JP2010531427A - 非結像拡散光集光器 - Google Patents
非結像拡散光集光器 Download PDFInfo
- Publication number
- JP2010531427A JP2010531427A JP2010514770A JP2010514770A JP2010531427A JP 2010531427 A JP2010531427 A JP 2010531427A JP 2010514770 A JP2010514770 A JP 2010514770A JP 2010514770 A JP2010514770 A JP 2010514770A JP 2010531427 A JP2010531427 A JP 2010531427A
- Authority
- JP
- Japan
- Prior art keywords
- refractor
- reflector
- radiant energy
- longitudinal
- transparent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B19/00—Condensers, e.g. light collectors or similar non-imaging optics
- G02B19/0033—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
- G02B19/0076—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a detector
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S23/00—Arrangements for concentrating solar-rays for solar heat collectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S23/00—Arrangements for concentrating solar-rays for solar heat collectors
- F24S23/10—Prisms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S23/00—Arrangements for concentrating solar-rays for solar heat collectors
- F24S23/70—Arrangements for concentrating solar-rays for solar heat collectors with reflectors
- F24S23/79—Arrangements for concentrating solar-rays for solar heat collectors with reflectors with spaced and opposed interacting reflective surfaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S23/00—Arrangements for concentrating solar-rays for solar heat collectors
- F24S23/70—Arrangements for concentrating solar-rays for solar heat collectors with reflectors
- F24S23/80—Arrangements for concentrating solar-rays for solar heat collectors with reflectors having discontinuous faces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B19/00—Condensers, e.g. light collectors or similar non-imaging optics
- G02B19/0004—Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
- G02B19/0028—Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B19/00—Condensers, e.g. light collectors or similar non-imaging optics
- G02B19/0033—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
- G02B19/0038—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light
- G02B19/0042—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light for use with direct solar radiation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/40—Optical elements or arrangements
- H10F77/42—Optical elements or arrangements directly associated or integrated with photovoltaic cells, e.g. light-reflecting means or light-concentrating means
- H10F77/488—Reflecting light-concentrating means, e.g. parabolic mirrors or concentrators using total internal reflection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S20/00—Solar heat collectors specially adapted for particular uses or environments
- F24S20/20—Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S23/00—Arrangements for concentrating solar-rays for solar heat collectors
- F24S23/70—Arrangements for concentrating solar-rays for solar heat collectors with reflectors
- F24S2023/83—Other shapes
- F24S2023/838—Other shapes involutes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S23/00—Arrangements for concentrating solar-rays for solar heat collectors
- F24S23/70—Arrangements for concentrating solar-rays for solar heat collectors with reflectors
- F24S2023/88—Multi reflective traps
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/44—Heat exchange systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/46—Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- Sustainable Energy (AREA)
- Thermal Sciences (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
【課題】本発明は、放射エネルギートラップに関する。この拡散および直接放射エネルギー集光器は、少なくとも1つの反射器と、実質的にプリズム状の形状の屈折器と、前記屈折器と相互作用する受光器とを備える。本発明は、フラットパネル型集熱器と同等の、放射エネルギーの固体受光角を有することが可能な一方、拡散光の集光率を比較的高く維持できる。本発明は、効果的なハイブリッド型太陽電気および太陽集熱器として、実施可能である。独自のかつ簡易な配置によって、光および熱効率性が比較的高くなる。本発明は、薄型の3次元拡散光集光器として実施可能であるが、反射、屈折および内部全反射を組み合わせるため、熱力学的限界に達することができる。本発明は、比較的高い効率を有する太陽電池を使って、材料コストをコスト削減の限界にまで最小化する。本発明は、利用可能な太陽エネルギーの利用効率を増加し、従来技術と比較して、格段と設置システムの資本回収期間を縮小することできる。
【選択図】なし
【選択図】なし
Description
本発明は、放射エネルギートラップである。本発明は、太陽エネルギーの分野に関し、特に、電熱混合型変換および拡散光集光型太陽熱集熱器に関する。
化石燃料の使用に関連する様々な問題(地球温暖化、環境の悪化、エネルギー費用の高騰、石油資源のピーク、および地球的規模での対立など)が太陽エネルギーに基づいた経済の必要性を生み出した。コスト競争力がある太陽エネルギーの生産が可能となることで、はじめて当該目標が達成されることになるだろう。フラットパネル型太陽電気(太陽電池)集熱器は、比較的高価である。太陽エネルギーを経済化する試みとして、直射日光下のみで機能する集光型パラボラ反射器がある。霧や煙霧程度であっても集めた直射日光は、減少するものである。臨界的な反射器形状、支持構造、太陽追跡能力、および太陽光が弱い地域までの転送ロス、に対して多額の費用が必要である。フラットパネル型太陽電池用集熱器は、建設が容易、静止可能、および半球集光型の周囲放射エネルギーであるものの、「拡散のみ(diffuse only)」光で動作可能であるので効率が良いとは言えない。
フラットパネルとパラボラ式集光器との最も良い部分を組み合わせる試みとして、複合型パラボラ式集光器(以下、CPC)がある。該CPCでは、反射器を使って集光し(CR)、理想的な2次元関係に従って、限定された受光角(AOA)に渡って周辺光を集める(この際、CR=1/sin(AOAの半分)が成り立つ)。CPC反射器の高さは、通常、平頭型であり、CRの値が減り、かつAOAの範囲外の光をも集める。CPCの派生例として、透明な屈折器がしばし使われる。これらの種類の集熱器は、さらに一般的には、放射エネルギートラップと呼ばれる。設計例として、エシェルマン(Eshelman)、ノウルズ(Knowles)、ウィンストン(Winston)、ジル(Gill)、ヴァシリエフ(Vasylyev)、イソフォトン社(Isofoton S.A.)、サイテックUSA社(Sci Tech U.S.A)、特許文献1、特許文献2が含まれる。屈折器に関しては、ニューサウスウェールズ大学の、カパニー(Kapany)、ジョンソン(Johnson)、ウィンストン(Winston)、リー(Lee)、チャーニー(Cherney)、フェレイドーニィ(Fereidooni)、チェン(Chen)およびボーデン(Bowdenの設計)の設計が使用される。先行技術の主な問題は、比較的AOAの値が小さく、拡散光のCR対AOAの組み合わせが低すぎることである。材料費および製造費は、通常、屈折器の大きさまたは反射器の領域に対する開口(A)の相対サイズに対して―反射器曲線の距離を(RL)または高さを(H)として、おのおのRL/AまたはH/Aという比率として表される―あまりにも高い。シュタイガーバルト(Steigerwald、特許文献3)、ポール(Puall、特許文献4)、リチー(Lichy、特許文献5)、ボーデン(Bowden)の理論、マーサ(Murtha、特許文献6)、マーサ(Murtha、特許文献7)に記載される3次元集光器も、本発明と比較して、CRがAOAに対して低すぎるし、不当に光学コストが高い。
太陽光発電に関連するその他の問題も解決する必要がある。設置システムの資本回収期間が長すぎるため一般に受け入れられないのである。季節変動する天候下では、大半の建物に熱電気的ニーズを提供するとなると、計り知れない大きさの日陰にならない太陽熱用の集熱器領域が必要になる。太陽電池の効率は、暑い太陽の下では下がるものである。冷却式電池であっても、電池に当たる放射エネルギーの約80%は無駄になる。ハイブリッド型集熱器は、電気および熱的機能を組み合わす。多くのハイブリッド型システムが試みられた。例えば、ムラウスキ(Mlausky)およびウィンストン(Winston、特許文献8)、ダムスカー(Damsker、特許文献9)、ゴールドマン(Goldman、特許文献10)、オーストラリア国立大学(Australian National University)の「チャップス(CHAPS)」計画、スウェーデンのウップサラ大学(Uppsala University)のブログレン(Brogren)のCPC設計、ポール(Puall、特許文献11)、ジョンソン(Johnson、特許文献12)、ニコレッティ(Nicoletti、特許文献13)である。これらの設計は、CRに対するAOAは小さく、エネルギー利用性が悪く、太陽追跡装置が必要である。本発明に比べて、コストも格段と高い。
本発明は、放射エネルギートラップである。該放射エネルギートラップは、少なくとも1つの反射器から反射される放射エネルギーが入射される位置に配置される屈折器を備える。該屈折器は、放射エネルギーを受光器へ向けるように形状されかつ配置される。該屈折器は、実質的にプリズム状の形状を有する。該受光器は、該屈折器と相互作用する。本発明は、周辺の放射エネルギーの受光立体角(AOA)―フラットパネル型太陽熱用集熱器のそれと同等の―を有すことができる、拡散および直接放射エネルギー集光器である。該AOAは、受光器のサイズを著しく減少する、拡散光の比較的高い集光率(CR)を維持しながら、達成される。該屈折器は、異なった屈折率(I−of−R)材の組み合わせを用いることができ、かつ内部全反射(TIR)を利用できる。該屈折器は、固体または入れ子状層の複合物でよい。屈折層は、集光率を上げることができ、かつ熱損失を減少できる。内部流動屈折層は、本発明を流れる伝熱流体でよい。該屈折器は、対称的または非対称的であり、かつ透明の複数の反射面を有することができる。該受光器は、熱受光器、検出器、または変換器などの機能を有することができる。該受光器は、両面式光電子電池(太陽電池)の使用を支持する、平面な対向面を有することができる。該反射器(複数個でもよい)は、単体または、対称的または非対称的な、異なる曲率を有する複合物でよい。集熱器が単純な配置であるので、光および熱効率を高めることが可能になる。本発明は、比較的薄型であることができ、RL/Aが低く、かつより高いCRを有する3次元集光器でよいが、AOAまたは集熱器配列パッキング密度は下げない。設置システムの資本回収期間を最小にできる。異なる実施形態では、費用対効果の最適化が可能である。本発明は、設置式フラットパネル型太陽熱用集熱器またはいくつかの既存のパラボラ式集光器に取って代わることができ、また一次CRを増大できまた太陽追跡条件を簡易化できる二次的集光器でよい。
本発明は、放射エネルギートラップである。該放射エネルギートラップは、少なくとも1つの反射器から反射される放射エネルギーが入射される位置に配置される屈折器を備える。該屈折器は、直射放射エネルギーを受光器へ向けるように形状されかつ配置される。該屈折器は、実質的にプリズム状の形状を有する。該受光器は、該屈折器と相互作用する。該受光器は、該屈折器と相互作用する。該反射器(複数個の場合もある)は、前部が銀またはアルミ金属板、または後部が銀またはアルミ製のアクリルまたは太陽光を通さない透明なプラスチック板のような材料で形成され、適切な方法で形成される。屈折器は、1つの屈折率(I−of−R)を有することができ、または、ガラス、アクリルまたは内部流体媒体などのI−of−R媒体の複合物でよい。2つの名目上のI−of−R値(n( )=で示す)が、図面にて使われる。図面では、対称的および非対称的な実施形態を含むが、位相空およびTIRは保持される。ここで、反射器の形状は当業者には周知である。図中、受光器は、両面を有し、一体としてまたは複数部分に分けて屈折器内部にて説明される。受光器は、選択的にコーティングされた板、検出器、変換器、または両面式太陽電池などである。両面式受光器が図示される。太陽電池は、集熱器内を流れる伝熱流体に熱接触可能であり、こうすることによって、ハイブリッド型太陽熱用集熱器が形成される。屈折流体部は、水、塩水、不凍液などである。屈折器層によって、熱分離が高められ、吸収/反射に関する特徴が変更され、かつ光トラッピングおよび集光が高められる。反射器および透明な屈折器の構成要素は、従来手段によって形成および確保され、互いに支持し合い、または尺度が適切な支持部材を使用する。集熱器の構成要素は、透明なカバー板、エンドキャップ、フレーム、配管、電気的接続部、適正な熱分離および補助要素などを含む。
図1は、本発明の実施形態の横方向の断面図である。受光器1は、固体の透明な「ダイヤモンド」形状で、かつ対称的に向けられた側面を有する屈折器2の内側に、対角線として、縁上に示される。屈折器2は、対称的な隣接する反射器3の曲率内に入れ子状に配置される。反射器3の各々対称的な半分は、2つの近接する円弧部3aおよび3b(内側小径部3aおよび外側大径部3bを備える)から形成される。反射器は、全体として半円の曲線を作成する、対応点4に端部を有する。図1では、小径円曲率である、反射器部3aは、屈折器2の底部中央部6において、中央線縁点5から始まる。屈折器の底部中央部6は、対応する最近傍側角7を有し、各角7は、各小円曲率反射器部3aの対応する半径の焦点である。小円曲率反射器部3aの終点は、曲率点変化点3abであるが、この点は、屈折器2の対応する上部辺8に一致する。屈折器2の最上点9は、対応する大径円曲率反射器部3b(曲率変化点3abから始まる)の焦点である。大径反射器部3bの対応する端部4は、屈折器の最上点9に一致する。固体の屈折器2は、近接する対向する三角柱2の対として、図示されが、図中、受光器1が底辺として、そして2つの対応する辺8が屈折器2の三角形の半分として描かれる。底辺および各辺は、辺対底部角(SBA)33を形成する。
図2a〜dは、屈折器を対称的に示す、複数の実施形態の横方向の断面図である。図1からの屈折器を示す実施形態は、図2aである。図2aにおいて、臨界の辺対底部角(SBA)33によって、TIRが確保されるが、これは、縁光線43(屈折器2に入射し、受光器1に付き当たるように示される)を描いて示される。図2bは、複合屈折器であって、透明な、外側の固体屈折器部2aと、内部の屈折器部2b(対称的なダイヤモンド形状で、透明で、I−of−Rが低い)とを有する。内部の屈折器部2bは、内部の辺対底部角(ISBA)63を有する。ある特定のI−of−Rに対するTIRは、角度対が必要であるが、SBA以下でありかつISBA以上である。臨界最小角度より大きなISBAであっても、屈折器の外部の固体屈折器領域2aを最小限化するわけではない。図2bでは、SBA53は、あるISBA63の最小値に対して、TIRに対する臨界最大値を規定する。図2bでは、各屈折器部2aおよび2bの断面積は等しい。図中、縁光線73aが描かれているが、屈折器部2aに入射しているところであって、やがて屈折され、最終的に、受光器1に付き当たる。第2の光線73bは、受光器1までのもう一つの屈折路を示す。
図2cでは、対称的な屈折器のSBA83は、約43度まで減少され、対応する臨界ISBA93は約50度まで減少されている。その結果、釣り合った状態が生まれる。ガラスまたはアクリルなどの外側固形物2aaが約20%、そして、水などの内部屈折媒体2bが約80%になるので、TIRを維持でき、かつ,選択されたSBA83に対するガラスまたはアクリルの使用が最小限化される。これは、縁光線103によって示される。
図2dでは、外側屈折器2abは、内側流体屈折器部2bを囲む。SBA113およびISBA123は、全て、約41.4度の、同じサイズの角度を既定する。これは、縁光線133によって示されるように、水など、名目値n=1.33である流体を囲む、ガラスパネルやアクリル板などの、名目値がn=l.5である材料の平行面にとっては、TIRを維持するための最大角サイズである。外側屈折器2abの「ガラスパネル」(妥当な厚さを有するガラスを備える)を使えば、図2cに示す、同じような20%対80%の断面比率が可能になるだろうし、恐らく、ガラス梁よりも安価である。
図3は、図2bの(「四角形」に傾いた)屈折器を使った本発明の実施形態の横方向の断面図である。受光器1は、透明で、四角形の周囲を有する屈折器2の対角線の縁の上に示される。屈折器2は、全体に半円を描く対称的な、隣接する反射器3内に対称的に入れ子状に配置される。各対称的な反射器3の半分は、小径3aおよび大径3bの2つの近接する円弧部で形成される。半径は、曲率点3abが変わる点で変化する。図3では、隣接する反射器3の、対応する小径円曲率部3aは、屈折器2の底部中央部61での、中心線縁5から始まる。屈折器2の対応する底部コーナ71は、小径円曲率部3aの焦点である。反射器の曲率は、小径から大径にかけて、曲率点3abが変化するところで変化するが、この変化点は、屈折器2の対応する辺81に一致する。対応する大径円曲率反射器部3bの焦点は、屈折器2の対応する上部コーナ10である。大径円曲率反射器3bの対応する端部4は、屈折器2の上部コーナ10に対する仮想線として、直径11を形成する。
図4は、長手方向の溝状集熱器としての、図3の斜視図であって、対角線上の位置された受光器1が透明な複合屈折器2a、2b内に設けられているが、反射器3に隣接している。横方向の平坦な反射型エンドキャップ41は、反射器3および屈折器2の終点となる。反射器の直径11は、反射型エンドキャップ41の上縁に対応する。屈折器流体口62は、反射型エンドキャップ41を貫通する。電気線72は、所望の場所において、両面式太陽電池から形成される受光器から、平坦な反射器エンドキャップ41内の穴を通して外側に現れる。反射器3の上端部4から延びる点線82は、図3の横方向の断面の面を示す。隣接する反射器3および反射型エンドキャップ41の各々の周囲としての、上縁線4および11は、本実施形態の開口の外周を表す。
本実施形態では、横方向に180度、長手方向に180度のAOAであり、CRは約3である。高さ(H)対開口(A)比率(H/A)は、約0.38であり、反射器曲率の距離さ(RL)対(A)比率(RL/A)は、約1.5である。光学効率は最大で約0.95まで上げることが可能である。ウィンストン(Winston、米国特許番号4、002、499)およびジル(Gill、米国特許番号4、561、424)に同様な古典型CPCでは、(50%が平頭化された)反射器であって、CRが約2.7であり、AOAは約38度しかない。そのH/A比率は、約0.88であるので、図3の倍以上であり、RL/A比率は約2.5(反射器が多い)である。さらに臨界反射器を整列させる必要がある。さらに直接的なH/AおよびRL/A比較がウィンストン(Winston、米国特許番号5、971、551および6、244、264)から行われる。結果、該特許では、AOAは55度であり、CRは1.45である。つまり、図3の半分未満である。開口のサイズに関する特許である、リー(Lee、米国特許番号5、699、201)、チャーニー(Cherney、米国特許番号6、700、054)、フェレイドーニィ(Fereidooni、米国特許番号6、700、054)は、比較的大がかりで、単一、球形または平坦面な、平頭式V字谷型屈折器であり、AOAとCRとが比較的小さな値の組み合わせになる。フェレイドーニィ(Fereidooni、米国特許番号6、700、054)では、光が複数の屈折境界線を通過するため、光学効率が低くなる。
図5は、本発明の実施形態の断面図(図2cの屈折器が反射器3に入れ子状に配置される)である。隣接する反射器3の各対称的な半分は、3つの近接する部分から形成される。つまり、(最内部の)小径円曲率部3a、2番目の、大径円曲率部3b、3番目の、パラボラ式曲率部3cである。小径円曲率反射器部3aは、屈折器2の底部6の中心線5から始まる。屈折器2の対応する側部コーナ7は、外側屈折領域2aaおよび内側屈折領域2bから形成されるが、小径円曲率反射器部3aの焦点である。小径円曲率反射器部3aは、曲率点3abが変化するところで終点となるが、屈折器2の対応する上部辺8に一致する位置である。屈折器最上点9は、対応する大径円曲率反射器部3bの焦点である。対応する大径円曲率反射器部は、曲率点3bcの2番目の変化点で終点となるが、横方向のAOA13の仮想辺12に一致する。仮想辺12は、屈折器最上点9で交差するが、この点は、対応するパラボラ式曲率反射器部3cの焦点である。仮想辺12は、おのおのパラボラ式曲率反射器部3cの対応する端部4を横切るように延びる。AOA13が130度と低いので、CRがより高くなる。
図6は、本発明の実施形態の断面図である。反射器3の横方向のAOA13は、83度である。屈折器2は、図2dからのものであり、対称的な入れ子状態の反射器3内に位置している。受光器1は、垂直型であり、反射器中心線縁5上で一致するが、この一致した点は、屈折器底部6に結合される。透明な屈折器2は、外側固体部2abおよび屈折器2の断面の約80%を占める内側流体部2bから形成される。横方向のAOA13は、受光器1によって2等分される屈折器2の隣接する辺8の角度を規定する。隣接する反射器3は、内側円曲率部3aの対称対(対応する屈折器側部コーナ7を焦点とする)および外側の対応するように近接する、パラボラ式曲率部3cの対称対(屈折器最上点9を焦点とする)から成る。曲率点3acの対応する変化点は、横方向のAOA13のおのおの仮想線または辺12によって横切られる。対称的なパラボラ式曲率反射器部3cは、完全なパラボラ形ではなく、切断型パラボラである。対称的な反射器端部4は、断面開口Aの輪郭を描く。CRは約3.75である。さらなる拡散光は、反射器の切断部(横方向に「見て」約140度)にて集熱される。
図7a、b、cは、屈折器の非対称的な実施形態の横方向の図である。図7a、7bは、図2dの屈折器の非対称的な実施形態である。図7a、7bでは、固体の、透明な「ガラスパネル」である屈折器部2abは、効果的に連続しているが、各々、全体的に見て半円形状凹鏡面である、第二次反射器34または341を、固体の屈折器の対応する端部44に、有する。外側固体透明屈折器部2abおよび第二次反射器部34または341は、内側が透明な流体屈折器部2bを取り囲む。
図7aでは、効果的に連続する第二次反射器34は、半円の反射器部34aおよび34b(中央線縁点34abを有する)の対称対で形成される。受光器1は、屈折器端部44の線に沿って、中心に配置される。受光器1の対応する受光器端部1aおよび1bは、各半円の曲率反射器部34aおよび34bのおのおの焦点である。縁光線54も図示されるが、屈折器27に入射し、受光器1で終端する。
図7bは、図7aと同様であるが、透明で、対称的なダイヤモンド形状の第二次複合屈折器部2cおよび2dを備える点が異なる。第一次流体屈折器部2bは、第二次固体屈折器部2cを囲み、今度は、第二次流体屈折器部2dを包囲する。第二次固体屈折器部2cは、受光器1を取り囲む。第二次屈折器最上点の頂点15は、第二次反射器端部44と一致する。対称的な第二次反射器341の各半分は、内側小円曲率部341aおよび近接する外側大円曲率部341bを有する。図1と同じく、円曲線が設けられ、対応する第二次複合屈折器上部側16に一致し、両者の間の対応する曲率点94の変化点と、第二次屈折器底部84から始まる中心線341aaとを含む。図中の縁光線85は、屈折器28に入射し、受光器1に付き当たる。対称的な第二次屈折器のSBA64は、約24度を規定し、ISBA74は約62.5度を規定する。TIRの条件が満たされるのは、流体屈折器部2bおよび2dが、I−of−R n=1.33のとき(水などの場合)、そして固体屈折器部2abおよび2cのI−of−R n=l.5のとき(ガラスなどの場合)である。第二次流体屈折器部2dは、第二次複合屈折器2cおよび2dの横方向の面積の約25%を占める。
図7cは、図2bに示す屈折器2の非対称的なものを示す。図7cには、図7bに示すものと同じ第二次複合屈折器部2cおよび2dが備えられる。効果的に連続する第二次反射器342は、図7bに示した形状と同じ形状を有する。第一次屈折器の透明な外側固体部2acは、第二次反射器342の対応する第二次反射器部342bまで延びる。第二次反射器342は、第一次流体屈折器部2bに近接する、対応する部342aを有する。図中の縁光線96は、屈折器29に入射し、受光器1に付き当たる。図7c中の、固体の屈折器領域は、約40%である(図7bは、約20%である)。図7cの屈折器の実施形態を使用すれば、あるI−of−Rの組に対して、図7bより高いCRを達成できる。
図8は、非対称的な本発明の実施形態の横方向の断面図である。屈折器28は図7bからのものであるが、図6の反射器の半分の、1つの隣接する対称的な反射器38を備える。横方向のAOA13が、非対称的に位置される。AOAの第1側12aは、図6と同じく位置される。AOAの第2側12bは、反射器縁4で終端する、開口Aの線である。本実施形態では、屈折器28の平坦な透明の辺を効果的に使って、断面角度約180度に渡って光を受光する。横方向のAOA13は、図5と同じ(約130度)であるが、図8では、CRは図5以上である。図8のCRは、図6とほぼ同じである(約3.75)であるが、図8では、AOA13は図6以上である。
図9は、第3寸法に長手方向に延びる図8の斜視図である。同図では、溝状集熱器の一部として示され、図7bの非対称的な屈折器の実施形態28と、その第二次複合屈折器2cおよび2dとを備える。屈折器28は、非対称的な反射器38に隣接する。反射器38および屈折器28は、平坦な反射器エンドキャップ42(自由縁18を有する)で終端する。屈折器の流体口62は、エンドキャップ42を貫通する。図9では、平坦な反射器エンドキャップ42は、図8の横方向の断面に対して平行に、横方向の断面内に位置する。
図10は、非対称的な反射器39を有する、本発明の実施形態の横方向の断面図である。図10にて使われるのは、図7cからの屈折器の変形である、屈折器の実施形態30である。開口(A)対受光器(1)の割合に関して、CRは約4に相当する。横方向のAOA13は約130度である。熱効率を向上するため、透明な、薄壁の、半円型の管31が屈折器の透明な外側部2aeを囲む。円弧部31と透明な固体外側屈折器部2ae間のギャップ32は、低伝導性ガスで満たしてもよく、または実質的に真空排気してもよい。絶縁材35は、第二次反射器342を取り囲むことができる。比例的に、屈折器30は、固体の屈折器領域2aeおよび2cの約40%である。固体の屈折器2aeの内部頂上部2eは、実質的に真空排気されたギャップ32をより良く支持するために、曲線を施される。
図11は、本発明の実施形態の、CRがより高い3次元拡散光集光器を示す図である。図11は、図10を簡略した斜視図であって、円弧管部、熱絶縁部または固体の屈折器内部面曲線部を備えない。第二次反射器は、長手方向に周期的な、横方向に向けられた、逆V字型の反射器310によって、分割される。隔壁310は、第二次反射器区画342(どちらの区画も第二次反射器342の連続する部分である)によって離間される。逆V字型の反射器310は、屈折器29に対向する。第二次複合屈折器および受光器(同等の距離の組み合わせ2cdおよび1として)は、部分210に対して、長手方向に切り離されている。各逆V字型の反射器部310の開放底の長手方向の距離76は、第二次反射器部342の底部の距離78の約半分である。第二次反射器底部の距離78は、第二次屈折器−受光器の長手方向の部分210(対応する第二次反射器底部の距離78に対して平行およびその内部で中心点となる)としての距離80と略同じである。屈折器は、エンドキャップ(対向する透明な、第二次屈折器の横方向の端部311と、内側に対向する半分である、対応する逆V字型の反射器310a、310bとを備える)を有する。反射器39の平坦な反射型エンドキャップ42と、その対応する自由縁18(流体口62を有する)とが図11に示される。図11でのCRは約6であって、横方向のAOAが130度であって、長手方向のAOAが180度である。
図12は、図8の横方向の断面図に示したものの2つを示す。2つ並べることによって、対応する隣接する反射器38および屈折器−受光器部28とアレイを成すが、水平12aから約45度の角度15で傾けられている。この傾きによって、横方向のAOA13の第1辺12aが水平配置される。太陽面に対向するように傾けられると、水平線下には光がないと仮定して、このAOAがフラットパネル型集熱器を模倣することになる。アレイは、他の構成を有することができ、傾き角度もこれに限らない。
図11の集熱器のAOAは、約130度対180度であって、CRは約6である。特許文献3の3次元集光器では、AOAが80度対180度であって、複雑な光学素子を使ってCRは3.6に過ぎない。ローゼンベルク(Rosenberg、#7164839)では、AOAは45対160度であって、言及されたCRは記載されていないが、約3と推定される。特許文献4は、3次元集光器であって、ダブル曲率CPCに対してCRが3であって、組み合わせたAOAが70.5度に過ぎない。特許文献5は、3次元CPCであって、第二次屈折器CPC(と言えるもの)を備え、AOAは、70度対106度であり、言及されたCRは記載されていないが、2.5と推定される。チェン(Chen、米国特許番号6、653、551および6、717、045)では、CPCを有するフレネルレンズが使用されている。特許文献13では、流体が充満され、太陽電池が並んだコンテイナを備えるパラボラ式円盤が記載される。これらのCRとAOAとの組み合わせはすべて、本発明のそれより格段と低い。特許文献6の光導体では、幾何学的なCRが比較的高く、AOAも妥当であるが、光および熱効率が低く、光学装置が複雑で高価である。後者では、水の容量が大きく、水平に配置する必要があるので、コストのロスが計りしれないほど大きい。高CR光学コストが控えめに上昇したとしても、フラットパネル型同等のAOA太陽電池用集熱器にとれば、収益が減少すれば、設置集光器システムのコストになる。例示の目的のために示した実施形態以外にも、本発明の趣旨から逸脱しない範囲で、その他の追加的な要素および付随する構成要素を含めて、その他の可能な本発明の実施形態が可能である。
Claims (23)
- 放射エネルギートラップであって、少なくとも1つの反射器と、屈折器と、受光器とを備え、前記屈折器は、前記少なくとも1つの反射器から反射される放射エネルギーが入射する位置に配置され、前記受光器は、前記屈折器によって屈折された放射エネルギーが入射する位置に配置され、前記受光器は、前記屈折器と相互作用する、放射エネルギートラップ、
前記屈折器は、実質的にプリズム状の形状を有し、前記屈折器は、外面と、透明な内部とを有し、前記屈折器の外面は、少なくとも3つの長手方向の辺を有し、前記少なくとも3つの長手方向の辺は、実質的に前記少なくとも1つの反射器と同一であって、前記少なくとも3つの長手方向の辺は、前記受光器に対して、長手方向に平行であって、前記少なくとも3つの長手方向の辺は、少なくとも2つの実質的に平坦な透明な辺を備え、前記屈折器は、横方向の断面を備え、前記屈折器の横方向の断面は、周囲を備え、前記少なくとも2つの実質的に平坦な透明の長手方向の辺は、前記周囲に対して横方向の距離を備え、前記受光器は、横方向の距離を備え、前記受光器の横方向の距離および前記少なくとも2つの実質的に平坦な透明な辺の周囲の横方向の距離は、位置関係および比例関係を備えることを特徴とする放射エネルギートラップ。 - 請求項1に記載の放射エネルギートラップであって、
前記少なくとも1つの反射器は、少なくとも1つの横方向の曲率を備え、前記少なくとも1つの反射器は、直線の長手方向の縁を効果的に備え、前記少なくとも3つの長手方向の辺は、前記屈折器の外面に沿って長手方向の曲げ線において近接する、少なくとも1対の隣接する長手方向の辺を備え、前記屈折器の少なくとも2つの実質的に平坦な透明な長手方向の辺の外面は、各々、長手方向の仮想中心線を備え、前記屈折器の外面は、長手方向の対称中心線を備え、前記屈折器の外面の対称中心線は、a)長手方向の曲げ線と、b)長手方向の仮想中心線とを備え、
前記少なくとも1つの反射器の効果的な直線の長手方向の縁のうち、少なくとも1つは、少なくとも1つの前記屈折器の外面の長手方向の対称中心線に隣接することを特徴とする放射エネルギートラップ。 - 請求項2に記載の放射エネルギートラップであって、
横方向の断面の、前記隣接する少なくとも1つの反射器は、1つ以上の曲率を備え、
前記少なくとも1つの反射器の曲率の各々は、連続する曲率を備え、横方向の断面の前記連続する曲率は、曲率変化点を備えることを特徴とする放射エネルギートラップ。 - 請求項3に記載の放射エネルギートラップであって、
横方向の断面では、横方向の周囲の、少なくとも1対の、隣接する2つの実質的に平坦で透明な長手方向の辺は、仮想三角形の辺を備え、前記仮想三角形は、仮想三角形の底辺を備え、前記仮想三角形の底辺および各透明な辺は、前記仮想三角形の角度を備え、前記仮想三角形の辺対底部角(SBA)は、臨界角度以下の角度を備えることを特徴とする放射エネルギートラップ。 - 請求項4に記載の放射エネルギートラップであって、
横方向の断面において、前記屈折器は、少なくとも1つの入れ子層を備え、前記少なくとも1つの入れ子層は、各々、隣接する透明な辺の横方向の断面対を備え、前記隣接する透明な辺の入れ子層の横方向の断面対は、対応する仮想内部三角形の辺を備え、
前記対応する内部仮想三角形は、それぞれ内部仮想三角形の底辺を備え、前記内部仮想三角形の底辺およびそのそれぞれの辺は、各々、内部辺対底部角(ISBA)を備えることを特徴とする放射エネルギートラップ。 - 請求項5に記載の放射エネルギートラップであって、
前記屈折器の横方向の断面の入れ子層は、少なくとも1つの外側が透明な固体層と、少なくとも1つの透明な内側流体屈折器層とを備え、
前記透明な内側流体は、伝熱媒体を備え、
前記透明な内側流体屈折器部は、容量を満たすよう前記伝熱流体を導入するための流体口手段を有する流体室を備え、前記流体室を通して前記伝熱流体を吸い上げることを特徴とする放射エネルギートラップ。 - 請求項6に記載の放射エネルギートラップであって、
少なくとも1つのISBAは、臨界角度以下の角度を備え、
仮想三角形の辺の底辺の、少なくとも1対の層は、共直線性を備えることを特徴とする放射エネルギートラップ。 - 請求項7に記載の放射エネルギートラップであって、前記受光器は、対向面を備え、前記受光器は、両面性を効果的に備え、前記受光器は、横方向の断面が実質的に平坦であり、前記受光器および前記屈折器は、長手方向に効果的に同一であり、前記受光器の位置および臨界角度は、前記屈折器のための内部全反射手段を備える放射エネルギートラップ。
- 請求項8に記載の放射エネルギートラップであって、前記SBAは、少なくとも1つのあるISBA最小規定角度に対して、臨界最大角度を規定する放射エネルギートラップ。
- 請求項9に記載の放射エネルギートラップであって、
横方向の断面の、前記隣接する少なくとも1つの反射器は、並列する凹状反射器の対称対を備え、
前記並列する凹状反射器は、それぞれ並列する効果的な直線の長手方向の縁を備え、前記それぞれ並列する効果的な直線の長手方向の縁は、中心線縁を備え、前記中心線縁は、前記屈折器の外面の長手方向の対称中心線の1つに近接することを特徴とする放射エネルギートラップ。 - 請求項10に記載の放射エネルギートラップであって、
前記屈折器の少なくとも3つの長手方向の辺は、実質的に4つの平坦な透明の辺を備え、前記屈折器の横方向の周囲は、ダイヤモンド形状を備え、前記屈折器の横方向のダイヤモンド形状の周囲は、第1および第2の仮想対角線を備え、前記屈折器の第1の仮想対角線と前記仮想三角形の底辺とが一致し、前記屈折器の第1の仮想対角線と横方向の断面の前記受光器とが効果的に一致し、前記並列する反射器の中心線縁は、前記屈折器の外面の長手方向の折曲線の1つに近接し、前記中心線縁は、並列する凹状反射器の対称対の、対応する円曲率部に連続し、前記各円曲率反射器部は、曲率変化点において、それぞれ曲率部に連続することを特徴とする放射エネルギートラップ。 - 請求項9に記載の放射エネルギートラップであって、
前記屈折器の少なくとも3つの長手方向の辺は、実質的に平坦な長手方向の透明な辺の隣接対と、少なくとも1つの横方向の湾曲した辺とを備え、前記少なくとも1つの横方向の湾曲した辺は、前記屈折器の内部に対して、凹状を形成し、前記少なくとも1つの横方向の凹状の湾曲した辺は、全体として半円の曲線を備え、前記全体として半円の曲線は、横方向の仮想線の直径を備え、前記全体として半円の曲線は、少なくとも1つの凹状の第二次反射器を備え、前記実質的に平坦な長手方向の透明な辺の隣接対および前記全体的に半円の横方向の辺は、長手方向の折曲線の対面対で、近接し、前記少なくとも1つの反射器は、長手方向の折曲線の対面対のうち、少なくとも片方に隣接することを特徴とする放射エネルギートラップ。 - 請求項12に記載の放射エネルギートラップであって、
横方向の仮想線の直径は、前記仮想三角形の底辺と一致し、前記受光器の横方向の距離は、横方向の仮想線の直径の中心であり、効果的に一直線上であり、その半分の距離であり、前記少なくとも1つの第二次反射器は、並列する半円の凹状の反射器の、対称対を備え、前記並列する半円凹状の反射器の、対称対は、第二次中心線縁を備え、前記第二次中心線縁は、横方向の第二次縁点を備え、前記横方向の第二次縁点は、前記受光器の横方向の距離の中心に近接し、
前記少なくとも1つの反射器の1つと長手方向の折曲線の対面対の1つは、長手方向に隣接することを特徴とする放射エネルギートラップ。 - 請求項12に記載の放射エネルギートラップであって、
横方向の断面において、透明な流体内側屈折器部は、第二次複合屈折器を入れ子状にし、前記第二次複合屈折器は、固体外側屈折器部と、第二次流体内側屈折器部とを備え、第二次複合屈折器の各部は、横方向の断面に、ダイヤモンド形状を備え、各ダイヤモンド形状は、第二次対角線の直交対を備え、前記第二次直交対角線は、対応して一直線上であり、前記受光器の横方向の距離は、各直交対から、1つの一直線上の対角線の組と一直線上であり、前記受光器の横方向の距離は、第二次複合屈折器固体外側屈折器部の、2つの直交する対角線の1つと、効果的に同一であり、前記受光器は、全体的に半円凹状の第二次反射器の、横方向の仮想線の直径と、効果的に平行であり、
前記第二次反射器は、並列する円形の2つの曲率を各対が有する対称対であって、凹状の反射器は、前記並列する円形の2つの曲率を各対が有する対称対であって、凹状の反射器は、第二次長手方向の中心線縁を備え、前記第二次長手方向の中心線縁は、横方向の第二次縁点を備え、前記第二次複合屈折器の固体外側屈折器部の第2の対角線は、第1および第2の端部点を備え、前記第1端部点は、横方向の第二次縁点に近接し、前記第2端部点は、前記少なくとも1つの凹状の第二次反射器の、仮想線の直径に一致し、
前記受光器の横方向の距離は、前記第二次反射器の仮想線の直径の半分未満であって、前記第二次複合屈折器の固体外側屈折器の横方向のダイヤモンド形状のISBAは、二次的なSBA以下の角度を備え、前記少なくとも1つの反射器の1つのうち、1つの効果的な直線の長手方向の縁は、長手方向の曲げ線の対面対のうち片方に隣接することを特徴とする放射エネルギートラップ。 - 請求項14に記載の放射エネルギートラップであって、
前記第二次反射器は、長手方向の隔壁を備え、前記隔壁は、対面する「逆V字型の」反射器部の横方向の対を備え、前記隔壁は、第二次反射器の区画の間に離間し、前記第二次反射器の隔壁と区画とは順次連続し、前記「逆V字型」の閉端部は、横方向のラインセグメントであって、前記横方向のラインセグメントは、前記第二次反射器の仮想線の直径と一致し、前記「逆V字型」の開端部は、長手方向のラインセグメントを備え、前記「逆V字型」の長手方向のラインセグメントは、第二次反射器の仮想底部線と一直線上であって、前記第二次反射器の仮想底部線は、横方向の断面において、並列する円形の凹状の対になった第二次反射器部の両方に対する、仮想接線を備え、前記第二次反射器の仮想底部線は、前記区画の底部長手方向の距離を備え、前記第二次複合屈折器と前記同一の受光器とは、屈折器―受光器の長手方向の部分を備え、前記屈折器―受光器の長手方向の部は、互いの第二次反射器区画内に入れ子状になることを特徴とする放射エネルギートラップ。 - 請求項15に記載の放射エネルギートラップであって、
前記屈折器部―受光器部は、各々、長手方向の距離を備え、前記第二次反射器の区画の底部の長手方向の線の距離と前記屈折器−受光器の長手方向の距離とは同一であって、前記第二次反射器の区画の底部の長手方向の線の距離と前記「逆V字型」の長手方向のラインセグメントとは、比例関係を備えることを特徴とする放射エネルギートラップ。 - 請求項16に記載の放射エネルギートラップであって、
前記屈折器の透明な固体外側部は、45度のSBAと、62.9度のISBAと、24度の第二次SBAと、62.5度の第二次ISBAとを備え、前記固体屈折器部の名目上の屈折率がn=1.5であって、前記流体屈折器部がn=1.33であって、前記ISBAの内部辺が前記第二次反射器に直線的に延びており、前記屈折器の横方向の断面は、固体領域が約40%を占めており、前記第二次反射器の区画の底部の長手方向の線の距離および前記「逆V字型」の長手方向のラインセグメントの距離は、2対1の比率を備え、前記屈折器は、反射器に対して非近接する隣接する長手方向の折曲線の対を備え、前記反射器に対して非近接する、隣接する折曲線の対は、横方向の断面において、隣接する折曲点の対を備え、前記隣接する折曲点の対は、仮想接線を備え、前記隣接する折曲点の仮想接線は、曲率変化点にて交差し、
前記反射器は、2つの連続する横方向の曲率部を備え、前記2つの連続する横方向の曲率部は、曲率変化点の接線が交差する点にて連続し、前記屈折器に隣接する曲率部は、円曲率を備え、前記円曲率は、パラボラ式曲率部にて連続することを特徴とする放射エネルギートラップ。 - 請求項17に記載の放射エネルギートラップであって、
前記屈折器の対面する横方向の端部は、対応するエンドキャップを備え、前記各エンドキャップは、透明な辺の横方向の端部のための透明部と前記「逆V字型」の第二次反射器の半分の反射部とを備え、前記反射器は、対面する反射型エンドキャップを備えることを特徴とする放射エネルギートラップ。 - 請求項18に記載の放射エネルギートラップであって、
前記屈折器の透明な固体部は、ガラスやアクリルなどの透明な材料で形成され、前記屈折器の流体部は、水または不凍透明液などの透明な媒体で形成されることを特徴とする放射エネルギートラップ。 - 請求項19に記載の放射エネルギートラップであって、
前記反射面は、前部が銀またはアルミ製の不透明の保護板、または後部が銀またはアルミ製のアクリルまたは太陽光を通さない透明なプラスチック板のような材料で形成されることを特徴とする放射エネルギートラップ。 - 請求項20に記載の放射エネルギートラップであって、
a)前記屈折器の透明な外面を囲む透明管または管孤および/または非透明な表面のための熱絶縁部、
b)アレイ状の構成、
c)透明なカバー板および/またはフレーム、
d)伝熱流体搬送構造、
e)伝熱流体ポンプ、
f)伝熱流体用貯蔵タンク、
g)熱交換器、
h)ヒートポンプ、
i)DC―ACインバータ、
j)熱発電変換器、のいずれかを組み合わせとして備えることを特徴とする放射エネルギートラップ。 - 請求項21に記載の放射エネルギートラップであって、
前記受光器は、少なくとも1つの両面式太陽電池を備え、
前記エンドキャップは、前記少なくとも1つの両面式太陽電池用の電気的接続部に対してサイズを整えた封止可能な穴を備えることを特徴とする放射エネルギートラップ。 - 請求項22に記載の放射エネルギートラップであって、
前記反射器と前記屈折器の透明な辺は、閉じ込められた放射エネルギー用の開口手段を効果的に備え、前記隣接する折曲点の仮想接線は、前記開口の仮想辺を効果的に備え、
前記開口の少なくとも1つの仮想辺は、仮想局地的水平線を備え、前記仮想局地的水平線は、実質的に太陽の面の方向に、地球の表面の局地的水平線に対して平行であることを特徴とする放射エネルギートラップ。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US93745007P | 2007-06-28 | 2007-06-28 | |
PCT/US2008/007809 WO2009005621A1 (en) | 2007-06-28 | 2008-06-23 | A non-imaging diffuse light concentrator |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010531427A true JP2010531427A (ja) | 2010-09-24 |
Family
ID=40226392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010514770A Pending JP2010531427A (ja) | 2007-06-28 | 2008-06-23 | 非結像拡散光集光器 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8207482B2 (ja) |
EP (1) | EP2160638A1 (ja) |
JP (1) | JP2010531427A (ja) |
CN (1) | CN101688931A (ja) |
CA (1) | CA2689501A1 (ja) |
WO (1) | WO2009005621A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106339517A (zh) * | 2015-07-09 | 2017-01-18 | 中国科学院微电子研究所 | 一种预测表面活性剂热力学性质的方法及系统 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110108092A1 (en) * | 2008-05-13 | 2011-05-12 | Chromasun Pty Ltd | Concentrator for solar radiation |
ES2364115B1 (es) * | 2009-12-30 | 2012-03-23 | Agengoa Solar New Technologies, S.A. | Colector solar cilindro paramétrico con reconcentrador secundario optimizado y su procedimiento de diseño. |
ES2727278T3 (es) * | 2010-07-05 | 2019-10-15 | Glasspoint Solar Inc | Concentrar la energía solar con invernaderos |
CN103221756B (zh) | 2010-07-05 | 2016-05-25 | 玻点太阳能有限公司 | 太阳能直接生成蒸汽 |
CN102445002B (zh) * | 2010-09-30 | 2013-04-24 | 北京印刷学院 | 旋转抛物面聚光球面闭合采光太阳能热水发电装置 |
CN102445003B (zh) * | 2010-09-30 | 2014-04-23 | 北京印刷学院 | 圆柱形桶状闭合采光腔体聚光倍增太阳能热水器 |
CN101963399B (zh) * | 2010-09-30 | 2012-05-23 | 北京印刷学院 | 二次反射圆盘形闭合腔体采光太阳能热水发电装置 |
CN102445005B (zh) * | 2010-09-30 | 2013-06-19 | 北京印刷学院 | 球面闭合腔体采光聚光倍增太阳能热水器 |
CN101975460B (zh) * | 2010-10-25 | 2012-02-15 | 北京印刷学院 | 二次反射抛物柱面聚光空心方形闭合腔体采光太阳能热水器 |
CN101975461B (zh) * | 2010-10-25 | 2012-02-15 | 北京印刷学院 | 二次反射聚光平面采光太阳能热水器 |
ITMI20111571A1 (it) | 2011-09-01 | 2013-03-02 | Fond Politecnico Di Milano | Concentratore solare per fotovoltaico |
US20170003054A1 (en) | 2015-06-30 | 2017-01-05 | Glasspoint Solar, Inc. | Supports for suspended solar enhanced oil recovery concentrators and receivers, and associated systems and methods |
US9654053B2 (en) | 2015-09-01 | 2017-05-16 | Sun Energy, Inc. | Solar module support structure |
US10408497B2 (en) | 2016-06-09 | 2019-09-10 | James Rosa | Emergent platform diffuse light concentrating collector |
CN112833568A (zh) * | 2021-01-07 | 2021-05-25 | 南京师范大学 | 一种基于旋转棱镜跟踪的聚光集热装置及其方法 |
WO2022205375A1 (zh) * | 2021-04-01 | 2022-10-06 | 博立码杰通讯(深圳)有限公司 | 太阳能利用装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4233961A (en) * | 1979-05-10 | 1980-11-18 | Kelly Donald A | Suspended, hot-box solar collectors |
IT1150272B (it) * | 1982-03-11 | 1986-12-10 | Siv Soc Italiana Vetro | Rifrattore a prismi atto a concentrare energia solare,su un opportuno piano di raccolta,rimanendo in posizione fissa nel tempo |
US4505264A (en) * | 1983-12-27 | 1985-03-19 | Universite Laval | Electromagnetic wave concentrator |
US4915489A (en) * | 1988-08-01 | 1990-04-10 | Robert Minko | Prism with internal reflector |
US5555327A (en) * | 1995-06-07 | 1996-09-10 | Laughlin; Richard H. | Frustrated total internal reflection device |
JP3174549B2 (ja) * | 1998-02-26 | 2001-06-11 | 株式会社日立製作所 | 太陽光発電装置及び太陽光発電モジュール並びに太陽光発電システムの設置方法 |
US6276359B1 (en) * | 2000-05-24 | 2001-08-21 | Scott Frazier | Double reflecting solar concentrator |
US6671087B2 (en) * | 2002-04-09 | 2003-12-30 | Premakaran T. Boaz | Reflector assembly for UV-energy exposure system |
US7051529B2 (en) * | 2002-12-20 | 2006-05-30 | United Technologies Corporation | Solar dish concentrator with a molten salt receiver incorporating thermal energy storage |
-
2008
- 2008-06-23 US US12/451,930 patent/US8207482B2/en not_active Expired - Fee Related
- 2008-06-23 CA CA002689501A patent/CA2689501A1/en not_active Abandoned
- 2008-06-23 EP EP08768729A patent/EP2160638A1/en not_active Withdrawn
- 2008-06-23 JP JP2010514770A patent/JP2010531427A/ja active Pending
- 2008-06-23 CN CN200880023469A patent/CN101688931A/zh active Pending
- 2008-06-23 WO PCT/US2008/007809 patent/WO2009005621A1/en active Application Filing
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106339517A (zh) * | 2015-07-09 | 2017-01-18 | 中国科学院微电子研究所 | 一种预测表面活性剂热力学性质的方法及系统 |
CN106339517B (zh) * | 2015-07-09 | 2019-12-10 | 中国科学院微电子研究所 | 一种预测表面活性剂热力学性质的方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
EP2160638A1 (en) | 2010-03-10 |
US8207482B2 (en) | 2012-06-26 |
US20100132753A1 (en) | 2010-06-03 |
CN101688931A (zh) | 2010-03-31 |
CA2689501A1 (en) | 2009-01-08 |
WO2009005621A1 (en) | 2009-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010531427A (ja) | 非結像拡散光集光器 | |
CN101660845B (zh) | 复合曲面二次反射聚光集热器 | |
CN103370581B (zh) | 太阳热集中器装置、系统和方法 | |
US20160043259A1 (en) | Non-Imaging Light Concentrator | |
CN105974569A (zh) | 无跟踪高倍静止聚光器 | |
CN112005489A (zh) | 双面聚光太阳能装置和系统 | |
US6061181A (en) | Nontracking light converger | |
CN201576123U (zh) | 波形瓦聚光装置 | |
CN101546032B (zh) | 被动式多功能球面或柱面聚光器 | |
CN201096909Y (zh) | 一种太阳能聚光反射板 | |
JPS61165702A (ja) | 太陽光発電装置 | |
CN102721194B (zh) | 大容量高聚光比复合菲涅尔线聚光反射装置 | |
CN108645056A (zh) | 一种等接收逃逸半角太阳能聚光集热装置 | |
JP2025510780A (ja) | 太陽エネルギー利用ユニット | |
US4419984A (en) | Radiant energy collector | |
TWI693787B (zh) | 平板式集光裝置 | |
US20110088751A1 (en) | Non-imaging radiant energy concentrator | |
CN202792602U (zh) | 大容量高聚光比复合菲涅尔线聚光反射装置 | |
EP1611401A1 (en) | Solar collector of the cpc type | |
JP7668597B2 (ja) | 太陽エネルギー利用ユニットの組合せ構造 | |
JP7685264B2 (ja) | 太陽エネルギー利用ユニット及びその組合せ構造 | |
JP7590040B2 (ja) | 太陽エネルギー利用装置及び太陽エネルギー利用装置の組合せ構造 | |
CN110832259A (zh) | 立式太阳能装置 | |
KR100404338B1 (ko) | 양면을 갖는 평면 흡수기와 비대칭 반사면을 갖는 태양열집속기 및 집속방법 | |
CN107062636B (zh) | 适用于太阳能热利用的复合聚光器 |