JP2010287849A - Organic thin film solar cell - Google Patents

Organic thin film solar cell Download PDF

Info

Publication number
JP2010287849A
JP2010287849A JP2009142456A JP2009142456A JP2010287849A JP 2010287849 A JP2010287849 A JP 2010287849A JP 2009142456 A JP2009142456 A JP 2009142456A JP 2009142456 A JP2009142456 A JP 2009142456A JP 2010287849 A JP2010287849 A JP 2010287849A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
electrode
layer
conversion layer
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009142456A
Other languages
Japanese (ja)
Other versions
JP5467311B2 (en
Inventor
Jun Onoe
順 尾上
Takuya Orikoshi
卓哉 折越
Toshiaki Nishii
俊明 西井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Tokyo Institute of Technology NUC
Original Assignee
Electric Power Development Co Ltd
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Tokyo Institute of Technology NUC filed Critical Electric Power Development Co Ltd
Priority to JP2009142456A priority Critical patent/JP5467311B2/en
Publication of JP2010287849A publication Critical patent/JP2010287849A/en
Application granted granted Critical
Publication of JP5467311B2 publication Critical patent/JP5467311B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic thin film solar cell improved in photoelectric conversion efficiency by preventing a carrier generated in a photoelectric conversion layer from being recombined in the photoelectric conversion layer, dispenses with a transparent electrode using price-increased In as a raw material thereby preventing the attenuation of incident light caused by the transparent electrode. <P>SOLUTION: A photoelectric conversion layer 12 configured by alternately laminating electron donor layers 12A and electronic accepter layers 12B is directly formed on a transparent substrate 11 and light is directly made incident on the photoelectric conversion layer through the transparent substrate. One or more first through electrodes 13 and one or more second through electrodes 14 are buried in the photoelectric conversion layer and these through electrodes are arranged so as to divide the photoelectric conversion layer. When built-in potential between the electron donor layer and the electronic acceptor layer is small, it is desirable that a work function of a conductive material making the first through electrode is different from that of a conductive material making the second through electrode. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、有機薄膜太陽電池に関し、光電変換効率を高め、かつ透明電極を不要としたものである。   The present invention relates to an organic thin film solar cell, which increases photoelectric conversion efficiency and eliminates the need for a transparent electrode.

太陽電池の1種として有機薄膜太陽電池が知られている。
図3は、従来の有機薄膜太陽電池の典型的な例を示すものである。図中符号1は透明基板を示す。この透明基板1は、ガラス板などの透明材料からもので、その一方の表面にはITO(酸化インジウム・スズ)などからなる透明電極2が形成されている。
この透明電極2上には、光電変換層3が形成されている。この光電変換層3は、電子ドナー層31と電子アクセプター層32とが交互にそれぞれ複数層積層されたものである。
An organic thin film solar cell is known as one type of solar cell.
FIG. 3 shows a typical example of a conventional organic thin film solar cell. Reference numeral 1 in the figure denotes a transparent substrate. The transparent substrate 1 is made of a transparent material such as a glass plate, and a transparent electrode 2 made of ITO (indium tin oxide) or the like is formed on one surface thereof.
A photoelectric conversion layer 3 is formed on the transparent electrode 2. In the photoelectric conversion layer 3, a plurality of electron donor layers 31 and electron acceptor layers 32 are alternately stacked.

前記電子ドナー層31は、例えばポリフィリン金属錯体からなる薄膜で構成され、電子アクセプター層32は、例えばフラーレンからなる薄膜で構成されたものである。
この光電変換層3上にはアルミニウムなどの導電材料からなる背面電極4が設けられている。
The electron donor layer 31 is made of a thin film made of, for example, a porphyrin metal complex, and the electron acceptor layer 32 is made of a thin film made of, for example, fullerene.
A back electrode 4 made of a conductive material such as aluminum is provided on the photoelectric conversion layer 3.

このような構成の有機薄膜太陽電池にあっては、透明基板1および透明電極2を透過して光電変換層3に太陽光などの光を照射すると、電子ドナー層31で発生した励起子(電子と正孔との対)が電子ドナー層31と電子アクセプター層32の界面で電子と正孔とに分離した結果、電子ドナー層31では正孔(ホール、h)が生成し、電子アクセプター層32では電子(e)が生成し、正孔が透明電極2に、電子が背面電極4に移動することで光発電が行われるようになっている。 In the organic thin film solar cell having such a configuration, excitons (electrons) generated in the electron donor layer 31 when the photoelectric conversion layer 3 is irradiated with light such as sunlight through the transparent substrate 1 and the transparent electrode 2. As a result of the separation of electrons and holes at the interface between the electron donor layer 31 and the electron acceptor layer 32, holes (holes, h + ) are generated in the electron donor layer 31, and the electron acceptor layer In 32, electrons (e ) are generated, and holes move to the transparent electrode 2, and electrons move to the back electrode 4, so that photovoltaic power generation is performed.

しかしながら、このような構造の有機薄膜太陽電池では、電子ドナー層31で生成した正孔および電子アクセプター層32で生成した電子(以下、正孔または電子もしくは両者を併せてキャリアと言うことがある。)の電極2(4)への移動の際に、キャリアが電子ドナー層31と電子アクセプター層32を横断する状態となり、その界面を通過する際にキャリアの再結合が生じ、両電極2(4)に到達するキャリアの数が減少して、結果的に光電変換効率を高めることができない不具合があった。   However, in the organic thin film solar cell having such a structure, there are cases where holes generated in the electron donor layer 31 and electrons generated in the electron acceptor layer 32 (hereinafter, holes or electrons or both are collectively referred to as carriers). ) Move to the electrode 2 (4), the carriers cross the electron donor layer 31 and the electron acceptor layer 32, and recombination of the carriers occurs when passing through the interface between the two electrodes 2 (4). ) Has decreased, and as a result, the photoelectric conversion efficiency cannot be increased.

また、透明電極2を構成するITOは、レアメタルであるインジウムを主原料とするものであるが、近時インジウムの消費量が世界的に増加して、調達が困難になって、その価格が急騰しており、ITOの製造コストが高くなってきている。
さらに、入射光が透明電極2を透過して光電変換層3に入射されるので、透明電極2での光の減衰があり、これによっても光電変換効率が低下することにもなる。
In addition, ITO that constitutes the transparent electrode 2 is mainly made of indium, which is a rare metal, but recently, the consumption of indium has increased worldwide, making it difficult to procure, and its price has soared. Therefore, the manufacturing cost of ITO is increasing.
Furthermore, since incident light passes through the transparent electrode 2 and enters the photoelectric conversion layer 3, there is attenuation of light at the transparent electrode 2, which also reduces the photoelectric conversion efficiency.

特開2004−103939号公報JP 2004-103939 A 特開2005−236278号公報JP 2005-236278 A 特開2006−351721号公報JP 2006-351721 A 特開2007−288161号公報JP 2007-288161 A 特開2007− 59457号公報JP 2007-59457 A

よって、この発明における課題は、有機薄膜太陽電池の光電変換層で発生したキャリアがこの光電変換層内で再結合して減少することを防止して光電変換効率を高めることができ、しかも価格が高騰しているインジウムを原料とする透明電極を不要にして製造コストを低減でき、透明電極による入射光の減衰を防ぐようにすることにある。   Therefore, the problem in the present invention is that it is possible to prevent the carriers generated in the photoelectric conversion layer of the organic thin film solar cell from recombining and decreasing in the photoelectric conversion layer, and to increase the photoelectric conversion efficiency, and the price is high. The purpose is to eliminate the need for a transparent electrode made of soaring indium as a raw material, thereby reducing manufacturing costs and preventing attenuation of incident light by the transparent electrode.

かかる課題を解決するため、
請求項1にかかる発明は、透明基板上に、電子ドナー層と電子アクセプター層とが交互に積層されてなる光電変換層が直接設けられ、光が透明基板を透過して直接光電変換層に入射される有機薄膜太陽電池であって、
前記光電変換層内に第1貫通電極と第2貫通電極とをそれぞれ1以上埋設し、これら貫通電極が光電変換層を分断するように配されていることを特徴とする有機薄膜太陽電池である。
To solve this problem,
According to the first aspect of the present invention, a photoelectric conversion layer in which an electron donor layer and an electron acceptor layer are alternately laminated is directly provided on a transparent substrate, and light passes through the transparent substrate and directly enters the photoelectric conversion layer. An organic thin film solar cell,
One or more first through electrodes and two or more through electrodes are embedded in the photoelectric conversion layer, and the through electrodes are arranged so as to divide the photoelectric conversion layer. .

請求項2にかかる発明は、前記第1貫通電極をなす導電材料と第2貫通電極をなす導電材料とは、その仕事関数が異なるものであることを特徴とする請求項1記載の有機薄膜太陽電池である。   The invention according to claim 2 is characterized in that the conductive material forming the first through electrode and the conductive material forming the second through electrode have different work functions. It is a battery.

請求項3にかかる発明は、前記第1および第2貫通電極は、導電部と絶縁部とを交互に直列に連結したものであって、その導電部と絶縁部との界面が光電変換層の電子ドナー層と電子アクセプター層との界面に一致するように構成され、第1貫通電極の導電部と第2貫通電極の導電部とが同一材料から構成されていることを特徴とする請求項1記載の有機薄膜太陽電池である。   According to a third aspect of the present invention, in the first and second through electrodes, the conductive portion and the insulating portion are alternately connected in series, and the interface between the conductive portion and the insulating portion is a photoelectric conversion layer. The conductive part of the first through electrode and the conductive part of the second through electrode are made of the same material, and are configured to coincide with the interface between the electron donor layer and the electron acceptor layer. It is an organic thin-film solar cell of description.

請求項1の発明によれば、光電変換層において発生したキャリアが電極に向けて移動する際に、キャリアが光電変換層を横断することがなくなる。このため、キャリアの光電変換層での再結合の頻度が大幅に減少し、電極に到達するキャリアが減少することがない。
また、透明電極が不要になるので、製造コストの高騰を抑えることができ、透明電極による入射光の減衰もなくなる。さらに、光電変換層内を移動するキャリアの移動距離が短縮され、これによってもキャリアの減少が抑えられる。
According to the first aspect of the present invention, when the carrier generated in the photoelectric conversion layer moves toward the electrode, the carrier does not cross the photoelectric conversion layer. For this reason, the frequency of the recombination in the photoelectric conversion layer of a carrier reduces significantly, and the carrier which reaches | attains an electrode does not reduce.
In addition, since the transparent electrode is not necessary, an increase in manufacturing cost can be suppressed, and the attenuation of incident light by the transparent electrode is eliminated. Furthermore, the moving distance of carriers moving in the photoelectric conversion layer is shortened, and this also suppresses the decrease in carriers.

また、請求項2の発明によれば、光電変換層で生じたキャリアの電極への駆動力が小さい場合でも、各貫通電極を構成する材料の仕事関数を違えることで、キャリアの各貫通電極への駆動力が向上する。
請求項3の発明によれば、光電変換層で生じたキャリアの電極への駆動力が大きい場合には、第1貫通電極の導電部と第2貫通電極の導電部とを同一材料で構成でき、構造が比較的複雑な各貫通電極の製造を簡略化できる。
According to the invention of claim 2, even when the driving force to the electrode of the carrier generated in the photoelectric conversion layer is small, by changing the work function of the material constituting each through electrode, The driving force is improved.
According to the invention of claim 3, when the driving force to the electrode of the carrier generated in the photoelectric conversion layer is large, the conductive portion of the first through electrode and the conductive portion of the second through electrode can be formed of the same material. This makes it possible to simplify the production of each through electrode having a relatively complicated structure.

本発明の有機薄膜太陽電池の第1の例を示す概略構成図である。It is a schematic block diagram which shows the 1st example of the organic thin film solar cell of this invention. 本発明の有機薄膜太陽電池の第2の例を示す概略構成図である。It is a schematic block diagram which shows the 2nd example of the organic thin film solar cell of this invention. 従来の有機薄膜太陽電池を示す概略構成図である。It is a schematic block diagram which shows the conventional organic thin film solar cell.

図1は、この発明の有機薄膜太陽電池の第1の例を示すものである。図1中、符号11は、ガラス板、透明高分子フィルムなどの透明材料からなる透明基板を示す。
この透明基板11の一方の表面には、直接光電変換層12が設けられている。すなわち、透明基板11の表面に光電変換層12が直接、密着した状態で形成され、透明電極が存在しない。この光電変換層12は、電子ドナー層12Aと電子アクセプター層12Bとが交互にそれぞれ1〜10層程度積層されて構成されている。
この例では、透明基板11の表面に直接接している層は、電子ドナー層12Aであるが、電子アクセプター層12Bであってもよい。
FIG. 1 shows a first example of the organic thin-film solar cell of the present invention. In FIG. 1, the code | symbol 11 shows the transparent substrate which consists of transparent materials, such as a glass plate and a transparent polymer film.
The photoelectric conversion layer 12 is directly provided on one surface of the transparent substrate 11. That is, the photoelectric conversion layer 12 is formed in a state of being in direct contact with the surface of the transparent substrate 11, and there is no transparent electrode. The photoelectric conversion layer 12 is configured by alternately laminating about 1 to 10 electron donor layers 12A and electron acceptor layers 12B.
In this example, the layer that is in direct contact with the surface of the transparent substrate 11 is the electron donor layer 12A, but may be the electron acceptor layer 12B.

電子ドナー層12Aは、光の入射により正孔(h)を発生する層であって、例えばsyn型オクタエチルポルフィリン金属錯体などのポルフィリン金属錯体等からなる厚さ0.5〜100nmの薄膜である。
電子アクセプター層12Bは、光の入射により電子(e)を発生する層であって、例えばフラーレン重合体などのフラーレン誘導体等からなる厚さ1〜100nmの薄膜で構成されている。
The electron donor layer 12A is a layer that generates holes (h + ) upon incidence of light, and is a thin film having a thickness of 0.5 to 100 nm made of a porphyrin metal complex such as a syn-type octaethylporphyrin metal complex. is there.
The electron acceptor layer 12B is a layer that generates electrons (e ) upon incidence of light, and is formed of a thin film having a thickness of 1 to 100 nm made of a fullerene derivative such as a fullerene polymer.

光電変換層12をなす電子ドナー層12Aおよび電子アクセプター層12Bの成膜方法は、これらの層12A、12Bを構成する材料に応じて適切な方法が用いられるが、例えば真空蒸着法、ラングミュア・ブロジェット法(LB法)、スピンコート法、インクジェット法、印刷法などが用いられ、純度の高い薄膜が得られる真空蒸着法が好ましい。   As a method for forming the electron donor layer 12A and the electron acceptor layer 12B forming the photoelectric conversion layer 12, an appropriate method is used depending on the material constituting the layers 12A and 12B. A jet deposition method (LB method), a spin coating method, an ink jet method, a printing method, or the like is used, and a vacuum deposition method that can obtain a thin film with high purity is preferable.

また、電子アクセプター層12Bの形成方法としては、この電子アクセプター層12Bがフラーレン重合体からなるものでは、フラーレンからなる薄膜を形成したのち、光照射、電子線照射などを行ってフラーレンを重合して、フラーレン重合体とする方法が好ましい。   In addition, as a method of forming the electron acceptor layer 12B, when the electron acceptor layer 12B is made of a fullerene polymer, a fullerene polymer is formed by forming a thin film made of fullerene and then irradiating light, electron beam, or the like. A method using a fullerene polymer is preferred.

この光電変換層12には、図示のように、複数の第1貫通電極13・・・と複数の第2貫通電極14・・・とが光電変換層12内に埋設された状態で設けられている。個々の第1および第2貫通電極13、14は、透明基板11上に直接基板11に対して垂直に立てられた状態となっており、個々の貫通電極13・・、14・・・によって、光電変換層12が分断された状態となっている。   As shown in the figure, a plurality of first through electrodes 13 and a plurality of second through electrodes 14 are embedded in the photoelectric conversion layer 12 in a state of being embedded in the photoelectric conversion layer 12. Yes. The individual first and second through electrodes 13 and 14 are in a state of being set up perpendicular to the substrate 11 directly on the transparent substrate 11, and the individual through electrodes 13. The photoelectric conversion layer 12 is in a divided state.

また、光電変換層12を上方から眺めたときに、第1貫通電極13・・・と第2貫通電極14・・・との平面的な配列は、両者が交互に並んだ縞模様状になっている。そして、隣り合う貫通電極13、14の間の間隔は 1〜4mm程度となっており、この間隔は狭いほど、キャリアの移動途中での再結合頻度が減少して好ましいが、製造が面倒となる。
第1および第2貫通電極13、14は、その幅(厚さ)が、10nm〜75μmとされた膜状のもので、その幅(厚さ)方向が光電変換層12の厚さ方向と直交するように、換言すれば透明基板11上に直接基板11に対して垂直に立てられた状態で設けられている。
Further, when the photoelectric conversion layer 12 is viewed from above, the planar arrangement of the first through electrodes 13... And the second through electrodes 14. ing. The interval between the adjacent through electrodes 13 and 14 is about 1 to 4 mm, and the smaller the interval, the lower the recombination frequency during the movement of the carrier, which is preferable, but the production becomes troublesome. .
The first and second through electrodes 13 and 14 are film-like in which the width (thickness) is 10 nm to 75 μm, and the width (thickness) direction is orthogonal to the thickness direction of the photoelectric conversion layer 12. In other words, in other words, it is provided on the transparent substrate 11 so as to stand directly upright with respect to the substrate 11.

さらに、第1貫通電極13・・・と第2貫通電極14・・・の上方の端部は、光電変換層12から露出しており、この露出部分において、図示しない銅などの第1集電電極にすべての第1電極13・・・が接続され、図示しない銅などの第2集電電極にすべての第2電極14・・・が接続されている。   Further, the upper end portions of the first through electrodes 13... And the second through electrodes 14... Are exposed from the photoelectric conversion layer 12, and a first current collector such as copper (not shown) is exposed in this exposed portion. All the first electrodes 13 are connected to the electrodes, and all the second electrodes 14 are connected to a second collector electrode such as copper (not shown).

さらに、光電変換層12および第1貫通電極13・・・と第2貫通電極14・・・の上には、図示しない保護層が設けられ、外気からこれら構成物を遮断するようになっている。   Further, a protective layer (not shown) is provided on the photoelectric conversion layer 12 and the first through electrode 13 ... and the second through electrode 14 ... so as to block these components from the outside air. .

この例において、光電変換層12のビルトインポテンシャルが小さい場合には、第1貫通電極13と第2貫通電極14とは互いに仕事関数が異なる材料で構成されている。
光電変換層12のビルトインポテンシャルとは、電子ドナー層31と電子アクセプター層32とをそれぞれ構成する材料の仕事関数の差に相当する電位差を言い、拡散電位とも呼ばれる。
In this example, when the built-in potential of the photoelectric conversion layer 12 is small, the first through electrode 13 and the second through electrode 14 are made of materials having different work functions.
The built-in potential of the photoelectric conversion layer 12 refers to a potential difference corresponding to a work function difference between materials constituting the electron donor layer 31 and the electron acceptor layer 32, and is also referred to as a diffusion potential.

例えば、フラーレンC60の仕事関数は6.6eVであり、オクタエチルポリフィリン亜鉛錯体の仕事関数は5.03eVであるので、この組み合わせからなる光電変換層12のビルトインポテンシャルは1.57eV相当となる。
オクタエチルポリフィリン銅錯体の仕事関数は6.6eVであるので、これとフラーレンC60とを組み合わせた光電変換層12のビルトインポテンシャルは0eV相当となる。
For example, the work function of fullerene C60 is 6.6 eV, and the work function of the octaethylporphyrin zinc complex is 5.03 eV. Therefore, the built-in potential of the photoelectric conversion layer 12 composed of this combination is equivalent to 1.57 eV.
Since the work function of the octaethylporphyrin copper complex is 6.6 eV, the built-in potential of the photoelectric conversion layer 12 obtained by combining this with fullerene C60 is equivalent to 0 eV.

このビルトインポテンシャルが小さい場合には、発生したキャリアの貫通電極への移動のための駆動力が比較的低いことになり、第1貫通電極13と第2貫通電極14の材料として互いに仕事関数の異なる材料を用いることでキャリアの移動が高められる。
逆に、光電変換層12のビルトインポテンシャルが高い場合には、第1貫通電極13と第2貫通電極14とを同じ材料で構成しても、キャリアの移動が抑えられる程度は小さい。
When the built-in potential is small, the driving force for moving the generated carriers to the through electrode is relatively low, and the work functions of the first through electrode 13 and the second through electrode 14 are different from each other. Carrier movement is enhanced by using the material.
Conversely, when the photoelectric conversion layer 12 has a high built-in potential, even if the first through electrode 13 and the second through electrode 14 are made of the same material, the degree to which carrier movement is suppressed is small.

この例では、前記ビルトインポテンシャルが小さい場合には、第1貫通電極13・・・は、第2貫通電極14・・・よりも仕事関数が高い導電材料から構成されている。例えば、第1電極13には、金(仕事関数4.6eV)、白金(仕事関数5.3eV)などが、第2電極14には、アルミニウム(仕事関数3.5eV)、銅(仕事関数4.4eV)などが用いられる。   In this example, when the built-in potential is small, the first through electrodes 13... Are made of a conductive material having a work function higher than that of the second through electrodes 14. For example, the first electrode 13 is made of gold (work function 4.6 eV), platinum (work function 5.3 eV), and the second electrode 14 is made of aluminum (work function 3.5 eV), copper (work function 4). .4 eV) or the like is used.

このため、電子ドナー層12Aで発生した正孔は、仕事関数が低い導電材料から構成されている第2貫通電極14・・・に向けて移動し、電子アクセプター層12Bで発生した電子は、仕事関数が高い導電材料から構成されている第1貫通電極13・・・に向けて移動することになり、貫通電極に正孔と電子との選択性を持たせることができ、これによってもキャリアの再結合が抑えられるようになっている。
For this reason, holes generated in the electron donor layer 12A move toward the second through electrodes 14 made of a conductive material having a low work function, and electrons generated in the electron acceptor layer 12B It moves toward the first through electrode 13 ... made of a conductive material having a high function, and the through electrode can be made to have selectivity between holes and electrons, and this also causes the carrier to move. Recombination can be suppressed.

次に、この例の有機薄膜太陽電池の製造方法の一例について説明する。
ここでは、電子ドナー層12Aがポルフィリン金属錯体からなり、電子アクセプター層12Bがフラーレン重合体からなるものについて説明する。
Next, an example of the manufacturing method of the organic thin film solar cell of this example is demonstrated.
Here, the case where the electron donor layer 12A is made of a porphyrin metal complex and the electron acceptor layer 12B is made of a fullerene polymer will be described.

まず、石英ガラス、硬質ガラスなどからなる厚さ2〜3mmの透明基板11を用意する。この透明基板11の表面を清浄化したのち、真空蒸着法などによりポルフィリン金属錯体を厚さ0.5〜100nmに成膜し、この上にフラーレン誘導体を真空蒸着法などにより1〜100nmの厚さに蒸着する。この蒸着を所要回数繰り返して、積層膜を作成し、光電変換層12とする。   First, a transparent substrate 11 having a thickness of 2 to 3 mm made of quartz glass or hard glass is prepared. After the surface of the transparent substrate 11 is cleaned, a porphyrin metal complex is formed to a thickness of 0.5 to 100 nm by a vacuum deposition method or the like, and a fullerene derivative is formed thereon to a thickness of 1 to 100 nm by a vacuum deposition method or the like. Vapor deposition. This deposition is repeated a required number of times to create a laminated film, which is used as the photoelectric conversion layer 12.

ついで、この積層膜に光あるいは電子線を照射して、フラーレン誘導体を重合して、フラーレン重合体に変化させる。光照射する場合、隣接する電子ドナー層12Aのポルフィリン金属錯体の光劣化を防止する必要があり、波長300〜400nmの紫外線を用いることが好ましい。フラーレン重合体からなる電子アクセプター層12Bでは、キャリアの移動速度がフラーレンからなるものに比較して速くなり好ましい。
初めから、電子アクセプター層12Bとして、フラーレン重合体を積層することも可能である。
Next, the laminated film is irradiated with light or an electron beam to polymerize the fullerene derivative, thereby changing to a fullerene polymer. When light irradiation is performed, it is necessary to prevent photodegradation of the porphyrin metal complex of the adjacent electron donor layer 12A, and it is preferable to use ultraviolet rays having a wavelength of 300 to 400 nm. The electron acceptor layer 12B made of a fullerene polymer is preferable because the carrier moving speed is higher than that of a fullerene.
From the beginning, a fullerene polymer can be laminated as the electron acceptor layer 12B.

ついで、集束イオンビーム装置を用い、光電変換層12の第1貫通電極13・・・および第2貫通電極14・・・が設けられる部分にガリウムなどの金属イオンを照射し、光電変換層12をエッチング除去して幅10μm程度の溝(トレンチ)を複数個形成する。   Next, using a focused ion beam device, a portion of the photoelectric conversion layer 12 where the first through electrodes 13... And the second through electrodes 14. Etching is removed to form a plurality of trenches having a width of about 10 μm.

さらに、この複数の溝に集束イオンビーム装置を用いて、例えばアルミニウムと例えば金とを蒸着し溝に充填して、第1貫通電極13・・・、第2貫通電極14・・・を形成する。この時、1つおきの溝に同じの金属を充填することは言うまでもない。
つぎに、第1電極13・・・の端部に銅テープなどからなる第1集電電極を、第2電極14・・・の端部に銅テープなどからなる第2集電電極を貼り付ける。
Further, using a focused ion beam device in the plurality of grooves, for example, aluminum and gold, for example, are vapor-deposited, and the grooves are filled to form the first through electrode 13..., The second through electrode 14. . At this time, it goes without saying that every other groove is filled with the same metal.
Next, a first collector electrode made of copper tape or the like is attached to the end of the first electrode 13... And a second collector electrode made of copper tape or the like is attached to the end of the second electrode 14. .

これ以外の製造方法として、透明基板11としてポリエチレンテレフタレート(PET)フィルムなどの高分子透明フィルムを用い、これに真空蒸着法などにより光電変換層12を成膜する。ついで、例えば外径20〜50μmの金や白金およびアルミニウムや銅からなる2種のボンディングワイヤを用意し、このボンディングワイヤを光電変換層12上に交互に平行に並べたのち、機械的にボンディングワイヤを光電変換層12に押し込み、ボンディングワイヤからなる第1貫通電極13・・・と第2貫通電極14・・・を形成する方法もある。この製造方法では、製造が簡単になり製造効率が高いものとなる。また、光電変換層12を印刷法により形成することも可能である。   As a manufacturing method other than this, a polymer transparent film such as a polyethylene terephthalate (PET) film is used as the transparent substrate 11, and the photoelectric conversion layer 12 is formed thereon by a vacuum deposition method or the like. Next, for example, two types of bonding wires made of gold, platinum, aluminum, and copper having an outer diameter of 20 to 50 μm are prepared, and these bonding wires are alternately arranged in parallel on the photoelectric conversion layer 12 and then mechanically bonded to the bonding wires. There is also a method in which the first through electrode 13... And the second through electrode 14. In this manufacturing method, the manufacturing is simplified and the manufacturing efficiency is high. Further, the photoelectric conversion layer 12 can be formed by a printing method.

この例の有機薄膜太陽電池にあっては、第1電極13・・・および第2電極14・・・とキャリアの生成位置との距離が短くなって、キャリアの移動距離が短縮されて移動途中でのキャリアの再結合が抑えられる。また、生成した正孔はすべて仕事関数の小さい材料からなる第2貫通電極14・・・に移動し、生成した電子はすべて仕事関数が大きい第1貫通電極13・・・に移動するので、これによってもキャリアの再結合が抑えられる。
さらに、ITOからなる透明電極が不要であり、調達が困難なインジウムを使用する必要がなく、透明電極による入射光の減衰もない。
In the organic thin film solar cell of this example, the distance between the first electrode 13... And the second electrode 14. The recombination of carriers at is suppressed. Further, all the generated holes move to the second through electrodes 14 made of a material having a small work function, and all the generated electrons move to the first through electrodes 13. This also suppresses carrier recombination.
Furthermore, a transparent electrode made of ITO is unnecessary, it is not necessary to use indium that is difficult to procure, and there is no attenuation of incident light by the transparent electrode.

図2は、この発明の有機薄膜太陽電池の第2の例を示すものである。
この例においても、第1の例と同様に、複数の第1貫通電極13・・・と複数の第2貫通電極14・・・とが光電変換層12内に交互に埋設された状態で設けられている。個々の第1および第2電極13、14は、第1の例と同様に、透明基板11上に直接基板11に対して垂直に立てられた状態となっており、個々の貫通電極13、14によって、光電変換層12が、分断された状態となっている。
FIG. 2 shows a second example of the organic thin film solar cell of the present invention.
Also in this example, similarly to the first example, a plurality of first through electrodes 13... And a plurality of second through electrodes 14... Are alternately embedded in the photoelectric conversion layer 12. It has been. Similar to the first example, the individual first and second electrodes 13 and 14 are in a state of being set up perpendicular to the substrate 11 directly on the transparent substrate 11. Thus, the photoelectric conversion layer 12 is in a divided state.

また、光電変換層12を上方から眺めたときに、第1貫通電極13・・・と第2貫通電極14・・・との平面的な配列は、両者が交互に並んだ縞模様状になっている。そして、隣り合う貫通電極13、14の間の間隔は1〜4mm程度となっている。   Further, when the photoelectric conversion layer 12 is viewed from above, the planar arrangement of the first through electrodes 13... And the second through electrodes 14. ing. And the space | interval between the adjacent penetration electrodes 13 and 14 is about 1-4 mm.

さらに、この例では、第1貫通電極13・・・および第2貫通電極14・・・は、いずれも導電部A・・・と絶縁部B・・・とが交互に複数層密着して積層された形態となっている。この導電部Aと絶縁部Bとの各界面は、光電変換層12の電子ドナー層12Aと電子アクセプター層12Bとの界面とほぼ一致するように構成されている。   In addition, in this example, the first through electrode 13... And the second through electrode 14. It has become a form. Each interface between the conductive part A and the insulating part B is configured to substantially coincide with the interface between the electron donor layer 12A and the electron acceptor layer 12B of the photoelectric conversion layer 12.

また、隣り合う第1貫通電極13と第2貫通電極14において、導電部Aと絶縁部Bとの積層順位が異なっており、第1貫通電極13のある導電部Aには、両隣の第2貫通電極14の絶縁部B、Bが対峙するように配置されている。換言すると、図2に示したように、この太陽電池を側面から眺めた場合に、これら貫通電極13・・・、14・・・の導電部Aと絶縁部Bとが千鳥模様を呈するようになっている。   Further, in the adjacent first through electrode 13 and the second through electrode 14, the stacking order of the conductive portion A and the insulating portion B is different, and the conductive portion A where the first through electrode 13 is located has a second adjacent second portion. It arrange | positions so that the insulation parts B and B of the penetration electrode 14 may oppose. In other words, as shown in FIG. 2, when the solar cell is viewed from the side, the conductive portions A and the insulating portions B of the through electrodes 13..., 14. It has become.

さらに、1個の電極13(14)において、複数の導電部A・・が電気的に相互に接続され、同種の電極間でさらに相互に接続されて、図示しない集電電極に接続されている。
前記導電部Aには金、白金などの導電性材料が用いられ、絶縁部Bには酸化アルミニウム、酸化ニッケルなどの電気絶縁材料が用いられる。
Further, in one electrode 13 (14), a plurality of conductive portions A are electrically connected to each other, and are further connected to each other between the same type of electrodes, and are connected to a collecting electrode (not shown). .
The conductive part A is made of a conductive material such as gold or platinum, and the insulating part B is made of an electrical insulating material such as aluminum oxide or nickel oxide.

この例において、光電変換層12のビルトインポテンシャルが大きい場合には、第1貫通電極13と第2貫通電極14とは互いに仕事関数が同じ材料で構成されている。
このビルトインポテンシャルが大きい場合には、発生したキャリアの貫通電極への移動のための駆動力が比較的高いことになり、第1貫通電極13と第2貫通電極14の導電部Aをなす材料として互いに仕事関数の同じ材料を用いてもキャリアの移動が低くなることはない。
In this example, when the built-in potential of the photoelectric conversion layer 12 is large, the first through electrode 13 and the second through electrode 14 are made of materials having the same work function.
When this built-in potential is large, the driving force for movement of the generated carriers to the through electrode is relatively high, and as a material forming the conductive portion A of the first through electrode 13 and the second through electrode 14 Even if materials having the same work function are used, carrier movement does not decrease.

この例の有機薄膜太陽電池の製造は、先の例と同様に集束イオンビーム装置を用いて光電変換層12に複数の溝を形成し、この溝にやはり集束イオンビーム装置を用いて導電部Aとなる金属と絶縁部Bとなる絶縁物とを交互にその厚さを制御して充填する方法により作成することが可能である。   In the manufacture of the organic thin film solar cell of this example, a plurality of grooves are formed in the photoelectric conversion layer 12 using a focused ion beam device as in the previous example, and the conductive portion A is also formed in this groove using the focused ion beam device. It is possible to make the metal and the insulator to be the insulating part B by alternately controlling the thickness and filling them.

このような構成の有機薄膜太陽電池にあっては、例えば第1電極13・・・の導電部A・・・には、電子ドナー層12Aで生成した正孔のみが移動し、第2電極14・・・の導電部A・・・には、電子アクセプター層12Bで生成した電子のみが移動することになる。すなわち、正孔と電子は、選択的に異なる電極に移動することになり、移動途中でのキャリアの再結合が抑えられる。   In the organic thin-film solar cell having such a configuration, for example, only holes generated in the electron donor layer 12A move to the conductive portions A of the first electrodes 13. Only the electrons generated in the electron acceptor layer 12B move to the conductive parts A of. That is, holes and electrons selectively move to different electrodes, and recombination of carriers during the movement can be suppressed.

また、第1電極13・・・および第2電極14・・・とキャリアの生成位置との距離が短くなって、キャリアの移動距離が短縮されて移動途中でのキャリアの再結合が抑えられる。
また、第1貫通電極13の導電部Aと第2貫通電極14の導電部Aとを同一材料で構成でき、構造が比較的複雑な各貫通電極の製造を簡略化できる。
さらに、第1の例の有機薄膜太陽電池と同様に、ITOからなる透明電極が不要であり、調達が困難なインジウムを使用する必要がなく、透明電極による入射光の減衰もない。
Further, the distance between the first electrode 13... And the second electrode 14... And the carrier generation position is shortened, the carrier moving distance is shortened, and recombination of carriers during the movement is suppressed.
In addition, the conductive portion A of the first through electrode 13 and the conductive portion A of the second through electrode 14 can be made of the same material, and the manufacture of each through electrode having a relatively complicated structure can be simplified.
Further, like the organic thin film solar cell of the first example, a transparent electrode made of ITO is unnecessary, it is not necessary to use indium that is difficult to procure, and there is no attenuation of incident light by the transparent electrode.

以下、具体例を示す。
(実施例1)
図1に示す本発明の構造のセルを作製した。
透明基板として、厚さ1.1mmの硼珪酸ガラス板を用い、その表面を洗浄した。このガラス板の中央部以外をマスクして光電変換層を成膜した。真空蒸着装置のチャンバー内にガラス板を置き、電子ドナー層となる蒸着源として2,3,7,8,12,13,17,18−オクタエチル−21H,23Hポルフィン亜鉛(II)(Zn(OEP))を、電子アクセプター層となる蒸着源としてフラーレンC60を用いて、真空蒸着を交互に行った。真空度は約5×10−3Pa、時間約1分、積層はZn(OEP)、フラーレンC60の順番で繰り返して光電変換層を形成した。
Specific examples are shown below.
Example 1
A cell having the structure of the present invention shown in FIG. 1 was produced.
A borosilicate glass plate having a thickness of 1.1 mm was used as the transparent substrate, and the surface thereof was cleaned. A photoelectric conversion layer was formed by masking the portion other than the central portion of the glass plate. A glass plate is placed in a chamber of a vacuum deposition apparatus, and 2,3,7,8,12,13,17,18-octaethyl-21H, 23H porphin zinc (II) (Zn (OEP) is used as a deposition source to be an electron donor layer. )) Were alternately vacuum deposited using fullerene C60 as the deposition source to be the electron acceptor layer. The degree of vacuum was about 5 × 10 −3 Pa, the time was about 1 minute, and the lamination was repeated in the order of Zn (OEP) and fullerene C60 to form a photoelectric conversion layer.

Zn(OEP)層の厚さは約100nmであり、フラーレンC60層の厚さは約100nmであった。所定回数の蒸着を行った後、マスクを取り外した。
この後、集束イオンビーム装置(FEI Company製 Quanta 200 3D)を用い、光電変換層12の第1貫通電極13・・・および第2貫通電極14・・・が設けられる部分にガリウムなどの金属イオンをビーム径10μmにて照射し、光電変換層12をエッチング除去して幅10μm程度の溝(トレンチ)を複数個形成した。
The thickness of the Zn (OEP) layer was about 100 nm, and the thickness of the fullerene C60 layer was about 100 nm. After the predetermined number of depositions, the mask was removed.
Thereafter, using a focused ion beam device (Quanta 200 3D manufactured by FEI Company), a metal ion such as gallium is provided in the portion where the first through electrode 13... And the second through electrode 14. Was irradiated with a beam diameter of 10 μm, and the photoelectric conversion layer 12 was removed by etching to form a plurality of trenches having a width of about 10 μm.

さらに、この複数の溝に同じ集束イオンビーム装置を用いて、アルミニウムと金とを交互に溝に蒸着し充填して、第1貫通電極13・・・、第2貫通電極14・・・を形成した。ビーム径10μm、成膜レートは約20nm/秒とした。
つぎに、第1電極13・・・の端部に銅テープなどからなる第1集電電極を、第2電極14・・・の端部に銅テープなどからなる第2集電電極を貼り付けた。
Further, using the same focused ion beam apparatus in the plurality of grooves, aluminum and gold are alternately deposited and filled in the grooves to form first through electrodes 13..., Second through electrodes 14. did. The beam diameter was 10 μm, and the film formation rate was about 20 nm / second.
Next, a first collector electrode made of copper tape or the like is attached to the end of the first electrode 13... And a second collector electrode made of copper tape or the like is attached to the end of the second electrode 14. It was.

得られたセルについて、Zn(OEP)層、フラーレンC60層の積層回数を変化させ、その時の短絡電流密度と開放電圧を測定し、その結果を表1に示す。   About the obtained cell, the lamination | stacking frequency | count of Zn (OEP) layer and fullerene C60 layer was changed, the short circuit current density and the open circuit voltage at that time were measured, and the result is shown in Table 1.

Figure 2010287849
Figure 2010287849

(従来例)
図3に示す従来の構造のセルを作製した。
基板として、厚さ1.1mmのITO膜付きソーダガラスを用い、余分の範囲のITO膜を除去し、表面洗浄した。真空蒸着装置のチャンバー内にガラス板を置き、電子ドナー層となる蒸着源として2,3,7,8,12,13,17,18−オクタエチル−21H,23Hポルフィン亜鉛(II)(Zn(OEP))を、電子アクセプター層となる蒸着源としてフラーレンC60を用いて、真空蒸着を交互に行った。真空度は約5×10−3Pa、時間約1分、積層はITO膜の上に、Zn(OEP)、フラーレンC60の順番で繰り返して光電変換層を形成した。
(Conventional example)
A cell having the conventional structure shown in FIG. 3 was produced.
As a substrate, a soda glass with an ITO film having a thickness of 1.1 mm was used, and the ITO film in an excessive range was removed and the surface was cleaned. A glass plate is placed in a chamber of a vacuum deposition apparatus, and 2,3,7,8,12,13,17,18-octaethyl-21H, 23H porphin zinc (II) (Zn (OEP) is used as a deposition source to be an electron donor layer. )) Were alternately vacuum deposited using fullerene C60 as the deposition source to be the electron acceptor layer. The degree of vacuum was about 5 × 10 −3 Pa, the time was about 1 minute, and the lamination was repeated on the ITO film in the order of Zn (OEP) and fullerene C60 to form a photoelectric conversion layer.

Zn(OEP)層の厚さは約100nmであり、フラーレンC60層の厚さは約100nmであった。
所定回数の蒸着を行った後、光電変換層の表面にアルミニウムを蒸着して電極を形成した。真空度は約5×10−3Pa、時間約1分とした。
The thickness of the Zn (OEP) layer was about 100 nm, and the thickness of the fullerene C60 layer was about 100 nm.
After vapor deposition a predetermined number of times, aluminum was vapor-deposited on the surface of the photoelectric conversion layer to form an electrode. The degree of vacuum was about 5 × 10 −3 Pa and the time was about 1 minute.

得られたセルについて、同様に、Zn(OEP)層、フラーレンC60層の積層回数を変化させ、その時の短絡電流密度と開放電圧を測定し、その結果を表2に示す。   For the obtained cell, similarly, the number of lamination of the Zn (OEP) layer and the fullerene C60 layer was changed, the short-circuit current density and the open-circuit voltage at that time were measured, and the results are shown in Table 2.

Figure 2010287849
Figure 2010287849

表1および表2の結果から、本発明の構造の有機薄膜太陽電池では、従来のものに比較して、短絡電流密度、開放電圧が優れた値を示しており、光電変換効率が高いものであることが明らかになった。   From the results of Tables 1 and 2, the organic thin-film solar cell having the structure of the present invention shows excellent values of short-circuit current density and open-circuit voltage as compared with the conventional one, and has high photoelectric conversion efficiency. It became clear that there was.

(実施例2)
図1に示す構造の有機薄膜太陽電池を別の方法により製作した。透明基板として厚さ0.5mmの透明ポリエチレンテレフタレート(PET)フィルムを用い、この表面を有機溶剤にて清拭した。このフィルムの表面に実施例1と同様にして、Zn(OEP)、フラーレンC60の順番で5回づつ交互に真空蒸着して積層し、厚さ約1μmの光電変換層12を形成した。
ついで、外径50μmの金およびアルミニウムからなる2種のボンディングワイヤを用意し、このボンディングワイヤを光電変換層12上に交互に1mm間隔で平行に並べたのち、機械的にボンディングワイヤを光電変換層12に押し込み、ボンディングワイヤからなる第1貫通電極13・・・と第2貫通電極14・・・を形成した。
(Example 2)
The organic thin film solar cell having the structure shown in FIG. 1 was manufactured by another method. A transparent polyethylene terephthalate (PET) film having a thickness of 0.5 mm was used as a transparent substrate, and this surface was wiped with an organic solvent. In the same manner as in Example 1, on the surface of this film, Zn (OEP) and fullerene C60 were alternately deposited by vacuum deposition 5 times in order, thereby forming a photoelectric conversion layer 12 having a thickness of about 1 μm.
Next, two types of bonding wires made of gold and aluminum having an outer diameter of 50 μm are prepared, and the bonding wires are alternately arranged in parallel at intervals of 1 mm on the photoelectric conversion layer 12, and then the bonding wires are mechanically connected to the photoelectric conversion layer. The first through electrodes 13... And the second through electrodes 14... Made of bonding wires were formed.

第1貫通電極13となる複数の金のボンディングワイヤをまとめて銅テープに接続し、第2貫通電極14となる複数のアルミニウムのボンディングワイヤをまとめて銅テープに接続した。
このセルの特性を測定したところ、開放電圧0.35V、短絡電流密度7.2×10−4mA/cmであった。
A plurality of gold bonding wires to be the first through electrodes 13 were collectively connected to the copper tape, and a plurality of aluminum bonding wires to be the second through electrodes 14 were collectively connected to the copper tape.
When the characteristics of the cell were measured, the open circuit voltage was 0.35 V, and the short-circuit current density was 7.2 × 10 −4 mA / cm 2 .

11・・・透明基板、12・・・光電変換層、12A・・・電子ドナー層、12B・・・電子アクセプター層、13・・・第1貫通電極、14・・・第2貫通電極、A・・・導電部、B・・・絶縁部 DESCRIPTION OF SYMBOLS 11 ... Transparent substrate, 12 ... Photoelectric conversion layer, 12A ... Electron donor layer, 12B ... Electron acceptor layer, 13 ... 1st penetration electrode, 14 ... 2nd penetration electrode, A ... Conducting part, B ... Insulating part

Claims (3)

透明基板上に、電子ドナー層と電子アクセプター層とが交互に積層されてなる光電変換層が直接設けられ、光が透明基板を透過して直接光電変換層に入射される有機薄膜太陽電池であって、
前記光電変換層内に第1貫通電極と第2貫通電極とをそれぞれ1以上埋設し、これら貫通電極が光電変換層を分断するように配されていることを特徴とする有機薄膜太陽電池。
An organic thin film solar cell in which a photoelectric conversion layer in which an electron donor layer and an electron acceptor layer are alternately laminated is directly provided on a transparent substrate, and light is transmitted through the transparent substrate and directly incident on the photoelectric conversion layer. And
One or more 1st penetration electrodes and 2nd penetration electrodes are embed | buried in the said photoelectric converting layer, respectively, These organic electrodes are distribute | arranged so that these penetration electrodes may divide a photoelectric converting layer,
前記第1貫通電極をなす導電材料と第2貫通電極をなす導電材料とは、その仕事関数が異なるものであることを特徴とする請求項1記載の有機薄膜太陽電池。   2. The organic thin-film solar cell according to claim 1, wherein the conductive material forming the first through electrode and the conductive material forming the second through electrode have different work functions. 前記第1および第2貫通電極は、導電部と絶縁部とを交互に直列に連結したものであって、その導電部と絶縁部との界面が光電変換層の電子ドナー層と電子アクセプター層との界面に一致するように構成され、第1貫通電極の導電部と第2貫通電極の導電部とが同一材料から構成されていることを特徴とする請求項1記載の有機薄膜太陽電池。   The first and second through electrodes have conductive portions and insulating portions alternately connected in series, and an interface between the conductive portions and the insulating portions is an electron donor layer and an electron acceptor layer of a photoelectric conversion layer. The organic thin-film solar cell according to claim 1, wherein the organic thin-film solar cell is configured so as to coincide with the interface of the first through-electrode and the conductive portion of the second through-electrode is made of the same material.
JP2009142456A 2009-06-15 2009-06-15 Organic thin film solar cell Active JP5467311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009142456A JP5467311B2 (en) 2009-06-15 2009-06-15 Organic thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009142456A JP5467311B2 (en) 2009-06-15 2009-06-15 Organic thin film solar cell

Publications (2)

Publication Number Publication Date
JP2010287849A true JP2010287849A (en) 2010-12-24
JP5467311B2 JP5467311B2 (en) 2014-04-09

Family

ID=43543304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009142456A Active JP5467311B2 (en) 2009-06-15 2009-06-15 Organic thin film solar cell

Country Status (1)

Country Link
JP (1) JP5467311B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8823408B2 (en) 2011-08-15 2014-09-02 Japan Science And Technology Agency System and method for evaluating organic material for organic solar cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09511102A (en) * 1994-03-31 1997-11-04 パシフィック ソーラー ピーティーワイ リミテッド Thin-film multilayer solar cell with embedded contacts
JP2005236278A (en) * 2004-01-23 2005-09-02 Kyoto Univ Organic photoelectric conversion device and organic solar cell
JP2007288161A (en) * 2006-03-20 2007-11-01 Matsushita Electric Works Ltd Organic thin film solar cell
JP2008251524A (en) * 2006-12-29 2008-10-16 Matsushita Electric Ind Co Ltd Horizontally composed electrooptic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09511102A (en) * 1994-03-31 1997-11-04 パシフィック ソーラー ピーティーワイ リミテッド Thin-film multilayer solar cell with embedded contacts
JP2005236278A (en) * 2004-01-23 2005-09-02 Kyoto Univ Organic photoelectric conversion device and organic solar cell
JP2007288161A (en) * 2006-03-20 2007-11-01 Matsushita Electric Works Ltd Organic thin film solar cell
JP2008251524A (en) * 2006-12-29 2008-10-16 Matsushita Electric Ind Co Ltd Horizontally composed electrooptic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8823408B2 (en) 2011-08-15 2014-09-02 Japan Science And Technology Agency System and method for evaluating organic material for organic solar cell

Also Published As

Publication number Publication date
JP5467311B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
US10573764B2 (en) Solar cell with reduced base diffusion area
KR101031246B1 (en) Thin film type Solar Cell and method of manufacturing the smae, and Thin film type solar cell module and Power generation system using the same
KR20100021045A (en) Thin film type solar cell and method for manufacturing the same
TWI597857B (en) Solar cell and fabrication method thereof
KR20090030362A (en) Thin film type solar cell and method for manufacturing the same
KR20220130250A (en) Thin-film solar module with improved shunt resistance
JP5467311B2 (en) Organic thin film solar cell
KR101369920B1 (en) A solar cell and a manufacturing method thereof
KR20090125675A (en) Thin film type solar cell, and method for manufacturing the same
WO2023098038A1 (en) Method for preparing columnar electrode structure of perovskite solar cell
US9806207B2 (en) Solar cell and method for manufacturing same
TWI578552B (en) Solar cell, solar battery and method for making the same
JP2017152510A (en) Method of manufacturing solar cell module, and solar cell module
JP6000315B2 (en) Photovoltaic element manufacturing method
KR20110041634A (en) Hybrid tandem type thin film solar cell and method of manufacturing the same
KR101803466B1 (en) A solar cell module and a manufacturing method thereof
JP6179201B2 (en) Manufacturing method of organic thin film solar cell
JPWO2017038733A1 (en) Photoelectric conversion element
KR101607966B1 (en) Method of fabricating thin film solar cell
US20230005992A1 (en) Photovoltaic element with improved efficiency in the event of shade, and method for producing such a photovoltaic element
KR20170052398A (en) Transparant electrode, manufacturing method for transparant electrode and organic optoelectronic devices comprising the same
US20120167938A1 (en) Solar cell, solar cell system, and method for making the same
KR101854241B1 (en) Solar Cell and method of manufacturing the same
JP2023550836A (en) Field width adjustment of cells in photovoltaic devices
KR101349596B1 (en) Solar cell and method of fabricating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131227

R150 Certificate of patent or registration of utility model

Ref document number: 5467311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250