as shown in FIG. 3, the sodium percarbonate cleaning solution can provide the same effect as the sodium hypochlorite cleaning solution.

(実施例11)
実施例1の洗浄工程を30回繰り返し、光触媒フィルタ2の次亜塩素酸ナトリウムを含む洗浄液に対する洗浄耐久性を評価した。その結果を図4に示す。
(Example 11)
The cleaning process of Example 1 was repeated 30 times, and the cleaning durability of the photocatalytic filter 2 with respect to the cleaning liquid containing sodium hypochlorite was evaluated. The result is shown in FIG.

(実施例12)
実施例5の洗浄工程を30回繰り返し、光触媒フィルタ2の過炭酸ナトリウムを含む洗浄液に対する洗浄耐久性を評価した。その結果を図5に示す。
(Example 12)
The cleaning process of Example 5 was repeated 30 times, and the cleaning durability of the photocatalytic filter 2 with respect to the cleaning liquid containing sodium percarbonate was evaluated. The result is shown in FIG.

図4、5より、次亜塩素酸ナトリウムを含有する洗浄液を用いても、過炭酸ナトリウムを含有する洗浄液を用いても、光触媒フィルタ2の性能劣化は確認されなかった。   4 and 5, no deterioration in the performance of the photocatalytic filter 2 was confirmed using a cleaning solution containing sodium hypochlorite or a cleaning solution containing sodium percarbonate.

以上のように、本発明に係る光触媒再生方法、及び腐食性ガス浄化装置によれば、光触媒部材(光触媒フィルタ)に付着した腐食性ガス(窒素酸化物ガス又は、硫化水素ガス等)由来の物質を簡便に除去でき、光触媒部材の変色も再生することができる。光触媒部材の変色を再生できるので、光触媒部材の劣化度合いを光触媒の色の変化に基づいて評価することが可能となった。   As described above, according to the photocatalyst regeneration method and the corrosive gas purification device according to the present invention, the substance derived from the corrosive gas (nitrogen oxide gas, hydrogen sulfide gas, etc.) attached to the photocatalyst member (photocatalyst filter). Can be easily removed, and the discoloration of the photocatalyst member can also be reproduced. Since the discoloration of the photocatalyst member can be regenerated, the degree of deterioration of the photocatalyst member can be evaluated based on the change in the color of the photocatalyst.

光触媒部材の色の変化は、目視で確認することも可能であるが、光触媒部材の色の変化を、カラーセンサ3で測定することにより、色の微妙な変化を検出することができるので、適切な洗浄周期で光触媒部材を洗浄することができる。   Although the change in the color of the photocatalyst member can be confirmed visually, the change in the color of the photocatalyst member can be detected by measuring the color sensor 3 so that a subtle change in color can be detected. The photocatalyst member can be cleaned with a proper cleaning cycle.

光触媒部材の洗浄に用いる洗浄液は、一般に販売されている家庭用の漂白剤や洗浄剤を調製した洗浄液であり、入手も容易で、操作性に優れ、効果的に光触媒部材を洗浄することが可能である。その他、洗浄液としては、酸化性のある洗浄液を適宜用いればよい。   The cleaning liquid used for cleaning the photocatalyst member is a commercially available cleaning liquid prepared from household bleach and cleaning agents. It is easily available, has excellent operability, and can effectively clean the photocatalyst member. It is. In addition, as the cleaning liquid, an oxidizing cleaning liquid may be used as appropriate.

なお、本発明に係る光触媒再生方法は、実施例に限定されるものではなく、カラーセンサの種類や洗浄液の組成等は、その目的を達成するものであれば適宜選択可能である。   The photocatalyst regeneration method according to the present invention is not limited to the examples, and the type of the color sensor, the composition of the cleaning liquid, and the like can be appropriately selected as long as the object is achieved.

また、光触媒(光触媒部材)表面に蓄積する腐性ガス由来の物質には、水に溶解して酸性を示すもの(例えばSO4 2-、NO3 -)があるので、本発明に係る洗浄液に光触媒部材を浸漬させる前に、水等で予め光触媒を洗浄した後に、洗浄液に浸漬すると、洗浄液の劣化を防止することができる。 In addition, some of the substances derived from the corrosive gas accumulated on the surface of the photocatalyst (photocatalyst member) exhibit acidity when dissolved in water (for example, SO 4 2− , NO 3 ). If the photocatalyst member is preliminarily washed with water or the like before being immersed in the photocatalyst member and then immersed in the cleaning liquid, the cleaning liquid can be prevented from being deteriorated.

1…腐食性ガス浄化装置
2…光触媒フィルタ(光触媒部材)
3…カラーセンサ(色検出手段)
4…劣化度判定手段
5…光触媒再生手段
DESCRIPTION OF SYMBOLS 1 ... Corrosive gas purification apparatus 2 ... Photocatalyst filter (photocatalyst member)
3. Color sensor (color detection means)
4 ... Degradation degree determination means 5 ... Photocatalyst regeneration means

Claims (7)

酸化チタンに白金、銀、銅、バナジウムのうち少なくとも1つの金属を担持した複合化合物の光触媒において、
前記光触媒の色の変化に基づいて、前記光触媒の劣化度を判定し、
該判定に基づいて、前記光触媒を酸化剤を含んだ洗浄液に接触させ、前記光触媒を再生する
ことを特徴とする光触媒再生方法。
In a photocatalyst of a composite compound in which at least one metal of platinum, silver, copper, and vanadium is supported on titanium oxide,
Based on the change in color of the photocatalyst, determine the degree of degradation of the photocatalyst,
Based on this determination, the photocatalyst is regenerated by bringing the photocatalyst into contact with a cleaning liquid containing an oxidizing agent to regenerate the photocatalyst.
前記色の変化は、カラーセンサで測定する
ことを特徴とする請求項1に記載の光触媒再生方法。
The photocatalyst regeneration method according to claim 1, wherein the color change is measured by a color sensor.
前記光触媒を水で洗浄した後に、前記洗浄液により再生する
ことを特徴とする請求項1又は請求項2に記載の光触媒再生方法。
The photocatalyst regeneration method according to claim 1 or 2, wherein the photocatalyst is regenerated with the cleaning liquid after being washed with water.
前記酸化剤は、次亜塩素酸ナトリウム又は、過炭酸ナトリウムのいずれかである
ことを特徴とする請求項1から請求項3のいずれか1項に記載の光触媒再生方法。
The photocatalyst regeneration method according to any one of claims 1 to 3, wherein the oxidizing agent is either sodium hypochlorite or sodium percarbonate.
前記光触媒は、窒素酸化物又は、硫化水素を浄化する
ことを特徴とする請求項1から請求項4のいずれか1項に記載の光触媒再生方法。
The photocatalyst regeneration method according to any one of claims 1 to 4, wherein the photocatalyst purifies nitrogen oxides or hydrogen sulfide.
酸化チタンに白金、銀、銅、バナジウムのうち少なくとも1つの金属を担持した複合化合物の光触媒に腐食性ガスを接触させることにより、腐食性ガスを分解除去する腐食性ガス浄化装置であって、
前記光触媒の色を検出する色検出手段と、
該検出手段により検出される前記光触媒の色の変化に基づいて、前記光触媒の劣化度を判定する劣化度判定手段と、
該劣化度判定手段の判定に基づいて、前記光触媒に酸化剤を含んだ洗浄液を接触させ、前記光触媒を再生する光触媒再生手段と、を備えた
ことを特徴とする腐食性ガス浄化装置。
A corrosive gas purification device that decomposes and removes corrosive gas by bringing the corrosive gas into contact with a photocatalyst of a composite compound in which at least one metal of platinum, silver, copper, and vanadium is supported on titanium oxide,
Color detection means for detecting the color of the photocatalyst;
A deterioration degree determination means for determining a deterioration degree of the photocatalyst based on a change in the color of the photocatalyst detected by the detection means;
A corrosive gas purification device comprising: a photocatalyst regeneration unit that regenerates the photocatalyst by bringing a cleaning liquid containing an oxidant into contact with the photocatalyst based on the determination by the deterioration degree determination unit.
前記光触媒の劣化度を表示する劣化度表示手段を備えた
ことを特徴とする請求項6に記載の腐食性ガス浄化装置。
The corrosive gas purification apparatus according to claim 6, further comprising a deterioration degree display means for displaying a deterioration degree of the photocatalyst.
JP2009146021A 2009-06-19 2009-06-19 Photocatalyst regeneration method and corrosive gas purification device Active JP5278189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009146021A JP5278189B2 (en) 2009-06-19 2009-06-19 Photocatalyst regeneration method and corrosive gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009146021A JP5278189B2 (en) 2009-06-19 2009-06-19 Photocatalyst regeneration method and corrosive gas purification device

Publications (2)

Publication Number Publication Date
JP2011000544A true JP2011000544A (en) 2011-01-06
JP5278189B2 JP5278189B2 (en) 2013-09-04

Family

ID=43558968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009146021A Active JP5278189B2 (en) 2009-06-19 2009-06-19 Photocatalyst regeneration method and corrosive gas purification device

Country Status (1)

Country Link
JP (1) JP5278189B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241008A (en) * 2011-05-24 2012-12-10 Hiroshima Univ Oxidation method for cyclic organic compound and oxidation device for cyclic organic compound
JP2014516770A (en) * 2011-04-28 2014-07-17 ビーエーエスエフ ソシエタス・ヨーロピア Precious metal catalysts for oxidative dehydrogenation with low metal loading

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02169040A (en) * 1988-12-22 1990-06-29 Matsushita Electric Ind Co Ltd Method for regenerating photocatalyst
JPH09329496A (en) * 1996-06-07 1997-12-22 Idec Izumi Corp Color sensor
JP2000279905A (en) * 1998-02-06 2000-10-10 Toto Ltd Method of cleaning composite material and self-cleaning composite mechanism
JP2004321864A (en) * 2003-04-22 2004-11-18 Noritake Co Ltd Method for washing photocatalyst filter and washing kit therefor
JP2005111354A (en) * 2003-10-07 2005-04-28 Meidensha Corp Photocatalyst carrier and gas treatment device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02169040A (en) * 1988-12-22 1990-06-29 Matsushita Electric Ind Co Ltd Method for regenerating photocatalyst
JPH09329496A (en) * 1996-06-07 1997-12-22 Idec Izumi Corp Color sensor
JP2000279905A (en) * 1998-02-06 2000-10-10 Toto Ltd Method of cleaning composite material and self-cleaning composite mechanism
JP2004321864A (en) * 2003-04-22 2004-11-18 Noritake Co Ltd Method for washing photocatalyst filter and washing kit therefor
JP2005111354A (en) * 2003-10-07 2005-04-28 Meidensha Corp Photocatalyst carrier and gas treatment device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014516770A (en) * 2011-04-28 2014-07-17 ビーエーエスエフ ソシエタス・ヨーロピア Precious metal catalysts for oxidative dehydrogenation with low metal loading
JP2012241008A (en) * 2011-05-24 2012-12-10 Hiroshima Univ Oxidation method for cyclic organic compound and oxidation device for cyclic organic compound

Also Published As

Publication number Publication date
JP5278189B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
JP5098215B2 (en) Method for activating hydrogenation catalyst and method for producing hydrogen peroxide containing the same
KR101380798B1 (en) Method of regeneration of scr catalyst poisoned by phosphorous components in flue gas
CA2718246A1 (en) Method of regeneration of scr catalyst
CN103028423B (en) Inactivation and regeneration method of formaldehyde room-temperature oxidation catalyst
KR100415216B1 (en) Method for decomposing halogenated aliphatic hydrocarbon compounds having adsorption process and apparatus for decomposition having adsorption means
WO2013065661A1 (en) Washing method and washing device
JP5278189B2 (en) Photocatalyst regeneration method and corrosive gas purification device
CN104028316A (en) Regeneration method of arsenic-poisoned selective catalytic reduction (SCR) denitrification catalyst
KR20140101775A (en) PROCESS FOR THE CATALYTIC REMOVAL OF CARBON DIOXIDE, NOx FROM EXHAUST GASES
JPS63100918A (en) Simultaneous removing method for mercury and nitrogen oxide in exhaust gas
KR102396023B1 (en) Method for in-situ regeneration of activated carbon loaded with trihalomethanes using alkaline hydrolysis
KR20040032831A (en) Wet scrubber using ozone and cleaning solution including catalyst material for harmful gas removal
CN104028317A (en) Regeneration method of phosphorus-poisoned selective catalytic reduction (SCR) denitrification catalyst
JP5108492B2 (en) Air purification method and air purification device
CA2344780A1 (en) Method, catalyst and photocatalyst for the destruction of phosgene
CN210674753U (en) Alkali liquor washing tower for sludge treatment
JPWO2012036231A1 (en) Glass with photocatalytic activity
JPH0466628B2 (en)
JP2009142753A (en) Method of regenerating photocatalyst member
JPH02169040A (en) Method for regenerating photocatalyst
JP2016190206A (en) Removal method of arsine in exhaust gas
JP2005111354A (en) Photocatalyst carrier and gas treatment device
JP5119804B2 (en) Processing apparatus and processing method for compound gas containing PFC and CO
CN101306205A (en) Active composite catalyst air cleaning system
RU2010107250A (en) METHOD FOR CLEANING MEMBRANE FILTERS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130401

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130506

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5278189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150