JP2010521696A - 3D coordinate measuring machine using reference plate - Google Patents

3D coordinate measuring machine using reference plate Download PDF

Info

Publication number
JP2010521696A
JP2010521696A JP2010502956A JP2010502956A JP2010521696A JP 2010521696 A JP2010521696 A JP 2010521696A JP 2010502956 A JP2010502956 A JP 2010502956A JP 2010502956 A JP2010502956 A JP 2010502956A JP 2010521696 A JP2010521696 A JP 2010521696A
Authority
JP
Japan
Prior art keywords
reference plate
mirror
distance
light
axis stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010502956A
Other languages
Japanese (ja)
Inventor
リー、ヒュグ−ギョ
ヤング、ホ−スーン
リー、ユン−ウー
Original Assignee
コーリア リサーチ インスティトゥート オブ スタンダーズ アンド サイエンス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コーリア リサーチ インスティトゥート オブ スタンダーズ アンド サイエンス filed Critical コーリア リサーチ インスティトゥート オブ スタンダーズ アンド サイエンス
Publication of JP2010521696A publication Critical patent/JP2010521696A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/03Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring coordinates of points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/045Correction of measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/004Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points
    • G01B5/008Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points using coordinate measuring machines

Abstract

本発明は、被対象物に対する機械的誤差を実時間で補正しながら被対象物の表面座標を精密に測定することができる構造の基準板を用いた3次元座標測定機に関するもので、被対象物の上方に配置されてX軸ステージ軸上に左右に移動自在な状態で設置される測定部と、測定部の上方に配置されて固定される基準板とを備え測定部が、測定部と基準板との間の距離及び測定部と被対象物との間の距離を実時間で測定してX軸ステージの機械的誤差を補正して精密に測定するように設計されているものである。
【選択図】図1
The present invention relates to a three-dimensional coordinate measuring machine using a reference plate having a structure capable of accurately measuring surface coordinates of an object while correcting mechanical errors with respect to the object in real time. A measuring unit disposed above the object and installed on the X-axis stage axis so as to be movable left and right; and a reference plate disposed and fixed above the measuring unit; It is designed to measure the distance between the reference plate and the distance between the measuring unit and the object in real time, correct the mechanical error of the X-axis stage, and measure precisely. .
[Selection] Figure 1

Description

本発明は、被対象物に対する機械的誤差を実時間で補正しながら、被対象物の表面座標、すなわち、被対象物の表面の起伏を精密に測定することができる構造の基準板を用いた3次元座標測定機に関するもので、より詳細には、測定部が設置されるX軸ステージまたはX/Y軸ステージの長さが長いほど機械の垂れによる誤差が大きくなることから、基準板と測定部との間の距離及び測定部と被対象物との距離を実時間で測定し、機械の垂れによる誤差を比較判断し、座標を補正しながら被対象物の表面座標を精密に測定することができる構造の基準板を用いた3次元座標測定機に関するものである。   The present invention uses a reference plate having a structure capable of accurately measuring the surface coordinates of an object, that is, the undulation of the surface of the object, while correcting a mechanical error with respect to the object in real time. This relates to a three-dimensional coordinate measuring machine. More specifically, the longer the length of the X-axis stage or X / Y-axis stage on which the measurement unit is installed, the greater the error due to machine drooping. Measure the distance between the part and the distance between the measuring part and the object in real time, compare and judge the error caused by dripping of the machine, and accurately measure the surface coordinates of the object while correcting the coordinates. The present invention relates to a three-dimensional coordinate measuring machine using a reference plate having a structure that can be used.

一般的に、不特定の表面対象物を測定するためには、表面座標を獲得できる3次元座標測定機が必須的である。   Generally, in order to measure an unspecified surface object, a three-dimensional coordinate measuring machine capable of acquiring surface coordinates is essential.

このような3次元座標測定機は、数cmから数mに至る表面座標を精密に測定できる代表的な機器である。   Such a three-dimensional coordinate measuring machine is a typical apparatus that can accurately measure surface coordinates ranging from several centimeters to several meters.

3次元座標測定機は、探針棒が被測定対象物の表面を高さ方向(Z軸)形状に沿って接触または非接触方式で通り過ぎながら、形状の高さ情報を順次測定する方法をとる。   The three-dimensional coordinate measuring machine employs a method in which the probe bar sequentially measures the height information of the shape while passing the surface of the object to be measured along the height direction (Z-axis) shape in a contact or non-contact manner. .

結局、3次元座標測定機の性能は、広い領域で高さ方向(Z軸)の座標をどれだけ正確に測定できるかによる。   After all, the performance of the three-dimensional coordinate measuring machine depends on how accurately the coordinate in the height direction (Z axis) can be measured in a wide area.

しかしながら、従来の3次元座標測定機は、被対象物の表面を測定するためにX軸ステージ上で左右に移動したり、またはX/Y軸ステージ上で前後左右に移動しなければならないので、各ステージの長さが長くなるほど各ステージの垂れによる機械的誤差が発生するという問題点があった。   However, since the conventional three-dimensional coordinate measuring machine has to move left and right on the X-axis stage to measure the surface of the object, or to move back and forth and right and left on the X / Y axis stage, There is a problem that a mechanical error due to sagging of each stage occurs as the length of each stage becomes longer.

すなわち、各軸ステージの長さが1mである場合、3〜5um(マイクロメートル)の機械的誤差があると報告されている。   That is, when the length of each axis stage is 1 m, it is reported that there is a mechanical error of 3 to 5 μm (micrometer).

本発明は、前述したような従来の3次元座標測定機の問題点を勘案してなされたもので、本発明の目的は、被対象物に対する機械的誤差を実時間で補正しながら、被対象物の表面座標を精密に測定することができる構造の基準板を用いた3次元座標測定機を提供することである。   The present invention has been made in consideration of the problems of the conventional three-dimensional coordinate measuring machine as described above, and the object of the present invention is to correct the mechanical error with respect to the object in real time while correcting the object. To provide a three-dimensional coordinate measuring machine using a reference plate having a structure capable of accurately measuring the surface coordinates of an object.

前述した課題を解決する本発明の基準板を用いた3次元座標測定機は、被対象物と、被対象物の上方に配置されてX軸ステージ上に左右に移動自在な状態で設置される測定部と、測定部の上方に配置されて固定される基準板とを備え、測定部が、測定部と基準板との間の距離及び測定部と被対象物との間の距離を実時間で測定し、X軸ステージの機械的誤差を補正して精密に測定するように設計されていることを特徴とする。   A three-dimensional coordinate measuring machine using the reference plate of the present invention that solves the above-described problems is installed on the X-axis stage so as to be movable left and right on the X-axis stage. A measurement unit and a reference plate disposed and fixed above the measurement unit, and the measurement unit calculates the distance between the measurement unit and the reference plate and the distance between the measurement unit and the object in real time. It is designed to measure accurately and to correct the mechanical error of the X-axis stage to measure accurately.

本発明に係る基準板を用いた3次元座標測定機は、測定部が設置されるX軸ステージまたはX/Y軸ステージの長さが長くなるほど機械の垂れによる誤差が大きくなることから、基準板と測定部との間の距離及び測定部と被対象物との間の距離を実時間で測定し、機械の垂れによる誤差を比較判断し、座標を補正しながら被対象物の表面座標を精密に測定することができ、信頼性を向上させることができる。   In the three-dimensional coordinate measuring machine using the reference plate according to the present invention, the error due to the machine drooping increases as the length of the X-axis stage or the X / Y-axis stage on which the measurement unit is installed increases. Measure the distance between the measuring unit and the distance between the measuring unit and the object in real time, compare and judge the error caused by the drooping of the machine, and correct the coordinates while correcting the coordinates. Therefore, reliability can be improved.

本発明の第1実施例に係る基準板を用いた3次元座標測定機を示した構成図である。It is the block diagram which showed the three-dimensional coordinate measuring machine using the reference | standard board concerning 1st Example of this invention. 図1の測定部を示した概念図である。It is the conceptual diagram which showed the measurement part of FIG. 本発明の第1実施例に係る基準板を用いた3次元座標測定機の機械的誤差補正を示す作動図である。It is an operation | movement figure which shows the mechanical error correction | amendment of the three-dimensional coordinate measuring machine using the reference | standard board which concerns on 1st Example of this invention. 図1の測定部の変形例を示した構成図である。It is the block diagram which showed the modification of the measurement part of FIG. 本発明の第2実施例に係る基準板を用いた3次元座標測定機を示した構成図である。It is the block diagram which showed the three-dimensional coordinate measuring machine using the reference | standard board concerning 2nd Example of this invention.

図1は、本発明の第1実施例に係る基準板を用いた3次元座標測定機を示す構成図で、図2は、図1の測定部を示す概念図である。   FIG. 1 is a configuration diagram showing a three-dimensional coordinate measuring machine using a reference plate according to a first embodiment of the present invention, and FIG. 2 is a conceptual diagram showing a measuring unit of FIG.

まず、図1に示すように、本発明は、被対象物200に対する機械的誤差を実時間で補正しながら、被対象物200の表面座標を精密に測定することができる構造の基準板を用いた3次元座標測定機100に関するものである。   First, as shown in FIG. 1, the present invention uses a reference plate having a structure capable of accurately measuring the surface coordinates of the object 200 while correcting the mechanical error with respect to the object 200 in real time. This relates to the three-dimensional coordinate measuring machine 100.

このような3次元座標測定機100は、大きく2つの部分、すなわち、被対象物200を測定する測定部20と、測定部20の基準になる基準板10とから構成されている。   Such a three-dimensional coordinate measuring machine 100 is mainly composed of two parts, that is, a measuring unit 20 that measures the object 200 and a reference plate 10 that serves as a reference for the measuring unit 20.

ここで、測定部20は、被対象物200の上方に配置され、左右に移動できるようにX軸ステージ30上に設置されている。   Here, the measuring unit 20 is disposed above the object 200 and is installed on the X-axis stage 30 so as to be movable left and right.

そして、X軸ステージ30は、被対象物200の全体に亘って測定部20を左右に移動させるのに充分な長さを有し、ガイドレール及び測定部20が結合された移送スクリューの組み合わせ、または測定部20が搭載されたリニアモーターとして構成されている。   The X-axis stage 30 has a length sufficient to move the measuring unit 20 left and right over the entire object 200, and a combination of a guide screw and a transfer screw to which the measuring unit 20 is coupled. Or it is comprised as a linear motor with which the measurement part 20 is mounted.

さらに、基準板10は、測定部20の上方に離隔して固定され、測定部20が左右に移動しながら感知できるようにX軸ステージ30の長さと同一の長さを有している。   Further, the reference plate 10 is spaced apart and fixed above the measurement unit 20 and has the same length as the X-axis stage 30 so that the measurement unit 20 can sense while moving left and right.

ここで、基準板10は、測定部20及びX軸ステージ30とは別途に、独立して固定されている。   Here, the reference plate 10 is fixed independently of the measurement unit 20 and the X-axis stage 30.

一方、測定部20は、基準板10との間の距離及び被対象物200との間の距離を実時間で測定し、X軸ステージ30の機械的誤差を補正して精密に測定するように設計されている。   On the other hand, the measurement unit 20 measures the distance to the reference plate 10 and the distance to the object 200 in real time, and corrects the mechanical error of the X-axis stage 30 to measure precisely. Designed.

このような測定部20は、光を用いて被対象物200の表面座標を測定する非接触式、または、被対象物200の表面を通り過ぎながら表面座標を測定する接触式で設計されている。   Such a measuring unit 20 is designed by a non-contact type that measures the surface coordinates of the object 200 using light, or a contact type that measures the surface coordinates while passing through the surface of the object 200.

ここで、非接触式測定部20である場合、すなわち、測定部20を非接触式で設計した場合、測定部20は、図2のように、光を照射する光源21と、光源21から照射された光を直進(すなわち、光源21から光を照射する際の直進方向)及び下方に向けて分光させる分光器22と、分光器22を通して下方に向けて分光された光を反射して直進させる(すなわち、光源21から光を照射する際の直進方向に向けて光を進行させる)第1ミラー23と、分光器22及び第1ミラー23から直進する光を上下方向に向けて反射する第2ミラー24と、第2ミラー24により上方に向けて反射された光を受光して基準板10との距離を実時間で測定する第1干渉計25aと、第2ミラー24から下方に向けて反射された光を受光して被対象物200の表面との距離を実時間で測定する第2干渉計25bと、中央処理部28に連結されて第1干渉計25a及び第2干渉計25bの間接信号をそれぞれ受信するレシーバー26とを備えている。   Here, in the case of the non-contact type measurement unit 20, that is, when the measurement unit 20 is designed in a non-contact type, the measurement unit 20 emits light from the light source 21 and the light source 21 as shown in FIG. The spectroscope 22 that splits the emitted light straight (that is, the straight direction when light is emitted from the light source 21) and downward, and the light that has been split downward through the spectroscope 22 is reflected and straightened. A first mirror 23 (that travels light in a straight traveling direction when light is emitted from the light source 21), and a second light that reflects light traveling straight from the spectroscope 22 and the first mirror 23 in the vertical direction. A mirror 24, a first interferometer 25a that receives light reflected upward by the second mirror 24 and measures the distance from the reference plate 10 in real time, and reflects downward from the second mirror 24 Receiving the received light 2 A second interferometer 25b that measures the distance to the surface of 0 in real time, and a receiver 26 that is connected to the central processing unit 28 and receives the indirect signals of the first and second interferometers 25a and 25b. ing.

第1干渉計25aと第2干渉計25bは、一つの光源21から出た光を適切な方法で2つまたはそれ以上に分けて光路差を持たせ、再び波面を重畳するときに生じる干渉を観測する機器である。
すなわち、一つの光源21から出た光を2個に分離し、1個の光は干渉計の内部を通り過ぎるようにし、1個の光は測定対象に照射することで、2個の光路差を用いて観測する機器である。
The first interferometer 25a and the second interferometer 25b divide the light emitted from one light source 21 into two or more by an appropriate method so as to have an optical path difference, and generate interference when the wavefront is superimposed again. It is a device to observe.
That is, the light emitted from one light source 21 is separated into two, one light passes through the interior of the interferometer, and one light irradiates the object to be measured. It is a device that uses and observes.

図3は、第1実施例に係る基準板を用いた3次元座標測定機の機械的誤差補正を示す作動図である。   FIG. 3 is an operation diagram showing mechanical error correction of the three-dimensional coordinate measuring machine using the reference plate according to the first embodiment.

まず、図2を参照して説明すると、測定部20は、一つの光源21から照射された光を分光器22及び第1ミラー23を通して2個の光に分離して第2ミラー24に向けて照射し、第2ミラー24は、2個の光を第1干渉計25a及び第2干渉計25bに向けて反射して、第1干渉計25a及び第2干渉計25bは、それぞれ基準板10及び被対象物200に向けて光を照射してその距離を観測するように設計されている。   First, with reference to FIG. 2, the measurement unit 20 separates the light emitted from one light source 21 into two lights through the spectroscope 22 and the first mirror 23 and directs the light toward the second mirror 24. The second mirror 24 reflects the two lights toward the first interferometer 25a and the second interferometer 25b, and the first interferometer 25a and the second interferometer 25b are connected to the reference plate 10 and the second interferometer 25b, respectively. It is designed to observe the distance by irradiating the object 200 with light.

そして、第1干渉計25a及び第2干渉計25bで観測された間接信号は、中央処理部28に連結された各レシーバー26に第2ミラー24を通して送られるように設計されている。
そして、中央処理部28は、X軸ステージ30の機械的誤差を補正し、被対象物200の表面座標を精密に測定するように設計されている。
The indirect signals observed by the first interferometer 25 a and the second interferometer 25 b are designed to be sent through the second mirror 24 to each receiver 26 connected to the central processing unit 28.
The central processing unit 28 is designed to correct the mechanical error of the X-axis stage 30 and accurately measure the surface coordinates of the object 200.

さらに、図3に示すように、基準板を用いた3次元座標測定機100の作動を説明すると、まず、X軸ステージ30の垂れ(例えば、撓み)が発生しない1番区間(図3で丸1番で示す区域)では、第1干渉計25aと基準板10との距離D1が測定され、中央処理部28を通してメモリされるように設計されている。
そして、第2干渉計25bと被対象物200の表面座標D2は、レシーバー26及び中央処理部28を通してディスプレイされて実時間で出力されるように設計されている。
Furthermore, as shown in FIG. 3, the operation of the three-dimensional coordinate measuring machine 100 using the reference plate will be described. First, the first section (the round in FIG. 3) in which no dripping (eg, bending) of the X-axis stage 30 occurs. In the area indicated by No. 1, the distance D1 between the first interferometer 25a and the reference plate 10 is measured and designed to be memorized through the central processing unit 28.
The second interferometer 25b and the surface coordinates D2 of the object 200 are designed to be displayed through the receiver 26 and the central processing unit 28 and output in real time.

そして、X軸ステージ30の垂れが発生した2番区間(図3で丸2番で示す区域)では、+Δdの変化量が発生するので、第1干渉計25aにより測定される基準板10と測定部20との間の値は、変化量を加えたD1+Δdである。
この値と中央処理部28を通して1番区間(図3で丸1番で示す区域)で測定されたD1値とを比較判断し、+Δdを算出するように設計されている。
In the second section where the drooping of the X-axis stage 30 occurs (the area indicated by the circle number 2 in FIG. 3), a change amount of + Δd is generated, so the reference plate 10 measured by the first interferometer 25a is measured. The value between the unit 20 is D1 + Δd to which the amount of change is added.
This value is designed to compare and determine the D1 value measured in the first section (the area indicated by circle 1 in FIG. 3) through the central processing unit 28 and calculate + Δd.

これと同時に、第2干渉計25bで測定される被対象物200と測定部20との間の値はD2であるが、変化量も一緒に測定された値になるので、実質的に測定された値としては、D2−Δdが算出されるようになっている。   At the same time, the value between the object 200 and the measurement unit 20 measured by the second interferometer 25b is D2, but the amount of change is also the value measured together, so that it is substantially measured. As a value, D2-Δd is calculated.

したがって、最終的に中央処理部28を通してディスプレイされる測定部20と被対象物200の座標値は、D2−Δd+Δdになり、この値は実時間でディスプレイされて出力されるようになっている。   Therefore, the coordinate value of the measuring unit 20 and the object 200 finally displayed through the central processing unit 28 is D2−Δd + Δd, and this value is displayed and output in real time.

このように、本発明は、機械的誤差であるΔd値を補正して精密に測定することができる。   Thus, according to the present invention, the Δd value, which is a mechanical error, can be corrected and accurately measured.

図4は、図1の測定部の変形例を示した構成図である。   FIG. 4 is a configuration diagram illustrating a modification of the measurement unit in FIG.

図4に示すように、測定部20は、接触式として、光を照射する光源21と、光源21から照射された光を直進及び下方に向けて分光させる分光器22と、分光器22を通して下方に分光された光を反射して直進させる第1ミラー23と、分光器22及び第1ミラー23から直進される光を上下に向けて反射させる第2ミラー24と、第3ミラー27aを上端に有するとともに被対象物200の表面に密着した状態を維持するように被対象物200の表面形状に応じて昇降する探針棒27と、第2ミラー24により上方に向けて反射した光を受光して基準板10との距離を実時間で測定する第1干渉計25aと、第2ミラー24により下方に向けて反射した光を受光して探針棒27の昇降距離を実時間で測定する第2干渉計25bと、第1干渉計25a及び第2干渉計25bの間接信号をそれぞれ受信して比較処理できるように中央処理部28に連結されるレシーバー26とを備えている。   As shown in FIG. 4, the measurement unit 20 has a contact type light source 21 that irradiates light, a spectroscope 22 that splits light emitted from the light source 21 straight and downward, and a downward direction through the spectroscope 22. The first mirror 23 that reflects and travels straightly into the light, the second mirror 24 that reflects light that travels straight from the spectroscope 22 and the first mirror 23 up and down, and the third mirror 27a at the upper end. And a probe bar 27 that moves up and down according to the surface shape of the target object 200 so as to maintain a state in close contact with the surface of the target object 200 and light reflected upward by the second mirror 24. The first interferometer 25a that measures the distance to the reference plate 10 in real time and the light reflected downward by the second mirror 24 are received, and the elevation distance of the probe rod 27 is measured in real time. 2 interferometer 25b and first dryer And a receiver 26 coupled to the central processing unit 28 to the indirect signal meter 25a and a second interferometer 25b can be compared receive and process respectively.

被対象物200の表面形状によって昇降する探針棒27の昇降変化を感知するために、第3ミラー27aが、探針棒27の上端に装着され、第2干渉計25bが、前述した昇降変化を測定するように設計されている。   A third mirror 27a is attached to the upper end of the probe bar 27 in order to sense the elevation change of the probe bar 27 that moves up and down depending on the surface shape of the object 200, and the second interferometer 25b is moved up and down as described above. Designed to measure.

図5は、本発明の第2実施例に係る基準板を用いた3次元座標測定機の構成図である。   FIG. 5 is a configuration diagram of a three-dimensional coordinate measuring machine using a reference plate according to a second embodiment of the present invention.

図5に示すように、第2実施例は、第1実施例とは異なり、測定部20は、前後左右に移動するX軸ステージ30とY軸ステージ40とが交差する軸上に設置されている。   As shown in FIG. 5, the second embodiment is different from the first embodiment in that the measuring unit 20 is installed on an axis where the X-axis stage 30 and the Y-axis stage 40 that move back and forth and right and left intersect. Yes.

このような3次元座標測定機100は、被対象物200と、被対象物200の上方に配置されて、前後左右に移動できるように交差したX軸ステージ30及びY軸ステージ40の軸上に設置される測定部20と、測定部20の上方に固定される基準板10とを備え、測定部20は、測定部20と基準板10との間の距離及び測定部20と被対象物200との間の距離を実時間で測定し、X軸ステージ30及びY軸ステージ40上の機械的誤差を補正して精密に測定するように設計されている。   Such a three-dimensional coordinate measuring machine 100 is placed on the axis of the object 200 and the X-axis stage 30 and the Y-axis stage 40 that are arranged above the object 200 and intersect so that they can move back and forth and right and left. The measuring unit 20 is provided, and the reference plate 10 is fixed above the measuring unit 20. The measuring unit 20 includes the distance between the measuring unit 20 and the reference plate 10 and the measuring unit 20 and the object 200. It is designed to measure the distance between the X axis stage 30 and the Y axis stage 40 in real time and to correct the mechanical error on the X axis stage 30 and the Y axis stage 40 for precise measurement.

このような第2実施例の3次元座標測定機100の構成及び作動は、第1実施例を参照して詳細に説明したので、それに対する説明は省略する。   Since the configuration and operation of the three-dimensional coordinate measuring machine 100 according to the second embodiment have been described in detail with reference to the first embodiment, description thereof will be omitted.

一方、上述した例は、本発明を説明しようとする例に過ぎない。
したがって、本発明の属する技術分野における当業者が本発明の詳細な説明を参照して部分的に変更して使用したものも本発明の範囲に属することは当然である。
On the other hand, the above-described examples are merely examples for explaining the present invention.
Accordingly, it is natural that those skilled in the art to which the present invention pertains and used are partially modified with reference to the detailed description of the present invention.

100 ・・・ 3次元座標測定機
10 ・・・ 基準板
20 ・・・ 測定部
21 ・・・ 光源
22 ・・・ 分光器
23 ・・・ 第1ミラー
24 ・・・ 第2ミラー
25a ・・・ 第1干渉計
25b ・・・ 第2干渉計
26 ・・・ レシーバー
27a ・・・ 第3ミラー
27 ・・・ 探針棒
28 ・・・ 中央処理部
30 ・・・ X軸ステージ
40 ・・・ Y軸ステージ
200 ・・・ 被対象物


DESCRIPTION OF SYMBOLS 100 ... Three-dimensional coordinate measuring machine 10 ... Reference | standard board 20 ... Measuring part 21 ... Light source 22 ... Spectroscope 23 ... 1st mirror 24 ... 2nd mirror 25a ... First interferometer 25b ... Second interferometer 26 ... Receiver 27a ... Third mirror 27 ... Probe bar 28 ... Central processing unit 30 ... X-axis stage 40 ... Y Axis stage 200 ... Object


Claims (4)

被対象物の表面領域を測定可能な3次元座標測定機において、
被対象物と、該被対象物の上方に配置されてX軸ステージ上に左右に移動自在な状態で設置される測定部と、該測定部の上方に配置されて固定される基準板とを備え、
前記測定部が、該測定部と基準板との間の距離及び前記測定部と被対象物との間の距離を実時間で測定して前記X軸ステージの機械的誤差を補正して精密に測定するように設計されていることを特徴とする基準板を用いた座標測定機。
In a three-dimensional coordinate measuring machine capable of measuring the surface area of an object,
An object, a measuring unit disposed above the object and installed on the X-axis stage so as to be movable left and right, and a reference plate disposed and fixed above the measuring unit Prepared,
The measurement unit accurately measures the distance between the measurement unit and the reference plate and the distance between the measurement unit and the object in real time to correct the mechanical error of the X-axis stage. A coordinate measuring machine using a reference plate characterized by being designed to measure.
被対象物の表面領域を測定可能な3次元座標測定機において、
前記被対象物と、前記被対象物の上方に配置されて交差したX軸ステージ及びY軸ステージ上に前後左右に移動自在な状態で設置される測定部と、該測定部の上方に配置されて固定される基準板とを備え、
前記測定部が、該測定部と基準板との間の距離及び前記測定部と被対象物との間の距離を実時間で測定して前記X軸ステージ及びY軸ステージ上の機械的誤差を補正して精密に測定するように設計されていることを特徴とする基準板を用いた3次元座標測定機。
In a three-dimensional coordinate measuring machine capable of measuring the surface area of an object,
The object, a measurement unit that is arranged above the object and intersects with the X-axis stage and the Y-axis stage that are arranged to be movable in the front-rear and left-right directions, and is disposed above the measurement unit. And a reference plate to be fixed
The measurement unit measures the distance between the measurement unit and the reference plate and the distance between the measurement unit and the object in real time, and calculates mechanical errors on the X-axis stage and the Y-axis stage. A three-dimensional coordinate measuring machine using a reference plate, which is designed to be corrected and measured accurately.
前記測定部が、光を照射する光源と、該光源から照射された光を直進及び下方に向けて分光させる分光器と、該分光器を通して下方に向けて分光された光を反射して直進させる第1ミラーと、前記分光器及び第1ミラーから直進する光を上下に向けて反射させる第2ミラーと、該第2ミラーから上方に反射された光を受光して前記基準板との距離を実時間で測定する第1干渉計と、前記第2ミラーから下方に反射された光を受光して前記被対象物の表面との距離を実時間で測定する第2干渉計と、中央処理部に連結されて前記第1干渉計及び第2干渉計の間接信号をそれぞれ受信するレシーバーとを備えていることを特徴とする請求項1または請求項2に記載の基準板を用いた3次元座標測定機。   The measuring unit irradiates light, a spectroscope that divides light emitted from the light source straightly and downwards, and reflects light that has been split downward through the spectrographs to make straight light. The first mirror, the second mirror that reflects light traveling straight from the spectroscope and the first mirror upward and downward, and the light reflected upward from the second mirror to receive the distance from the reference plate A first interferometer that measures in real time, a second interferometer that receives light reflected downward from the second mirror and measures the distance from the surface of the object in real time, and a central processing unit And a receiver for receiving indirect signals of the first and second interferometers, respectively, and a three-dimensional coordinate using the reference plate according to claim 1, Measuring machine. 前記測定部が、光を照射する光源と、該光源から照射された光を直進及び下方に向けて分光させる分光器と、該分光器を通して下方に向けて分光された光を反射して直進させる第1ミラーと、前記分光器及び第1ミラーから直進する光を上下に向けて反射する第2ミラーと、第3ミラーを上端に有するとともに前記被対象物の表面に密着した状態を維持するように前記被対象物の表面形状に沿って昇降する探針棒と、前記第2ミラーにより上方に向けて反射された光を受光して前記基準板との距離を実時間で測定する第1干渉計と、前記第2ミラーにより下方に向けて反射された光を受光して前記探針棒の昇降距離を実時間で測定する第2干渉計と、前記第1干渉計及び第2干渉計の間接信号をそれぞれ受信して比較処理できるように中央処理部に連結されるレシーバーとを備えていることを特徴とする請求項1または請求項2に記載の基準板を用いた3次元座標測定機。   The measuring unit irradiates light, a spectroscope that divides light emitted from the light source straightly and downwards, and reflects light that has been split downward through the spectrographs to make straight light. A first mirror, a second mirror that reflects light traveling straight from the spectroscope and the first mirror upward and downward, a third mirror at the top, and a state of being in close contact with the surface of the object. A first interference that receives light reflected upward by the probe mirror that moves up and down along the surface shape of the object and the reference plate and measures the distance from the reference plate in real time. A second interferometer that receives light reflected downward by the second mirror and measures the elevation distance of the probe bar in real time, and the first interferometer and the second interferometer Central processing so that each indirect signal can be received and compared. Three-dimensional coordinate measuring machine using a reference plate according to claim 1 or claim 2, characterized in that it comprises a receiver coupled to the part.
JP2010502956A 2008-03-13 2009-01-21 3D coordinate measuring machine using reference plate Pending JP2010521696A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080023467A KR100937477B1 (en) 2008-03-13 2008-03-13 A Coordinate Measuring Machine Using A Reference Plate
PCT/KR2009/000312 WO2009113765A1 (en) 2008-03-13 2009-01-21 Coordinate measuring machine using referencing panel

Publications (1)

Publication Number Publication Date
JP2010521696A true JP2010521696A (en) 2010-06-24

Family

ID=41065399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010502956A Pending JP2010521696A (en) 2008-03-13 2009-01-21 3D coordinate measuring machine using reference plate

Country Status (3)

Country Link
JP (1) JP2010521696A (en)
KR (1) KR100937477B1 (en)
WO (1) WO2009113765A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101751414B1 (en) * 2015-01-22 2017-06-28 (주)프로옵틱스 Three-dimensional measuring apparatus has a high-precision measurement function

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101817132B1 (en) * 2016-05-17 2018-01-10 주식회사 엑스엘 Precision measuring system using interferometer and vision
CN109666969B (en) * 2019-03-01 2023-09-19 洛阳德晶智能科技有限公司 Centering device for single crystal furnace during clamping of crystal bars and use method
KR102143388B1 (en) * 2019-05-29 2020-08-11 한국산업기술시험원 Measuring device and method with a support under the rail

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09311024A (en) * 1996-05-24 1997-12-02 Ricoh Co Ltd Shape measuring device
JPH11125520A (en) * 1997-10-21 1999-05-11 Matsushita Electric Ind Co Ltd Member for supporting semiconductor wafer, and flatness measuring instrument for semiconductor wafer
JP2000266524A (en) * 1999-03-17 2000-09-29 Canon Inc Machine and method for measuring three-dimensional shape
JP2002054920A (en) * 2000-08-10 2002-02-20 Canon Inc Three-dimensional shape measuring machine, correcting method of it, stage device, and position control method
JP2007271493A (en) * 2006-03-31 2007-10-18 Konica Minolta Opto Inc Surface profile measuring apparatus and method of same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0854234A (en) * 1994-08-12 1996-02-27 Kobe Steel Ltd Three-dimensional coordinate position measuring method
KR20000012428U (en) * 1998-12-17 2000-07-05 신현준 Image measuring device for measuring cylindrical specimen
JP2006133059A (en) * 2004-11-05 2006-05-25 Canon Inc Device for measuring interference

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09311024A (en) * 1996-05-24 1997-12-02 Ricoh Co Ltd Shape measuring device
JPH11125520A (en) * 1997-10-21 1999-05-11 Matsushita Electric Ind Co Ltd Member for supporting semiconductor wafer, and flatness measuring instrument for semiconductor wafer
JP2000266524A (en) * 1999-03-17 2000-09-29 Canon Inc Machine and method for measuring three-dimensional shape
JP2002054920A (en) * 2000-08-10 2002-02-20 Canon Inc Three-dimensional shape measuring machine, correcting method of it, stage device, and position control method
JP2007271493A (en) * 2006-03-31 2007-10-18 Konica Minolta Opto Inc Surface profile measuring apparatus and method of same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101751414B1 (en) * 2015-01-22 2017-06-28 (주)프로옵틱스 Three-dimensional measuring apparatus has a high-precision measurement function

Also Published As

Publication number Publication date
WO2009113765A1 (en) 2009-09-17
KR20090098225A (en) 2009-09-17
KR100937477B1 (en) 2010-01-19

Similar Documents

Publication Publication Date Title
US8294906B2 (en) Measuring head system for a coordinate measuring machine and method for optically measuring of displacements of a probe element
JP4246071B2 (en) Method for determining and correcting guidance errors in coordinate measuring machines.
US20180202796A1 (en) Measuring device and method for measuring at least one length measurand
KR20130108121A (en) Position-measuring device and system having such a position-measuring device
CN104040288A (en) Outline profile surface roughness measurement device and outline profile surface roughness measurement method
US10371511B2 (en) Device and method for geometrically measuring an object
KR101959341B1 (en) Position-measuring device and system having a plurality of position-measuring devices
EP2420796B1 (en) Shape measuring method and shape measuring apparatus using white light interferometry
JP2014508292A (en) Method and apparatus for measuring surface with high accuracy
JP2010521696A (en) 3D coordinate measuring machine using reference plate
JP2011064674A5 (en) Laser interferometer, processing apparatus using the same, and method of manufacturing parts
CN102288141A (en) Industrial machine
CN103884270B (en) Measurement apparatus and the method for two dimension minute angle is produced when Circular gratings is installed
US10775150B2 (en) Optical roughness sensor for a coordinate measuring machine
CN102878933B (en) Comparator based on white light interference positioning principle and detection method thereof
JP2020530105A (en) Measuring the position of an object in space
JP7361166B2 (en) Multi-axis laser interferometer and displacement detection method
JP5704150B2 (en) White interference device and position and displacement measuring method of white interference device
CN105371755A (en) Wavelength correction type multi-beam step plane reflecting mirror laser interferometer and wavelength correction method
JP2006514747A (en) Optical measurement system for capturing and detecting surface geometry data
KR20030056971A (en) Tree demensional shape/surface illumination measuring apparatus
CN102029554A (en) Quick measurement system for circular trace motion error based on sweep frequency laser interference
CN201940862U (en) System for rapidly measuring error of circular track motion based on laser sweep interference
JP2008286598A (en) Wavelength estimation method of tracking laser interferometer
WO2016084194A1 (en) Shape measuring device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111213