JP4927709B2 - Coated laminate comprising a layer of barrier coating - Google Patents

Coated laminate comprising a layer of barrier coating Download PDF

Info

Publication number
JP4927709B2
JP4927709B2 JP2007506355A JP2007506355A JP4927709B2 JP 4927709 B2 JP4927709 B2 JP 4927709B2 JP 2007506355 A JP2007506355 A JP 2007506355A JP 2007506355 A JP2007506355 A JP 2007506355A JP 4927709 B2 JP4927709 B2 JP 4927709B2
Authority
JP
Japan
Prior art keywords
layer
coating
coated substrate
thickness
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007506355A
Other languages
Japanese (ja)
Other versions
JP2007531644A (en
Inventor
ブーハイ、ハリー
フィンレー、ジェームス、ジェイ.
シール、ジェームス、ピー.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PPG Industries Ohio Inc
Original Assignee
PPG Industries Ohio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35207353&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP4927709(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by PPG Industries Ohio Inc filed Critical PPG Industries Ohio Inc
Publication of JP2007531644A publication Critical patent/JP2007531644A/en
Application granted granted Critical
Publication of JP4927709B2 publication Critical patent/JP4927709B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3652Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the coating stack containing at least one sacrificial layer to protect the metal from oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3618Coatings of type glass/inorganic compound/other inorganic layers, at least one layer being metallic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3628Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a sulfide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3639Multilayers containing at least two functional metal layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/366Low-emissivity or solar control coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3681Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating being used in glazing, e.g. windows or windscreens
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3694Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer having a composition gradient through its thickness
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/38Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal at least one coating being a coating of an organic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/42Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/78Coatings specially designed to be durable, e.g. scratch-resistant
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/94Transparent conductive oxide layers [TCO] being part of a multilayer coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12576Boride, carbide or nitride component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Paints Or Removers (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、多層機能性被覆、特に少なくとも一つの障壁被覆層を含むそのような被覆に関する。   The present invention relates to multilayer functional coatings, in particular such coatings comprising at least one barrier coating layer.

参考関連出願
本願は、2001年10月22日に出願された米国特許出願Serial No.10/007,382のCIPである2002年4月25日に出願された米国特許出願Serial No.10/133,805のCIPである2003年3月25日に出願された米国特許出願Serial No.10/397,001のCIPである2003年4月24日に出願された米国特許出願Serial No.10/422,095のCIPである。本願は、2002年4月25日に出願された米国特許仮出願Serial No.60/376,000の利権も主張するものである。それら出願の全ては、参考のため全体的にここに入れてある。
REFERENCE RELATED APPLICATION This application is a U.S. patent application serial no. US Patent Application Serial No. 10 / 007,382, filed April 25, 2002, which is a CIP. US Patent Application Serial No. 10 / 133,805, filed March 25, 2003, which is a CIP. No. 10 / 397,001 CIP filed April 24, 2003, US Patent Application Serial No. 10 / 422,095 CIP. This application is a provisional application for Serial No. Serial No. Serial No. It also claims a 60 / 376,000 interest. All of these applications are hereby incorporated by reference in their entirety.

ガラスのような基体は、商業的建造物から、家庭、自動車、機械設備等の範囲の多くの用途で用いられている。それら基体は希望の性能特性を得るため、機能性被覆(functional coating)で屡々被覆される。   Substrates such as glass are used in many applications ranging from commercial buildings to homes, automobiles, machinery and the like. These substrates are often coated with a functional coating to obtain the desired performance characteristics.

当分野では、伝導性被覆、太陽光調節被覆、光触媒被覆、低放射性被覆、透明伝導性被覆(それらに限定されるものではない)等を含めた極めて多種類の機能性被覆が知られている。機能性被覆の一例は、誘電体材料の層の間に少なくとも一つの金属層(単数又は複数)を挟んだものを含む金属系高透過率、低放射性被覆である。通常金属層は、金、銅、又は銀であり、誘電体材料は、酸化錫、酸化インジウム、酸化チタン、酸化ビスマス、酸化亜鉛、酸化ジルコニウム、又は亜鉛/錫酸化物のような金属酸化物である。   A wide variety of functional coatings are known in the art, including, but not limited to, conductive coatings, solar control coatings, photocatalytic coatings, low emission coatings, transparent conductive coatings, etc. . An example of a functional coating is a metal-based high transmittance, low radiation coating that includes at least one metal layer (s) sandwiched between layers of dielectric material. Usually the metal layer is gold, copper or silver and the dielectric material is a metal oxide such as tin oxide, indium oxide, titanium oxide, bismuth oxide, zinc oxide, zirconium oxide, or zinc / tin oxide. is there.

或る用途については、機能性被覆で被覆された基体を加熱する必要がある。例えば、自動車風防ガラスとして用いられる被覆ガラス基体は、そのガラスを曲げるために加熱しなければならないことがある。典型的には、ガラスは、自動車風防ガラスのために必要な湾曲を達成するためには1150°F〜1200°Fの最高温度まで20〜30分間加熱されるであろう。湾曲の複雑性により、温度は一層長くなったり、時間が一層長くなったりする。   For some applications, it is necessary to heat the substrate coated with the functional coating. For example, a coated glass substrate used as an automotive windshield may need to be heated to bend the glass. Typically, the glass will be heated to a maximum temperature of 1150 ° F to 1200 ° F for 20-30 minutes to achieve the curvature required for automotive windshields. Due to the complexity of the curvature, the temperature will be longer and the time will be longer.

被覆基体を加熱することは、加熱によって劣化するような層(単数又は複数)を被覆が含む場合には問題になることがある。一般に被覆基体の加熱は、例えば、加熱によって移動性物質が移動し易くなり、或る被覆層から流出すると言う種々の理由から或る温度まで(或る時間の間)有利な結果を生ずるであろうが、それでも悪影響が起きる。被覆の性能が劣化し始める前に被覆層を加熱することができる温度と暴露時間との組合せを、ここでは被覆の「限界熱量(heat budget)」として言及する。被覆の性能は、その限界熱量を越えた後に劣化し始める。なぜなら少なくとも一つの被覆層が劣化し始めるからである。被覆積層体中のどの被覆層も、その被覆を形成するために用いた材料により異なった限界熱量を有する。被覆積層体についての限界熱量は、積層体中で最低の限界熱量を有する被覆層によって決定され、そこでその層が劣化し始める。   Heating the coated substrate can be problematic if the coating includes a layer or layers that are subject to degradation by heating. In general, heating of a coated substrate will produce advantageous results up to a certain temperature (for a certain period of time) for various reasons, for example, by which the mobile substance is easily moved by heating and flows out of a certain coating layer. Deaf, but still bad. The combination of the temperature at which the coating layer can be heated before the performance of the coating begins to deteriorate and the exposure time is referred to herein as the “heat budget” of the coating. The performance of the coating begins to deteriorate after its critical heat is exceeded. This is because at least one coating layer begins to deteriorate. Every coating layer in a coating laminate has a critical heat quantity that varies depending on the material used to form the coating. The critical amount of heat for a coated laminate is determined by the coating layer having the lowest critical amount of heat in the laminate, where it begins to degrade.

例えば、上に記載したような高透過率、低放射性被覆では、金属層(単数又は複数)は、被覆積層体中で最も低い限界熱量を有するのが典型的である。そのような被覆で被覆されたガラス基体を曲げに典型的に伴われる加熱条件、例えば、1150°F〜1200°Fに20〜30分間暴露されると、その金属層(単数又は複数)は劣化するであろう。金属層(単数又は複数)の劣化は、光学的及び/又は太陽光調節特性が低下した被覆基体をもたらすことがある。特に機能性被覆は電気抵抗の増大、曇りの増大、太陽光赤外線(IR)反射性の低下、可視光透過率の低下、放射性の増大等を示すことがある。   For example, in a high transmittance, low radiation coating as described above, the metal layer (s) typically have the lowest critical heat in the coating stack. When a glass substrate coated with such a coating is exposed to the heating conditions typically associated with bending, eg, 1150 ° F. to 1200 ° F. for 20-30 minutes, the metal layer (s) deteriorate. Will do. Degradation of the metal layer (s) can result in a coated substrate with reduced optical and / or solar control properties. In particular, functional coatings may exhibit increased electrical resistance, increased haze, decreased solar infrared (IR) reflectivity, decreased visible light transmission, increased radiation, and the like.

加熱の外に、塩、塩化物、硫黄、塩素、アルカリ、及びエナメルのようなハロゲンを含む或る化学物質(それらに限定されるものではない)に暴露するような他の事柄で機能性被覆中の層の劣化を起こすことがある。   In addition to heating, functional coatings with other things such as, but not limited to, exposure to certain chemicals including salts, chlorides, sulfur, chlorine, alkalis, and halogens such as enamel May cause deterioration of the inner layer.

被覆基体の最適性能を確実に与えるため、被覆積層体中のどの劣化性(degradable)被覆層(単数又は複数)においても、被覆層の劣化をもたらし、続いてその被覆基体の性能を低下するような条件及び/又は物質から保護することが望ましい。慣用的には、下地層のような犠牲層〔「遮断層(blocker layer)」としても知られている〕が、被覆積層体、例えば、金属系高透過率、低放射性被覆に追加されるか、又は劣化性層(単数又は複数)を保護するために一層厚いレベルに適用されてきている。犠牲層は、望ましくない条件に優先的に呼応するか又は反応し、被覆積層体中の他の選択された層を保護する。下地層(単数又は複数)を追加するか、又は一層厚い下地層(単数又は複数)を用いることに伴う問題は、被覆を加熱した後に、過剰の下地が被覆の個々の層の界面での損傷により接着性を悪くし、曇りを増大する結果になることがあることである。また、過剰の下地は、被覆を柔らかくし、擦ることにより損傷し易くすることがある。   In order to ensure optimum performance of the coated substrate, any degradable coating layer (s) in the coated laminate will result in degradation of the coating layer and subsequently reduce the performance of the coated substrate. Protection from unfavorable conditions and / or substances. Conventionally, a sacrificial layer (also known as a “blocker layer”), such as an underlayer, is added to a coating laminate, eg, a metal-based high transmittance, low radiation coating. Or have been applied to thicker levels to protect the degradable layer (s). The sacrificial layer preferentially responds to or reacts to undesirable conditions and protects other selected layers in the coating laminate. The problem with adding underlayer (s) or using a thicker underlayer (s) is that after heating the coating, excess underlayer damage at the interface of the individual layers of the coating Can result in poor adhesion and increased haze. In addition, excess substrate may soften the coating and be easily damaged by rubbing.

本発明は、被覆積層体中のどの劣化性層(単数又は複数)をも保護するための少なくとも一つの障壁被覆層を有する被覆構成体(coating composition)を与える。本発明による被覆構成体は、増大した限界熱量を示し、化学的腐食に耐える改良された能力を示す。   The present invention provides a coating composition having at least one barrier coating layer for protecting any degradable layer (s) in the coating laminate. The coating structure according to the present invention exhibits an increased critical heat and an improved ability to withstand chemical corrosion.

一つの非限定的態様として、本発明は、少なくとも一つの劣化性層及び少なくとも一つの障壁被覆層を含む被覆構成体にあり、この場合、前記障壁被覆層が900°Fの温度で10g/m/日以下の酸素透過率を有する。 In one non-limiting embodiment, the present invention resides in a coating structure comprising at least one degradable layer and at least one barrier coating layer, wherein the barrier coating layer is 10 g / m at a temperature of 900 ° F. It has an oxygen transmission rate of 2 / day or less.

別の非限定的態様として、本発明は、基体の少なくとも一部分の上に少なくとも一つの劣化性層及び少なくとも一つの障壁層を含む被覆構成体が適用された被覆基体にあり、この場合、前記障壁被覆層は、900°Fの温度で10g/m/日以下の酸素透過率を有する。 In another non-limiting embodiment, the present invention resides in a coated substrate having a coating structure comprising at least one degradable layer and at least one barrier layer applied over at least a portion of the substrate, wherein the barrier The coating layer has an oxygen transmission rate of 10 g / m 2 / day or less at a temperature of 900 ° F.

別の非限定的態様として、本発明は、基体の上に劣化性被覆層を適用し、そして前記劣化性被覆層の上に障壁被覆層を適用することを含む多層被覆基体を形成する方法にあり、この場合、前記障壁被覆層は、900°Fの温度で10g/m/日以下の酸素透過率を有する。 In another non-limiting embodiment, the present invention is directed to a method of forming a multilayer coated substrate comprising applying a degradable coating layer over the substrate and applying a barrier coating layer over the degradable coating layer. Yes, in this case, the barrier coating layer has an oxygen transmission rate of 10 g / m 2 / day or less at a temperature of 900 ° F.

発明の記述
ここで用いられる、「左」、「右」、「内側(inner)」、「外側(outer)」、「より上に(above)」、「より下に(below)」、「一番上(top)」、「一番下(bottom)」、等のような空間又は方向的用語は、種々の別な配位を包含すものと理解され、従ってそのような用語は限定するものとして考えるべきではない。
DESCRIPTION OF THE INVENTION As used herein, “left”, “right”, “inner”, “outer”, “above”, “below”, “one” Spatial or directional terms such as “top”, “bottom”, etc. are understood to encompass a variety of alternative configurations, and thus such terms are limiting. Should not be considered as.

更に、本明細書及び特許請求の範囲の範囲で用いられている大きさ、物理的特徴、処理パラメーター、成分量、反応条件等を表現するここで用いられている全ての数字は、どの場合でも用語「約」によって修正できるものとして理解すべきである。従って、反対のことが指示されていない限り、次の明細書及び特許請求の範囲中に記載された数値は、本発明によって得られるように求められる希望の性質に依存して変化させることができる。最低限、特許請求の範囲に均等論を適用することを制限しようとする意図としではなく、各数値は、少なくとも、多数の報告された重要な数値を参照し、通常の端数を丸める方法を適用することにより得られたものと見做すべきである。更に、ここに記載した多くの範囲は、初めと終わりの範囲値を含み、その中に含まれるどのような小さい範囲でも全て包含されるものと理解すべきである。例えば、「1〜10」と述べた範囲は、1の最小値と10の最大値の間に入る(それらの数値をも含めて)どのような小さい範囲でも全て包含するものと考えるべきである。即ち、1以上の最小値で始まり、10以下の最大値で終わる全ての小範囲、例えば1.0〜3.8、6.6〜9.7、及び5.5〜10.0のような範囲が含まれる。   Furthermore, all numbers used herein to express size, physical characteristics, processing parameters, component amounts, reaction conditions, etc. used in the specification and claims are in any case. It should be understood that it can be modified by the term “about”. Accordingly, unless stated to the contrary, the numerical values set forth in the following specification and claims can be varied depending upon the desired properties sought to be obtained by the present invention. . At the very least, it is not intended to limit the application of the doctrine of equivalents to the claims, but each number refers to a number of reported significant numbers and applies the usual rounding method. Should be considered to have been obtained. Further, it should be understood that many of the ranges described herein are inclusive of any small ranges contained therein, including initial and final range values. For example, the range described as “1-10” should be considered to encompass any small range that falls between the minimum value of 1 and the maximum value of 10 (including those values). . That is, all subranges that start with a minimum value of 1 or more and end with a maximum value of 10 or less, such as 1.0 to 3.8, 6.6 to 9.7, and 5.5 to 10.0. A range is included.

ここで用いられる用語、「の上に(on)」、「の上に/を覆って適用した(applied on/over)」、「の上に/を覆って形成した(formed on/over)」、「の上に/を覆って堆積した(deposited on/over)」、「を覆って横たわる(overlay)」、及び「の上に/を覆って与えられた(provided on/over)」とは、上ではあるが必ずしも表面とは接触しないで形成、堆積、又は与えられていることを意味する。例えば、基体「を覆って形成した」被覆層とは、形成した被覆層と基体との間に位置する同じか又は異なる組成物の一つ以上の他の被覆層が存在することを排除するものではない。例えば、基体(例えば、ガラス又はセラミック)は、基体を被覆する分野で知られている被覆のような慣用的被覆を含むことができる。   The terms used here are “on”, “applied on / over”, “formed on / over” , “Deposited on / over”, “overlay” and “provided on / over” , Above, but not necessarily in contact with the surface. For example, a coating layer “formed over” a substrate excludes the presence of one or more other coating layers of the same or different composition located between the formed coating layer and the substrate. is not. For example, the substrate (eg, glass or ceramic) can include conventional coatings, such as coatings known in the field of coating substrates.

本発明は、少なくとも一つの障壁被覆層、及び熱及び化学的侵食(それらに限定されるものではない)のような或る条件に曝すと劣化を受け易い少なくとも一つの被覆層を含む被覆構成体にある。劣化を受け易い被覆層は、ここでは「劣化性層」として言及する。   The present invention relates to a coating structure comprising at least one barrier coating layer and at least one coating layer that is susceptible to degradation upon exposure to certain conditions such as, but not limited to, thermal and chemical erosion. It is in. A coating layer that is susceptible to degradation is referred to herein as a “degradable layer”.

本発明による障壁被覆層は、単一の層でもよく、或は複数の被覆層でもよい。障壁被覆層は、酸素、銅、ハロゲン化物、硫化物、硫黄、アルカリ、水等(それらに限定されるものではない)のような種々の材料に対する障壁として働くことができる。本発明の障壁被覆層は、実質的に安定であり、実質的に非消耗性であり、実質的に非反応性である。実質的に安定で、実質的に非消耗性であり、実質的に非反応性であるとは、障壁層内の成分対Oの化学量論的比が、±5%より大きく変化することはないことを意味する。障壁被覆層が暴露される条件とは無関係に、それは実質的に同じ構成状態を維持するであろう。例えば、酸素障壁被覆の場合には、その障壁被覆層が完全に酸化され始めると、それら条件とは無関係に完全に酸化されたままになるであろう。 The barrier coating layer according to the present invention may be a single layer or a plurality of coating layers. The barrier coating layer can act as a barrier to various materials such as, but not limited to oxygen, copper, halides, sulfides, sulfur, alkalis, water, and the like. The barrier coating layer of the present invention is substantially stable, substantially non-consumable, and substantially non-reactive. Substantially stable, substantially non-consumable, and substantially non-reactive means that the stoichiometric ratio of component to O 2 in the barrier layer varies by more than ± 5%. Means no. Regardless of the conditions to which the barrier coating layer is exposed, it will maintain substantially the same configuration. For example, in the case of an oxygen barrier coating, once the barrier coating layer begins to be fully oxidized, it will remain fully oxidized regardless of the conditions.

本発明により、障壁被覆層が劣化性層を酸素から保護する場合、その障壁被覆層は、酸素に対し低い透過率を有する。本発明の非限定的態様として、障壁被覆層は、900°Fの温度で10g/m/日以下、例えば、8g/m/日以下、或は5g/m/日以下の酸素透過率を示す。 According to the present invention, when the barrier coating layer protects the degradable layer from oxygen, the barrier coating layer has a low permeability to oxygen. As a non-limiting embodiment of the present invention, the barrier coating layer has an oxygen transmission rate of 900 g / m 2 / day or less, such as 8 g / m 2 / day or less, or 5 g / m 2 / day or less. Indicates the rate.

次に、酸素透過率をどのようにして測定することができるかを例示する。アルミナとシリカ(60重量%のアルミナ及び40重量%のシリカ)の合金を含む1400Åの厚さの第一障壁層で、3枚の透明ガラスを被覆した。次に前記アルミナ/シリカ合金層を覆って114Åのチタン層を含む被覆を適用した。最後にそれら試料を、アルミナとシリカ(60重量%のアルミナ及び40重量%のシリカ)の合金を含む第二障壁被覆層で被覆した。第二障壁層の厚さは、それぞれの試料で異なっていた。一つの試料(試料A)は、266Åの厚さを有する第二障壁層を持っていた。別の試料(試料B)は、515Åの厚さを有する第二障壁被覆層を持っていた。最後試料(試料C)は、1,071Åの厚さを有する第二障壁層を持っていた。最初は、全ての試料がチタン層による吸収の結果として透過側では暗く見えた。   Next, it will be illustrated how the oxygen permeability can be measured. Three transparent glasses were coated with a 1400 厚 thick first barrier layer containing an alloy of alumina and silica (60 wt% alumina and 40 wt% silica). Next, a coating comprising a 114 チ タ ン titanium layer was applied over the alumina / silica alloy layer. Finally, the samples were coated with a second barrier coating layer comprising an alloy of alumina and silica (60 wt% alumina and 40 wt% silica). The thickness of the second barrier layer was different for each sample. One sample (Sample A) had a second barrier layer having a thickness of 266 mm. Another sample (Sample B) had a second barrier coating layer having a thickness of 515 mm. The last sample (Sample C) had a second barrier layer having a thickness of 1071 mm. Initially, all samples appeared dark on the transmission side as a result of absorption by the titanium layer.

試料を調製した後、各試料を1300°Fに加熱した。試料が透明になる(吸収がなくなる)までにかかる時間の長さを記録した。試料が透明になった時、それは最初に堆積したチタンが完全に酸化され、チタニアになったことを示している。試料Aは完全に酸化されるまで80分かかった。試料Bは完全に酸化されるまで115分かかった。そして、試料Cは完全に酸化されるまで130分かかった。記録した「酸化」時間を用いて、次の式により透過率(P)を計算した:
P=T/10E[Å/cm]×4.5[g/cm]×10E4[cm/m]/47.9[g/モル]×32[g/モル]/R×1440[分/日]
式中、
T=チタン層の厚さ[Å];
4.5g/cm=チタンの密度;
47.9g/モル=チタンの原子重量;
32g/モル=Oの分子量;及び
R=記録された酸化時間(分)。
After preparing the samples, each sample was heated to 1300 ° F. The length of time it took for the sample to become transparent (no absorption) was recorded. When the sample became transparent, it indicated that the initially deposited titanium was completely oxidized and became titania. Sample A took 80 minutes to fully oxidize. Sample B took 115 minutes to fully oxidize. Sample C took 130 minutes to be completely oxidized. Using the recorded “oxidation” time, the transmittance (P) was calculated by the following formula:
P = T / 10E 8 [Å / cm] × 4.5 [g / cm 3 ] × 10E4 [cm 2 / m 2 ] /47.9 [g / mol] × 32 [g / mol] / R × 1440 [Minutes / day]
Where
T = thickness of titanium layer [Å];
4.5 g / cm 3 = density of titanium;
47.9 g / mol = atomic weight of titanium;
32 g / mol = molecular weight of O 2 ; and R = recorded oxidation time (minutes).

試料Aの透過率は、計算により0.6g/m/日であった。試料Bの透過率は、計算により0.4g/m/日であった。試料Cの透過率は、計算により0.4g/m/日であった。 The transmittance of Sample A was 0.6 g / m 2 / day by calculation. The transmittance of Sample B was 0.4 g / m 2 / day by calculation. The transmittance of Sample C was 0.4 g / m 2 / day by calculation.

本発明により、障壁被覆層は、550nmでどのような値に等しい屈折率にでもすることができる。障壁被覆層が複数の層からなる場合、全障壁被覆層の屈折率は、当分野でよく知られている標準的方法を用いて計算することができる。非限定的態様として、全障壁被覆層は、3に等しいか又はそれより小さな屈折率、例えば、2.5以下、又は1.8以下の屈折率を有する。   According to the invention, the barrier coating layer can have a refractive index equal to any value at 550 nm. If the barrier coating consists of multiple layers, the refractive index of all barrier coatings can be calculated using standard methods well known in the art. As a non-limiting embodiment, the entire barrier coating layer has a refractive index equal to or less than 3, for example, a refractive index of 2.5 or lower, or 1.8 or lower.

本発明の非限定的態様として、障壁被覆層は、アルミナ、シリカ、又はそれらの混合物(それらに限定されるものではない)のような一種類以上の金属酸化物材料から構成された一つの層である。例えば、障壁被覆層は、全部アルミナ、又は全部シリカから作られていてもよい。別の非限定的態様として、障壁被覆層は、アルミナとシリカとの組合せ、例えば、5重量%〜95重量%のアルミナ及び95重量%〜5重量%のシリカ、又は、10重量%〜90重量%のアルミナ及び90重量%〜10重量%のシリカ、又は、15重量%〜90重量%のアルミナ及び85重量%〜10重量%のシリカ、又は、50重量%〜75重量%のアルミナ及び50重量%〜25重量%のシリカ、(それらに限定されるものではない)にすることができる。   As a non-limiting embodiment of the present invention, the barrier coating layer is a layer composed of one or more metal oxide materials such as, but not limited to, alumina, silica, or mixtures thereof. It is. For example, the barrier coating layer may be made of all alumina or all silica. In another non-limiting embodiment, the barrier coating layer is a combination of alumina and silica, such as 5 wt% to 95 wt% alumina and 95 wt% to 5 wt% silica, or 10 wt% to 90 wt%. % Alumina and 90% to 10% silica, or 15% to 90% alumina and 85% to 10% silica, or 50% to 75% alumina and 50% by weight. % To 25% by weight silica, (but not limited to).

本発明の非限定的態様として、障壁被覆層は、一つの層を含み、障壁被覆の組成が全体に亙って変化している。例えば、障壁被覆の組成は、二種類の材料、第一材料及び第二材料から構成することができる。障壁被覆層を基体上に、その障壁被覆の第一材料の濃度が基体に近い所で最大であり、障壁被覆の第二材料の濃度が、基体からの距離が増大するに従って、例えば、徐々に増大するようなやり方で適用する。基体から最も遠い所の障壁被覆の組成は、第二材料の濃度が最大になっている。本発明の別の非限定的態様として、障壁被覆が一つの層で、障壁被覆の組成が全体に亙って一般に均一である。   As a non-limiting embodiment of the present invention, the barrier coating layer comprises a single layer, and the composition of the barrier coating varies throughout. For example, the barrier coating composition can be composed of two materials, a first material and a second material. The barrier coating layer is on the substrate, the concentration of the first material of the barrier coating being maximum near the substrate, and the concentration of the second material of the barrier coating increases, for example, gradually as the distance from the substrate increases. Apply in an increasing manner. The composition of the barrier coating farthest from the substrate has the highest concentration of the second material. As another non-limiting embodiment of the invention, the barrier coating is a single layer and the composition of the barrier coating is generally uniform throughout.

本発明の非限定的態様として、障壁被覆層の厚さは、2μ(20,000Å)までの範囲、例えば、50Å〜5,400Å、又は85Å〜600Åの範囲にすることができる。   As a non-limiting embodiment of the present invention, the thickness of the barrier coating layer can be in the range of up to 2μ (20,000 Å), for example, in the range of 50 Å to 5,400 Å, or 85 Å to 600 Å.

障壁被覆層が複数の層から構成されている場合の本発明の非限定的態様として、障壁被覆は、シリカ及び/又はアルミナの第二層を覆って適用されたシリカ及び/又はアルミナの第一層を含む。例えば、第一層は、アルミナ、或は5重量%より多いアルミナ、例えば、10重量%より多いアルミナ、又は15重量%より多いアルミナを含むシリカ/アルミナ混合物にすることができる。第一層は、1μまでの厚さ、例えば、50Å〜400Å、又は60Å〜30Åの厚さにすることができる。第二層は、40重量%より多くのシリカ、例えば、50重量%より多いシリカ、又は60重量%より多いシリカを含むシリカ/アルミナ混合物を含むことができる。第二層は、1μまでの厚さ、例えば、50Å〜5,000Å、又は60Å〜300Åの厚さを有することができる。障壁被覆層を含む層の各々は、均一な組成を持っていてもよく、或は全体に亙って変化する組成を持っていてもよい。   As a non-limiting embodiment of the present invention when the barrier coating layer is comprised of a plurality of layers, the barrier coating is a first silica and / or alumina applied over a second layer of silica and / or alumina. Including layers. For example, the first layer can be alumina or a silica / alumina mixture comprising more than 5 wt% alumina, such as more than 10 wt% alumina, or more than 15 wt% alumina. The first layer can be up to 1 μ thick, for example, 50 to 400 mm, or 60 to 30 mm thick. The second layer can comprise a silica / alumina mixture comprising greater than 40 wt% silica, such as greater than 50 wt% silica, or greater than 60 wt% silica. The second layer can have a thickness of up to 1 μm, for example, 50 to 5,000, or 60 to 300 mm. Each of the layers including the barrier coating layer may have a uniform composition or may have a composition that varies throughout.

本発明により、障壁被覆層を、当分野で知られているどのような機能性被覆中にでも組込むことができる。本発明の非限定的態様として、障壁被覆層を、金属系被覆構成体中へ組込む。ここで用いる金属系被覆構成体には、少なくとも一つの金属層を含むどのような被覆でも含まれる。特に障壁被覆層は、下で詳細に記述する金属系被覆積層体ユニットの一つ以上の層を含む金属系被覆構成体中へ組込むことができる。金属系被覆積層体ユニットは、当分野でよく知られているカスケード式構図を生ずるように何回でも繰り返すことができる。   In accordance with the present invention, the barrier coating layer can be incorporated into any functional coating known in the art. As a non-limiting embodiment of the present invention, a barrier coating layer is incorporated into the metal-based coating structure. As used herein, a metal-based coating composition includes any coating that includes at least one metal layer. In particular, the barrier coating layer can be incorporated into a metal-based coating structure that includes one or more layers of the metal-based coating laminate unit described in detail below. The metal-based laminate unit can be repeated any number of times to produce a cascaded composition that is well known in the art.

金属系被覆積層体ユニットは、誘電体材料の第一層、電磁波反射性材料の層、下地層、及び誘電体材料の第二層を含む。誘電体材料の第一層は、可視光に対し透明な金属酸化物又は金属合金の酸化物から構成することができる。適当な金属酸化物の例には、酸化インジウム、酸化チタン、酸化亜鉛、酸化錫、及びそれらの混合物及び合金(例えば、錫酸亜鉛)が含まれるが、それらに限定されるものではない。例えば、誘電体材料の第一層は、亜鉛と錫の合金を、10〜90重量%の亜鉛、例えば、30〜60重量%の亜鉛、又は46〜50重量%の亜鉛の範囲の割合で含むことができる。別の例として、誘電体材料の第一層は、複数の層、例えば、錫酸亜鉛の一つの層と、酸化亜鉛の別の層から構成することができる。誘電体材料の適当な第一層は、米国特許第4,610,771号及び第5,821,001号明細書(それらは参考のためここに入れてある)に記載されている。   The metal-based coated laminate unit includes a first layer of dielectric material, a layer of electromagnetic wave reflecting material, an underlayer, and a second layer of dielectric material. The first layer of dielectric material can be composed of a metal oxide or metal alloy oxide that is transparent to visible light. Examples of suitable metal oxides include, but are not limited to indium oxide, titanium oxide, zinc oxide, tin oxide, and mixtures and alloys thereof (eg, zinc stannate). For example, the first layer of dielectric material comprises an alloy of zinc and tin in a proportion ranging from 10 to 90 wt% zinc, such as 30 to 60 wt% zinc, or 46 to 50 wt% zinc. be able to. As another example, the first layer of dielectric material can be composed of multiple layers, for example, one layer of zinc stannate and another layer of zinc oxide. Suitable first layers of dielectric material are described in US Pat. Nos. 4,610,771 and 5,821,001, which are hereby incorporated by reference.

誘電体材料の第一層の厚さは、100Å〜800Å、例えば、200Å〜750Å、又は280Å〜700Åの範囲にすることができる。   The thickness of the first layer of dielectric material can be in the range of 100 to 800 inches, such as 200 to 750 inches, or 280 to 700 inches.

電磁波反射性材料の層を、誘電体材料の第一層の少なくとも一部分を覆って適用する。電磁波反射性材料は、太陽光赤外領域、熱赤外領域、及び/又はマイクロ波領域で反射することができる。電磁波反射性材料は、金、銅、又は銀のような金属を含むことができる。電磁波反射性材料は、上述の金属の組合せのみならず、それらの合金も含むことができる。記載した金属系被覆積層体ユニットでは、電磁波反射性材料の層は、劣化性層である。   A layer of electromagnetic wave reflective material is applied over at least a portion of the first layer of dielectric material. The electromagnetic wave reflective material can reflect in the solar infrared region, the thermal infrared region, and / or the microwave region. The electromagnetic wave reflective material can include a metal such as gold, copper, or silver. The electromagnetic wave reflective material can include not only a combination of the above-described metals but also an alloy thereof. In the described metal-based coated laminate unit, the layer of the electromagnetic wave reflecting material is a degrading layer.

電磁波反射性材料の層の厚さは、50Å〜300Å、例えば、60Å〜200Å、又は70Å〜150Åの範囲にすることができる。   The thickness of the layer of the electromagnetic wave reflecting material can be in the range of 50 to 300 mm, for example, 60 to 200 mm, or 70 to 150 mm.

電磁波反射性材料の層の少なくとも一部分を覆って下地層を適用する。下地層は、ゲッター/捕集用材料、即ち、ガスを吸収し易い物質として当分野で知られているどのような材料にでもすることができる。下地に適切な材料には、チタン、銅、アルミニウム、ニッケル、ニオブ、イットリウム、ジルコニウム、ハフニウム、クロム、及びそれらの合金;ニッケル・クロム合金及びコバルト・クロム合金;インジウム錫亜酸化物、チタン亜酸化物、及び亜鉛アルミニウム亜酸化物のような亜酸化物;及び窒化珪素のような窒化物が含まれるが、それらに限定されるものではない。   An underlayer is applied over at least a portion of the layer of electromagnetic wave reflecting material. The underlayer can be any material known in the art as a getter / collector material, i.e., a substance that readily absorbs gases. Suitable materials for the substrate include titanium, copper, aluminum, nickel, niobium, yttrium, zirconium, hafnium, chromium, and alloys thereof; nickel-chromium alloy and cobalt-chromium alloy; indium tin suboxide, titanium suboxide And suboxides such as zinc aluminum suboxide; and nitrides such as silicon nitride, but are not limited thereto.

本発明の非限定的態様として、下地層は、例えば、O含有プラズマに曝すことにより、又は空気中で加熱した結果として金属から酸化物へ転化するか、亜酸化物から酸化物へ転化することができる。下地は、時間と共にゲッター/捕集剤としての能力を失うことがあっても、下地としてのその分類に影響を与えるものではない。例えば、本発明による被覆積層体は、チタン金属から最初構成された下地層を含むことができる。時間と共にチタン金属層は酸素を吸収し、チタン金属はチタニア、即ち、TiOに転化するであろう。チタニアはもはや酸素とは反応しない。そのような場合、最初チタン金属として被覆積層体中に存在していたチタニアは、下地層と考えられる。 As a non-limiting embodiment of the present invention, the underlayer is converted from metal to oxide or from suboxide to oxide, for example, by exposure to an O 2 containing plasma or as a result of heating in air. be able to. Even if a substrate loses its ability as a getter / collector over time, it does not affect its classification as a substrate. For example, a coated laminate according to the present invention can include an underlayer that is initially constructed from titanium metal. Over time, the titanium metal layer will absorb oxygen and the titanium metal will be converted to titania, ie TiO 2 . Titania no longer reacts with oxygen. In such a case, the titania initially present in the coated laminate as titanium metal is considered the underlayer.

下地層の厚さは、50Åまで、例えば、5Å〜35Å、又は8Å〜30Å、又は10Å〜18Åの範囲にすることができる。   The thickness of the underlayer can be up to 50 mm, for example, in the range of 5 mm to 35 mm, or 8 mm to 30 mm, or 10 mm to 18 mm.

下地層の少なくとも一部分を覆って誘電体材料の第二層を適用する。誘電体材料の第二層に適した材料及び適用した層の厚さは、誘電体材料の第一層について上に記載した通りである。   A second layer of dielectric material is applied over at least a portion of the underlying layer. Suitable materials for the second layer of dielectric material and applied layer thicknesses are as described above for the first layer of dielectric material.

障壁被覆層は、上に記載した一つ以上の金属系被覆積層体ユニットから構成された被覆構成体内のどの場所に適用してもよい。本発明の非限定的態様として、被覆構成体は、一つの金属系被覆積層体ユニットを含み、障壁被覆層を誘電体材料の第二層を覆って適用する。本発明の別の非限定的態様として、被覆構成体は、一つ金属系被覆積層体ユニットを含む、障壁被覆層を誘電体材料の第一層を覆って適用する。本発明の更に別の非限定的態様として、障壁被覆層を基体の上に適用し、一つの金属系被覆積層体ユニットを、障壁被覆層を覆って適用する。   The barrier coating layer may be applied anywhere within the coating structure comprised of one or more metal-based coating laminate units described above. As a non-limiting embodiment of the present invention, the coating structure includes one metal-based coating laminate unit, and a barrier coating layer is applied over the second layer of dielectric material. As another non-limiting embodiment of the present invention, the coating structure applies a barrier coating layer over the first layer of dielectric material, including one metal-based coating laminate unit. In yet another non-limiting embodiment of the present invention, a barrier coating layer is applied over the substrate, and one metal-based coating laminate unit is applied over the barrier coating layer.

本発明の別の非限定的態様として、少なくとも一つの障壁被覆層を、上に記載した金属系被覆積層体ユニットを少なくとも2回繰り返した被覆構成体中のどの場所にでも組込まれ、例えば、3回繰り返した場合、被覆積層体は電磁波反射性材料の三つの層を含む。特別な態様として、被覆構成体は、三つの金属系被覆積層体ユニットを含み、障壁被覆層は最後の被覆層であり、即ち、それは、第三金属系被覆積層体ユニットの誘電体材料の第二層の少なくとも一部分の上に適用されている。別の特別な態様として、二つの障壁被覆層が、被覆積層体の第一層及び最後の層を、その障壁被覆層が形成しているようにして含まれている。   As another non-limiting embodiment of the present invention, at least one barrier coating layer can be incorporated anywhere in the coating structure in which the metal-based coating laminate unit described above is repeated at least twice, such as 3 When repeated a number of times, the coated laminate comprises three layers of electromagnetic wave reflective material. As a special embodiment, the coating structure comprises three metal-based coating laminate units and the barrier coating layer is the last coating layer, i.e. it is the first of the dielectric material of the third metal-based coating laminate unit. Applied over at least a portion of the bilayer. As another special embodiment, two barrier coating layers are included as the barrier coating layers form the first and last layers of the coating laminate.

本発明の種々の非限定的態様として、障壁被覆層を覆って、種々の材料から構成された他の被覆層を適用することができる。特に障壁被覆層が被覆積層体の最後の被覆層である場合にはそうである。本発明の一つの非限定的態様として、チタン金属の層を障壁被覆層を覆って適用する。別の非限定的態様として、炭素の層を障壁被覆層を覆って適用する。障壁被覆層を覆って炭素のような暗い熱吸収性被覆層を適用すると、被覆された基体の加熱速度を増大することができる。   As various non-limiting embodiments of the present invention, other coating layers composed of various materials can be applied over the barrier coating layer. This is especially the case when the barrier coating layer is the last coating layer of the coating laminate. In one non-limiting embodiment of the present invention, a layer of titanium metal is applied over the barrier coating layer. In another non-limiting embodiment, a layer of carbon is applied over the barrier coating layer. Applying a dark heat-absorbing coating layer such as carbon over the barrier coating layer can increase the heating rate of the coated substrate.

本発明の別の非限定的態様として、障壁被覆層を、少なくとも次の層:少なくとも一つの透明伝導性酸化物の層、例えば、フッ素をドープした酸化チタン、インジウム錫酸化物、又は亜鉛アルミニウム酸化物、及び窒化チタン又は窒化ジルコニウムのような、少なくとも一つの伝導性窒化物の層;を含む被覆積層体中に組込む。伝導性窒化物の層と透明伝導性酸化物層との配列は重要ではない。即ち、伝導性窒化物の層を、透明伝導性酸化物層の少なくとも一部分の上に適用してもよく、その逆を行なってもよい。この態様では、障壁被覆層は積層体中の第一及び/又は最後の被覆にすることができる。   As another non-limiting embodiment of the present invention, the barrier coating layer comprises at least the following layers: at least one layer of transparent conductive oxide, such as fluorine doped titanium oxide, indium tin oxide, or zinc aluminum oxide And at least one layer of conductive nitride, such as titanium nitride or zirconium nitride. The arrangement of the conductive nitride layer and the transparent conductive oxide layer is not critical. That is, a conductive nitride layer may be applied over at least a portion of the transparent conductive oxide layer, and vice versa. In this embodiment, the barrier coating layer can be the first and / or last coating in the laminate.

上に記載した被覆積層体では、伝導性窒化物層は劣化性層である。   In the coated laminate described above, the conductive nitride layer is a degradable layer.

透明伝導性酸化物層の厚さは、1Å〜5,000Å、例えば、5Å〜2,500Åの範囲にすることができる。伝導性窒化物の層の厚さは、1Å〜2,500Å、例えば、5Å〜1,000Å、又は10Å〜500Åの範囲にすることができる。   The thickness of the transparent conductive oxide layer can be in the range of 1 to 5,000, for example, 5 to 2,500. The thickness of the conductive nitride layer can range from 1 to 2,500 mm, such as from 5 to 1,000 mm, or from 10 to 500 mm.

種々の被覆構成体の外に、本発明は、それら被覆を製造する方法を包含する。特に、本発明は、基体の上に劣化性被覆層を適用し、前記劣化性被覆層の上に障壁被覆層を適用することを含む多層被覆基体の形成方法を包含し、この場合、前記障壁被覆層は900°Fの温度で10g/m/日以下の酸素透過率を有する。障壁被覆層は被覆積層体の最後の層にしてもよく、或はそれは被覆積層体中に配置してもよい。非限定的態様として、本発明は、更に、劣化性被覆層の上に更に別の被覆層を適用し、然る後、障壁被覆層を適用することを含む。別の非限定的態様として、本発明は、更に、基体上に別の障壁被覆層を適用し、然る後、劣化性被覆層を適用することを含む。 In addition to the various coating constructions, the present invention encompasses methods for producing these coatings. In particular, the present invention includes a method for forming a multilayer coated substrate comprising applying a degradable coating layer over the substrate and applying a barrier coating layer over the degradable coating layer, wherein the barrier comprises The coating layer has an oxygen permeability of 10 g / m 2 / day or less at a temperature of 900 ° F. The barrier coating layer may be the last layer of the coating laminate, or it may be placed in the coating laminate. As a non-limiting embodiment, the present invention further includes applying another coating layer over the degradable coating layer and then applying a barrier coating layer. As another non-limiting embodiment, the present invention further includes applying another barrier coating layer on the substrate and then applying a degradable coating layer.

上で論じた種々の被覆層は、化学蒸着(CVD)、噴霧熱分解、及びマグネトロンスパッター真空蒸着(MSVD)のような慣用的技術を用いて適用することができる。   The various coating layers discussed above can be applied using conventional techniques such as chemical vapor deposition (CVD), spray pyrolysis, and magnetron sputter vacuum deposition (MSVD).

適当なCVD蒸着法は、参考のためここに入れる次の文献に記載されている:米国特許第4,853,257号、第4,971,843号、第5,536,718号、第5,464,657号、第5,599,387号、及び第5,948,131号明細書。   Suitable CVD deposition methods are described in the following references which are hereby incorporated by reference: US Pat. Nos. 4,853,257, 4,971,843, 5,536,718, , 464,657, 5,599,387, and 5,948,131.

適当な噴霧熱分解堆積法は、参考のためここに入れる次の文献に記載されている:米国特許第4,719,126号、第4,719,127号、第4,111,150号、及び第3,660,061号明細書。   Suitable spray pyrolysis deposition methods are described in the following documents which are hereby incorporated by reference: US Pat. Nos. 4,719,126, 4,719,127, 4,111,150, And 3,660,061 specification.

適当なMSVD蒸着法は、参考のためここに入れる次の文献に記載されている:米国特許第4,379,040号、第4,861,669号、及び第4,900,633号明細書。障壁被覆層を蒸着するためにMSVDを用いる本発明の非限定的態様として、60重量%のアルミニウム及び40重量%の珪素を含むターゲットをスパッターして、アルミナとシリカの混合物、合金、又は組合せを含む障壁被覆層を蒸着することができる。   Suitable MSVD deposition methods are described in the following references, incorporated herein by reference: US Pat. Nos. 4,379,040, 4,861,669, and 4,900,633. . As a non-limiting embodiment of the present invention using MSVD to deposit a barrier coating layer, a target comprising 60 wt% aluminum and 40 wt% silicon is sputtered to produce a mixture, alloy or combination of alumina and silica. A barrier coating layer can be deposited.

本発明の多層被覆構成体は、種々の基体上に適用することができる。適当な基体の例には、プラスチック基体〔例えば、ポリアクリレートのようなアクリル重合体;ポリメチルメタクリレート、ポリエチルメタクリレート、ポリプロピルメタクリレート等のようなポリアルキルメタクリレート;ポリウレタン;ポリカーボネート;ポリエチレンテレフタレート(PET)、ポリプロピレンテレフタレート、ポリブチレンテレフタレート等のようなポリアルキルテレフタレート;ポリシロキサン含有重合体;又はそれらを製造するための単量体の共重合体、又はそれらの混合物〕;鋼、亜鉛メッキ鋼、ステンレス鋼、及びアルミニウム(それらに限定されるものではない)のような金属基体;セラミック基体;タイル基体;ガラス基体;それらのいずれかの混合物又は組合せ;が含まれるが、それらに限定されるものではない。例えば、基体は、慣用的無色ソーダ・石灰・シリカガラス、即ち、「透明ガラス」でもよく、或は有色又は他の仕方で着色したガラス、硼珪酸塩ガラス、鉛ガラス、強化ガラス、非強化ガラス、アニールしたガラス、又は熱強化ガラスにすることができる。ガラスはどのような種類のものでもよく、例えば、慣用的フロート法ガラス又は平板ガラスでもよく、どのような光学的性質、例えば、可視光透過率、紫外線透過率、赤外線透過率、及び/又は全太陽エネルギー透過率のどのような値でも、それらを持つどのような組成物からなっていてもよい。本発明の実施に適したガラスの種類は、例えば、米国特許第4,746,347号、第4,792,536号、第5,240,886号、第5,385,872号、及び第5,393,593号明細書に記載されているが、それらに限定されるものと考えるべきではない。   The multilayer coating construction of the present invention can be applied on a variety of substrates. Examples of suitable substrates include plastic substrates (eg, acrylic polymers such as polyacrylates; polyalkyl methacrylates such as polymethyl methacrylate, polyethyl methacrylate, polypropyl methacrylate, etc .; polyurethanes; polycarbonates; polyethylene terephthalate (PET) , Polyalkyl terephthalates such as polypropylene terephthalate, polybutylene terephthalate, etc .; polysiloxane-containing polymers; or copolymers of monomers for producing them, or mixtures thereof]; steel, galvanized steel, stainless steel And metal substrates such as, but not limited to, aluminum; ceramic substrates; tile substrates; glass substrates; any mixtures or combinations thereof; Not to. For example, the substrate may be conventional colorless soda / lime / silica glass, ie “transparent glass”, or colored or otherwise colored glass, borosilicate glass, lead glass, tempered glass, non-tempered glass , Annealed glass, or heat strengthened glass. The glass can be of any type, for example, conventional float glass or flat glass, and any optical properties such as visible light transmission, ultraviolet transmission, infrared transmission, and / or total Any value of solar energy transmission may consist of any composition having them. Glass types suitable for the practice of the present invention include, for example, U.S. Pat. Nos. 4,746,347, 4,792,536, 5,240,886, 5,385,872, and Although described in US Pat. No. 5,393,593, it should not be considered as limited thereto.

基体はどのような厚さにでもすることができる。基体がガラスである態様では、一般に基体は自動車用途の場合よりも建築用途のための方が厚い。建築用途についての非限定的態様として、基体は、1mm〜20mm、例えば、1mm〜10mm、又は2mm〜6mmの範囲の厚さを有するガラスにすることができる。自動車用途についての非限定的態様として、基体は積層自動車風防ガラス又は横窓での少なくとも1枚のガラスにすることができ、基体は5.0mmの厚さまで、例えば、4.0mmまで、又は3.0mmまで、又は2.5mmの厚さまで、又は2.1mmの厚さまでにすることができる。   The substrate can be any thickness. In embodiments where the substrate is glass, the substrate is generally thicker for architectural applications than for automotive applications. As a non-limiting aspect for architectural applications, the substrate can be a glass having a thickness in the range of 1 mm to 20 mm, such as 1 mm to 10 mm, or 2 mm to 6 mm. As a non-limiting aspect for automotive applications, the substrate can be laminated automotive windshield or at least one glass in a side window, and the substrate can be up to 5.0 mm thick, for example up to 4.0 mm, or 3 It can be up to 0.0 mm, or up to 2.5 mm thick, or up to 2.1 mm thick.

基体がガラスである場合、そのガラスは、米国特許第3,083,551号、第3,220,816号、及び第3,843,346号明細書(これらは参考のためここに入れてある)に記載されているような慣用的フロート法を用いて製造することができる。本発明の非限定的態様として、ここに論ずる被覆層は、フロート法ガラス処理中、例えば、ガラスをフロート浴内の溶融錫上にガラスを支持している間に、ガラスに適用することができる。   When the substrate is glass, the glass is disclosed in U.S. Pat. Nos. 3,083,551, 3,220,816, and 3,843,346, which are hereby incorporated by reference. ) Using conventional float methods. As a non-limiting embodiment of the present invention, the coating layer discussed herein can be applied to glass during float glass processing, for example, while supporting the glass over molten tin in a float bath. .

非限定的態様として、本発明は、下に記載する被覆した基体を包含する。錫酸亜鉛から構成された第一誘電体層を、250Å〜490Å、例えば、340Å〜440及び、又は375Å〜425Åの厚さで基体上に堆積する。第一銀層は、第一誘電体層の上に50Å〜175Å、例えば、60Å〜125Å、又は67Å〜90Åの厚さで堆積する。第一チタン下地層は、第一銀層の上に10Å〜30Å、例えば、12Å〜25Å、又は15Å〜22Åの厚さで堆積する。第二錫酸亜鉛誘電体層は、第一下地層の上に600Å〜800Å、例えば、650Å〜750Å、又は675Å〜725Åの厚さで堆積する。第二銀層は、第二誘電体層の上に50Å〜175Å、例えば、60Å〜125Å、又は67Å〜90Åの厚さで堆積する。第二チタン下地層は、第二誘電体層の上に10Å〜30Å、例えば、12Å〜25Å、又は15Å〜22Åの厚さで堆積する。第三錫酸亜鉛誘電体層は、第二下地層の上に290Å〜490Å、例えば、340Å〜440Å、又は375Å〜425Åの厚さで堆積する。60重量%のアルミナ及び40重量%の珪素を含むアルミナとシリカとの混合物、合金、又は組合せから構成された障壁層を、第三誘電体層の上に100Å〜600Å、例えば、150Å〜500Å、又は175Å〜400Åの厚さで堆積する。100Å〜600Å、例えば、150Å〜500Å、又は175Å〜400Åの範囲の厚さを有するチタニア層を、アルミナ/シリカ層を覆って堆積し、被覆に付加的耐久性を与える。   As a non-limiting embodiment, the present invention includes the coated substrate described below. A first dielectric layer composed of zinc stannate is deposited on the substrate at a thickness of 250 to 490, such as 340 to 440 and / or 375 to 425. The first silver layer is deposited on the first dielectric layer at a thickness of 50 to 175, such as 60 to 125, or 67 to 90. The first titanium underlayer is deposited on the first silver layer at a thickness of 10 to 30 mm, for example, 12 to 25 mm, or 15 to 22 mm. The zinc stannate dielectric layer is deposited on the first underlayer at a thickness of 600 to 800 inches, such as 650 to 750 inches, or 675 to 725 inches. The second silver layer is deposited on the second dielectric layer at a thickness of 50 to 175, for example, 60 to 125, or 67 to 90. The second titanium underlayer is deposited on the second dielectric layer at a thickness of 10 to 30 mm, such as 12 to 25 mm, or 15 to 22 mm. The zinc stannate stannate dielectric layer is deposited on the second underlayer at a thickness of 290 to 490, such as 340 to 440, or 375 to 425. A barrier layer composed of a mixture, alloy, or combination of alumina and silica containing 60% by weight alumina and 40% by weight silicon over the third dielectric layer is 100 to 600 mm, for example 150 to 500 mm, Alternatively, it is deposited at a thickness of 175 to 400 mm. A titania layer having a thickness in the range of 100 to 600, such as 150 to 500, or 175 to 400 is deposited over the alumina / silica layer to provide additional durability to the coating.

本発明による被覆基体は種々の用途に用いることができ、例えば、自動車用透明体、自動車横窓、風防ガラス、後窓、サンルーフ又はムーンルーフ、及び住宅又は商業的窓、ガス、電気、及びマイクロ波オーブンのためのオーブン扉のための絶縁ガラスユニットに用いることができるが、それらに限定されるものではない。   The coated substrate according to the invention can be used in various applications, for example automotive transparencys, automotive side windows, windshields, rear windows, sunroofs or moon roofs, and residential or commercial windows, gas, electricity and micro It can be used in insulating glass units for oven doors for wave ovens, but is not limited to them.

本発明による被覆で被覆された基体は、慣用的被覆基体よりも優れた性能を示す。例えば、本発明により被覆された基体は、一般に電気抵抗率、曇り、太陽光IR反射率、可視光透過率等に関して、それを製品製造中に加熱した後でも、特に自動車風防ガラスを製造するためにガラス板を曲げるか、又はガラスシートを強化する場合に伴われる種類の加熱後でも、一層よい性能を有するであろう。なぜなら、劣化性層(単数又は複数)が元のままに残っているからである。また、障壁被覆層が被覆積層体中の最後の被覆層である場合、本発明による被覆基体は、取扱い、輸送、及び貯蔵中、機械的及び/又は化学的傷害に一層よく耐えることができる。更に、被覆積層体は、マイクロ波オーブン扉のようなものとして使用中、一層よい機械的耐久性、化学的耐久性、及び熱安定性を有する。   Substrates coated with the coating according to the invention perform better than conventional coated substrates. For example, the substrate coated according to the present invention is generally for producing automotive windshields, even after heating it during product manufacture, in terms of electrical resistivity, haze, solar IR reflectivity, visible light transmittance, etc. It will have better performance even after the kind of heating associated with bending glass plates or strengthening glass sheets. This is because the degradable layer (s) remains intact. Also, if the barrier coating layer is the last coating layer in the coating laminate, the coated substrate according to the present invention can better withstand mechanical and / or chemical injury during handling, transportation and storage. Furthermore, the coated laminate has better mechanical durability, chemical durability, and thermal stability during use as a microwave oven door.

本発明は、少なくとも一つの障壁被覆層を被覆積層体中に組込むことにより、多層被覆内で囲まれた系を形成する方法も包含する。障壁層は被覆積層体中のどこにでも、即ち、金属系被覆積層体ユニットの個々の層中及び/又は金属系被覆積層体ユニットの間に組込むことができる。囲まれた系とは、二つの障壁被覆層の間、又は一つの障壁被覆層と基体との間の領域を指す。囲まれた系内には、本質的に物質は出入りすることができない。囲みを通ってフロウすることができる物質は、上に記載した透過率によって規定されている。   The present invention also encompasses a method of forming a system enclosed within a multilayer coating by incorporating at least one barrier coating layer into the coating laminate. The barrier layer can be incorporated anywhere in the coating laminate, i.e. in the individual layers of the metal-based coating laminate unit and / or between the metal-based coating laminate units. An enclosed system refers to the area between two barrier coating layers or between one barrier coating layer and a substrate. Essentially no material can enter or leave the enclosed system. The material that can flow through the enclosure is defined by the transmittance described above.

本発明の方法は、被覆積層体中の被覆層の間の相互作用を、希望の相互作用だけが起きるように操作することができるようにしている。他の機能性被覆層、又は囲まれた系の外側のOのような他の物質は、囲まれた系内の層と接触したり反応したりしないように抑制される。 The method of the present invention allows the interaction between the coating layers in the coating laminate to be manipulated so that only the desired interaction occurs. Other functional coating layers, or other materials such as O 2 outside the enclosed system, are constrained from contacting or reacting with the layers in the enclosed system.

本発明の方法は、被覆積層体が、或る物質に曝されないようにすべき層(単数又は複数)を含む場合に特に有利である。例えば、被覆積層体は、もし酸素に暴露されると劣化するかも知れない銀のような金属層を含むことがある。そのような場合、本発明の方法は、金属層の周囲にOが存在しない包まれた領域を、その金属層の下及び上の両方に障壁被覆層を適用するか、又は金属層の上に障壁被覆層を適用し、他の酸素障壁層として金属層の前に基体を用いることにより、形成するのに用いることができる。 The method of the present invention is particularly advantageous when the coating laminate includes the layer (s) to be kept from exposure to certain materials. For example, a coated laminate may include a metal layer such as silver that may degrade if exposed to oxygen. In such a case, the method of the present invention may apply a barrier coating layer to the encapsulated area where there is no O 2 around the metal layer, both below and above the metal layer, or over the metal layer. Can be used by forming a barrier coating layer on the substrate and using the substrate in front of the metal layer as another oxygen barrier layer.

次の例は、本発明の利点を明らかにしている。基体を、上に記載した積層体に類似した三つの基本積層体を含む多層被覆構成体で被覆する。被覆積層体はMSVDにより形成し、全被覆は、三つの銀層、四つの誘電体材料層(第一基礎積層体の第二誘電体層を、第二基礎積層体の第一誘電体層と一緒にし、一つの誘電体層を形成し、第二基礎積層体の第二誘電体層を、第三金属系被覆積層体ユニットの第一誘電体基礎積層体と一緒にし、別の一つの誘電体層を形成する)、及び三つの下地層を含む。誘電体材料層は銀層を挟んでいる。誘電体層を適用する前に、銀層の上に下地層を適用する。障壁被覆層を、被覆積層体中の第四誘電体材料層を覆って適用する。障壁被覆層は、その障壁被覆層と基体との間に囲まれた領域を形成する。従って、被覆積層体の設計のために考慮に入れなければならない酸素は、例えば、酸素環境中でMSVDにより誘電体層を蒸着した結果として被覆積層体が形成される時に系内に含まれる酸素だけである。外部酸素は関係がない。なぜなら、被覆積層体は囲まれた系だからである。   The following example demonstrates the advantages of the present invention. The substrate is coated with a multilayer coating construction comprising three basic laminates similar to the laminate described above. The coating laminate is formed by MSVD, and the total coating consists of three silver layers, four dielectric material layers (the second dielectric layer of the first base laminate, the first dielectric layer of the second base laminate, and Together, forming one dielectric layer, combining the second dielectric layer of the second base laminate with the first dielectric base laminate of the third metal-based laminate unit, and another dielectric layer A body layer), and three underlayers. The dielectric material layer sandwiches the silver layer. Prior to applying the dielectric layer, an underlayer is applied over the silver layer. A barrier coating layer is applied over the fourth dielectric material layer in the coating stack. The barrier coating layer forms a region surrounded between the barrier coating layer and the substrate. Thus, the only oxygen that must be taken into account for the design of the coating laminate is, for example, the oxygen contained in the system when the coating laminate is formed as a result of depositing a dielectric layer by MSVD in an oxygen environment. It is. External oxygen is not relevant. This is because the covering laminate is an enclosed system.

本発明の結果として、下地層は、劣化性材料、例えば銀の層(単数又は複数)を、それを覆って存在する誘電体層を堆積する間、保護するために必要な最低限の厚さにすることができる。更に、当分野で現在教示されているよりも薄い下地で劣化性材料、例えば、銀の層(単数又は複数)を、被覆基体を希望の輪郭へ曲げるか、又は被覆ガラスを強化するために必要などのような加熱工程中でも保護する。なぜなら、周囲Oは、その系中に限定されているからである。上で言及したように、加熱した後、過剰の下地は、個々の被覆層の界面の所で劣化する結果になることがある。 As a result of the present invention, the underlying layer is the minimum thickness required to protect the degradable material, eg, the silver layer (s), while depositing the dielectric layer overlying it. Can be. In addition, a degradable material, such as silver layer (s), with a thinner substrate than currently taught in the art is required to bend the coated substrate to the desired contour or to strengthen the coated glass. Even during the heating process such as. This is because the surrounding O 2 is limited to the system. As mentioned above, after heating, excess substrate can result in degradation at the interface of the individual coating layers.

積層体の形状中、下地層は12Å位に薄くすることができることが判明している。それは、障壁被覆層を用いずに、堆積処理及び基体を曲げるか又は強化するために必要な加熱条件に耐えることができなければならない同様な被覆形状で必要な厚さの半分である。   It has been found that the base layer can be as thin as 12 mm in the shape of the laminate. It is half the thickness required for similar coating shapes that must be able to withstand the deposition process and the heating conditions required to bend or strengthen the substrate without the use of a barrier coating layer.

本発明は、記載した被覆積層体で一層薄い下地層を用いることができるようにしているため、下地層として新しい材料を用いることができる。特に、従来はある材料は用いることができなかった。なぜなら下地層が加熱で完全には酸化されないようにするためには、それら下地層を非常に厚くしなければならず、銀と合金を形成するような危険が存在するからであるが、本発明では用いることができる。そのような材料には、アルミニウム、ハフニウム、コバルト・クロム合金が含まれるが、それらに限定されるものではない。   In the present invention, a thinner material can be used in the coated laminate described, so that a new material can be used as the underlayer. In particular, some materials could not be used conventionally. This is because in order to prevent the underlayers from being completely oxidized by heating, the underlayers must be made very thick, and there is a danger of forming an alloy with silver. Can be used. Such materials include, but are not limited to, aluminum, hafnium, and cobalt-chromium alloys.

本発明を、次の実施例により例示するが、本発明は、それらに限定されるものではない。   The present invention is illustrated by the following examples, but the invention is not limited thereto.

図1は、次のやり方で行われた加熱研究を示す。ガラス基体を次のやり方で製造した:3in×6in×0.08inの透明フロート法ガラス板に、フォン・アルデネ(Von Ardenne)からの製品MSVD被覆機のコンベヤーベルトの上で上向きに被覆で被覆した。2枚の3in×3in×0.08inの透明ガラスシートを前記被覆されたガラスの上に配置し、前記被覆を覆った。その積層体を、5つの領域を有するリンドバーグ(Lindberg)炉を通過させた。各領域は10inの長さを持っていた。炉の入口から記載して、第一領域は約1350°Fの温度になっており、第二領域は約1130°Fの温度で、第三領域は約1180°Fの温度で、第四領域は約1205°Fの温度で、第五領域は約1195°Fの温度になっていた。   FIG. 1 shows a heating study performed in the following manner. Glass substrates were prepared in the following manner: 3in x 6in x 0.08in clear float glass plates were coated with the coating upward on the conveyor belt of the product MSVD coater from Von Ardenne. . Two 3in × 3in × 0.08in transparent glass sheets were placed on the coated glass to cover the coating. The laminate was passed through a Lindberg furnace having 5 zones. Each region had a length of 10 inches. Described from the furnace inlet, the first zone is at a temperature of about 1350 ° F, the second zone is at a temperature of about 1130 ° F, the third zone is at a temperature of about 1180 ° F, and the fourth zone Was about 1205 ° F. and the fifth region was about 1195 ° F.

例として、被覆した基体を種々の速度でその炉を通って走行させた。炉を出た時、被覆ガラスの上の3in×3inのガラスシートが除去され、0.03in厚さのポリビニルブチラール(PVB)のシートが被覆ガラス基体の半分を覆って置かれていた。次にそのPVBを、前に除去した3×3×0.09inの1枚のガラスシートで覆い、被覆ガラスの半分を覆う積層体を形成した。被覆ガラスシートの半分の積層部分は照明Aを用いて可視光線透過率(LTA)を測定した。   As an example, the coated substrate was run through the furnace at various speeds. Upon exiting the furnace, the 3 in x 3 in glass sheet on the coated glass was removed and a 0.03 in thick polyvinyl butyral (PVB) sheet was placed over half of the coated glass substrate. The PVB was then covered with a single 3 × 3 × 0.09 in glass sheet removed previously to form a laminate covering half of the coated glass. The half laminated portion of the coated glass sheet was measured for visible light transmittance (LTA) using illumination A.

ベルトの速度が遅くなる程、被覆ガラスが炉条件に曝される時間は長くなり、被覆された基体が一層熱くなることは認められるべきである。ベルトの速度は限界熱量に関係している。特にベルト速度が遅くなる程、長い時間被覆が高温に曝され、被覆が良好な性能を示すために耐えなければならない限界熱量は大きくなるであろう。   It should be appreciated that the slower the belt speed, the longer the time during which the coated glass is exposed to furnace conditions and the coated substrate gets hotter. Belt speed is related to critical heat. In particular, the slower the belt speed, the longer the coating will be exposed to high temperatures and the greater the amount of critical heat that must be withstood for the coating to perform well.

熱研究では、全ての被覆を3in×6in×2.1mm透明フロート法ガラスシート上に適用した。例としての被覆基体についての指定を下に記載する。「3×Ag(500)」として指定する被覆基体は、次のやり方で作った:基体の上に錫酸亜鉛の第一層を390Åの厚さで適用した;前記錫酸亜鉛の第一層の上に銀の第一層を75Åの厚さで適用した;前記銀の第一層の上にチタン金属の第一層を15Åの厚さで適用した;前記チタン金属の第一層の上に錫酸亜鉛の第二層を690Åの厚さで適用した;前記錫酸亜鉛の第二層の上に銀の第二層を75Åの厚さで適用した;前記銀の第二層の上にチタン金属の第二層を15Åの厚さで適用した;前記チタン金属の第二層の上に錫酸亜鉛の第三層を690Åの厚さで適用した;前記錫酸亜鉛の第三層の上に銀の第三層を75Åの厚さで適用した;前記銀の第三層の上にチタン金属の第三層を15Åの厚さで適用した;前記チタンの第三層の上に錫酸亜鉛の第四層を390Åの厚さに適用した;そしてアルミナとシリカとの合金から構成された障壁被覆層を、60重量%のアルミニウム及び40重量%の珪素を含むターゲットからスパッターし、前記誘電体材料の第四層の上に500Åの厚さで適用した。   For thermal studies, all coatings were applied on 3 in x 6 in x 2.1 mm clear float glass sheets. Specification for an exemplary coated substrate is described below. A coated substrate designated as “3 × Ag (500)” was made in the following manner: a first layer of zinc stannate was applied on the substrate in a thickness of 390 mm; the first layer of zinc stannate A first layer of silver was applied at a thickness of 75 mm on the top; a first layer of titanium metal was applied on the first layer of silver at a thickness of 15 mm; over the first layer of titanium metal A second layer of zinc stannate was applied at a thickness of 690 ;; a second layer of silver was applied over the second layer of zinc stannate at a thickness of 75 ;; over the second layer of silver A second layer of titanium metal was applied to a thickness of 15 mm; a third layer of zinc stannate was applied to the second layer of titanium metal at a thickness of 690 mm; the third layer of zinc stannate A third layer of silver was applied at a thickness of 75 mm on the top; a third layer of titanium metal was applied on the third layer of silver at a thickness of 15 mm; over the third layer of titanium A fourth layer of zinc stannate was applied to a thickness of 390 mm; and a barrier coating composed of an alloy of alumina and silica was sputtered from a target comprising 60 wt% aluminum and 40 wt% silicon; A 500 Å thickness was applied over the fourth layer of dielectric material.

次のやり方で「3×Ag(金属)」として指定する被覆基体を作った:基体の上に錫酸亜鉛の第一層を390Åの厚さで適用した;前記錫酸亜鉛の第一層の上に銀の第一層を75Åの厚さで適用した;前記銀の第一層の上にチタン金属の第一層を15Åの厚さで適用した;前記チタン金属の第一層の上に錫酸亜鉛の第二層を690Åの厚さで適用した;前記錫酸亜鉛の第二層の上に銀の第二層を75Åの厚さで適用した;前記銀の第二層の上にチタン金属の第二層を15Åの厚さで適用した;前記チタン金属の第二層の上に錫酸亜鉛の第三層を690Åの厚さで適用した;前記錫酸亜鉛の第三層の上に銀の第三層を75Åの厚さで適用した;前記銀の第三層の上にチタン金属の第三層を15Åの厚さで適用した;前記チタンの第三層の上に錫酸亜鉛の第四層を100Åの厚さを有するように適用した;前記錫酸亜鉛の第四層の上にチタン金属の層を26Åの厚さに適用した。   A coated substrate designated as “3 × Ag (metal)” was made in the following manner: a first layer of zinc stannate was applied on the substrate in a thickness of 390 mm; A first layer of silver was applied at a thickness of 75 mm; a first layer of titanium metal was applied at a thickness of 15 mm on the first layer of silver; on the first layer of titanium metal; A second layer of zinc stannate was applied at a thickness of 690 mm; a second layer of silver was applied at a thickness of 75 mm on the second layer of zinc stannate; on the second layer of silver A second layer of titanium metal was applied at a thickness of 15 ;; a third layer of zinc stannate was applied at a thickness of 690 に over the second layer of titanium metal; A third layer of silver was applied at a thickness of 75 mm on top; a third layer of titanium metal was applied on the third layer of silver at a thickness of 15 mm; tin on the third layer of titanium Applying a fourth layer of zinc to have a thickness of 100 Å; applying a layer of titanium metal to a thickness of 26Å on the fourth layer of the zinc stannate.

次のやり方で「2×Ag(500)」として指定する被覆基体を作った:基体の上に錫酸亜鉛の第一層を390Åの厚さで適用した;前記錫酸亜鉛の第一層の上に銀の第一層を75Åの厚さで適用した;前記銀の第一層の上にチタン金属の第一層を15Åの厚さで適用した;前記チタン金属の第一層の上に錫酸亜鉛の第二層を690Åの厚さで適用した;前記錫酸亜鉛の第二層の上に銀の第二層を75Åの厚さで適用した;前記銀の第二層の上にチタン金属の第二層を15Åの厚さで適用した;前記チタン金属の第二層の上に錫酸亜鉛の第三層を390Åの厚さで適用した;そしてアルミナとシリカとの合金から構成された障壁被覆層を、60重量%のアルミニウム及び40重量%の珪素を含むターゲットからスパッターし、錫酸亜鉛の第三層の上に500Åの厚さで適用した。   A coated substrate, designated as “2 × Ag (500)” was made in the following manner: a first layer of zinc stannate was applied on the substrate at a thickness of 390 mm; A first layer of silver was applied at a thickness of 75 mm; a first layer of titanium metal was applied at a thickness of 15 mm on the first layer of silver; on the first layer of titanium metal; A second layer of zinc stannate was applied at a thickness of 690 mm; a second layer of silver was applied at a thickness of 75 mm on the second layer of zinc stannate; on the second layer of silver A second layer of titanium metal was applied at a thickness of 15 mm; a third layer of zinc stannate was applied at a thickness of 390 mm on the second layer of titanium metal; and comprised of an alloy of alumina and silica The barrier coating layer formed was sputtered from a target containing 60% by weight aluminum and 40% by weight silicon to form a third layer of zinc stannate. It was applied at a thickness of 500Å on top of.

市販の試料は図1に含まれている。この試料では、ガラス基体を、ペンシルバニア州ピッツバーグのPPGインダストリーズから市販されているサンゲート(Sungate)(登録商標名)自動車被覆No.5(SA05)で被覆した。SA05は、二重銀層で、加熱可能な被覆である。   A commercially available sample is included in FIG. In this sample, the glass substrate is a Sungate® automotive coating No. commercially available from PPG Industries, Pittsburgh, PA. 5 (SA05). SA05 is a double silver layer and heatable coating.

結論
図1の加熱研究で示されているように、本発明の障壁被覆は、劣化性層(単数又は複数)を保護し、それにより被覆の性能を維持する。本発明による500Åの障壁被覆層を有する被覆基体:「3×Ag(500)」及び「2×Ag(500)」;は、ベルトの速度とは無関係にかなり一定のLTAを維持していた。3×Ag(500)として指定した試料は、ベルトの速度を9ipmから3ipmへ低下すると、77%から74%へのLTAの低下を示した。2×Ag(500)として指定した試料は、ベルトの速度を9ipmから3ipmへ低下すると、76%から72%へのLTAの低下を示した。「3×Ag(500)」及び「2×Ag(500)」は、15Åの厚さの下地層を含むので、ベルト速度の減少によるLTAの減少は、予想されたよりも遥かに少ない。
Conclusion As shown in the heating study of FIG. 1, the barrier coating of the present invention protects the degradable layer (s), thereby maintaining the performance of the coating. The coated substrates with 500 障壁 barrier coating layer according to the present invention: “3 × Ag (500)” and “2 × Ag (500)” maintained a fairly constant LTA regardless of belt speed. The sample designated as 3 × Ag (500) showed a decrease in LTA from 77% to 74% when the belt speed was reduced from 9 ipm to 3 ipm. The sample designated as 2 × Ag (500) showed a decrease in LTA from 76% to 72% when the belt speed was reduced from 9 ipm to 3 ipm. Since “3 × Ag (500)” and “2 × Ag (500)” include a 15 厚 thick underlayer, the decrease in LTA due to the decrease in belt speed is much less than expected.

本発明による障壁被覆層を持たない基体は、ベルト速度の低下と共にLTAに関し、本発明により被覆された基体よりも遥かにひどく低下したことを示していた。3×Ag(金属)として指定した試料は、ベルト速度が9ipmから3ipmへ低下すると、75%から62%へのLTAの低下を示した。これらの結果は、チタンが、本発明で記載した障壁被覆層程の良好な障壁性を持たないことを示している。市販の試料は、ベルト速度が9ipmから5ipmへ低下すると、72%から61%へのLTAの低下を示し、次に、ベルト速度が5ipmから3ipmへ低下すると、LTAは61%から64%へ増大した。   Substrates without the barrier coating according to the present invention showed a much worse decline for LTA with lower belt speeds than for substrates coated according to the present invention. The sample designated as 3 × Ag (metal) showed a decrease in LTA from 75% to 62% when the belt speed decreased from 9 ipm to 3 ipm. These results indicate that titanium does not have as good a barrier property as the barrier coating layer described in the present invention. Commercial samples show a decrease in LTA from 72% to 61% as the belt speed decreases from 9 ipm to 5 ipm, and then the LTA increases from 61% to 64% as the belt speed decreases from 5 ipm to 3 ipm did.

前記説明で開示した概念から離れることなく本発明に修正を行えることは当業者には容易に認められるであろう。そのような修正は本発明の範囲内に含まれるものと考えられるべきである。従って、上に詳細に記述した特別な態様は、単に例示のためであり、本発明の範囲に対する限定ではない。本発明の範囲は添付の特許請求の範囲の全範囲及びそれと同等なもの全てに対し与えられるべきである。   Those skilled in the art will readily recognize that modifications can be made to the present invention without departing from the concepts disclosed in the foregoing description. Such modifications are to be considered as included within the scope of the invention. Accordingly, the specific embodiments described in detail above are merely exemplary and are not limitations on the scope of the invention. The scope of the invention should be accorded the full scope of the appended claims and all equivalents thereto.

図1は、本発明の特徴を組込んだ幾つかの被覆基体について行われた加熱研究を示す図である。FIG. 1 shows a heating study performed on several coated substrates incorporating features of the present invention.

Claims (46)

一又は二以上の金属系被覆積層体ユニット及び少なくとも一つの障壁被覆層を含む低放射率機能性被覆を含む被覆構成体であって、
前記障壁被覆層前記低放射率機能性被覆の内部に配置され、
前記金属系被覆積層体ユニットはそれぞれ、誘電体材料の第一層、電磁波反射性材料の劣化性層、下地層、及び誘電体材料の第二層を含み、
前記障壁被覆層は酸化アルミニウムと酸化珪素の混合物を含む層を少なくとも一つ含む、前記被覆構成体。
A coating structure comprising a low emissivity functional coating comprising one or more metal-based coating laminate units and at least one barrier coating layer,
The barrier coating layer is disposed inside the low emissivity functional coating,
Each of the metal-based coated laminate units includes a first layer of dielectric material, a degrading layer of electromagnetic wave reflective material, an underlayer, and a second layer of dielectric material,
The coating structure according to claim 1, wherein the barrier coating layer includes at least one layer containing a mixture of aluminum oxide and silicon oxide.
少なくとも一つの障壁被覆層が、単一の層である、請求項1に記載の被覆構成体。  The coating construction of claim 1, wherein the at least one barrier coating layer is a single layer. 少なくとも一つの障壁被覆層が、60%のアルミニウム及び40重量%の珪素を含むターゲットからスパッターされたアルミナとシリカとの混合物を含む、請求項2に記載の被覆構成体。  The coating structure of claim 2, wherein the at least one barrier coating layer comprises a mixture of alumina and silica sputtered from a target comprising 60% aluminum and 40 wt% silicon. 少なくとも一つの障壁被覆層が2μまでの厚さを有する、請求項2に記載の被覆構成体。  The coating structure according to claim 2, wherein the at least one barrier coating layer has a thickness of up to 2 μ. 少なくとも一つの障壁被覆層が、シリカ及びアルミナの混合物を含む第二層の上に適用された、シリカ、アルミナ、及びそれらの混合物から選択された第一層を含む多層被覆である、請求項1に記載の被覆構成体。  The at least one barrier coating layer is a multilayer coating comprising a first layer selected from silica, alumina, and mixtures thereof applied over a second layer comprising a mixture of silica and alumina. The coating structure according to 1. 少なくとも一つの劣化性層が、金、銅、銀、伝導性窒化物、及びそれらの混合物から選択された電磁波反射性材料である、請求項1に記載の被覆構成体。  The coating structure of claim 1, wherein the at least one degradable layer is an electromagnetic wave reflective material selected from gold, copper, silver, conductive nitride, and mixtures thereof. 少なくとも一つの劣化性層が銀である、請求項6に記載の被覆構成体。  The coating structure of claim 6, wherein the at least one degradable layer is silver. 第一及び第二の誘電体材料層が、それぞれ、インジウム錫酸化物、酸化チタン、酸化亜鉛、酸化錫、それらの混合物及び合金から選択されている、請求項1に記載の被覆構成体。  The coating structure of claim 1, wherein the first and second dielectric material layers are each selected from indium tin oxide, titanium oxide, zinc oxide, tin oxide, mixtures and alloys thereof. 第一及び第二の誘電体材料層が、それぞれ100Å〜800Åの範囲の厚さを有する、請求項1に記載の被覆構成体。  The coating structure of claim 1, wherein the first and second dielectric material layers each have a thickness in the range of 100 to 800 inches. 電磁波反射性材料の層が、50Å〜300Åの範囲の厚さを有する、請求項1に記載の被覆構成体。  The coating structure according to claim 1, wherein the layer of the electromagnetic wave reflecting material has a thickness in the range of 50 to 300 mm. 少なくとも一つの下地層が、10Å〜30Åの範囲の厚さを有する、請求項1に記載の被覆構成体。  The coating structure of claim 1, wherein the at least one underlayer has a thickness in the range of 10 to 30 mm. 少なくとも一つの下地層が、チタン、銅、アルミニウム、ニオブ、イットリウム、ジルコニウム、ハフニウム、クロム、及びそれらの混合物及び合金;ニッケル・クロム合金;コバルト・クロム合金;インジウム錫亜酸化物;チタン亜酸化物、亜鉛アルミニウム亜酸化物;窒化珪素;及びそれらの混合物から選択されている、請求項11に記載の被覆構成体。  At least one underlayer comprising titanium, copper, aluminum, niobium, yttrium, zirconium, hafnium, chromium, and mixtures and alloys thereof; nickel-chromium alloy; cobalt-chromium alloy; indium tin suboxide; titanium suboxide The coating structure of claim 11, selected from: zinc aluminum suboxide; silicon nitride; and mixtures thereof. 劣化性層が、伝導性窒化物の層である、請求項6に記載の被覆構成体。  The coating structure of claim 6, wherein the degradable layer is a layer of conductive nitride. 被覆構成体が、更に、透明伝導性酸化物層を含む、請求項13に記載の被覆構成体。  The coating construction of claim 13, wherein the coating construction further comprises a transparent conductive oxide layer. 少なくとも一つの劣化性層が、透明伝導性酸化物層の少なくとも一部分の上にあり、少なくとも一つの障壁被覆層が、前記少なくとも一つの劣化性層の少なくとも一部分の上にある、請求項14に記載の被覆構成体。  The at least one degradable layer is on at least a portion of the transparent conductive oxide layer, and the at least one barrier coating layer is on at least a portion of the at least one degradable layer. Coating structure. 透明伝導性酸化物層が、少なくとも一つの劣化性層の少なくとも一部分の上にあり、障壁被覆層が、前記透明伝導性酸化物層の少なくとも一部分の上にある、請求項14に記載の被覆構成体。  15. The coating arrangement of claim 14, wherein a transparent conductive oxide layer is on at least a portion of at least one degradable layer and a barrier coating layer is on at least a portion of the transparent conductive oxide layer. body. 透明伝導性酸化物が、フッ素をドープした錫酸化物、インジウム錫酸化物、亜鉛アルミニウム酸化物、及びそれらの混合物から選択されている、請求項15に記載の被覆構成体。  16. The coating structure of claim 15, wherein the transparent conductive oxide is selected from fluorine doped tin oxide, indium tin oxide, zinc aluminum oxide, and mixtures thereof. 透明伝導性酸化物層が、1Å〜2500Åの範囲の厚さを有する、請求項15に記載の被覆構成体。  The coating construction of claim 15, wherein the transparent conductive oxide layer has a thickness in the range of 1 to 2500 mm. 伝導性窒化物層が、窒化チタン、窒化ジルコニウム、及びそれらの混合物から選択されている、請求項15に記載の被覆構成体。  The coating structure of claim 15, wherein the conductive nitride layer is selected from titanium nitride, zirconium nitride, and mixtures thereof. 伝導性窒化物層が、10Å〜500Åの範囲の厚さを有する、請求項15に記載の被覆構成体。  The coating structure of claim 15, wherein the conductive nitride layer has a thickness in the range of 10 to 500 inches. 少なくとも一つの障壁被覆層が、少なくとも100Åの厚さを有する、請求項15に記載の被覆構成体。  The coating construction of claim 15, wherein the at least one barrier coating layer has a thickness of at least 100 mm. 基体と、前記基体の少なくとも一部分の上の低放射率機能性被覆を含む被覆基体であって、
前記低放射率機能性被覆は、一又は二以上の金属系被覆積層体ユニット及び前記低放射率機能性被覆の内部に配置された少なくとも一つの障壁被覆層を含み、
前記金属系被覆積層体ユニットは、それぞれ、誘電体材料の第一層、電磁波反射性材料の劣化性層、下地層、及び誘電体材料の第二層を含み、
前記障壁被覆層は酸化アルミニウムと酸化珪素の混合物を含む層を少なくとも一つ含む、前記被覆基体。
A coated substrate comprising a substrate and a low emissivity functional coating on at least a portion of the substrate,
The low emissivity functional coating comprises at least one barrier coating layer disposed inside the one or more metal-based coating stack unit and the low emissivity functional coating,
Each of the metal-based coated laminate units includes a first layer of a dielectric material, a degrading layer of an electromagnetic wave reflecting material, an underlayer, and a second layer of a dielectric material,
The coated substrate, wherein the barrier coating layer includes at least one layer containing a mixture of aluminum oxide and silicon oxide.
少なくとも一つの障壁被覆層が、単一の層である、請求項22に記載の被覆基体。  The coated substrate of claim 22, wherein the at least one barrier coating layer is a single layer. 少なくとも一つの障壁被覆層が、60重量%のアルミニウム及び40重量%の珪素を含むターゲットからスパッターされたアルミナとシリカとの混合物を含む、請求項23に記載の被覆基体。  24. The coated substrate of claim 23, wherein the at least one barrier coating layer comprises a mixture of alumina and silica sputtered from a target comprising 60 wt% aluminum and 40 wt% silicon. 障壁被覆層が、2μまでの厚さを有する、請求項22に記載の被覆基体。  23. A coated substrate according to claim 22, wherein the barrier coating layer has a thickness of up to 2 microns. 少なくとも一つの劣化性層が、金、銅、銀、伝導性窒化物、及びそれらの混合物から選択された電磁波反射性材料である、請求項23に記載の被覆基体。  24. The coated substrate of claim 23, wherein the at least one degradable layer is an electromagnetic wave reflective material selected from gold, copper, silver, conductive nitride, and mixtures thereof. 少なくとも一つの劣化性層が銀である、請求項26に記載の被覆基体。  27. A coated substrate according to claim 26, wherein the at least one degradable layer is silver. 誘電体材料の第一及び第二層が、それぞれ、酸化インジウム、酸化チタン、酸化亜鉛、酸化錫、及びそれらの混合物から選択されている、請求項22に記載の被覆基体。  The coated substrate of claim 22, wherein the first and second layers of dielectric material are each selected from indium oxide, titanium oxide, zinc oxide, tin oxide, and mixtures thereof. 誘電体材料の第一及び第二層が、それぞれ、100Å〜800Åの範囲の厚さを有する、請求項22に記載の被覆基体。  The coated substrate of claim 22, wherein the first and second layers of dielectric material each have a thickness in the range of 100 to 800 inches. 電磁波反射性材料の層が、50Å〜300Åの範囲の厚さを有する、請求項22に記載の被覆基体。  23. A coated substrate according to claim 22, wherein the layer of electromagnetic wave reflecting material has a thickness in the range of 50 to 300 inches. 少なくとも一つの下地層が、10Å〜30Åの範囲の厚さを有する、請求項22に記載の被覆基体。  23. A coated substrate according to claim 22, wherein the at least one underlayer has a thickness in the range of 10 to 30 inches. 少なくとも一つの下地層が、チタン、銅、アルミニウム、ニオブ、イットリウム、ジルコニウム、ハフニウム、クロム、及びそれらの混合物及び合金;ニッケル・クロム合金;コバルト・クロム合金;インジウム錫亜酸化物;チタン亜酸化物、亜鉛アルミニウム亜酸化物;窒化珪素;及びそれらの混合物から選択されている、請求項31に記載の被覆基体。  At least one underlayer comprising titanium, copper, aluminum, niobium, yttrium, zirconium, hafnium, chromium, and mixtures and alloys thereof; nickel-chromium alloy; cobalt-chromium alloy; indium tin suboxide; titanium suboxide 32. A coated substrate according to claim 31, selected from: zinc aluminum suboxide; silicon nitride; and mixtures thereof. 少なくとも一つの劣化性層が、伝導性窒化物の層である、請求項22に記載の被覆基体。  23. A coated substrate according to claim 22, wherein the at least one degradable layer is a layer of conductive nitride. 被覆構成体が、更に、透明伝導性酸化物層を含む、請求項33に記載の被覆基体。  34. A coated substrate according to claim 33, wherein the coating structure further comprises a transparent conductive oxide layer. 少なくとも一つの劣化性層が、透明伝導性酸化物層の少なくとも一部分を覆って横たわり、少なくとも一つの障壁被覆層が、前記少なくとも一つの劣化性層の少なくとも一部分を覆って横たわる、請求項34に記載の被覆基体。  35. The at least one degradable layer lies over at least a portion of the transparent conductive oxide layer, and the at least one barrier coating layer lies over at least a portion of the at least one degradable layer. Coated substrate. 透明伝導性酸化物が、フッ素をドープした錫酸化物、インジウム錫酸化物、亜鉛アルミニウム酸化物、及びそれらの混合物から選択されている、請求項35に記載の被覆基体。  36. The coated substrate of claim 35, wherein the transparent conductive oxide is selected from fluorine doped tin oxide, indium tin oxide, zinc aluminum oxide, and mixtures thereof. 透明伝導性酸化物層が、1Å〜2500Åの範囲の厚さを有する、請求項35に記載の被覆基体。  36. The coated substrate of claim 35, wherein the transparent conductive oxide layer has a thickness in the range of 1 to 2500 mm. 伝導性窒化物層が、窒化チタン、窒化ジルコニウム、及びそれらの混合物から選択されている、請求項34に記載の被覆基体。  35. The coated substrate of claim 34, wherein the conductive nitride layer is selected from titanium nitride, zirconium nitride, and mixtures thereof. 少なくとも一つの劣化性層が、10Å〜500Åの範囲の厚さを有する、請求項35に記載の被覆基体。  36. The coated substrate of claim 35, wherein the at least one degradable layer has a thickness in the range of 10 to 500 inches. 少なくとも一つの障壁被覆層が、少なくとも100Åの厚さを有する、請求項35に記載の被覆基体。  36. The coated substrate of claim 35, wherein the at least one barrier coating layer has a thickness of at least 100 inches. 基体が、プラスチック、金属、セラミック、タイル、ガラス、及びそれらの組合せから選択されている、請求項22に記載の被覆基体。  The coated substrate of claim 22, wherein the substrate is selected from plastic, metal, ceramic, tile, glass, and combinations thereof. 基体がガラスである、請求項41に記載の被覆基体。  42. A coated substrate according to claim 41, wherein the substrate is glass. 基体と、
前記基体上の錫酸亜鉛を含む誘電体材料の第一層;
前記誘電体材料の第一層の少なくとも一部分の上の銀を含む第一劣化性層;
前記第一劣化性層の少なくとも一部分の上のチタニアを含む第一下地層;
前記第一下地層の少なくとも一部分の上に適用された錫酸亜鉛を含む誘電体材料の第二層;
前記誘電体材料の第二層の少なくとも一部分の上の銀を含む第二劣化性層;
前記第二劣化性層の少なくとも一部分の上のチタニアを含む第二下地層;
前記第二下地層の少なくとも一部分の上の錫酸亜鉛を含む誘電体材料の第三層;
前記誘電体材料の第三層少なくとも一部分の上の銀を含む第三劣化性層;
前記第三劣化性層の少なくとも一部分の上のチタニアを含む第三下地層;
前記第三下地層の少なくとも一部分の上の錫酸亜鉛を含む誘電体材料の第四層;及び
アルミナとシリカの混合物を含み被覆積層体内に配置されている少なくとも一つの障壁被覆層;を含む被覆積層体と
を含む被覆基体。
A substrate;
A first layer of dielectric material comprising zinc stannate on the substrate;
A first degradable layer comprising silver on at least a portion of the first layer of dielectric material;
A first underlayer comprising titania over at least a portion of the first degradable layer;
A second layer of dielectric material comprising zinc stannate applied over at least a portion of the first underlayer;
A second degradable layer comprising silver over at least a portion of the second layer of dielectric material;
A second underlayer comprising titania over at least a portion of the second degradable layer;
A third layer of dielectric material comprising zinc stannate over at least a portion of the second underlayer;
A third degradable layer comprising silver over at least a portion of the third layer of dielectric material;
A third underlayer comprising titania over at least a portion of the third degradable layer;
A coating comprising: a fourth layer of dielectric material comprising zinc stannate on at least a portion of the third foundation layer; and at least one barrier coating layer comprising a mixture of alumina and silica and disposed in a coating laminate. A coated substrate comprising: a laminate.
誘電体材料の第一、第二、第三、及び第四層が、100Å〜800Åの範囲の厚さを有する、請求項43に記載の被覆基体。  44. The coated substrate of claim 43, wherein the first, second, third, and fourth layers of dielectric material have a thickness in the range of 100 to 800 inches. 第一、第二、及び第三下地層が、10Å〜18Åの範囲の厚さを有する、請求項43に記載の被覆基体。  44. The coated substrate of claim 43, wherein the first, second, and third underlayers have a thickness in the range of 10 to 18 inches. 第一、第二、及び第三劣化性層が、50Å〜300Åの範囲の厚さを有する、請求項43に記載の被覆基体。  44. The coated substrate of claim 43, wherein the first, second, and third degradable layers have a thickness in the range of 50 to 300 inches.
JP2007506355A 2004-04-01 2005-04-01 Coated laminate comprising a layer of barrier coating Active JP4927709B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/816,519 2004-04-01
US10/816,519 US7232615B2 (en) 2001-10-22 2004-04-01 Coating stack comprising a layer of barrier coating
PCT/US2005/011353 WO2005108064A2 (en) 2004-04-01 2005-04-01 Coating stack comprising a layer of barrier coating

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011044907A Division JP4928000B2 (en) 2004-04-01 2011-03-02 Coated laminate comprising a layer of barrier coating

Publications (2)

Publication Number Publication Date
JP2007531644A JP2007531644A (en) 2007-11-08
JP4927709B2 true JP4927709B2 (en) 2012-05-09

Family

ID=35207353

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2007506355A Active JP4927709B2 (en) 2004-04-01 2005-04-01 Coated laminate comprising a layer of barrier coating
JP2011044907A Active JP4928000B2 (en) 2004-04-01 2011-03-02 Coated laminate comprising a layer of barrier coating

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2011044907A Active JP4928000B2 (en) 2004-04-01 2011-03-02 Coated laminate comprising a layer of barrier coating

Country Status (10)

Country Link
US (2) US7232615B2 (en)
EP (1) EP1751073B2 (en)
JP (2) JP4927709B2 (en)
CN (1) CN1938239B (en)
CA (1) CA2561451C (en)
ES (1) ES2666273T5 (en)
MX (1) MXPA06011321A (en)
PL (1) PL1751073T3 (en)
RU (1) RU2342336C2 (en)
WO (1) WO2005108064A2 (en)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7232615B2 (en) * 2001-10-22 2007-06-19 Ppg Industries Ohio, Inc. Coating stack comprising a layer of barrier coating
US7063893B2 (en) 2002-04-29 2006-06-20 Cardinal Cg Company Low-emissivity coating having low solar reflectance
US7122252B2 (en) * 2002-05-16 2006-10-17 Cardinal Cg Company High shading performance coatings
WO2006017349A1 (en) 2004-07-12 2006-02-16 Cardinal Cg Company Low-maintenance coatings
US7473471B2 (en) * 2005-03-21 2009-01-06 Ppg Industries Ohio, Inc. Coating composition with solar properties
JP5405106B2 (en) 2005-05-12 2014-02-05 エージーシー フラット グラス ノース アメリカ,インコーポレイテッド Low emissivity coating having low solar thermal gain coefficient, excellent chemical and mechanical properties and method for producing the same
DE102005038139B4 (en) * 2005-08-12 2008-05-21 Saint-Gobain Glass Deutschland Gmbh High-thermal loadable low-E-layer system and its use
US7339728B2 (en) * 2005-10-11 2008-03-04 Cardinal Cg Company Low-emissivity coatings having high visible transmission and low solar heat gain coefficient
US7342716B2 (en) * 2005-10-11 2008-03-11 Cardinal Cg Company Multiple cavity low-emissivity coatings
US7572511B2 (en) * 2005-10-11 2009-08-11 Cardinal Cg Company High infrared reflection coatings
KR101431230B1 (en) * 2006-04-11 2014-08-18 카디날 씨지 컴퍼니 Photocatalytic coatings having improved low-maintenance properties
US20080011599A1 (en) 2006-07-12 2008-01-17 Brabender Dennis M Sputtering apparatus including novel target mounting and/or control
US20080280147A1 (en) * 2007-05-09 2008-11-13 Thiel James P Vehicle transparency
US8686319B2 (en) * 2007-05-09 2014-04-01 Ppg Industries Ohio, Inc. Vehicle transparency heated with alternating current
US8728634B2 (en) 2007-06-13 2014-05-20 Ppg Industries Ohio, Inc. Appliance transparency
US7820309B2 (en) 2007-09-14 2010-10-26 Cardinal Cg Company Low-maintenance coatings, and methods for producing low-maintenance coatings
US7901781B2 (en) 2007-11-23 2011-03-08 Agc Flat Glass North America, Inc. Low emissivity coating with low solar heat gain coefficient, enhanced chemical and mechanical properties and method of making the same
GB0803702D0 (en) 2008-02-28 2008-04-09 Isis Innovation Transparent conducting oxides
DK2429965T3 (en) * 2009-05-08 2020-09-28 Vitro Flat Glass Llc SOLAR CONTROL COATING WITH HIGH SOLAR HEAT RECOVERY COEFFICIENT
GB0915376D0 (en) 2009-09-03 2009-10-07 Isis Innovation Transparent conducting oxides
US9028956B2 (en) * 2010-04-22 2015-05-12 Centre Luxembourgeois De Recherches Pour Le Verre Et La Ceramique S.A. (C.R.V.C.) Coated article having low-E coating with absorber layer(s)
DE102011089884B4 (en) * 2011-08-19 2016-03-10 Von Ardenne Gmbh Low-emissivity coating and method of making a low-emissivity coating system
JP2013047361A (en) * 2011-08-29 2013-03-07 Mitsubishi Materials Corp Sputtering target, method for production thereof, thin film using the target, and thin film sheet and laminated sheet provided with the thin film
CN103781737A (en) * 2011-09-05 2014-05-07 旭硝子株式会社 Glass substrate having alkali barrier layer attached thereto, and glass substrate having transparent conductive oxide film attached thereto
WO2013109582A1 (en) 2012-01-17 2013-07-25 Cardinal Cg Company Low solar transmittance coatings
JP6153235B2 (en) * 2012-09-21 2017-06-28 アップル インコーポレイテッド Oil repellent coating on sapphire
US9718249B2 (en) 2012-11-16 2017-08-01 Apple Inc. Laminated aluminum oxide cover component
US9499899B2 (en) * 2013-03-13 2016-11-22 Intermolecular, Inc. Systems, methods, and apparatus for production coatings of low-emissivity glass including a ternary alloy
EP2778252A3 (en) 2013-03-15 2014-12-10 Apple Inc. Layered Coatings For Sapphire Structure
DE102013004559B4 (en) 2013-03-18 2015-07-23 Apple Inc. Shatter-resistant sapphire disk and method of making the same
DE102013004558B4 (en) 2013-03-18 2018-04-05 Apple Inc. Method for producing a surface-strained sapphire disk, surface-strained sapphire disk and electrical device with a transparent cover
HUE038490T2 (en) 2013-05-14 2018-10-29 Agc Inc Protective film, reflective member, and production method for protective film
JP5622953B1 (en) * 2014-03-18 2014-11-12 株式会社イザワピグメンツ Ceramic products
FR3018802A1 (en) * 2014-03-19 2015-09-25 Saint Gobain VERTICAL ELECTROCONDUCTIVE LAYER SUBSTRATE AND REDUCED DELAMINATION TREND
US9752377B2 (en) 2015-03-20 2017-09-05 Cardinal Cg Company Nickel-aluminum blocker film controlled transmission coating
US9745792B2 (en) 2015-03-20 2017-08-29 Cardinal Cg Company Nickel-aluminum blocker film multiple cavity controlled transmission coating
US9469566B2 (en) 2015-03-20 2016-10-18 Cardinal Cg Company Nickel-aluminum blocker film low-emissivity coatings
FR3038595A1 (en) * 2015-07-06 2017-01-13 Saint Gobain GLAZING COMPRISING A FUNCTIONAL COATING BASED ON SILVER AND INDIUM
US9844160B2 (en) * 2015-09-24 2017-12-12 Cheng Uei Precision Industry Co., Ltd. Electronics housing and manufacturing method of electronics housing
EP3541762B1 (en) 2016-11-17 2022-03-02 Cardinal CG Company Static-dissipative coating technology
US10233531B2 (en) * 2017-03-01 2019-03-19 Guardian Glass, LLC Coated article with low-E coating having protective doped silver layer for protecting silver based IR reflecting layer(s), and method of making same
US10618252B2 (en) 2017-04-12 2020-04-14 Vitro Flat Glass Llc Solar control coating for laminated glazing
US10934626B2 (en) * 2017-04-21 2021-03-02 General Electric Company Segmented environmental barrier coating systems and methods of forming the same
RU2655699C1 (en) * 2017-05-22 2018-05-29 федеральное государственное бюджетное образовательное учреждение высшего образования "Белгородский государственный технологический университет им. В.Г. Шухова" Method of silicate glasses metallization
IL253067B (en) 2017-06-21 2022-01-01 Gyntools Ltd Assay devices and assay apparatus for use therewith
CN109055890B (en) * 2018-08-29 2020-04-28 南京星乔威泰克汽车零部件有限公司 Preparation method of ultra-high strength steel hot forming protective composite coating
US11028012B2 (en) 2018-10-31 2021-06-08 Cardinal Cg Company Low solar heat gain coatings, laminated glass assemblies, and methods of producing same
CN109534692B (en) * 2019-01-24 2022-01-04 福建工程学院 Scratch-resistant dirt-removing photocatalytic glass and preparation method thereof
FR3093512B1 (en) * 2019-03-08 2021-06-18 Saint Gobain Colored laminated glass article
US11269374B2 (en) 2019-09-11 2022-03-08 Apple Inc. Electronic device with a cover assembly having an adhesion layer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002040418A2 (en) * 2000-10-24 2002-05-23 Ppg Industries Ohio, Inc. Method of making coated articles and coated articles made thereby
JP2003502259A (en) * 1999-06-16 2003-01-21 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Protective layer for sputter-coated articles
WO2003068500A1 (en) * 2002-02-11 2003-08-21 Ppg Industries Ohio, Inc. Solar control coating
WO2003091471A2 (en) * 2002-04-25 2003-11-06 Ppg Industries Ohio, Inc. Coated articles having a protective coating and cathode targets for making the coated articles
JP2011105016A (en) * 2004-04-01 2011-06-02 Ppg Industries Ohio Inc Coating laminate including barrier coating layer

Family Cites Families (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE567339A (en) * 1957-05-03 1900-01-01
US3281296A (en) * 1963-04-08 1966-10-25 Permaglass Method for edge sealing safety glass
US3459526A (en) * 1966-01-24 1969-08-05 Libbey Owens Ford Glass Co Apparatus for bending glass sheets with aligning means
US3476540A (en) * 1966-08-22 1969-11-04 Libbey Owens Ford Co Method of bending glass sheets
US3767463A (en) 1967-01-13 1973-10-23 Ibm Method for controlling semiconductor surface potential
US3527589A (en) * 1967-02-13 1970-09-08 Libbey Owens Ford Glass Co Sheet shaping and conveying apparatus
FR1596613A (en) * 1967-11-20 1970-06-22
BE754525R (en) * 1970-05-21 1971-02-08 Saint Gobain Pont A Mousson IMPROVEMENT IN GLASS MANUFACTURING
US3934961A (en) 1970-10-29 1976-01-27 Canon Kabushiki Kaisha Three layer anti-reflection film
US3843346A (en) * 1973-03-06 1974-10-22 Ppg Industries Inc Manufacture of sheet glass by continuous float process
US4017661A (en) * 1974-08-09 1977-04-12 Ppg Industries, Inc. Electrically conductive transparent laminated window
US4081934A (en) * 1976-09-03 1978-04-04 Ppg Industries, Inc. Seasonably adjustable window
US4111150A (en) * 1977-03-28 1978-09-05 Ppg Industries, Inc. Apparatus for coating an advancing substrate
US4272274A (en) * 1978-10-25 1981-06-09 Ppg Industries, Inc. Slotted glass sheet shaping mold
US4197108A (en) * 1978-10-25 1980-04-08 Ppg Industries, Inc. Slotted glass sheet shaping mold
US4272272A (en) * 1979-09-10 1981-06-09 Owens-Corning Fiberglas Corporation Method and apparatus for production of mineral fibers
US4265650A (en) * 1979-11-02 1981-05-05 Ppg Industries, Inc. Method of bending glass sheets in unison to complicated shapes
US4379040A (en) * 1981-01-29 1983-04-05 Ppg Industries, Inc. Method of and apparatus for control of reactive sputtering deposition
JPS5890604A (en) * 1981-11-25 1983-05-30 Toyota Central Res & Dev Lab Inc Infrared-ray shielding laminate
US4395432A (en) 1981-12-16 1983-07-26 Westinghouse Electric Corp. β-Alumina coating
NO157212C (en) 1982-09-21 1988-02-10 Pilkington Brothers Plc PROCEDURE FOR THE PREPARATION OF LOW EMISSION PATIENTS.
US4719126A (en) * 1983-02-02 1988-01-12 Ppg Industries, Inc. Pyrolytic deposition of metal oxide film from aqueous suspension
US4719127A (en) * 1983-02-02 1988-01-12 Ppg Industries, Inc. Aqueous chemical suspension for pyrolytic deposition of metal-containing film
US4971843A (en) * 1983-07-29 1990-11-20 Ppg Industries, Inc. Non-iridescent infrared-reflecting coated glass
US4948677A (en) * 1984-01-31 1990-08-14 Ppg Industries, Inc. High transmittance, low emissivity article and method of preparation
US4508556A (en) * 1984-06-04 1985-04-02 Ppg Industries, Inc. Method and apparatus for bending glass sheets to complicated shapes including an S-shaped transverse bend
US4584206A (en) * 1984-07-30 1986-04-22 Ppg Industries, Inc. Chemical vapor deposition of a reflective film on the bottom surface of a float glass ribbon
US4900110A (en) * 1984-07-30 1990-02-13 Ppg Industries, Inc. Chemical vapor deposition of a reflective film on the bottom surface of a float glass ribbon
US4547432A (en) 1984-07-31 1985-10-15 The United States Of America As Represented By The United States Department Of Energy Method of bonding silver to glass and mirrors produced according to this method
US4610771A (en) * 1984-10-29 1986-09-09 Ppg Industries, Inc. Sputtered films of metal alloy oxides and method of preparation thereof
US4716086A (en) * 1984-12-19 1987-12-29 Ppg Industries, Inc. Protective overcoat for low emissivity coated article
US4579577A (en) * 1984-12-21 1986-04-01 Ppg Industries, Inc. Vacuum press mold construction
DE3543178A1 (en) * 1985-12-06 1987-06-11 Leybold Heraeus Gmbh & Co Kg METHOD FOR PRODUCING WINDOWS WITH HIGH TRANSMISSION BEHAVIOR IN THE VISIBLE SPECTRAL AREA AND WITH HIGH REFLECTION BEHAVIOR FOR HEAT RADIATION, AND WINDOWS PRODUCED BY THE PROCESS
US4661139A (en) * 1985-12-10 1987-04-28 Ppg Industries, Inc. Vacuum pressing of glass doublets
US4786563A (en) * 1985-12-23 1988-11-22 Ppg Industries, Inc. Protective coating for low emissivity coated articles
US5059295A (en) * 1986-12-29 1991-10-22 Ppg Industries, Inc. Method of making low emissivity window
US5028759A (en) * 1988-04-01 1991-07-02 Ppg Industries, Inc. Low emissivity film for a heated windshield
US4806220A (en) * 1986-12-29 1989-02-21 Ppg Industries, Inc. Method of making low emissivity film for high temperature processing
CA1331867C (en) 1986-12-29 1994-09-06 James Joseph Finley Low emissivity film for high temperature processing
US4898790A (en) * 1986-12-29 1990-02-06 Ppg Industries, Inc. Low emissivity film for high temperature processing
US4746347A (en) * 1987-01-02 1988-05-24 Ppg Industries, Inc. Patterned float glass method
JPS63184210A (en) * 1987-01-27 1988-07-29 日本板硝子株式会社 Manufacture of transparent conductor
US4769291A (en) * 1987-02-02 1988-09-06 The Boc Group, Inc. Transparent coatings by reactive sputtering
US4861669A (en) * 1987-03-26 1989-08-29 Ppg Industries, Inc. Sputtered titanium oxynitride films
US4900633A (en) * 1987-03-26 1990-02-13 Ppg Industries, Inc. High performance multilayer coatings
US4792536A (en) * 1987-06-29 1988-12-20 Ppg Industries, Inc. Transparent infrared absorbing glass and method of making
US4853257A (en) * 1987-09-30 1989-08-01 Ppg Industries, Inc. Chemical vapor deposition of tin oxide on float glass in the tin bath
US4820902A (en) * 1987-12-28 1989-04-11 Ppg Industries, Inc. Bus bar arrangement for an electrically heated transparency
US4830650A (en) * 1988-01-04 1989-05-16 Ppg Industries, Inc. Flexible ring mold and method of use
US4834857A (en) * 1988-04-01 1989-05-30 Ppg Industries, Inc. Neutral sputtered films of metal alloy oxides
US4902580A (en) * 1988-04-01 1990-02-20 Ppg Industries, Inc. Neutral reflecting coated articles with sputtered multilayer films of metal oxides
US4898789A (en) * 1988-04-04 1990-02-06 Ppg Industries, Inc. Low emissivity film for automotive heat load reduction
IL86366A0 (en) * 1988-05-12 1988-11-15 Luz Ind Israel Ltd Protected silvered substrates and mirrors containing the same
JPH0791089B2 (en) * 1988-12-13 1995-10-04 セントラル硝子株式会社 Heat ray reflective glass
GB8900166D0 (en) * 1989-01-05 1989-03-01 Glaverbel Glass coating
GB8900165D0 (en) 1989-01-05 1989-03-01 Glaverbel Glass coating
IT1240796B (en) 1990-03-12 1993-12-17 Siv Soc Italiana Vetro MOTOR VEHICLE GLASS, SUITABLE FOR USE AS A SOLAR SCREEN AND AS A COMBINATOR OF IMAGES.
US5240886A (en) * 1990-07-30 1993-08-31 Ppg Industries, Inc. Ultraviolet absorbing, green tinted glass
US5593507A (en) * 1990-08-22 1997-01-14 Kabushiki Kaisha Toshiba Cleaning method and cleaning apparatus
US5268217A (en) 1990-09-27 1993-12-07 Diamonex, Incorporated Abrasion wear resistant coated substrate product
US5527596A (en) 1990-09-27 1996-06-18 Diamonex, Incorporated Abrasion wear resistant coated substrate product
US5393593A (en) * 1990-10-25 1995-02-28 Ppg Industries, Inc. Dark gray, infrared absorbing glass composition and coated glass for privacy glazing
US5250146A (en) * 1990-11-05 1993-10-05 Horvath Steven J Apparatus for applying anti-lacerative film to glass
US5196485A (en) * 1991-04-29 1993-03-23 Ppg Industries, Inc. One package stable etch resistant coating
TW219953B (en) 1991-09-30 1994-02-01 Ppg Industries Inc
US5216043A (en) * 1991-12-12 1993-06-01 Minnesota Mining And Manufacturing Company Degradable thermophastic compositions and blends with naturally biodegradable polymers
JPH05188202A (en) 1992-01-10 1993-07-30 Canon Inc Multilayered optical thin film
US5296302A (en) 1992-03-27 1994-03-22 Cardinal Ig Company Abrasion-resistant overcoat for coated substrates
US5344718A (en) * 1992-04-30 1994-09-06 Guardian Industries Corp. High performance, durable, low-E glass
US5286271A (en) * 1992-07-02 1994-02-15 Ppg Industries, Inc. Method and apparatus for bending glass sheets
DE69305936T3 (en) 1992-07-11 2004-07-22 Pilkington United Kingdom Ltd., St. Helens Process for the production of reflective layers on glass
US5462779A (en) * 1992-10-02 1995-10-31 Consorzio Ce.Te.V. Centro Tecnologie Del Vuoto Thin film multilayer structure as permeation barrier on plastic film
US5599387A (en) * 1993-02-16 1997-02-04 Ppg Industries, Inc. Compounds and compositions for coating glass with silicon oxide
US5356718A (en) * 1993-02-16 1994-10-18 Ppg Industries, Inc. Coating apparatus, method of coating glass, compounds and compositions for coating glasss and coated glass substrates
US5337191A (en) 1993-04-13 1994-08-09 Photran Corporation Broad band pass filter including metal layers and dielectric layers of alternating refractive index
JP2859095B2 (en) 1993-07-30 1999-02-17 信越化学工業株式会社 Synthetic quartz mask substrate for excimer laser lithography
US5376455A (en) * 1993-10-05 1994-12-27 Guardian Industries Corp. Heat-treatment convertible coated glass and method of converting same
FR2711983B1 (en) 1993-11-02 1996-01-19 Saint Gobain Vitrage Transparent substrate provided with a layer of metallic nitride.
FR2722493B1 (en) 1994-07-13 1996-09-06 Saint Gobain Vitrage MULTI-LAYERED HYDROPHOBIC GLAZING
GB9417112D0 (en) * 1994-08-24 1994-10-12 Glaverbel Coated substrate and process for its formation
FR2727107B1 (en) 1994-11-21 1996-12-27 Saint Gobain Vitrage GLAZING PROVIDED WITH AT LEAST ONE THIN FILM AND PROCESS FOR OBTAINING SAME
FR2728559B1 (en) 1994-12-23 1997-01-31 Saint Gobain Vitrage GLASS SUBSTRATES COATED WITH A STACK OF THIN LAYERS WITH INFRARED REFLECTION PROPERTIES AND / OR IN THE FIELD OF SOLAR RADIATION
US5811191A (en) * 1994-12-27 1998-09-22 Ppg Industries, Inc. Multilayer antireflective coating with a graded base layer
CA2161283A1 (en) * 1994-12-27 1996-06-28 Ppg Industries Ohio, Inc. Annealed low emissivity coating
JPH08253566A (en) * 1995-01-06 1996-10-01 Yuka Shell Epoxy Kk Acid-functional and epoxy-functional polyester resin
US5536718A (en) * 1995-01-17 1996-07-16 American Cyanamid Company Tricyclic benzazepine vasopressin antagonists
US5858519A (en) 1995-01-27 1999-01-12 Optical Coating Laboratory, Inc. Absorbing anti-reflection coatings for computer displays
FR2730990B1 (en) 1995-02-23 1997-04-04 Saint Gobain Vitrage TRANSPARENT SUBSTRATE WITH ANTI-REFLECTIVE COATING
CA2218279A1 (en) * 1995-04-25 1996-10-31 The Boc Group, Inc. Sputtering system using cylindrical rotating magnetron electrically powered using alternating current
US5532180A (en) * 1995-06-02 1996-07-02 Ois Optical Imaging Systems, Inc. Method of fabricating a TFT with reduced channel length
US5714199A (en) * 1995-06-07 1998-02-03 Libbey-Owens-Ford Co. Method for applying a polymer powder onto a pre-heated glass substrate and the resulting article
GB2302102B (en) 1995-06-09 1999-03-10 Glaverbel A glazing panel having solar screening properties and a process for making such a panel
US5653903A (en) * 1995-06-27 1997-08-05 Ppg Industries, Inc. L-shaped heating element with radiused end for a windshield
JP3520627B2 (en) 1995-09-14 2004-04-19 ソニー株式会社 Anti-reflection member, method of manufacturing the same, and cathode ray tube
FR2752235B3 (en) 1996-08-07 1998-08-28 Saint Gobain Vitrage GLASS SUBSTRATE HAVING A REFLECTIVE LAYER
JPH09258006A (en) 1996-03-22 1997-10-03 Canon Inc Antireflection film and optical system having that film
US5821001A (en) * 1996-04-25 1998-10-13 Ppg Industries, Inc. Coated articles
FR2748743B1 (en) 1996-05-14 1998-06-19 Saint Gobain Vitrage GLASS WITH ANTI-REFLECTIVE COATING
US5820987A (en) * 1996-08-21 1998-10-13 Ppg Industries, Inc. Cationic electrocoating compositions, method of making, and use
JPH10101825A (en) 1996-10-01 1998-04-21 Dainippon Printing Co Ltd Transparent barrier film
DE19719542C1 (en) 1997-05-09 1998-11-19 Ver Glaswerke Gmbh Low-E layer system for transparent substrates
DE19732978C1 (en) 1997-07-31 1998-11-19 Ver Glaswerke Gmbh Low emissivity layer system especially for glass
EP0922681B2 (en) 1997-12-11 2007-09-05 Saint-Gobain Glass France Transparent substrate coated with thin infrared radiation reflecting layers
WO1999033759A1 (en) 1997-12-26 1999-07-08 Nippon Sheet Glass Co., Ltd. Ultraviolet/infrared absorbent glass, ultraviolet/infrared absorbent glass plate, ultraviolet/infrared absorbent glass plate coated with colored film, and window glass for vehicle
US6111697A (en) * 1998-01-13 2000-08-29 3M Innovative Properties Company Optical device with a dichroic polarizer and a multilayer optical film
JPH11307987A (en) 1998-04-16 1999-11-05 Nippon Sheet Glass Co Ltd Electromagnetic wave filter
US6899953B1 (en) * 1998-05-08 2005-05-31 Ppg Industries Ohio, Inc. Shippable heat-treatable sputter coated article and zinc cathode sputtering target containing low amounts of tin
WO1999064900A1 (en) 1998-06-09 1999-12-16 The Regents Of The University Of California Durable silver coating for mirrors
FR2784985B1 (en) 1998-10-22 2001-09-21 Saint Gobain Vitrage TRANSPARENT SUBSTRATE PROVIDED WITH A STACK OF THIN FILMS
FR2784984B1 (en) 1998-10-22 2001-10-26 Saint Gobain Vitrage TRANSPARENT SUBSTRATE PROVIDED WITH A STACK OF THIN FILMS
US6410173B1 (en) 1998-11-30 2002-06-25 Denglas Technologies, Llc Antireflection coatings and other multilayer optical coatings for heat-treatable inorganic substrates and methods for making same
PL199520B1 (en) 1998-12-18 2008-09-30 Agc Flat Glass Europe Sa Glazing panel
FR2787440B1 (en) 1998-12-21 2001-12-07 Saint Gobain Vitrage TRANSPARENT SUBSTRATE HAVING AN ANTI-REFLECTIVE COATING
CA2383744C (en) 1998-12-21 2006-05-23 Cardinal Ig Company Soil-resistant coating for glass surfaces
JP4035251B2 (en) 1999-02-03 2008-01-16 株式会社神戸製鋼所 Substrate having surface hydrophilicity and method for producing the same
JP3678043B2 (en) 1999-03-10 2005-08-03 日本板硝子株式会社 Low reflection glass articles for automobiles
JP2000294980A (en) 1999-04-06 2000-10-20 Nippon Sheet Glass Co Ltd Translucent electromagnetic wave filter and fabrication thereof
US6582799B1 (en) * 1999-06-02 2003-06-24 Ppg Industries Ohio, Inc. Laminated transparency
JP4109451B2 (en) 1999-10-14 2008-07-02 エージーシー フラット グラス ユーロップ エスエー Window glass
FR2810118B1 (en) 2000-06-07 2005-01-21 Saint Gobain Vitrage TRANSPARENT SUBSTRATE HAVING ANTIREFLECTION COATING
US6936347B2 (en) 2001-10-17 2005-08-30 Guardian Industries Corp. Coated article with high visible transmission and low emissivity
US6919133B2 (en) 2002-03-01 2005-07-19 Cardinal Cg Company Thin film coating having transparent base layer
TWI276613B (en) 2002-04-05 2007-03-21 Murakami Corp Composite material
EP1499567B1 (en) 2002-04-25 2018-04-04 Vitro, S.A.B. de C.V. Methods of changing the visible light transmittance of coated articles and coated articles made thereby
US6902836B2 (en) 2003-05-22 2005-06-07 United Technologies Corporation Environmental barrier coating for silicon based substrates such as silicon nitride
US7276289B2 (en) 2004-09-21 2007-10-02 Guardian Industries Corp. First surface mirror with metal oxide nucleation layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003502259A (en) * 1999-06-16 2003-01-21 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Protective layer for sputter-coated articles
WO2002040418A2 (en) * 2000-10-24 2002-05-23 Ppg Industries Ohio, Inc. Method of making coated articles and coated articles made thereby
WO2003068500A1 (en) * 2002-02-11 2003-08-21 Ppg Industries Ohio, Inc. Solar control coating
WO2003091471A2 (en) * 2002-04-25 2003-11-06 Ppg Industries Ohio, Inc. Coated articles having a protective coating and cathode targets for making the coated articles
JP2011105016A (en) * 2004-04-01 2011-06-02 Ppg Industries Ohio Inc Coating laminate including barrier coating layer

Also Published As

Publication number Publication date
CA2561451C (en) 2013-07-30
JP2007531644A (en) 2007-11-08
MXPA06011321A (en) 2006-12-15
WO2005108064A3 (en) 2006-01-05
CN1938239B (en) 2011-06-29
ES2666273T3 (en) 2018-05-03
CN1938239A (en) 2007-03-28
PL1751073T3 (en) 2018-08-31
US9556068B2 (en) 2017-01-31
EP1751073A2 (en) 2007-02-14
RU2342336C2 (en) 2008-12-27
WO2005108064A2 (en) 2005-11-17
CA2561451A1 (en) 2005-11-17
US20040247929A1 (en) 2004-12-09
JP2011105016A (en) 2011-06-02
EP1751073B2 (en) 2022-01-05
ES2666273T5 (en) 2022-03-30
US7232615B2 (en) 2007-06-19
US20070224357A1 (en) 2007-09-27
EP1751073B1 (en) 2018-03-07
RU2006138480A (en) 2008-05-10
JP4928000B2 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
JP4927709B2 (en) Coated laminate comprising a layer of barrier coating
JP4768722B2 (en) Hybrid coated laminate
JP5675356B2 (en) Transparency for vehicles
EP3527541B1 (en) Solar control coatings providing increased absorption or tint
TWI389864B (en) Appliance transparency
AU2018395244B2 (en) Solar control coatings and methods of forming solar control coatings
JP7170734B2 (en) Solar control coating with quadruple metal layer
JP2005516818A (en) Solar control coating
JP2024003101A (en) Coated article having protective coating containing silicon nitride and/or silicon oxynitride
EP2155486A2 (en) Vehicle transparency

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090605

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090907

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090914

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091002

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110302

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20110812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4927709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250