JP2010500271A - Quenchable solar control layer system and manufacturing method thereof - Google Patents

Quenchable solar control layer system and manufacturing method thereof Download PDF

Info

Publication number
JP2010500271A
JP2010500271A JP2009523303A JP2009523303A JP2010500271A JP 2010500271 A JP2010500271 A JP 2010500271A JP 2009523303 A JP2009523303 A JP 2009523303A JP 2009523303 A JP2009523303 A JP 2009523303A JP 2010500271 A JP2010500271 A JP 2010500271A
Authority
JP
Japan
Prior art keywords
layer
layer system
layers
refractive index
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009523303A
Other languages
Japanese (ja)
Other versions
JP5328650B2 (en
Inventor
ケッカート・クリストフ
プレール・ホルガー
Original Assignee
フオン・アルデンネ・アンラーゲンテヒニク・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フオン・アルデンネ・アンラーゲンテヒニク・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング filed Critical フオン・アルデンネ・アンラーゲンテヒニク・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング
Publication of JP2010500271A publication Critical patent/JP2010500271A/en
Application granted granted Critical
Publication of JP5328650B2 publication Critical patent/JP5328650B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • C23C14/0652Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3626Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3649Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer made of metals other than silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3652Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the coating stack containing at least one sacrificial layer to protect the metal from oxidation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/366Low-emissivity or solar control coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3681Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating being used in glazing, e.g. windows or windscreens
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3694Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer having a composition gradient through its thickness
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/36Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/91Coatings containing at least one layer having a composition gradient through its thickness

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本発明は、調整可能な反射色および透過率を有する透明基板上の焼入れ可能なソーラーコントロール層系、およびその製造方法に関する。本発明の課題は、様々な熱処理が可能で、且つその際に化学的および機械的耐久性を維持しつつ目に見えるカラーシフトがない、真空コーティングによってガラス上に形成できる遮光層系の製造であり、これは誘電基板S0をコーティングするための焼入れ可能で可視光線反射性と吸収性がある層系によって解決され、本層系は、基板S0上に次の順序で、少なくとも1つの透明な高屈折率誘電体層S2、1つの機能性金属反射および吸収層S4、および1つの透明な高屈折率誘電体層S6を含む。本発明によるソーラーコントロール層系は、反射色および透過率の調整を可能にする。  The present invention relates to a quenchable solar control layer system on a transparent substrate having adjustable reflection color and transmittance, and a method for manufacturing the same. The object of the present invention is the production of a light-shielding layer system that can be formed on glass by vacuum coating, capable of various heat treatments and without any visible color shift while maintaining chemical and mechanical durability. This is solved by a hardenable, visible light reflective and absorptive layer system for coating the dielectric substrate S0, which layer system has at least one transparent high layer on the substrate S0 in the following order: It includes a refractive index dielectric layer S2, one functional metal reflection and absorption layer S4, and one transparent high refractive index dielectric layer S6. The solar control layer system according to the invention makes it possible to adjust the reflection color and the transmittance.

Description

本発明は、調整可能な反射色と透過率を有する透明基板上の焼入れ可能なソーラーコントロール層系およびその製造方法に関する。   The present invention relates to a quenchable solar control layer system on a transparent substrate having an adjustable reflection color and transmittance and a method for manufacturing the same.

このような層系は、ガラス上に真空成膜によって形成され、主に建築で窓やファサードの構成に、および自動車産業で使用される。これらの両使用分野では、層系は化学的耐久性と機械的堅牢性がなければならず、ここで、これらの特性を比較して評価できるように、例えば、5%の塩酸中での煮沸や様々な磨耗試験のような標準化された試験がある。   Such layer systems are formed by vacuum film formation on glass and are used primarily in architecture, in the construction of windows and facades, and in the automotive industry. In both of these fields of use, the layer system must be chemically and mechanically robust, where it can be boiled in eg 5% hydrochloric acid so that these properties can be compared and evaluated. And standardized tests such as various wear tests.

同時に、層系は、可視光線に対する高い透過性(透過率)、好ましくは約75%〜80%の透過率の値と、低μmの波長域、いわゆる近赤外域の光線に対する高い反射性を有していなければならない。この特殊な波長依存の透過性および反射性は、優先的に遮光に役立つ層系、即ち、公知のソーラーマネージメント(ソーラーコントロール)システムの特徴である。しかし、特殊な用途では、より長波長側の赤外域における高い反射性も必要であり、それは層系の放射挙動に反映される。   At the same time, the layer system has a high transmittance (transmittance) for visible light, preferably a transmittance value of about 75% to 80% and a high reflectivity for light in the low μm wavelength range, the so-called near infrared range. Must be. This special wavelength-dependent transparency and reflectivity is a characteristic of a layer system that is preferentially useful for light shielding, ie a known solar management (solar control) system. However, for special applications, high reflectivity in the infrared region on the longer wavelength side is also required, which is reflected in the radiation behavior of the layer system.

ガラス上に成膜される当該遮光層系の他の本質的な特徴は、例えば、建築および自動車産業用の安全ガラスを製造するための焼入れ時に、又はウインドシールドガラス用のガラスを成形する時に使用されるような熱処理が可能なことである。低コストで製造し、均質な層を達成するために熱処理前にコーティングを実施することが様々な用途で必要であるため、層系は、用途に応じて異なる温度および時間で様々な熱処理を行っても低下しないか、又は本質的に低下しない機械的、化学的、および光学的特性を有していなければならない。   Other essential features of the light-shielding layer system deposited on glass are used, for example, during quenching to produce safety glass for the architectural and automotive industries, or when forming glass for windshield glass It is possible to perform such heat treatment. The layer system performs various heat treatments at different temperatures and times depending on the application, as it is necessary to perform coatings prior to heat treatment to achieve low cost and achieve a homogeneous layer. Must have mechanical, chemical, and optical properties that do not degrade or essentially degrade.

特許文献1には、これらの要求を実質的に満たす層系が記載されている。それによれば、必要な赤外線反射性を有するニッケル又はその合金からなる金属層は化学量論組成の窒化ケイ素層(Si)で被覆され、それはまた層系に機械的および化学的耐久性を付与する。 Patent Document 1 describes a layer system that substantially satisfies these requirements. According to it, a metal layer made of nickel or an alloy thereof with the necessary infrared reflectivity is coated with a stoichiometric silicon nitride layer (Si 3 N 4 ), which also provides mechanical and chemical durability to the layer system. Is granted.

前記ニッケル含有金属層は、熱処理による放射性の悪化がない。しかし、熱処理中、拡散プロセス、特に、窒化ケイ素層から金属層への窒素の拡散プロセスおよび逆方向でのニッケルの拡散プロセスが起こることが確認された。   The nickel-containing metal layer does not deteriorate in radioactivity due to heat treatment. However, it was confirmed that during the heat treatment, a diffusion process occurred, in particular, a diffusion process of nitrogen from the silicon nitride layer to the metal layer and a diffusion process of nickel in the reverse direction.

このプロセスのため、熱処理されていない層系と比較して、熱処理の温度および持続時間に応じて層系のカラーシフトが起こり、これは特に建築に使用するのに望ましくない。ファサードの構成ではコスト上の理由から、事故防止のために実際に必要な場合だけ熱処理された安全ガラスが使用されるため、熱処理されていないものと熱処理されたものが常に一緒に使用されており、従って、生じ得る色の差が特に明らかになる。   This process results in a color shift of the layer system depending on the temperature and duration of the heat treatment compared to an unheated layer system, which is particularly undesirable for use in architecture. In the construction of the facade, for safety reasons, safety glass that has been heat-treated is used only when it is actually necessary to prevent accidents. Therefore, unheated and heat-treated glass are always used together. Thus, the color differences that can occur are particularly evident.

このような色の差は、約10μmの波長のより長波長側の赤外域の赤外線反射層系でも望ましくないため、特許文献2に記載されているこのような層系では、反射層と、その上に配置されており、窒化ケイ素からなってもよい誘電体層との間にいわゆる移動防止層、好ましくは酸化ニッケルクロムを含有する移動防止層が挿入された。この移動防止層は、熱処理中および熱処理後に色の差を生じさせる拡散現象をなくす。しかし、実際には、それがある特定の熱処理プロセスにしか有効でないことが明らかになった。   Such a color difference is not desirable even in the infrared reflection layer system in the longer infrared region having a wavelength of about 10 μm. In such a layer system described in Patent Document 2, the reflection layer and its A so-called anti-migration layer, preferably a nickel-chromium-containing anti-migration layer, was inserted between the dielectric layer, which is arranged above and may consist of silicon nitride. This migration preventing layer eliminates the diffusion phenomenon that causes a color difference during and after heat treatment. However, in practice, it has been found that it is only effective for certain specific heat treatment processes.

一緒に使用される熱処理されたガラスと熱処理されていないガラスの色の差を回避する別の可能性が、特許文献3に記載されている。それによれば、赤外線反射金属層の下の別の窒化ケイ素層で、並びに、一方又は両方の窒化ケイ素層の厚さを変化させることによって、層系は、機械的および化学的特性の他に、特に光学的特性が的確に調整され、それによって、合目的的な僅かな色の差を正確に生じさせることができ、熱処理後に目に見える色の差がもはや存在せず、このコーティングされたガラスをファサード内に使用できる。しかし、そのためには、互いにおよび熱処理に対して正確に調整された2つの異なる層系を作り出さなければならない。この層系の調整は、使用される色のそれぞれに対して必要であり、そのため非常に費用がかかり、融通がきかず、各層系の必要な機械的および化学的耐久性を可能にする範囲内でしか行うことができない。   Another possibility of avoiding the color difference between the heat treated glass used together and the unheat treated glass is described in US Pat. According to it, by changing the thickness of one or both silicon nitride layers, with another silicon nitride layer under the infrared reflective metal layer, the layer system, in addition to mechanical and chemical properties, In particular, the optical properties are precisely adjusted, so that the desired slight color difference can be accurately produced, and there is no longer any visible color difference after heat treatment, this coated glass Can be used in the facade. To do so, however, two different layer systems must be created that are precisely tuned to each other and to the heat treatment. This adjustment of the layer system is necessary for each of the colors used, so that it is very expensive, inflexible and within the range that allows the required mechanical and chemical durability of each layer system. Can only be done.

互いに同調された異なる層系をある用途に使用することは、時間および処理温度に関して、様々なプロセスで通常の範囲を使用することができると同時に両方のパラメータを柔軟に選択することができる熱処理を行った場合でも光学的特性が本質的に変化しない層系でしか避けられない。この目的のために、特許文献4には、既知のニッケル含有反射層の代わりに少なくとも部分的に窒素化された金属層、好ましくはニッケル又はクロム含有金属窒化物を使用する層系が記載されている。この場合、金属の窒素化の程度は、金属が成膜されるコーティング部分の作用ガス中の窒素の割合で調整される。   Using different layer systems tuned to each other in one application can be a heat treatment that allows normal ranges to be used in various processes with respect to time and processing temperature while at the same time allowing flexible selection of both parameters. Even when done, it is unavoidable only in layer systems in which the optical properties are essentially unchanged. For this purpose, U.S. Pat. No. 6,057,051 describes a layer system that uses at least partially nitrided metal layers, preferably nickel or chromium containing metal nitrides, instead of known nickel-containing reflective layers. Yes. In this case, the degree of metal nitriding is adjusted by the ratio of nitrogen in the working gas of the coating portion where the metal is deposited.

反射金属層の窒素化により、層系での前述の拡散プロセス、特に窒素の拡散プロセス、および従ってそのカラーシフトは、少なくとも、625℃で10分の前述の熱処理では減少する。そのとき、比較として、同じであるが窒化物を含有しない金属層を含み、同じ熱処理を受けた層系が使用されている。   By nitriding the reflective metal layer, the aforementioned diffusion process in the layer system, in particular the diffusion process of nitrogen, and thus its color shift, is reduced at least by the aforementioned heat treatment at 625 ° C. for 10 minutes. Then, as a comparison, a layer system comprising the same but not containing nitride metal layer and subjected to the same heat treatment is used.

しかし、金属の窒素化は、機械的および化学的耐久性の低下の他に、反射性、特に赤外域における反射性の悪化を伴う。耐久性の低下は、確かに窒化ケイ素層の改良によって調整できるが、どの場合も、それはまた光学的特性の変化を伴うため、カラーシフトと耐久性との間の妥協点を見出さなければならない。   However, the nitrogenation of metals is accompanied by a deterioration in reflectivity, particularly in the infrared region, in addition to a decrease in mechanical and chemical durability. Durability degradation can certainly be tuned by improving the silicon nitride layer, but in any case it also involves changes in optical properties, so a compromise between color shift and durability must be found.

更に、このような反射層系を融通性のある熱処理プロセスに付し、そのとき、機械的、化学的および光学的特性に関する要求を満たすことが必要である。   Furthermore, it is necessary to subject such reflective layer systems to a flexible heat treatment process, at which time the requirements for mechanical, chemical and optical properties must be met.

米国特許第6,159,607号明細書US Pat. No. 6,159,607 国際公開第02/092527号パンフレットInternational Publication No. 02/092527 Pamphlet 欧州特許第0 646 551号明細書European Patent No. 0 646 551 米国特許第6,524,714号明細書US Pat. No. 6,524,714

従って、本発明の課題は、様々な熱処理が可能であり、そのとき化学的および機械的耐久性を維持しつつ目に見えるカラーシフトがない、真空コーティングによってガラス上に形成できる遮光層系(Sonnenschutzschichtsystem)とその製造方法を提供することである。   Accordingly, the object of the present invention is to provide a light-shielding layer system that can be formed on glass by vacuum coating, capable of various heat treatments, while maintaining no chemical or mechanical durability and without any visible color shift. ) And its manufacturing method.

本発明の課題は、請求項1に記載の特徴を有する層系および請求項23に記載の特徴を有する方法によって解決される。本発明の有利な実施形態は、従属項の対象である。   The object of the present invention is solved by a layer system having the features of claim 1 and a method having the features of claim 23. Advantageous embodiments of the invention are the subject of the dependent claims.

誘電基板S0をコーティングするための焼入れ可能で可視光線反射性と吸収性を有する層系は、基板S0上に次の順序で、少なくとも1つの透明な高屈折率誘電体層S2、1つの機能性金属反射および吸収層S4、および1つの透明な高屈折率誘電体層S6を含む。   A hardenable, visible light reflective and absorptive layer system for coating the dielectric substrate S0 is formed on the substrate S0 in the following order, at least one transparent high-index dielectric layer S2, one functionality: It includes a metallic reflective and absorbing layer S4 and one transparent high index dielectric layer S6.

本発明によるソーラーコントロール層系は、反射色および透過率の調整を可能にする。   The solar control layer system according to the invention makes it possible to adjust the reflection color and the transmittance.

そのとき、層S2とS6のうちの少なくとも1つの屈折率は、550nmの波長の光では、2.0〜2.5であることができる。   At that time, the refractive index of at least one of the layers S2 and S6 can be 2.0 to 2.5 for light having a wavelength of 550 nm.

本発明の一実施形態によれば、層S2は、金属、半導体、又は半導体合金の酸化物又は窒化物からなる。本発明の別の実施形態では、層S6はケイ素を含む。   According to one embodiment of the present invention, the layer S2 is made of an oxide or nitride of a metal, a semiconductor, or a semiconductor alloy. In another embodiment of the invention, layer S6 comprises silicon.

有利には、本発明による層系は、層S2とS6のうちの少なくとも1つが異なる材料の少なくとも2つの部分層(Teilschichten)からなるように実施することができる。   Advantageously, the layer system according to the invention can be implemented such that at least one of the layers S2 and S6 consists of at least two sublayers (Teilschten) of different materials.

このとき、層S2とS6のうちの少なくとも1つは、金属、半導体、又は半導体合金の酸化物又は窒化物を含んでもよい。本発明の別の実施形態では、層6はケイ素を含む。   At this time, at least one of the layers S2 and S6 may include a metal, a semiconductor, or an oxide or nitride of a semiconductor alloy. In another embodiment of the invention, layer 6 comprises silicon.

例えば、層S2とS6のうちの少なくとも1つは、SnO2およびSi3N4を含んでもよい。   For example, at least one of the layers S2 and S6 may include SnO2 and Si3N4.

本発明の別の実施形態によれば、層S4は、クロム又はクロム化合物、例えば、CrNxからなる。   According to another embodiment of the invention, the layer S4 consists of chromium or a chromium compound, for example CrNx.

或いは、層S4は、チタン又はチタン化合物、例えば、TiNxからなることができる。   Alternatively, the layer S4 can be made of titanium or a titanium compound, such as TiNx.

代替法では、層S4は、NiCr又はNiCr化合物からなることができる。   In the alternative, the layer S4 can consist of NiCr or a NiCr compound.

本発明の別の形態によれば、基板S0と層S2との間に透明な中〜低屈折率の誘電バリアおよび/又は接着層S1が配置されている。   According to another aspect of the invention, a transparent medium to low refractive index dielectric barrier and / or adhesive layer S1 is disposed between the substrate S0 and the layer S2.

有利には、層S1の屈折率は、550nmの波長の光では、1.60〜1.75である。   Advantageously, the refractive index of the layer S1 is 1.60 to 1.75 for light with a wavelength of 550 nm.

本発明の更に別の形態によれば、層S6上に、透明な中〜低屈折率の誘電バリアおよび/又は接着層S7が配置されている。   According to yet another aspect of the invention, a transparent medium to low refractive index dielectric barrier and / or adhesive layer S7 is disposed on the layer S6.

有利には、層S7の屈折率は、550nmの波長の光では、1.60〜1.85である。   Advantageously, the refractive index of the layer S7 is 1.60 to 1.85 for light with a wavelength of 550 nm.

本発明の一実施形態によれば、層S1とS7のうちの少なくとも1つは、金属、半導体、又は半導体合金の酸窒化物を含む。   According to one embodiment of the present invention, at least one of the layers S1 and S7 comprises a metal, semiconductor, or semiconductor alloy oxynitride.

有利には、層S2とS4との間に遮蔽層S3が挿入されていてもよい。   Advantageously, a shielding layer S3 may be inserted between the layers S2 and S4.

更に有利には、層S4とS6との間に遮蔽層S5が挿入されていてもよい。   More advantageously, a shielding layer S5 may be inserted between the layers S4 and S6.

そのとき、層S3とS5のうちの少なくとも1つはSiOxNy、化学量論組成未満の(substoechiometrisches)NiCrOx又はNiCrNxを含んでもよい。   At least one of layers S3 and S5 may then include SiOxNy, substoichiometric NiCrOx or NiCrNx.

本発明の別の実施形態によれば、少なくとも1つの他の金属反射および吸収層が設けられている。   According to another embodiment of the invention, at least one other metallic reflective and absorbing layer is provided.

有利には、少なくとも1つの他の金属反射および吸収層は、クロム又はチタンを含む。   Advantageously, the at least one other metallic reflective and absorbing layer comprises chromium or titanium.

更に、少なくとも1つの他の金属反射および吸収層は、窒素を含んでもよい。   Furthermore, the at least one other metallic reflective and absorbing layer may comprise nitrogen.

本発明の他の好ましい形態では、少なくとも1つの他の金属反射および吸収層は、濃度勾配のある窒素含有クロム化合物であり、窒素含有量は層の少なくとも1つの周縁領域で最大であり、内部に向かって減少する。   In another preferred form of the invention, the at least one other metallic reflective and absorbing layer is a concentration-graded nitrogen-containing chromium compound, the nitrogen content being greatest in at least one peripheral region of the layer, and internally It decreases toward.

このようなものの本発明による製造方法は、少なくとも1つの層をスパッタリング、好ましくはDC−又はMF−マグネトロンスパッタリングによって形成することを特徴とする。   The production method according to the invention of such is characterized in that at least one layer is formed by sputtering, preferably by DC- or MF-magnetron sputtering.

有利には、層S1とS7のうちの少なくとも1つは、CVD−又はプラズマを用いたCVD−プロセスによって形成される。   Advantageously, at least one of the layers S1 and S7 is formed by CVD- or a CVD-process using plasma.

好ましくは、層S1とS7のうちの少なくとも1つは、酸素および/又は窒素を含有する雰囲気中でのケイ素又はケイ素アルミニウム合金の反応性マグネトロンスパッタリングによって形成される。   Preferably, at least one of the layers S1 and S7 is formed by reactive magnetron sputtering of silicon or a silicon aluminum alloy in an atmosphere containing oxygen and / or nitrogen.

特に好ましくは、層S1とS7のうちの少なくとも1つは、酸素および/又は窒素を含有するアルゴン雰囲気中でのケイ素又はケイ素アルミニウム合金の反応性マグネトロンスパッタリングによって形成される。   Particularly preferably, at least one of the layers S1 and S7 is formed by reactive magnetron sputtering of silicon or a silicon aluminum alloy in an argon atmosphere containing oxygen and / or nitrogen.

更に、本発明によれば、層S1とS7のうちの少なくとも1つは、酸素および/又は窒素および/又はアルゴンを含有する雰囲気中でのケイ素又はケイ素アルミニウム合金の反応性マグネトロンスパッタリングによって、異なる化学量論組成を有する勾配層として形成される。   Furthermore, according to the present invention, at least one of the layers S1 and S7 has a different chemistry by reactive magnetron sputtering of silicon or silicon aluminum alloy in an atmosphere containing oxygen and / or nitrogen and / or argon. It is formed as a gradient layer having a stoichiometric composition.

可能な本発明による層系の例は、次の通りである:
S0/S1/Si3N4/CrNx/Si3N4/S7
S0/S1/SnO2/Si3N4/CrNx/Si3N4/S7
S0/S1/SnO2/NiCrNx/CrNx/Si3N4/S7
S0/S1/SnO2/SiOxNy/CrNx/Si3N4/S7
Examples of possible layer systems according to the invention are as follows:
S0 / S1 / Si3N4 / CrNx / Si3N4 / S7
S0 / S1 / SnO2 / Si3N4 / CrNx / Si3N4 / S7
S0 / S1 / SnO2 / NiCrNx / CrNx / Si3N4 / S7
S0 / S1 / SnO2 / SiOxNy / CrNx / Si3N4 / S7

吸収性と反射性を有する層S4の厚さを変えることによって、層系の透過率を調整することができる。所望の透過率を達成するための異なる厚さのCrNx化合物の使用、および焼入れ性を達成するための特定の化学量論組成の使用によって、焼入れ後のカラーシフトを非常に小さく保つことができる。CrNxは優れた吸収層である。典型的に使用されるNiCr又はNiCr化合物(NiCrOx)の代わりにCrNxを使用する場合の他の利点は、焼入れ後のヘーズの増加がほんの僅かであることであり、そうでない場合、とりわけニッケルが隣接する層の中に拡散することによってヘーズの増加が起こる。   The transmittance of the layer system can be adjusted by changing the thickness of the layer S4 having absorptivity and reflectivity. By using different thicknesses of CrNx compounds to achieve the desired transmission and using a specific stoichiometric composition to achieve hardenability, the color shift after quenching can be kept very small. CrNx is an excellent absorption layer. Another advantage of using CrNx instead of the typically used NiCr or NiCr compound (NiCrOx) is that there is only a slight increase in haze after quenching, otherwise nickel is adjacent. The haze increases by diffusing into the layer.

更に、吸収層の下にあり(基板側にあり)、所望の反射色に応じた適切な厚さの高屈折率層は、Si3N4からだけでなく、追加的に金属酸化物層からも構成されていてもよい。そのとき、酸化物層と吸収層との間に、薄い遮蔽層が必要である。このように追加の材料を使用できるため、所与のコーター構成およびターゲット装備でサイクル時間を明らかに減少させることができる。   Furthermore, the high refractive index layer under the absorption layer (on the substrate side) and having an appropriate thickness depending on the desired reflection color is composed not only of Si3N4 but also of an additional metal oxide layer. It may be. At that time, a thin shielding layer is required between the oxide layer and the absorption layer. This additional material can be used to significantly reduce cycle time for a given coater configuration and target equipment.

任意の層S1は、Na+がガラス基板から層系の中に拡散すること、および、層の特性に対するガラスの影響(腐食又は吸引手段の跡(Saugerabdruecke)など)を防止するバリア層である。更に、層S1を堆積することによって、ガラス基板から一緒にコーティング装置の中に持ち込まれた水が基板から取り除かれる。   Optional layer S1 is a barrier layer that prevents Na + from diffusing from the glass substrate into the layer system and the influence of the glass on the properties of the layer (such as corrosion or suction means traces). Furthermore, by depositing layer S1, the water brought into the coating apparatus together from the glass substrate is removed from the substrate.

同様に任意の層S7は、通常の被覆層S6に対してより低いそれの屈折率によって反射防止層となり、これは、高い屈折率が望まれる場合に、層系の透過率を更に明らかに高める。   Similarly, the optional layer S7 becomes an antireflective layer due to its refractive index lower than that of the normal coating layer S6, which further clearly increases the transmission of the layer system when a high refractive index is desired. .

Claims (28)

誘電基板S0をコーティングするための焼入れ可能で可視光線反射性と吸収性を有する層系であって、前記基板S0上に次の順序で、少なくとも1つの透明な高屈折率誘電体層S2、1つの機能性金属反射および吸収層S4、および1つの透明な高屈折率誘電体層S6を含む前記層系。   A hardenable, visible light reflective and absorptive layer system for coating the dielectric substrate S0, on the substrate S0 in the following order, at least one transparent high refractive index dielectric layer S2, 1 Said layer system comprising two functional metal reflective and absorbing layers S4 and one transparent high index dielectric layer S6. 前記層S2とS6の少なくとも1つの屈折率が、550nmの波長の光では、2.0〜2.5であることを特徴とする、請求項1に記載の層系。   The layer system according to claim 1, characterized in that at least one refractive index of the layers S2 and S6 is 2.0 to 2.5 for light with a wavelength of 550 nm. 前記層S2が金属、半導体、又は半導体合金の酸化物又は窒化物からなることを特徴とする、請求項1又は2に記載の層系。   3. Layer system according to claim 1 or 2, characterized in that the layer S2 is made of an oxide or nitride of a metal, a semiconductor or a semiconductor alloy. 前記層S6がケイ素を含むことを特徴とする、請求項1〜3のいずれか一項に記載の層系。   4. Layer system according to any one of claims 1 to 3, characterized in that the layer S6 contains silicon. 前記層S2とS6のうちの少なくとも1つが、異なる材料の少なくとも2つの部分層からなることを特徴とする、請求項1〜4のいずれか一項に記載の層系。   5. A layer system according to any one of the preceding claims, characterized in that at least one of the layers S2 and S6 consists of at least two partial layers of different materials. 前記層S2とS6のうちの少なくとも1つが、金属、半導体、又は半導体合金の酸化物又は窒化物を含むことを特徴とする、請求項1〜5のいずれか一項に記載の層系。   6. Layer system according to any one of the preceding claims, characterized in that at least one of the layers S2 and S6 comprises an oxide or nitride of a metal, a semiconductor or a semiconductor alloy. 前記層S2とS6のうちの少なくとも1つが、SnO2又はSi3N4を含むことを特徴とする、請求項1〜6のいずれか一項に記載の層系。   7. A layer system according to any one of the preceding claims, characterized in that at least one of the layers S2 and S6 comprises SnO2 or Si3N4. 前記層S4が、クロム又はクロム化合物、例えば、CrNxからなることを特徴とする、請求項1〜7のいずれか一項に記載の層系。   8. Layer system according to any one of the preceding claims, characterized in that the layer S4 consists of chromium or a chromium compound, for example CrNx. 前記層S4が、チタン又はチタン化合物、例えば、TiNxからなることを特徴とする、請求項1〜8のいずれか一項に記載の層系。   9. Layer system according to any one of claims 1 to 8, characterized in that the layer S4 consists of titanium or a titanium compound, for example TiNx. 前記層S4が、NiCr又はNiCr化合物からなることを特徴とする、請求項1〜9のいずれか一項に記載の層系。   10. Layer system according to any one of claims 1 to 9, characterized in that the layer S4 consists of NiCr or a NiCr compound. 前記基板S0と前記層S2との間に、透明な中〜低屈折率の誘電バリアおよび/又は接着層S1が配置されていることを特徴とする、請求項1〜10のいずれか一項に記載の層系。   11. A transparent medium to low refractive index dielectric barrier and / or adhesive layer S1 is disposed between the substrate S0 and the layer S2, according to any one of claims 1 to 10. The described layer system. 前記層S1の屈折率が、550nmの波長の光のとき、1.60〜1.75であることを特徴とする、請求項1〜11のいずれか一項に記載の層系。   The layer system according to any one of claims 1 to 11, characterized in that the refractive index of the layer S1 is 1.60 to 1.75 when the light has a wavelength of 550 nm. 前記層S6の上に、透明な中〜低屈折率の誘電バリアおよび/又は接着層S7が配置されていることを特徴とする、請求項1〜12のいずれか一項に記載の層系。   13. A layer system according to any one of the preceding claims, characterized in that a transparent medium to low refractive index dielectric barrier and / or an adhesive layer S7 are arranged on the layer S6. 前記層S7の屈折率が、550nmの波長の光のとき、1.60〜1.85であることを特徴とする、請求項1〜13のいずれか一項に記載の層系。   14. A layer system according to any one of the preceding claims, characterized in that the refractive index of the layer S7 is 1.60 to 1.85 when the light has a wavelength of 550 nm. 前記層S1とS7のうちの少なくとも1つが、金属、半導体、又は半導体合金の酸窒化物を含むことを特徴とする、請求項1〜14のいずれか一項に記載の層系。   15. A layer system according to any one of the preceding claims, characterized in that at least one of the layers S1 and S7 comprises an oxynitride of a metal, a semiconductor or a semiconductor alloy. 前記層S2とS4との間に遮蔽層S3が挿入されていることを特徴とする、請求項1〜15のいずれか一項に記載の層系。   16. A layer system according to any one of the preceding claims, characterized in that a shielding layer S3 is inserted between the layers S2 and S4. 前記層S4とS6との間に遮蔽層S5が挿入されていることを特徴とする、請求項1〜16のいずれか一項に記載の層系。   17. A layer system according to any one of the preceding claims, characterized in that a shielding layer S5 is inserted between the layers S4 and S6. 前記層S3とS5のうちの少なくとも1つが、SiOxNy、化学量論組成未満のNiCrOx又はNiCrNxを含むことを特徴とする、請求項1〜17のいずれか一項に記載の層系。   18. A layer system according to any one of the preceding claims, characterized in that at least one of the layers S3 and S5 comprises SiOxNy, NiCrOx or NiCrNx below the stoichiometric composition. 少なくとも1つの他の金属反射および吸収層が設けられることを特徴とする、請求項1〜18のいずれか一項に記載の層系。   19. Layer system according to any one of the preceding claims, characterized in that at least one other metal reflection and absorption layer is provided. 少なくとも1つの他の金属反射および吸収層が、クロム又はチタンを含むことを特徴とする、請求項1〜19のいずれか一項に記載の層系。   20. Layer system according to any one of the preceding claims, characterized in that at least one other metallic reflective and absorbing layer comprises chromium or titanium. 少なくとも1つの他の金属反射および吸収層が、窒素を含むことを特徴とする、請求項1〜20のいずれか一項に記載の層系。   21. A layer system according to any one of the preceding claims, characterized in that at least one other metal reflection and absorption layer comprises nitrogen. 少なくとも1つの他の金属反射および吸収層が、濃度勾配のある窒素含有クロム化合物であり、窒素含有量が前記層の少なくとも1つの周縁領域で最大であり、内部に向かって減少することを特徴とする、請求項1〜21のいずれか一項に記載の層系。   At least one other metal reflection and absorption layer is a gradient nitrogen-containing chromium compound, characterized in that the nitrogen content is greatest in at least one peripheral region of said layer and decreases towards the interior A layer system according to any one of claims 1 to 21. 少なくとも1つの層がスパッタリングによって形成されることを特徴とする、請求項1〜22のいずれか一項に記載の層系の製造方法。   23. A method for producing a layer system according to any one of the preceding claims, characterized in that at least one layer is formed by sputtering. 少なくとも1つの層が、DC−又はMF−マグネトロンスパッタリングによって形成されることを特徴とする、請求項23に記載の方法。   24. The method according to claim 23, characterized in that at least one layer is formed by DC- or MF-magnetron sputtering. 前記層S1とS7のうちの少なくとも1つが、CVD−又はプラズマを用いたCVD−プロセスによって形成されることを特徴とする、請求項23又は24に記載の方法。   25. A method according to claim 23 or 24, characterized in that at least one of the layers S1 and S7 is formed by CVD- or a CVD-process using plasma. 前記層S1とS7のうちの少なくとも1つが、酸素および/又は窒素を含有する雰囲気中でのケイ素又はケイ素−アルミニウム合金の反応性マグネトロンスパッタリングによって形成されることを特徴とする、請求項23〜25のいずれか一項に記載の方法。   26. At least one of the layers S1 and S7 is formed by reactive magnetron sputtering of silicon or a silicon-aluminum alloy in an atmosphere containing oxygen and / or nitrogen. The method as described in any one of. 前記層S1とS7のうちの少なくとも1つが、酸素および/又は窒素を含有するアルゴン雰囲気中でのケイ素又はケイ素−アルミニウム合金の反応性マグネトロンスパッタリングによって形成されることを特徴とする、請求項23〜26のいずれか一項に記載の方法。   24. At least one of said layers S1 and S7 is formed by reactive magnetron sputtering of silicon or a silicon-aluminum alloy in an argon atmosphere containing oxygen and / or nitrogen. 27. The method according to any one of 26. 前記層S1とS7のうちの少なくとも1つが、酸素および/又は窒素および/又はアルゴンを含有する雰囲気中でのケイ素又はケイ素−アルミニウム合金の反応性マグネトロンスパッタリングによって、異なる化学量論組成を有する勾配層として形成されることを特徴とする、請求項23〜27のいずれか一項に記載の方法。   Gradient layers in which at least one of the layers S1 and S7 has different stoichiometric composition by reactive magnetron sputtering of silicon or silicon-aluminum alloy in an atmosphere containing oxygen and / or nitrogen and / or argon 28. A method according to any one of claims 23 to 27, characterized in that it is formed as:
JP2009523303A 2006-08-11 2007-08-10 Quenchable solar control layer system and manufacturing method thereof Expired - Fee Related JP5328650B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102006037912.8A DE102006037912B4 (en) 2006-08-11 2006-08-11 Temperable solar control layer system and method for its production
DE102006037912.8 2006-08-11
PCT/EP2007/058328 WO2008017723A1 (en) 2006-08-11 2007-08-10 Temperable solar control layer system and method for the production thereof

Publications (2)

Publication Number Publication Date
JP2010500271A true JP2010500271A (en) 2010-01-07
JP5328650B2 JP5328650B2 (en) 2013-10-30

Family

ID=38626622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009523303A Expired - Fee Related JP5328650B2 (en) 2006-08-11 2007-08-10 Quenchable solar control layer system and manufacturing method thereof

Country Status (4)

Country Link
JP (1) JP5328650B2 (en)
CN (1) CN101535193B (en)
DE (1) DE102006037912B4 (en)
WO (1) WO2008017723A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180097003A (en) * 2017-02-22 2018-08-30 (주)엘지하우시스 Coating glass having low-transmittance and low-reflection

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9796619B2 (en) * 2010-09-03 2017-10-24 Guardian Glass, LLC Temperable three layer antirefrlective coating, coated article including temperable three layer antirefrlective coating, and/or method of making the same
DE102012109691B4 (en) * 2012-10-11 2014-08-07 Von Ardenne Anlagentechnik Gmbh Graded-layer solar absorber layer system and method for its production
FR3004710B1 (en) * 2013-04-19 2017-01-27 Saint Gobain SOLAR CONTROL GLAZING COMPRISING TWO NICKEL-BASED METAL LAYERS
DE102014002965A1 (en) * 2013-07-30 2015-02-05 Leybold Optics Gmbh Layer system of a transparent substrate and method for producing a layer system
US10294147B2 (en) 2017-01-05 2019-05-21 Guardian Glass, LLC Heat treatable coated article having titanium nitride based IR reflecting layer(s)
CN106995281A (en) * 2017-04-01 2017-08-01 佛山市翔硕宇玻璃科技有限公司 One kind can tempering oxidation and corrosion color metallized glass
FR3118440B1 (en) 2020-12-31 2022-12-23 Saint Gobain Solar protection glazing comprising a thin layer based on titanium nitride and a layer of silicon nitride sub-stoichiometric in nitrogen.

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225346A (en) * 1989-02-27 1990-09-07 Central Glass Co Ltd Heat-reflective glass
JPH05124839A (en) * 1991-10-31 1993-05-21 Central Glass Co Ltd Heat insulating glass which can be thermally worked
JPH11302037A (en) * 1998-04-23 1999-11-02 Central Glass Co Ltd Low reflectance and low transmittance glass
JP2002507248A (en) * 1997-06-20 2002-03-05 ピーピージー インダストリーズ オハイオ,インコーポレイテッド Silicon oxynitride protective coating
JP2003002691A (en) * 2001-06-19 2003-01-08 Central Glass Co Ltd Low reflective substrate and method for producing the same
JP2004514636A (en) * 2000-11-25 2004-05-20 サン−ゴバン グラス フランス Transparent substrate with multilayer coating including thin layer for metal reflection
US6974630B1 (en) * 2003-05-20 2005-12-13 Guardian Industries Corp. Coated article with niobium chromium inclusive barrier layer(s) and method of making same
JP2007530402A (en) * 2004-04-03 2007-11-01 アプライド マテリアルズ ゲーエムベーハー アンド コンパニー カーゲー Glass coating

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188887A (en) * 1989-03-09 1993-02-23 Guardian Industries Corp. Heat treatable sputter-coated glass
US5229194A (en) * 1991-12-09 1993-07-20 Guardian Industries Corp. Heat treatable sputter-coated glass systems
DE4211363A1 (en) * 1992-04-04 1993-10-07 Leybold Ag Coating transparent substrate by cathode sputtering - to produce disks of high transmission behaviour in the visible region and giving high reflection to heat radiation
US5688585A (en) * 1993-08-05 1997-11-18 Guardian Industries Corp. Matchable, heat treatable, durable, IR-reflecting sputter-coated glasses and method of making same
US5376455A (en) * 1993-10-05 1994-12-27 Guardian Industries Corp. Heat-treatment convertible coated glass and method of converting same
FR2728559B1 (en) * 1994-12-23 1997-01-31 Saint Gobain Vitrage GLASS SUBSTRATES COATED WITH A STACK OF THIN LAYERS WITH INFRARED REFLECTION PROPERTIES AND / OR IN THE FIELD OF SOLAR RADIATION
US7153577B2 (en) * 2000-07-10 2006-12-26 Guardian Industries Corp. Heat treatable coated article with dual layer overcoat
US7267879B2 (en) * 2001-02-28 2007-09-11 Guardian Industries Corp. Coated article with silicon oxynitride adjacent glass
US6524714B1 (en) * 2001-05-03 2003-02-25 Guardian Industries Corp. Heat treatable coated articles with metal nitride layer and methods of making same
US6627317B2 (en) * 2001-05-17 2003-09-30 Guardian Industries Corp. Heat treatable coated articles with anti-migration barrier layer between dielectric and solar control layers, and methods of making same
FR2858975B1 (en) * 2003-08-20 2006-01-27 Saint Gobain TRANSPARENT SUBSTRATE COATED WITH A STACK OF THIN LAYERS WITH INFRARED REFLECTION PROPERTIES AND / OR IN THE FIELD OF SOLAR RADIATION
DE10356357B4 (en) * 2003-11-28 2010-05-06 Von Ardenne Anlagentechnik Gmbh Heat-treatable solar and thermal insulation layer system and method for its production
WO2005073428A1 (en) * 2004-01-23 2005-08-11 Arkema Inc. Method of depositing film stacks on a substrate
DE102004047135B4 (en) * 2004-09-27 2011-08-18 VON ARDENNE Anlagentechnik GmbH, 01324 High-temperature layer system and method for its production

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225346A (en) * 1989-02-27 1990-09-07 Central Glass Co Ltd Heat-reflective glass
JPH05124839A (en) * 1991-10-31 1993-05-21 Central Glass Co Ltd Heat insulating glass which can be thermally worked
JP2002507248A (en) * 1997-06-20 2002-03-05 ピーピージー インダストリーズ オハイオ,インコーポレイテッド Silicon oxynitride protective coating
JPH11302037A (en) * 1998-04-23 1999-11-02 Central Glass Co Ltd Low reflectance and low transmittance glass
JP2004514636A (en) * 2000-11-25 2004-05-20 サン−ゴバン グラス フランス Transparent substrate with multilayer coating including thin layer for metal reflection
JP2003002691A (en) * 2001-06-19 2003-01-08 Central Glass Co Ltd Low reflective substrate and method for producing the same
US6974630B1 (en) * 2003-05-20 2005-12-13 Guardian Industries Corp. Coated article with niobium chromium inclusive barrier layer(s) and method of making same
JP2007530402A (en) * 2004-04-03 2007-11-01 アプライド マテリアルズ ゲーエムベーハー アンド コンパニー カーゲー Glass coating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180097003A (en) * 2017-02-22 2018-08-30 (주)엘지하우시스 Coating glass having low-transmittance and low-reflection
KR102075076B1 (en) * 2017-02-22 2020-02-07 (주)엘지하우시스 Coating glass having low-transmittance and low-reflection

Also Published As

Publication number Publication date
JP5328650B2 (en) 2013-10-30
CN101535193A (en) 2009-09-16
CN101535193B (en) 2012-07-04
DE102006037912B4 (en) 2017-07-27
DE102006037912A1 (en) 2008-02-14
WO2008017723A1 (en) 2008-02-14

Similar Documents

Publication Publication Date Title
JP5328650B2 (en) Quenchable solar control layer system and manufacturing method thereof
EP2289856B1 (en) Protective layers for optical coatings
JP2625079B2 (en) Solar controlled durable thin film coating with low emissivity
JP2857147B2 (en) Protective coating for solar shielding film
JP4927709B2 (en) Coated laminate comprising a layer of barrier coating
US4188452A (en) Heat-reflecting glass pane
JP2021504282A (en) Glass sheet coated with thin stack and enamel layer
TW459058B (en) Dual titanium nitride layers for solar control
JP2009528560A (en) Infrared reflective layer system and manufacturing method thereof
HUE032357T2 (en) Solar control coatings with discontinuous metal layer
WO2009084442A1 (en) Heat reflecting glass and process for producing heat reflecting glass
TR201909508T4 (en) Sun control coatings that provide increased absorption or tone.
WO2014191472A2 (en) Low-emissivity glazing
JP2004526650A (en) Low E multilayer system capable of applying compressive stress for window panes
JP5328649B2 (en) Quenchable infrared reflective layer system and method for producing the same
JP2019511395A (en) Article comprising a protective upper layer based on a mixed oxide of zirconium and aluminum
CN114728497B (en) Laminate and door or wall
KR102299376B1 (en) Low-emissivity glass
GB2029861A (en) A heat reflecting pane and a method of manufacturing the same
KR100819440B1 (en) Glass coating
EP1445627A2 (en) Robust highly reflective optical construction
JPH03173763A (en) Transparent article
JPH0239101A (en) Antireflection film
JPH0597476A (en) Heat-treatable heat insulating glass and its production
JPH03103339A (en) Near-infrared shielding glass

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120702

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120709

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120802

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120809

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120830

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130723

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees