JP2010503868A - 光集中機構のための方法、システムおよび装置 - Google Patents

光集中機構のための方法、システムおよび装置 Download PDF

Info

Publication number
JP2010503868A
JP2010503868A JP2009528531A JP2009528531A JP2010503868A JP 2010503868 A JP2010503868 A JP 2010503868A JP 2009528531 A JP2009528531 A JP 2009528531A JP 2009528531 A JP2009528531 A JP 2009528531A JP 2010503868 A JP2010503868 A JP 2010503868A
Authority
JP
Japan
Prior art keywords
resonant structure
plasmon
excitation light
nanoantenna
resonant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009528531A
Other languages
English (en)
Inventor
マーク エフ. オールダム,
エリック エス. ノールマン,
チャールズ アール. コネル,
ティモシー エム. ウォーデンバーグ,
Original Assignee
アプライド バイオシステムズ, エルエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アプライド バイオシステムズ, エルエルシー filed Critical アプライド バイオシステムズ, エルエルシー
Publication of JP2010503868A publication Critical patent/JP2010503868A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

ある実施形態は、概して、核酸の分析のための方法に関する。本方法は、1つ以上の蛍光標識された核酸と結合するように構成される共鳴構造体を提供するステップと、共鳴構造体上の源から励起光を指向するステップとを含む。また、本方法は、共鳴構造体の表面上にプラズモンを生成するステップを含み、検体は、共鳴構造体のエネルギー集中点に固定される。さらに別の実施形態において、プラズモン構造体が提供される。プラズモン構造体は、金属材料で実装されたナノアンテナを含み、このナノアンテナは、ナノアンテナの一部に隣接して配置される増強領域および遮断層を生成するように構成される。遮断層は、増強領域外側のフルオロフォアの励起を実質的に低減するように構成される。

Description

本発明は、概して、光集中または増強機構に関し、より具体的には、周辺共鳴空洞上の表面プラズモンに基づいて、高エネルギー場を生成する光集中機構のための方法、装置、およびシステムに関する。
標識ヌクレオチドを使用する非段階的単分子配列決定(自励、または光不安定性(photo labile)ブロッカーの利用のいずれか)では、取り込まれるヌクレオチドに付随する標識が、適切に観察され得るように、標識ヌクレオチド由来のバックグラウンドを低減するための方法を作用させる必要がある。いくつかの以前に記載された方法として、ゼロモード導波路、光不安定性リンカーを消光するステップと組み合わせたプラズモン共鳴、酵素とヌクレオチドとの間のFRET対、TIRFと組み合わせた排除層(exclusionlayer)、および類似の他の技術を含む。
従来の方法は、欠点および不利点を有する。例えば、典型的方法は、典型的には、狭い面積内で励起光を遮断するステップを伴う。この励起光は、典型的には、高価な大型レーザを必要とする。さらに、本方法は、信号品質を劣化させる膨大な量のバックグラウンドノイズを生成し得る。
要旨
ある実施形態は、概して、核酸の分析のための方法に関する。本方法は、1つ以上の蛍光標識された核酸と結合するように構成される共鳴構造体を提供するステップと、共鳴構造体上の源から励起光を指向するステップとを含む。また、本方法は、共鳴構造体の表面上でプラズモンを生成するステップを含み、検体は、共鳴構造体のエネルギー集中点に固定される。
別の実施形態は、概して、検体の分析のための方法に関する。本方法は、検体と結合する共鳴構造体を提供するステップと、共鳴構造体上の源から励起光を指向するステップとを含む。また、本方法は、共鳴構造体の表面上にプラズモンを生成するステップを含み、検体は、光活性化可能なリンカーを通して、共鳴構造体のエネルギー集中点に固定される分子と複合体を形成する。
さらに別の実施形態は、概して、プラズモン構造体に関する。プラズモン構造体は、金属材料で実装されたナノアンテナを含み、このナノアンテナは、ナノアンテナの一部に隣接して配置される増強領域および遮断層を生成するように構成される。遮断層は、増強領域外側のフルオロフォアの励起を実質的に低減するように構成される。
本実施形態の種々の特徴は、付随の図面と併せて検討される際、以下の発明を実施するための形態を参照して、より理解されることによって、さらに完全に理解され得る。
本発明の実施形態による、ナノ粒子の一種である、例示的ナノライス(naonorice)を示す。 別の実施形態による、例示的ナノクレセント(nanocrescent)を示す。 図3Aは、ナノクレセントの強度画像を示す。図3Bは、従来のゼロモード導波路を示す。図3Cは、ある実施形態による、共鳴構造体の別の実施形態を示す。 さらに別の実施形態による、サブ波長(subwavelength)孔アレイを示す。 サブ波長孔アレイのエネルギーパターンの近接場走査顕微鏡画像を示す。 さらに別の実施形態による、鈍端(blunt tip)光ファイバを示す。 さらに別の実施形態による、平面フォトニック導波路構造体を示す。 平面フォトニック導波路構造体の強度プロファイルを示す。 2次元フォトニック結晶のある実施形態を示す。 ある実施形態による、例示的ナノアンテナを示す。 例示的ボウタイ型アンテナを示す。 一連のフラクタル状のナノアンテナを示す。 図13A−Bは、さらに別の実施形態による、コーティングされたボウタイ型アンテナを示す。
定義
以下の用語は、以下に詳述される種々の実施形態を説明するために使用される。
プラズモン共鳴は、光学的振動数における自由電子またはプラズモンの集団振動として定義され得る。
表面プラズモンは、表面に拘束され、ポラリトンを生じる光と強く相互作用するプラズモンである。プラズモンは、正の誘電率を有する材料と、負の誘電率を有する材料との界面で生じる(通常、金属またはドープ誘電体)。
共鳴構造体は、小さな領域の高い局所的な電場を生成するために、光エネルギーを集中させる構造体の形状に沿って、プラズモン共鳴を使用するナノアンテナまたはナノ粒子等の構造体をいい得る。
蛍光増強比(FER)は、共鳴構造体要素を伴わず、他のすべての変数は一定である同等サイズの領域から収集される光子と比較した、共鳴構造体要素に付随する励起領域から収集される蛍光光子の比率をいい得る。
用語「ポリヌクレオチド」または「オリゴヌクレオチド」あるいは「核酸」は、交換可能に使用可能であって、ヌクレオチドモノマーの単鎖または二本鎖ポリマーを含み、これらとしては、ヌクレオチド間ホスホジエステル結合連鎖(linkage)、またはヌクレオチド間類似体によって結合される2’−デオキシリボヌクレオチド(DNA)およびリボヌクレオチド(RNA)、ならびに付随する対イオン、例えば、H+、NH4+、トリアルキルアンモニウム、Mg2+、Na+等が挙げられる。ポリヌクレオチドは、デオキシリボヌクレオチドからもっぱら構成され得るか、リボヌクレオチドからもっぱら構成され得るか、またはそのキメラ混合物から構成され得る。ポリヌクレオチドは、核酸塩基および糖類似体から構成され得る。ポリヌクレオチドは、典型的には、例えば、当技術分野においてオリゴヌクレオチドと一般に称される場合、5〜40の数モノマー単位から、数千モノマーヌクレオチド単位の大きさの範囲である。別に記載がない限り、ポリヌクレオチド配列と言う場合は常に、ヌクレオチドは、左から右に5’から3’の順番であって、「A」はデオキシアデノシンを示し、「C」はデオキシシチジンを示し、「G」はデオキシグアノシンを示し、「T」はチミジンを示すことを理解されるであろう。標識ポリヌクレオチドは、5’末端、3’末端、核酸塩基、ヌクレオチド間連鎖、糖類、アミノ、硫化物、ヒドロキシル、またはカルボキシルにおける修飾を含み得る。例えば、参考として本明細書に援用されるLeeらの米国特許第6,316,610 B2号を参照されたい。同様に、他の修飾も、適切とみなされる指示部位においてなされ得る。
便宜上および例証目的として、本発明の原理は、その例示的実施形態を主に参照することによって説明される。しかしながら、当業者は、同一原理が、あらゆる種類の検出システムに等しく適用され、それらにおいて実装可能であって、いずれのそのような変形例も、本発明の真の精神および範囲から逸脱しないことを容易に認識するであろう。さらに、以下の発明を実施するための形態では、特定の実施形態を図示する付随の図面に対して参照がなされる。電気的、機械的、論理的、および構造的変更は、本発明の精神および範囲から逸脱することなく、実施形態になされてもよい。したがって、以下の発明を実施するための形態は、限定的意味としてとらえられるべきではなく、本発明の範囲は、添付の特許請求の範囲およびその等価物によって定義される。
いくつかの実施形態は、概して、表面プラズモンの使用を通して、高エネルギー場を生成するためのシステム、装置、および方法に関し、表面プラズモンは、共鳴空洞の周辺に位置する。より具体的には、共鳴空洞は、金属ナノ粒子で実装されてもよい。例えば、ナノライスは、検体溶液内に配置され、限定空間内における事象の検出を促進し得る。励起光は、プラズモン、すなわち、ナノライスの表面上の限局性高エネルギー場を生成し、次いで、検体に適用し得る。金属ナノ粒子の他の実施例は、ナノロッド(nanorod)、ナノリング(nanoring)、ナノキューブ(nanocube)、ナノシェル(nanoshell)およびナノクレセントであり得る。ナノ粒子は、サイズおよび態様が可変であって、このことによって、ナノ粒子の吸収スペクトルおよび生成されたプラズモンのエネルギーを変動させるようにナノ粒子を調整することができる。限局性プラズモン共鳴を生成する実施形態は、次いで、単分子検出および蛍光相関分光測定法(fluorescentcorrelation spectrometry)(「FCS」)等の用途において使用されてもよい。他の用途として、単分子配列決定および多分子配列決定を含む。
別の実施形態は、概して、プラズモン共鳴が、孔アレイ内の孔の1つを囲む周辺表面上で生成され、したがって、利用可能なエネルギーを向上させるとともに、小体積内にそれを配置するような適切な厚さおよび材料のサブ波長孔アレイに関する。励起光は、孔アレイの表面に指向される。光の一部は、反射され得るか、または孔アレイ内の孔に入り得るが、エネルギーの大部分は、孔の周辺の表面に衝突する光に結合される。光の結合は、孔内の、孔を通っての、および/または孔上方の平面表面におけるプラズモン共鳴を生成する。類似実施形態は、プラズモン共鳴が維持されるような適切な誘電体材料を含んでもよい。
さらに別の実施形態は、概して、サブ波長導波路として使用されるフォトニック結晶(photonics crystal)に関する。より具体的には、類似サブ波長孔アレイは、標的検体を保持してもよい。フォトニック結晶の導波路は、励起光を指向し、高価なレーザ光の再利用を可能にする。
さらに別の実施形態は、概して、プラズモンエネルギーを限局されたスポットに集中させるためのナノアンテナに関する。例えば、円形ナノアンテナが作製可能である。円形ナノアンテナの特性の1つは、エネルギーを中心に集中させ、したがって、限局された領域内のプラズモン強度を増大させることである。ナノアンテナの別の実施例は、ボウタイ型ナノアンテナである。また、ナノアンテナは、レシーバとしても使用可能である。したがって、分子を消光するとともに、発光を収集するために使用可能である。これらの金属構造体はすべて、フルオロフォアが十分近接している場合、蛍光を消光する。望ましくない消光を防止するために、フルオロフォアは、薄い(約5〜20nm)誘電体層を使用して、金属から離間することが可能である。そのような層は、ガラス、プラスチック、またはPEG等の化学コーティングから成ることができる。厚さは、完全に消光されないが、集中させたプラズモンの体積から大幅に離間しないように、フルオロフォアを離間するために十分であるべきでる。図13Aおよび13Bに示されるように、選択的に表面を被覆し、ナノアンテナから離れた領域により大きな厚さを提供することが可能である。これは、エバネセント波励起領域の指数関数的減衰の急勾配部分に低蛍光材料を配置することによって、バックグラウンドを最小限にすることができる。2006年5月16日出願の米国仮出願第60/800,440号(これは、参考として、その全体が本明細書に援用される)に教示されるように、エバネセント波領域は、SPRまたはTIRFによって生成可能である。
本発明の実施形態は、概して、小体積、すなわち、サブ波長寸法内に高エネルギー場を生成することに関する。一実施形態は、ナノ粒子を利用する。固体金属ナノ粒子(すなわち、均一組成およびナノメートル寸法の固体単一金属球)は、独特の光学特性を有することが知られている。特に、金属ナノ粒子(特に、貨幣金属)は、著しい光学共鳴を示す。このいわゆるプラズモン共鳴は、金属球内の伝導電子の入射電磁場への集合的な結合による。この共鳴は、入射電磁放射の波長に対するナノ粒子の半径に依存した、吸収または散乱によって支配され得る。このプラズモン共鳴に付随するのは、金属ナノ粒子の表面上の強力な局所電場増強である。
しかしながら、固体金属ナノ粒子の多くの用途を実現する際の深刻かつ実際的制限は、技術的に重要な波長にプラズモン共鳴を位置付けることが不可能なことである。例えば、直径10nmの固体の金ナノ粒子は、中心が520nmであるプラズモン共鳴を有する。このプラズモン共鳴は、粒子径または特定の包埋媒体を変更することによって、約30ナノメートルを超えて制御可能にシフトさせることはできない。
故に、複合ナノ粒子は、ほぼ所望の波長を中心とするプラズモン共鳴を可能にするように加工されている。図1は、本発明の実施形態による、ナノ粒子の一種である例示的ナノライスを示す。
図1に示されるように、ナノライス100は、米粒と類似形状である。ナノライス100は、ヘマタイトと呼ばれ、金で覆われる非伝導性酸化鉄から作製され得る。シェルの厚さ、ナノライスの長さ、およびコアの幅は、プラズモン共鳴の特定の周波数を生成するように操作可能である。ナノライス100のための作製方法は、Hui WangらのNanorice: A Hybrid Plasmonic Nanostructure,Nano Lett.,6(4),827−837,2006(これは、その全体が参考として本明細書に援用される)に記載されている。
いくつかの実施形態では、励起光源(図示せず)は、ナノライス100に指向されてもよい。励起光源は、レーザ、レーザダイオード、発光ダイオード(LED)、紫外線バルブ、および/または白色光源であり得る。プラズモンは、ナノライス100の金属表面上を横切る光学周波数における自由電子の集合振動である。ナノライス100の表面上のプラズモンは、光の周波数が、プラズモン振動の周波数と共鳴すると、光を電気エネルギーに変換することができる。この共鳴効果は、粒子の周囲で放射する高強度の局所的な電場を生成することができる。故に、図1はまた、ナノライス100の粒子の端部近傍のプラズモン共鳴によって生成される強力なエネルギー場を示す。ナノライスの独特の形状によって、棒状および球状粒子において以前に測定されたものよりも強力な電場が可能となる。
故に、ナノライス100は、検体内に位置付けられてもよい。励起光は、ナノ粒子に指向され、小体積内でプラズモンを生成することができる。プラズモンを生成するこの方法は、退色(bleaching)が、従来の方法ほど迅速に生じないという副次的な利点を有する。ナノ粒子は、フルオロフォアの蛍光寿命を低減させ、退色前の蛍光光子放出率および放出される光子の総数を増加させる。
他の実施形態では、他のナノ構造体が、ナノライスの代わりに使用可能である。例えば、ユーザ要件に応じて、ナノロッド、ナノリング、ナノキューブ、およびナノシェルが使用可能である。各ナノ構造体は、それぞれ独自の共鳴波長、電場の強度、生成される電場数等を示す。
図2は、例示的ナノクレセント200の2つの図を示す。図200Aは、ナノクレセント200の3次元図を表し、200Bは、軸205によって二分されるナノクレセント200の断面図を表す。ナノクレセント200は、一方の側から除去された円形部を有する金属シェル210を含み得る。金属シェル210は、金、鉄、銀、および/またはそれらの組み合わせによって実装されてもよい。ナノクレセント200の作製の際、金属は、誘電体コアの大部分上に蒸着される。誘電体コアは、次いで、除去される。
誘電体コアの除去後、ナノクレセント200は、シェルから除去された円形領域215を有する球状物体となり得る。図200Bでは、ナノクレセント200の断面は、先鋭部となって示される。しかしながら、200Aの図から、先鋭部は、実際は、円形の一部である。
種々の実施形態に従って、励起光は、円形領域215に指向され、円形領域215の周囲上の表面プラズモンは、励起光と結合し、共鳴場を生成することができる。要するに、ナノクレセント200は、共鳴構造体として機能することが可能であり、したがって、このことは、単分子配列決定、ハイブリダイゼーション等の用途、または従来のシステムと比較して、バックグラウンドクラッターが低減された小粒子を検出することを目的とする他の用途に適用され得る。さらに、励起光の角度またはナノクレセント200の配向は、生成されるプラズモンの数、ならびにプラズモンの効率および位置に影響を及ぼす。
ナノクレセント200は、LiuらのMagnetic Nanocrescents As Controllable Surface−Enhanced Raman Scattering Nanoprobes For Biomolecular Imaging、Advanced Materials 2005,17,2131−2134、およびUC BerkeleyのLuke P.LeeらのAdvanced Materials 2005,17,2683−2688(これは、その全体が参考として本明細書に援用される)に記載されるように実装され得る。
図3Aは、ナノクレセントの強度画像を示す。図3に示されるように、金属が円形を形成する場合、電場は最大である。
図3Bは、小励起体積を生成するための装置305を示す。図3Bに示されるように、装置305は、基材315を通して、励起源からエネルギー310を受容する。エネルギーは、エバネセント領域(図示せず)を生成し、検体320を覆う。小励起領域は、励起光を遮断する遮蔽材料325によって、検体320の周囲に維持される。この装置305は、高出力レーザの使用を必要とし、相当量のバックグラウンドおよび付随するノイズを生成し得る。
図3Cは、図1〜3Aに関連して記載された共鳴構造体の使用を伴う、汎用実施形態を示す。より具体的には、共鳴装置330は、図示されない増強共鳴構造体の近傍のレーザ励起を強力に向上させることによって、小励起体積335を生成するように構成されることが可能である。FERは、装置305に優る改良点を示し得る。さらに、励起源のための出力要件は低減され、バックグラウンドおよび付随するノイズを軽減する。
図4は、さらに別の実施形態による、サブ波長孔アレイ400を示す。図4に示されるように、孔アレイ400は、プラズモン共鳴が、孔アレイ400内の孔を通して生成され得るように、当業者に既知の厚さおよび材料で作製され得る。実施例は、孔径60nmでの488nmのプラズモン共鳴である。励起光源は、488nmのアルゴンイオンレーザであってもよい。
いくつかの実施形態では、ナノライスまたはナノクレセント等のナノ粒子、あるいはボウタイ型等の他のナノアンテナはまた、孔の近傍に、もしくは孔間の共鳴点に配置され、アレイ400内のプラズモン共鳴出力をさらに向上させてもよい。これは、プラズモンを狭い面積内にさらに集中または増強させるために行われてもよい。また、ナノ粒子またはナノアンテナは、孔を充填または部分的に充填する誘電体材料上に配置され得、かつ、プラズモンをさらに集中させる目的のために、孔を充填しないかもしくは部分的にも充填しない誘電体材料上の孔内に配置され得る。
図5は、アレイ400のエネルギーパターンの近接場走査顕微鏡画像500を示す。図5に示されるように、画像500は、孔505を明るい光として、背景510を実質的に暗く示す。
図6は、さらに別の実施形態による、鈍端光ファイバ600を示す。この先端の構造は、米国特許第5,812,724号(これは、参考として本明細書に援用される)に記載されている。図6に示されるように、鈍端光ファイバ600は、光ファイバ600の一端上に、クラッディングによって平坦である先端605(図示せず)を有する。他の実施形態では、先端605は、クラッディング上に隆起するが、図6に示されるように、鈍らにされ得る。この光ファイバ600は、先端605の表面上にコーティング層610と、光遮蔽層610の表面の最前部以外の光遮蔽コーティング層610の表面の領域上に耐食コーティング層615とを有する。先端605の最前部は、光遮蔽コーティング層610および耐食コーティング層615から露出する開口620を有する。光遮蔽コーティング層610は、例えば、アルミニウムから形成され、厚さ約800nmを有する。開口620は、直径、例えば、40nmを有する。
種々の実施形態では、鈍端光ファイバ600は、ナノ粒子を含有する標的検体外に配置され得る。励起光から生じるプラズモンからのエバネセント波は、次いで、標的検体内に通過可能である。他の実施形態では、鈍端光ファイバ600は、突出先端を有する光学的な先端と交換し、先細の光ファイバのアレイに構成されてもよい。
図7は、さらに別の実施形態による、平面フォトニック導波路構造体700を示す。図7に示されるように、平面フォトニック導波路構造体700は、MaierらのProceedings of SPIE Vol.8410およびLoncarらのJournal of Lightwave Technology Vol.18,No.10のDesign and Fabrication of Photonics Crystal waveguides(これは、その全体が参考として本明細書に援用される)に記載されるように実装され得る。平面フォトニック導波路構造体700は、以前に記載された実施形態の一部のための点光源の代わりに、線光源として構成可能である。例えば、ナノ粒子または孔アレイである。
図8は、平面フォトニック導波路構造体のプロファイルの強度を示す。導波路構造体は、フォトレジストを使用して実装され、対向する軸におけるストリップ内の開口部をパターン化することができる。いくつかの実施形態では、孔も同様に使用可能である。アタッチメントの光活性化は、その結果、消失フォトレジストとプラズモン導波路との交点において生じるであろう。
さらに、ナノアンテナ、ナノ粒子、コロイド粒子、または量子ドット(quantum dot)は、導波路700等のプラズモン導波路に近接して配置され、したがって、導波路とナノ粒子との間の直接結合を可能にし得る。フォトニック結晶構造は、コーナー周囲の光の屈曲を可能にし、したがって、遠視野顕微鏡(farfield microscope)の視野にわたって、光を前後にラスタさせる。これによって、視野全体に指向されるため、光エネルギーを再利用することができる。加えて、エネルギーは、導波路の経路に限局され、望ましくないバックグラウンドを低減する。複数導波路を使用して、効率的に広い面積を網羅することが可能である。
他の実施形態では、Altugらの2006年4月IEEE LEOS NewsletterのPhotonic Crystal Nano−cavity Arrays(これは、その全体が参考として本明細書に援用される)に記載される、2次元フォトニック結晶を使用して、適切な2次元強度プロファイルを生成することができる。図9は、2次元フォトニック結晶900の実施形態を示す。
図10は、ある実施形態による、例示的ナノアンテナ1000を示す。図100に示されるように、ナノアンテナ1000は、プラズモンエネルギーを限局されたスポットに集中させるように構成される円形ナノアンテナである。ナノアンテナ1000は、誘電体材料上に配置され得る。励起光が、ナノアンテナ1000上に指向されるため、ナノアンテナ1000は、プラズモンをアンテナ1000の中心に指向する。
この種の円形ナノアンテナ1000は、1組の、基材材料上の第2の材料の円形帯(swath)と交互に配置される、同心円形である第1の材料帯として実装されてもよい。図10に示される実施形態では、円形ナノアンテナ1000の中心は、第1の材料で実装され、第2の材料は存在しない。円形ナノアンテナ1000の他の実施形態は、材料の順番を逆にしてもよく、その中心は、第1の材料と交互になった第2の材料によって実装される。他の実施形態は、あらゆる励起光を遮断する第2の材料によって実装される円形ナノアンテナを含み、したがって、バックグラウンドおよび付随するノイズを低減することができる。
図11は、ボウタイ型ナノアンテナ1100を示す。図11に示されるように、ボウタイ型ナノアンテナ1100は、電磁的に透過性の基材1105を備えることができ、その上に、アンテナ構造体1110が支持される。アンテナ構造体1110は、それぞれ伝導性アーム1115および1120を含む、ボウタイ型アンテナを備える。末端1125および1130では、伝導性アーム1115および1120は、横断寸法dを有するギャップ1135によって分離される。要するに、伝導性アーム1115および1120は、双極子様アンテナを形成する。対数周期(log-periodic)、螺旋、スロットアンテナ等の他のアンテナ構造体も、本発明に対し功を奏するであろう。ボウタイ型アンテナのさらなる詳細は、米国特許第5,696,372号(これは、その全体が参考として本明細書に援用される)に記載されている。
ギャップ1135は、伝導性アーム1115および1120の末端1125と1130との間の放出「領域」を形成する。末端1125と1130との間の横断寸法「d」は、入射電磁エネルギーの波長よりも小さい。
入射エネルギーは、光学範囲内の波長を有することが好ましいが、しかしながら、本発明は、非光学波長用途にも等しく適用可能であることを理解されたい。
図11を再び見ると、ギャップ1135によって分離される末端1125および1130が、静電容量を構成することが分かるであろう。ギャップ1135の静電容量をアンテナ構造体により効率的にインピーダンス整合させ、そこへのエネルギーの結合を改善するためには、インダクタ1140を領域1135と並列に接続し、同調回路を生成することが好ましい。本質的な考えは、アンテナインピーダンスを、ギャップ1135に形成される双極子放射体の放射抵抗に整合させることである。伝導性アーム1115および1120の角度1145は、所望の周波数に応じて、種々の角度で実装されてもよい。
図12は、ナノフラクタル状のアンテナパターンの選択を示す。フラクタル種の選択は、ユーザ所望の性能特徴に依存し得る。他の実施形態では、フラクタル状のナノアンテナはまた、線形双極子であることができる。
さらに他の実施形態では、ナノアンテナ1000、1100、1200はまた、レシーバとしても使用可能である。したがって、これらのアンテナを使用して、分子を消光するとともに、放射を収集することが可能である。
図13A−Bは、概して、バルク基材または誘電体材料上ならびにナノアンテナ上のコーティングの使用に関する、別の実施形態を示す。図13A−Bに示されるように、断面図に示される被覆された増強構造体1300は、基材1305を含む。基材1305は、エバネセント領域1325を生成するために、または随意に、TIRFの代わりに、プラズモン共鳴を使用するために、金属層(図示せず)を使用して、実装されてもよい。厚いコーティング1310は、ある領域が、厚いコーティング1310がない状態で残されるように、基材1305に適用されてもよい。厚いコーティング1310は、エバネセント波エネルギーの大部分を含むエバネセント領域1325を上回る誘電体材料によって実装可能である。
開放領域では、ボウタイ型アンテナ1315を形成可能である。他の実施形態では、他のフラクタル状のナノアンテナが使用されてもよい。さらに他の実施形態では、以前に記載された共鳴構造体を開放領域内に配置可能である。薄いコーティング1320は、共鳴構造体を覆う開放領域に内に蒸着されてもよい。別様に、薄いコーティングは、表面全体に配置されてもよく、より厚いコーティングは、随意に、後に追加されてもよい。薄いコーティング1320は、消光と励起との間の均衡を最適化するように選択される厚さを有する、同一または別の誘電体材料であってもよい。
薄いコーティング1320は、消光を防止するために、フルオロフォアから離し、厚さ5乃至20nmであるように構成可能である。厚いコーティング1310は、最高強度のTIRF(全内部反射蛍光)の体積へのフルオロフォアのアクセスを遮断する、適切な(基材に対し)より低い屈折率の材料から作製され得る。故に、バックグラウンドおよび付随するノイズは、低減するが、排除されない。
すべての開示された実施形態に対し、標的DNA、プライマー、または酵素は、最高エネルギー強度の領域内の表面に付着可能である。このアタッチメントを生成する方法の1つは、光活性ビオチン等の光活性アタッチメントを利用することができる。低強度の光レベルでは、分子は、優先的に、構造上の最高エネルギー点に付着されるであろう。励起または放出は、単独で、あるいは遠視野顕微鏡、TIRF、プラズモン共鳴等の他の従来の方法、または構造体へのエネルギーを提供するための結合の他の方法と組み合わせて、開示された方法を使用することができる。TIRFまたはプラズモン共鳴の使用は、非常に薄い層に対する励起を最小限にし、望ましくないバックグラウンドを低減する。TIRF励起から生じるエバネセント波の透過深度は、入射角度の関数であって、透過は、臨界角で最大となり、基材と励起光との間の角度の減少に伴って下降する。したがって、透過深度を、ひいては、エバネセント波によって励起される溶液の体積を最小限にするためには、角度を最小限にすることが好ましい。例えば、これは、対物レンズの最縁部に組み込まれるレーザを利用する高NA TIRF対物レンズを使用して、達成可能である。
デバイスは、単分子蛍光のために使用されてもよい。デバイスを使用して、励起波長の代わりに、アンテナ/ナノ粒子の波長を使用する色素から2光子放出を生成してもよい。2光子放出は、光子の放出に先立って、分子を励起する2光子を必要とする。2光子放出によって、生成された蛍光は、励起よりも低い波長であって、基材、光学要素、および他の非特異的蛍光の背景蛍光の容易な濾過を可能にする。さらに、2光子放出が生じる確立は、励起出力の二乗の関数であって、したがって、デバイスが、100の光学増強を有する場合、共鳴増強領域内のフルオロフォアは、実際は、共鳴増強領域内ではないフルオロフォアの10,000倍励起され、フルオロフォア近傍からバックグラウンドを大幅に低減する可能性がある。したがって、DNA配列決定だけではなく、小体積が励起されることが望ましい多くの他の種類の用途のためにも使用可能である。
本発明は、その例示的実施形態を参照して説明されたが、当業者は、真の精神および範囲から逸脱することなく、記載された実施形態に種々の修正を成すことができるであろう。本願で使用された用語および説明は、例示のみを目的として記載され、制限を意図するものではない。特に、本方法は、実施例によって説明されたが、本方法のステップは、図示されたものと異なる順番で、または同時に行われてもよい。当業者は、これらおよび他の変形例が、以下の請求項およびその等価物によって定義される精神および範囲内において可能であることを認識するであろう。

Claims (23)

  1. 核酸の分析のための方法であって、
    1つ以上の蛍光標識された核酸と結合するように構成される共鳴構造体を提供するステップと、
    該共鳴構造体上の源から励起光を指向するステップと、
    該共鳴構造体の表面上にプラズモンを生成するステップと、
    を包含し、検体は、該共鳴構造体のエネルギー集中点に固定される、方法。
  2. 検体の分析のための方法であって、
    検体と結合する共鳴構造体を提供するステップと、
    該共鳴構造体上の源から励起光を指向するステップと、
    該共鳴構造体の表面上にプラズモンを生成するステップと、
    を包含し、該検体は、光活性化可能なリンカーを通して、該共鳴構造体のエネルギー集中点に固定される分子と複合体を形成する、方法。
  3. 前記プラズモンは、単分子配列決定において使用される、請求項2に記載の方法。
  4. 前記プラズモンは、蛍光相関分光測定法において使用される、請求項2に記載の方法。
  5. 前記共鳴構造体は、ナノ粒子である、請求項2に記載の方法。
  6. 前記ナノ粒子は、ナノライス、ナノロッド、ナノリング、ナノキューブ、ナノシェル、およびナノクレセントのうちの1つである、請求項5に記載の方法。
  7. 前記プラズモンは、前記ナノクレセントの周辺に生成される、請求項6に記載の方法。
  8. 前記共鳴構造体は、孔のアレイである、請求項2に記載の方法。
  9. 前記プラズモンは、前記孔のアレイ内の孔の表面上に、該孔のアレイ上方に、および該孔を通して、生成される、請求項8に記載の方法。
  10. 前記励起光源は、鈍らな光ファイバの先端である、請求項2に記載の方法。
  11. 前記励起光源は、前記検体外側に位置付けられる、請求項10に記載の方法。
  12. 前記励起光源は、光ファイバの先端のアレイである、請求項10に記載の方法。
  13. 前記共鳴構造体は、フォトニックサブ波長導波路を含む、請求項2に記載の方法。
  14. 前記共鳴構造体は、2次元フォトニック結晶を含む、請求項2に記載の方法。
  15. 前記共鳴構造体は、ナノアンテナである、請求項2に記載の方法。
  16. 前記共鳴構造体は、ボウタイ型ナノアンテナである、請求項2に記載の方法。
  17. 前記ボウタイ型アンテナ上にコーティングを提供するステップをさらに包含し、該コーティングは、実質的に消光を防止する適切な厚さに構成される、請求項16に記載の方法。
  18. 前記共鳴構造体の前記エネルギー集中点において、光活性化可能なアタッチメントを提供するステップをさらに包含する、請求項1に記載の方法。
  19. 前記光活性化可能なアタッチメントは、単分子配列決定の一部である、請求項18に記載の方法。
  20. プラズモン構造体であって、
    金属材料で実装され、増強領域を生成するように構成される、ナノアンテナと、
    該ナノアンテナの一部に隣接して配置され、該増強領域外のフルオロフォアの励起を実質的に低減するように構成される、遮断層と、
    を備える、構造体。
  21. 前記遮断層は、誘電体によって実装される、請求項20に記載のプラズモン構造体。
  22. 金属層をさらに備え、エバネセント波励起領域が、該金属層を通して、SPRによって生成される、請求項20に記載のプラズモン構造体。
  23. 前記エバネセント波励起領域は、TIRFによって生成される、請求項20に記載のプラズモン構造体。
JP2009528531A 2006-09-18 2007-09-18 光集中機構のための方法、システムおよび装置 Pending JP2010503868A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US82607906P 2006-09-18 2006-09-18
PCT/US2007/078812 WO2008036697A2 (en) 2006-09-18 2007-09-18 Methods, systems and apparatus for light concentrating mechanisms

Publications (1)

Publication Number Publication Date
JP2010503868A true JP2010503868A (ja) 2010-02-04

Family

ID=39201221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009528531A Pending JP2010503868A (ja) 2006-09-18 2007-09-18 光集中機構のための方法、システムおよび装置

Country Status (5)

Country Link
US (1) US20080066549A1 (ja)
EP (1) EP2092327A2 (ja)
JP (1) JP2010503868A (ja)
CN (1) CN101680864A (ja)
WO (1) WO2008036697A2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079970A (ja) * 2007-09-26 2009-04-16 Fujifilm Corp 分子分析光検出方法およびそれに用いられる分子分析光検出装置、並びにサンプルプレート
JP2009276162A (ja) * 2008-05-14 2009-11-26 Fujifilm Corp 蛍光検出方法
JP2011101941A (ja) * 2009-10-15 2011-05-26 Kanagawa Acad Of Sci & Technol 中空微小体およびその作製方法
KR20110120415A (ko) * 2010-04-29 2011-11-04 천홍구 나노유체역학 기반의 형광 근접장 현미경
JP2014006266A (ja) * 2013-10-09 2014-01-16 Fujifilm Corp 蛍光検出方法
JP2016520211A (ja) * 2013-05-17 2016-07-11 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッドJohnson & Johnson Vision Care, Inc. 通信システムを備えた眼用レンズ
JP2016522441A (ja) * 2013-05-17 2016-07-28 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッドJohnson & Johnson Vision Care, Inc. 眼用レンズの製造状態を監視するための方法及び装置
JP2018064538A (ja) * 2016-10-21 2018-04-26 国立研究開発法人物質・材料研究機構 接着細胞内へのナノ粒子取り込み方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007103802A2 (en) * 2006-03-03 2007-09-13 William Marsh Rice University Nanorice particles: hybrid plasmonic nanostructures
EP2212679A1 (en) * 2007-09-18 2010-08-04 Applied Biosystems Inc. Methods, systems and apparatus for light concentrating mechanisms
US20090091644A1 (en) * 2007-10-05 2009-04-09 Mackey Jeffrey L Metallic nanostructure color filter array and method of making the same
TWI401205B (zh) * 2008-01-31 2013-07-11 Ind Tech Res Inst 利用光熱效應製作應用基板的方法
US8834797B2 (en) 2008-04-04 2014-09-16 Life Technologies Corporation Scanning system and method for imaging and sequencing
WO2009149125A2 (en) * 2008-06-02 2009-12-10 Life Technologies Corporation Localization of near-field resonances in bowtie antennae: influence of adhesion layers
EP2133688A1 (en) * 2008-06-11 2009-12-16 Koninklijke Philips Electronics N.V. Nanoantenna and uses thereof
US20100229943A1 (en) * 2009-03-16 2010-09-16 Lightwave Power, Inc. Asymmetric Waveguide
SG188840A1 (en) * 2009-09-02 2013-04-30 Agency Science Tech & Res A plasmonic detector and method for manufacturing the same
US9075010B2 (en) 2010-10-15 2015-07-07 The Board Of Trustees Of The Leland Stanford Junior Univerity Enhancement of molecular emission using optical-antenna structures
WO2012057802A1 (en) * 2010-10-29 2012-05-03 Hewlett-Packard Development Company, L.P. Nanoparticle waveguide apparatus, system and method
WO2012162271A2 (en) * 2011-05-20 2012-11-29 University Of Utah Research Foundation Method and system for manufacture of a electronic devices based on localized deposition of precursor gases
KR101597894B1 (ko) * 2014-05-20 2016-02-26 서울대학교산학협력단 금속증강형광용 코어-쉘 나노 복합체
WO2015188182A1 (en) * 2014-06-06 2015-12-10 Northeastern University Heterogeneous optical slot antenna and method for single molecule detection
EP2995933A1 (en) * 2014-09-15 2016-03-16 Base4 Innovation Ltd Improved nanopore plasmonic analyser
CN111542394A (zh) * 2017-11-01 2020-08-14 新加坡国立大学 量子等离子体共振能量转移和超快光子pcr
RU201358U1 (ru) * 2020-06-25 2020-12-11 Дмитрий Александрович Полетаев Наноантенна

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177249B1 (en) * 1995-12-18 2001-01-23 Washington University Method for nucleic acid analysis using fluorescence resonance energy transfer
JP2004163122A (ja) * 2002-11-11 2004-06-10 Univ Waseda 微小開口膜、及び生体分子間相互作用解析装置とその解析方法
JP2006177725A (ja) * 2004-12-21 2006-07-06 Sony Corp 物質間の相互作用検出部と該検出部を用いるバイオアッセイ用基板、装置及び方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6849397B2 (en) * 1999-05-04 2005-02-01 Wisconsin Alumni Research Foundation Label-free detection of nucleic acids via surface plasmon resonance
US6680377B1 (en) * 1999-05-14 2004-01-20 Brandeis University Nucleic acid-based detection
WO2001009388A1 (en) * 1999-07-30 2001-02-08 The Penn State Research Foundation Instruments, methods and reagents for surface plasmon resonance
AU2003302463A1 (en) * 2002-05-09 2004-06-18 U.S. Genomics, Inc. Methods for analyzing a nucleic acid
EP1802727B1 (en) * 2004-09-16 2018-04-04 Life Technologies Corporation Fluorescent dye compounds, conjugates and uses thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177249B1 (en) * 1995-12-18 2001-01-23 Washington University Method for nucleic acid analysis using fluorescence resonance energy transfer
JP2004163122A (ja) * 2002-11-11 2004-06-10 Univ Waseda 微小開口膜、及び生体分子間相互作用解析装置とその解析方法
JP2006177725A (ja) * 2004-12-21 2006-07-06 Sony Corp 物質間の相互作用検出部と該検出部を用いるバイオアッセイ用基板、装置及び方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079970A (ja) * 2007-09-26 2009-04-16 Fujifilm Corp 分子分析光検出方法およびそれに用いられる分子分析光検出装置、並びにサンプルプレート
JP2009276162A (ja) * 2008-05-14 2009-11-26 Fujifilm Corp 蛍光検出方法
JP2011101941A (ja) * 2009-10-15 2011-05-26 Kanagawa Acad Of Sci & Technol 中空微小体およびその作製方法
KR20110120415A (ko) * 2010-04-29 2011-11-04 천홍구 나노유체역학 기반의 형광 근접장 현미경
KR101681951B1 (ko) * 2010-04-29 2016-12-05 서울대학교산학협력단 나노유체역학 기반의 형광 근접장 현미경
JP2016520211A (ja) * 2013-05-17 2016-07-11 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッドJohnson & Johnson Vision Care, Inc. 通信システムを備えた眼用レンズ
JP2016522441A (ja) * 2013-05-17 2016-07-28 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッドJohnson & Johnson Vision Care, Inc. 眼用レンズの製造状態を監視するための方法及び装置
JP2014006266A (ja) * 2013-10-09 2014-01-16 Fujifilm Corp 蛍光検出方法
JP2018064538A (ja) * 2016-10-21 2018-04-26 国立研究開発法人物質・材料研究機構 接着細胞内へのナノ粒子取り込み方法

Also Published As

Publication number Publication date
US20080066549A1 (en) 2008-03-20
WO2008036697A9 (en) 2009-04-09
EP2092327A2 (en) 2009-08-26
CN101680864A (zh) 2010-03-24
WO2008036697A3 (en) 2008-08-07
WO2008036697A2 (en) 2008-03-27

Similar Documents

Publication Publication Date Title
JP2010503868A (ja) 光集中機構のための方法、システムおよび装置
Koenderink Single-photon nanoantennas
Khurana et al. Localized surface plasmonic properties of Au and Ag nanoparticles for sensors: A review
Li Mesoscopic and microscopic strategies for engineering plasmon‐enhanced raman scattering
Kosako et al. Directional control of light by a nano-optical Yagi–Uda antenna
Bharadwaj et al. Nanoscale spectroscopy with optical antennas
US20090140128A1 (en) Methods, systems and apparatus for light concentrating mechanisms
Sackrow et al. Imaging nanometre‐sized hot spots on smooth Au films with high‐resolution tip‐enhanced luminescence and Raman near‐field optical microscopy
Chen et al. Plasmonic gratings with nano-protrusions made by glancing angle deposition for single-molecule super-resolution imaging
US8837039B2 (en) Multiscale light amplification structures for surface enhanced Raman spectroscopy
Fu et al. Large enhancement of single molecule fluorescence by coupling to hollow silver nanoshells
Lee et al. Electromagnetic near-field nanoantennas for subdiffraction-limited surface plasmon-enhanced light microscopy
CN108956574A (zh) 用于双光子荧光增强的双波长金属Fano共振结构
CN108828756A (zh) 一种表面等离子体非线性结构光照明超分辨显微成像方法及其装置
WO2015188182A1 (en) Heterogeneous optical slot antenna and method for single molecule detection
Koenderink et al. Super-resolution imaging: when biophysics meets nanophotonics
Shen et al. Directional and enhanced spontaneous emission with a corrugated metal probe
D’Agostino et al. Dipole decay rates engineering via silver nanocones
US10571398B2 (en) Device for the beaming of light emitted by light sources, in particular fluorescence of molecules
Bonod Controlling spontaneous emission with dielectric optical antennas
Wang et al. Flexible nanoparticle-on-mirror strategy for ultrasensitive molecule detection by directionally coupling surface plasmon polaritons
Huang et al. Fluorescence enhancement and energy transfer in apertureless scanning near-field optical microscopy
Chen et al. Enhanced fluorescence effect from complex nanostructure decorated with the native oxide layer
Hartmann Coupling of emitters to surface plasmons investigated by back focal plane microscopy
Diwekar et al. Increased light gathering capacity of sub-wavelength conical metallic apertures

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111201

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120229

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120307

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120330

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120406

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120427

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120725