JP2010287842A - High-power non-inductive resistor - Google Patents

High-power non-inductive resistor Download PDF

Info

Publication number
JP2010287842A
JP2010287842A JP2009142376A JP2009142376A JP2010287842A JP 2010287842 A JP2010287842 A JP 2010287842A JP 2009142376 A JP2009142376 A JP 2009142376A JP 2009142376 A JP2009142376 A JP 2009142376A JP 2010287842 A JP2010287842 A JP 2010287842A
Authority
JP
Japan
Prior art keywords
resistor
plate
heat
power non
inductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009142376A
Other languages
Japanese (ja)
Inventor
Masashi Mizoguchi
政志 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PIONEER TRADING CO Ltd
Original Assignee
PIONEER TRADING CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PIONEER TRADING CO Ltd filed Critical PIONEER TRADING CO Ltd
Priority to JP2009142376A priority Critical patent/JP2010287842A/en
Publication of JP2010287842A publication Critical patent/JP2010287842A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Details Of Resistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-power non-inductive resistor which is improved in thermal conductivity and heat dissipation capability, and has a strong structure for heat cycling and superior durability against high-voltage pulses. <P>SOLUTION: The high-power non-inductive resistor is formed by stacking a resistor element 1 having a plate-shaped resistance element 2 with electrodes 3 at both ends, insulating plates for insulating the resistor element 1 from others, and a heat sink 7. Each insulating plate is formed of a pair of ceramic substrates 4, 5 stacked on both surfaces of the resistance element 2 of the resistor element 1. Liquid heat-tolerant insulating grease 6 is interposed in the resistance element 1, at the connecting planes between the resistance part 2 and the ceramic substrates 4, 5, and at the connecting plane between the heat sink 7 and the ceramic substrates 4, 5. The ceramic substrates 4, 5 and the heat sink 7 are tightly connected by a tightening means such as clamp bolts 10 and a tightening plate 8. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、大電力無誘導抵抗器に関するものである。   The present invention relates to a high power non-inductive resistor.

例えば高周波誘導加熱用電源の半導体のサージ吸収回路の抵抗として使用される大電力無誘導抵抗器は小型・大電力・耐パルス電圧の性能が必要とされる。   For example, a high-power non-inductive resistor used as a resistance of a semiconductor surge absorption circuit of a high-frequency induction heating power source requires performance of small size, high power, and pulse voltage resistance.

一般に、この種の大電力無誘導抵抗器が上記性能を発揮するためには、放熱性が良く、熱サイクルに強い構造であることが求められる。従来、この種の抵抗器として、無誘導パターンを形成した平板状抵抗体を耐熱性樹脂接着剤若しくはセラミック系無機接着剤を使用し、絶縁耐圧が高く熱伝導性の良いセラミック絶縁基板(以下にセラミック基板という)に接着し、さらにこのセラミック基板に金属ろうを使用して、金属製放熱板に接合する内部構造を有するものが知られている(例えば、特許文献1参照)。   In general, in order for this type of high-power non-inductive resistor to exhibit the above performance, it is required to have a structure with good heat dissipation and resistance to thermal cycling. Conventionally, as this type of resistor, a plate-like resistor having a non-inductive pattern is made of a heat-resistant resin adhesive or a ceramic inorganic adhesive, and a ceramic insulating substrate having a high withstand voltage and a high thermal conductivity (hereinafter referred to as “insulating pattern”). It is known that it has an internal structure that is bonded to a ceramic heat sink and is bonded to a ceramic heat sink using a metal braze (see, for example, Patent Document 1).

この抵抗器に電流が流れると、平板状抵抗体が発熱し、熱は接着剤を介してセラミック基板に伝わり、さらに金属ろうを介して金属製放熱板に伝わり抵抗器外に放熱される。金属製放熱板には他の熱伝導性の高い冷却体を接合したり、直接冷却流体を流したりすることにより冷却効果をさらに高めることができる。   When a current flows through this resistor, the plate-like resistor generates heat, and the heat is transmitted to the ceramic substrate via the adhesive, and further to the metal heat radiating plate via the metal brazing to be radiated outside the resistor. The cooling effect can be further enhanced by joining a cooling body having high thermal conductivity to the metal heat sink or by directly flowing a cooling fluid.

特開平8−64404号公報(特許請求の範囲、段落0010,0011、図10)JP-A-8-64404 (Claims, paragraphs 0010 and 0011, FIG. 10)

しかしながら、特許文献1記載の大電力無誘導抵抗器においては、抵抗体への通電を繰り返しているうちに、経時的に抵抗体から金属製放熱板へ抜ける熱の伝導が悪くなる事があった。その原因として板部材間の熱膨張係数の違いが考えられる。即ち、金属製放熱板とセラミック基板は熱膨張係数が相違するため、熱が加えられたときに両者の伸び・縮みの量が異なる。抵抗器の温度は動作前は外気温(20℃)あるいは冷却水温度(40℃)と同程度であるが大電流が流れると高温(最大150℃)になる。連続運転の場合は定常状態が続くが、間歇運転の場合は温度の急激な変化が起こる。   However, in the high-power non-inductive resistor described in Patent Document 1, the conduction of heat from the resistor to the metal heat sink may deteriorate over time while the energization to the resistor is repeated. . The cause is considered to be a difference in thermal expansion coefficient between the plate members. That is, since the metal heat sink and the ceramic substrate have different coefficients of thermal expansion, the amount of expansion / contraction differs when heat is applied. The temperature of the resistor is approximately the same as the outside air temperature (20 ° C.) or the cooling water temperature (40 ° C.) before operation, but becomes high (maximum 150 ° C.) when a large current flows. In continuous operation, the steady state continues, but in intermittent operation, a rapid change in temperature occurs.

一方、両者を接着する金属ろう(例えばハンダ)は接着強度は強いが伸び、縮みの繰り返しに弱い。このため、金属製放熱板とセラミック基板が伸び・縮みが繰り返されると、その度に金属ろう部に応力が加わり接合状態が劣化し接合面から剥離する懸念がある。   On the other hand, a metal brazing material (for example, solder) that bonds the two has a strong adhesive strength but is elongated and weak against repeated shrinkage. For this reason, when a metal heat sink and a ceramic substrate are repeatedly expanded and contracted, there is a concern that stress is applied to the metal brazing portion each time and the bonding state deteriorates and peels off from the bonding surface.

また、セラミック基板と金属製放熱板を金属ろうにより接着する際に金属ろうの中に気泡が入ってしまうことがあり、その気泡部位によりホットスポットが生じてしまい、その部分の熱放散が非効率になり、その結果抵抗の温度は許容温度以上になり抵抗は破壊されるという問題がある。   Also, when the ceramic substrate and the metal heat sink are bonded with metal brazing, bubbles may enter the metal brazing, causing hot spots due to the bubbles, and inefficiency in heat dissipation of that part. As a result, there is a problem that the temperature of the resistor exceeds the allowable temperature and the resistor is destroyed.

さらに、抵抗体をセラミック基板に固定するためには高絶縁耐熱性接着剤が必要であるが、この接着剤の絶縁性能や耐熱性能については重視されてはいたが、熱伝導性について問題とされることが少なかった。また、抵抗体は薄肉であり抵抗体とセラミック基板とを圧接することができないため、高絶縁耐熱性接着剤の厚みを厚くせざるを得ず、その結果抵抗体からセラミック基板に熱が移動する熱抵抗が大きくなり熱伝導率が低下する。しかも、セラミック基板上に塗布された接着剤上に抵抗体を積層して乾燥させて接着するため、抵抗体との接着面が不均一になる懸念がある。   Furthermore, in order to fix the resistor to the ceramic substrate, a high-insulation heat-resistant adhesive is necessary. However, although the emphasis was placed on the insulating performance and heat-resistant performance of this adhesive, it is considered a problem with respect to thermal conductivity. There were few things. Further, since the resistor is thin and the resistor and the ceramic substrate cannot be pressure-contacted, the thickness of the high-insulation heat-resistant adhesive must be increased, and as a result, heat is transferred from the resistor to the ceramic substrate. Thermal resistance increases and thermal conductivity decreases. Moreover, since the resistor is laminated on the adhesive applied on the ceramic substrate and dried to be bonded, there is a concern that the bonding surface with the resistor becomes non-uniform.

更にまた、特許文献1に記載の抵抗器を作製するには、抵抗体とセラミック基板の接着と、セラミック基板と放熱板の接合を別の工程で行う必要があるため、作製に手間を要する。   Furthermore, in order to manufacture the resistor described in Patent Document 1, it is necessary to perform bonding of the resistor and the ceramic substrate and the bonding of the ceramic substrate and the heat dissipation plate in separate steps, which requires time and effort.

この発明は、上記事情に鑑みてなされたもので、熱伝導性及び放熱性の向上を図ると共に、熱サイクルに強い構造とし、かつ、高圧パルスに対する耐久性に優れた大電力無誘導抵抗器を提供することを目的とする。   The present invention has been made in view of the above circumstances. A high-power non-inductive resistor that has improved thermal conductivity and heat dissipation, has a structure that is resistant to thermal cycling, and has excellent durability against high-voltage pulses. The purpose is to provide.

上記課題を解決するために、請求項1記載の発明は、両端に電極を設けた薄肉板状の抵抗部を有する抵抗体と、この抵抗体を絶縁する絶縁板及び放熱板を積層してなる大電力無誘導抵抗器において、上記絶縁板は、上記抵抗体の抵抗部の両面に積層される一対のセラミック基板にて形成され、上記抵抗体、セラミック基板と抵抗部の接合面、及びセラミック基板と上記放熱板の接合面に、熱伝導性を有する液状耐熱性絶縁物質が介在され、上記両セラミック基板及び放熱板が締付手段により圧着されていることを特徴とする。この場合、上記熱伝導性を有する液状耐熱性絶縁物質として耐熱絶縁高熱伝導性グリースを使用する方が好ましい(請求項2)。   In order to solve the above-mentioned problems, the invention according to claim 1 is formed by laminating a resistor having a thin plate-like resistor portion provided with electrodes at both ends, an insulating plate and a heat radiating plate for insulating the resistor. In the high-power non-inductive resistor, the insulating plate is formed by a pair of ceramic substrates laminated on both surfaces of the resistor portion of the resistor, and the resistor, the bonding surface of the ceramic substrate and the resistor portion, and the ceramic substrate In addition, a liquid heat-resistant insulating material having thermal conductivity is interposed between the joint surfaces of the heat sink and the ceramic substrate and the heat sink are pressure-bonded by a fastening means. In this case, it is preferable to use a heat-resistant insulating high thermal conductive grease as the liquid heat-resistant insulating material having thermal conductivity (claim 2).

このように構成することにより、接着剤やハンダ等を用いることなく、耐熱絶縁高熱伝導物質、例えば耐熱絶縁高熱伝導性グリースを介して、抵抗体と一対のセラミック基板及びセラミック基板と放熱板を密着することができる。また、抵抗体は一対のセラミック基板間に挟持された状態となるので、抵抗体とセラミック基板間には気泡等の空洞が生じることがない。   With this configuration, the resistor, the pair of ceramic substrates, and the ceramic substrate and the heatsink are brought into close contact with each other through a heat-resistant insulating high heat conductive material, for example, a heat resistant insulating high heat conductive grease, without using an adhesive or solder. can do. In addition, since the resistor is sandwiched between the pair of ceramic substrates, a void such as a bubble does not occur between the resistor and the ceramic substrate.

請求項3記載の発明は、請求項1または2記載の大電力無誘導抵抗器において、上記締付手段は、上記一対のセラミック基板の一方に跨って積層される締付板と、締付板の上記セラミック基板を挟む両側端部と上記放熱板とを締結する複数のボルトとからなることを特徴とする。この場合、上記締付板とセラミック基板の間に、中押え板を介在する方が好ましい(請求項4)。   According to a third aspect of the present invention, in the high-power non-inductive resistor according to the first or second aspect, the tightening means includes a tightening plate laminated over one of the pair of ceramic substrates, and a tightening plate And a plurality of bolts for fastening the heat sink to both side ends sandwiching the ceramic substrate. In this case, it is preferable to interpose an intermediate presser plate between the fastening plate and the ceramic substrate.

このように構成することにより、締付(組立)を容易にすることができる。この場合、上記締付板とセラミック基板の間に、中押え板を介在することにより、締付圧を中押え板に分散させて均等にすることができる(請求項4)。   With such a configuration, tightening (assembly) can be facilitated. In this case, by interposing the intermediate presser plate between the clamp plate and the ceramic substrate, the clamping pressure can be distributed to the intermediate presser plate and made uniform (claim 4).

請求項5記載の発明は、請求項4記載の大電力無誘導抵抗器において、上記締付板における上記中押え板との接合面に、上記中押え板の中央部表面に接触する押圧凸条と、この押圧凸条の両側に設けられる一対の凹条とを、上記両側の締結ボルト間に互いに平行に形成してなることを特徴とする。   The invention according to claim 5 is the high-power non-inductive resistor according to claim 4, wherein the pressing ridge that contacts the surface of the center part of the intermediate presser plate is in contact with the intermediate presser plate in the clamping plate. And a pair of recesses provided on both sides of the pressing projection are formed between the fastening bolts on both sides in parallel to each other.

このように構成することにより、締付状態における締付板の撓みを抑制し、締付圧を均等にすることができる。   By comprising in this way, the bending of the clamping board in a clamping | tightening state can be suppressed and a clamping pressure can be equalized.

また、請求項6記載の発明は、請求項3ないし5のいずれかに記載の大電力無誘導抵抗器において、上記締付板は、上記放熱板と対向する放熱板を兼用していることを特徴とする。   According to a sixth aspect of the present invention, in the high power non-inductive resistor according to any of the third to fifth aspects, the fastening plate also serves as a heat radiating plate facing the heat radiating plate. Features.

このように構成することにより、抵抗体に生じた発熱を両放熱板から放熱することができる。   By comprising in this way, the heat_generation | fever which arose in the resistor can be radiated from both heat sinks.

この発明によれば、上記のように構成されているので、以下のような顕著な効果が得られる。   According to this invention, since it is configured as described above, the following remarkable effects can be obtained.

(1)請求項1,2記載の発明によれば、接着剤やハンダ等を用いることなく、耐熱絶縁高熱伝導物質、例えば耐熱絶縁高熱伝導性グリースを介して、抵抗体と一対のセラミック基板及びセラミック基板と放熱板を密着することができるので、熱伝導性及び放熱性の向上を図ることができると共に、熱サイクルに強い構造が達成され、高圧パルスに対する耐久性に極めて優れた大電力無誘導抵抗器を提供することができる。   (1) According to the first and second aspects of the present invention, a resistor and a pair of ceramic substrates and a pair of ceramic substrates and a heat-resistant insulating high-thermal conductive material, such as a heat-resistant insulating high-heat conductive grease, without using an adhesive or solder, etc. The ceramic substrate and heat sink can be in close contact with each other, improving heat conductivity and heat dissipation, achieving a structure that is resistant to thermal cycling, and providing high power non-induction that is extremely durable against high-pressure pulses. A resistor can be provided.

(2)請求項3記載の発明によれば、締付手段は、セラミック基板に積層される締付板と、この締付板と放熱板とを締結するボルトとからなるので、上記(1)に加えて、均一な締付圧をセラミック基板、放熱板等に加えることができ熱伝導性及び放熱性の向上が図れる。この場合、上記締付板とセラミック基板の間に、中押え板を介在することにより、締付圧を中押え板に分散させて均等にすることができるので、更に熱伝導性及び放熱性の向上が図れる(請求項4)。   (2) According to the invention described in claim 3, the fastening means comprises the fastening plate laminated on the ceramic substrate and the bolt for fastening the fastening plate and the heat radiating plate. In addition, a uniform clamping pressure can be applied to the ceramic substrate, the heat radiating plate, etc., and the thermal conductivity and heat dissipation can be improved. In this case, by interposing the intermediate presser plate between the clamping plate and the ceramic substrate, the clamping pressure can be distributed and evenly distributed to the intermediate presser plate. Improvement can be achieved (claim 4).

(3)請求項5記載の発明によれば、締付状態における締付板の撓みを抑制し、締付圧を均等にすることができるので上記(1)〜(2)に加えて、更に熱伝導性及び放熱性の向上が図れる。   (3) According to the invention described in claim 5, in addition to the above (1) to (2), the bending of the clamping plate in the tightened state can be suppressed and the clamping pressure can be made uniform. Thermal conductivity and heat dissipation can be improved.

(4)請求項6記載の発明によれば、抵抗体に生じた発熱を両面の放熱板から放熱することができるので、上記(1)〜(3)加えて、更に放熱性の向上が図れると共に高圧パルスに対する耐久性に優れ、更に大電力への対応が可能となる。   (4) According to the invention described in claim 6, since the heat generated in the resistor can be radiated from the heat radiating plates on both sides, in addition to the above (1) to (3), the heat dissipation can be further improved. At the same time, it has excellent durability against high-pressure pulses, and can cope with high power.

この発明に係る大電力無誘導抵抗器の第1実施形態を示す断面図(a)及び(a)のI部拡大断面図(b)である。It is sectional drawing (a) which shows 1st Embodiment of the high-power noninductive resistor which concerns on this invention, and the I section expanded sectional view (b) of (a). 図1(a)のII−II線に沿う断面図である。It is sectional drawing which follows the II-II line | wire of Fig.1 (a). この発明における抵抗体を示す横断面図(a)及び(a)のIII部拡大断面図(b)である。It is the cross section (a) which shows the resistor in this invention, and the III section enlarged sectional view (b) of (a). この発明に係る大電力無誘導抵抗器をヒートシンクに取り付けた状態を示す斜視図である。It is a perspective view which shows the state which attached the high power noninductive resistor which concerns on this invention to the heat sink. この発明に係る大電力無誘導抵抗器の分解斜視図である。1 is an exploded perspective view of a high power non-inductive resistor according to the present invention. この発明に係る大電力無誘導抵抗器の第2実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of the high power noninductive resistor which concerns on this invention. 第2実施形態の要部を示す分解斜視図である。It is a disassembled perspective view which shows the principal part of 2nd Embodiment.

以下に、この発明の実施形態を添付図面に基づいて詳細に説明する。ここでは、この発明に係る大電力無誘導抵抗器を冷却手段例えば水冷式のヒートシンクに取り付ける場合について説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Here, the case where the high-power non-inductive resistor according to the present invention is attached to a cooling means such as a water-cooled heat sink will be described.

<第1実施形態>
この発明に係る大電力無誘導抵抗器は、図1(a)、図2及び図5に示すように、両端に電極部3を設けた板状の抵抗部2を有する抵抗体1と、抵抗体1を絶縁する上、下一対の絶縁板である上層及び下層セラミック基板4,5と放熱板7とを具備している。そして、抵抗体1、セラミック基板4,5と抵抗部2の接合面及び下層セラミック基板5と放熱板7の接合面に、熱伝導性を有する液状耐熱絶縁物質が介在され、両セラミック基板4,5及び放熱板7が後述する締付手段により圧着されている。
<First Embodiment>
As shown in FIG. 1A, FIG. 2 and FIG. 5, a high-power non-inductive resistor according to the present invention includes a resistor 1 having a plate-like resistor portion 2 provided with electrode portions 3 at both ends, In addition to insulating the body 1, upper and lower ceramic substrates 4 and 5, which are a pair of lower insulating plates, and a heat sink 7 are provided. Then, a liquid heat-resistant insulating material having thermal conductivity is interposed on the bonding surface of the resistor 1, the ceramic substrates 4, 5 and the resistance portion 2, and the bonding surface of the lower ceramic substrate 5 and the heat sink 7. 5 and the heat radiating plate 7 are pressure-bonded by tightening means described later.

本実施形態では熱伝導性を有する液状耐熱絶縁物質として、耐熱絶縁高熱伝導グリースすなわち、サーマルグリース6を用いる。このサーマルグリース6はシリコーンオイルをベースに微粒なアルミナ等の熱伝導性の良い粉末を配合したグリースである。   In the present embodiment, a heat-resistant insulating high thermal conductive grease, that is, thermal grease 6 is used as the liquid heat-resistant insulating material having thermal conductivity. This thermal grease 6 is a grease containing silicone oil as a base and a powder having good thermal conductivity such as fine alumina.

抵抗体1は、ニクロム合金の薄い金属板にメッキ法によりニッケルや錫で電極膜を形成した後、フォトエッチングにより形成される電極部3及び抵抗部2からなる。この場合、抵抗部2は、図3に示すように、インダクタンスを極力低減するために抵抗部2の経路を互いに平行な直線部を有する蛇行状にした無誘導形状となっている。電流が蛇行状に形成された抵抗経路に流され、その経路周囲に発生する磁場が互いに逆転して隣接した抵抗経路に発生する磁場を打ち消し合うことで、その抵抗経路周囲には電磁誘導による誘導起電力の発生を最小限にすることができる。   The resistor 1 includes an electrode portion 3 and a resistor portion 2 formed by photoetching after an electrode film is formed of nickel or tin on a thin metal plate of nichrome alloy by plating. In this case, as shown in FIG. 3, the resistance portion 2 has a non-inductive shape in which the path of the resistance portion 2 has a meandering shape having linear portions parallel to each other in order to reduce inductance as much as possible. Current is passed through a meandering resistance path, and the magnetic fields generated around the path reverse each other to cancel out the magnetic fields generated in adjacent resistance paths. Generation of electromotive force can be minimized.

また、抵抗体1は、図3(b)に示すようにパターン部2aの幅は例えば0.40mm、ギャップ部2bの幅は例えば0.50mmに形成されて、また、抵抗体1の厚さは120μmに形成されており、抵抗部2のギャップ部2bにはサーマルグリース6が充填された状態で、抵抗部2はセラミック基板4,5により挟持される。   3B, the resistor 1 is formed such that the width of the pattern portion 2a is 0.40 mm, for example, and the width of the gap portion 2b is 0.50 mm, for example. Is formed with a thickness of 120 μm, and the resistor 2 is sandwiched between the ceramic substrates 4 and 5 while the gap 2b of the resistor 2 is filled with the thermal grease 6.

なお、抵抗部2の両端の電極部3には端子11がハンダにより接続されている。端子11は電極部3との十分な接合面を確保すると共に機械的強度を得るべく、例えばU字状の電極接続部と平板状の外部接続部からなる。   A terminal 11 is connected to the electrode portions 3 at both ends of the resistance portion 2 by soldering. The terminal 11 includes, for example, a U-shaped electrode connection portion and a flat plate-like external connection portion in order to secure a sufficient joint surface with the electrode portion 3 and to obtain mechanical strength.

抵抗体1の上層および下層に積層(接合)されるセラミック基板4,5は、例えば1mmの厚さを有する矩形状に形成されている。この場合、上層のセラミック基板4は、抵抗体1の電極部3のみが露出するような大きさに形成され、下層セラミック基板5は、抵抗体1の周囲に余剰スペースを有する大きさに形成されている。セラミック基板4,5はセラミックの中で熱伝導率が高く電気絶縁性が高く、機械的強度が大きい窒化アルミを素材として使用することが望ましい。   The ceramic substrates 4 and 5 laminated (bonded) to the upper layer and the lower layer of the resistor 1 are formed in a rectangular shape having a thickness of 1 mm, for example. In this case, the upper ceramic substrate 4 is formed in such a size that only the electrode portion 3 of the resistor 1 is exposed, and the lower ceramic substrate 5 is formed in a size having an extra space around the resistor 1. ing. The ceramic substrates 4 and 5 are preferably made of aluminum nitride, which has high thermal conductivity, high electrical insulation, and high mechanical strength among ceramics.

セラミック基板4,5の表面は図1(b)に示すように、粗面であるため、抵抗部2との接合部に隙間(空洞)が生じるが、セラミック基板4,5と抵抗部2の接合面にはサーマルグリース6が介在されるので、セラミック基板4,5と抵抗部2の接合部にサーマルグリース6が充填され、セラミック基板4,5と抵抗部2の接合部には空洞が生じることがない。なお、図示しないが抵抗体1の抵抗部2の表面も微小の粗面であるが、サーマルグリース6が充填されるので空洞は生じない。   Since the surfaces of the ceramic substrates 4 and 5 are rough as shown in FIG. 1B, a gap (cavity) is formed at the joint portion with the resistance portion 2, but the ceramic substrates 4 and 5 and the resistance portion 2 Since the thermal grease 6 is interposed on the joint surface, the thermal grease 6 is filled in the joint portion between the ceramic substrates 4 and 5 and the resistor portion 2, and a cavity is generated in the joint portion between the ceramic substrates 4 and 5 and the resistor portion 2. There is nothing. Although not shown, the surface of the resistance portion 2 of the resistor 1 is also a fine rough surface, but since the thermal grease 6 is filled, no cavity is generated.

下層セラミック基板5の下層に積層(接合)される放熱板7は、熱伝導性に優れた材料、例えばタフピッチ銅が使用されている。放熱板7は、例えば、8mmの厚さを有する矩形状に形成されており、対向する2辺側には、後述する締付手段の一部を構成する締付ボルト10が螺合可能な複数のねじ穴16が設けられている。この場合、ねじ穴16は対向する部位に2個ずつ設けられている。また、放熱板7の角部には、放熱板7を水冷式のヒートシンク12に接合するための取付けボルト18の取付孔17が設けられている。なお、放熱板7と下層セラミック基板5の接合面にはサーマルグリース6が介在されている。これにより、放熱板7と下層セラミック5の接合面に空洞が生じることなく、熱抵抗を下げることができる。   The heat sink 7 laminated (bonded) to the lower layer of the lower ceramic substrate 5 is made of a material having excellent thermal conductivity, such as tough pitch copper. The heat radiating plate 7 is formed in, for example, a rectangular shape having a thickness of 8 mm, and a plurality of fastening bolts 10 constituting a part of fastening means described later can be screwed onto two opposing sides. Screw holes 16 are provided. In this case, two screw holes 16 are provided at opposing portions. Further, mounting holes 17 for mounting bolts 18 for joining the heat sink 7 to the water-cooled heat sink 12 are provided at the corners of the heat sink 7. Note that thermal grease 6 is interposed between the heat sink 7 and the lower ceramic substrate 5. Thereby, the thermal resistance can be lowered without generating a cavity in the joint surface between the heat sink 7 and the lower ceramic 5.

上層セラミック基板5と締付板8との間には中押え板9が積層(接合)されている。中押え板9は放熱板7と同様に熱伝導性に優れた材料、例えばタフピッチ銅が使用される。中押え板9は、上層セラミック基板4と略同じ大きさの矩形状に形成されており、例えば3mmの厚さに形成されている。なお、上層セラミック基板4と中押え板9の接合面にサーマルグリース6を塗布しても良い。   An intermediate presser plate 9 is laminated (joined) between the upper ceramic substrate 5 and the clamping plate 8. The intermediate presser plate 9 is made of a material having excellent thermal conductivity, for example, tough pitch copper, like the heat radiating plate 7. The intermediate presser plate 9 is formed in a rectangular shape having substantially the same size as the upper ceramic substrate 4 and is formed to have a thickness of 3 mm, for example. The thermal grease 6 may be applied to the joint surface between the upper ceramic substrate 4 and the intermediate presser plate 9.

中押え板9の上層には締付手段を構成する締付板8が積層(接合)されている。締付板8は、図2及び図4に示すように、中押え板9に跨って、締付板8の凸条部8aが中押え板9の中央部表面に接触して積層される。締付板8は快削性に優れた材料、例えばタフピッチ銅が使用されている。締付板8は、例えば、8mmの厚さを有する矩形状に形成されており、締付板8の端部の幅は中押え板9の横幅と略同一である。セラミック基板4,5を挟む両側端部には、後述する締付手段の一部を構成する締付ボルト10が螺合可能な複数のボルト孔15が設けられている。この場合、ボルト孔15は両側端部に2個ずつ設けられている。   On the upper layer of the intermediate presser plate 9, a fastening plate 8 constituting a fastening means is laminated (joined). As shown in FIGS. 2 and 4, the clamping plate 8 is stacked so that the protruding strip portion 8 a of the clamping plate 8 is in contact with the center surface of the intermediate pressing plate 9 across the intermediate pressing plate 9. The clamping plate 8 is made of a material having excellent free-cutting properties, such as tough pitch copper. The clamping plate 8 is formed in a rectangular shape having a thickness of 8 mm, for example, and the width of the end portion of the clamping plate 8 is substantially the same as the lateral width of the intermediate presser plate 9. A plurality of bolt holes 15 into which fastening bolts 10 constituting a part of fastening means described later can be screwed are provided at both end portions sandwiching the ceramic substrates 4 and 5. In this case, two bolt holes 15 are provided at both end portions.

締付板8と中押え板9との接合面である下面には、中押え板9の中央表面部に接触する凸条部8aと、この凸条部8aの両側に設けられ、中押え板9と非接触な一対の凹条部8bが、両側端部の締付ボルト10間に互いに平行に形成されている。これにより、締付手段による締付状態における締付板8の撓みを抑制し、中押え板9に掛かる締付圧を均等にすることができる。   On the lower surface, which is the joint surface between the clamping plate 8 and the intermediate presser plate 9, are provided on both sides of the convex strip 8a that contacts the central surface portion of the intermediate presser plate 9, and the intermediate presser plate 8a. A pair of concave strips 8b that are not in contact with 9 are formed in parallel with each other between the fastening bolts 10 at both ends. Thereby, the bending of the clamping plate 8 in the clamping state by the clamping means can be suppressed, and the clamping pressure applied to the intermediate presser plate 9 can be made uniform.

本実施形態における締付手段は、一対のセラミック基板4,5の一方すなわち上層セラミック基板4に中押え板9を介して積層(接合)される締付板8と、この締付板8の上記セラミック基板4を挟む両側端部に設けられたボルト孔15を貫通して、放熱板7に設けられたねじ穴16に螺合される4本の締付ボルト10とで構成されている。このように構成される締付手段を用いて、上記のように抵抗体1、セラミック基板4,5等を積層し、締付ボルト10にて最上層の締付板8と最下層の放熱板7を締結して圧着することができる。   The fastening means in the present embodiment includes a fastening plate 8 laminated (joined) to one of the pair of ceramic substrates 4, 5, that is, the upper ceramic substrate 4 via an intermediate presser plate 9, and the above-described fastening plate 8. It comprises four bolts 10 that pass through bolt holes 15 provided at both end portions sandwiching the ceramic substrate 4 and are screwed into screw holes 16 provided in the heat radiating plate 7. Using the fastening means configured as described above, the resistor 1, the ceramic substrates 4, 5 and the like are laminated as described above, and the uppermost fastening plate 8 and the lowermost heat dissipation plate are fastened by the fastening bolts 10. 7 can be fastened and crimped.

なお、図1(a)及び図2に示すように、後述するエポキシ樹脂14が動作中高温になる抵抗体1の電極部3及び端子11の下部に直接触れないように放熱板7の上面から中押え板9下半部に渡って耐電圧及び耐熱性のシリコンゴム30が被覆されている。そして、図1(a),図2,図4に示すように端子11の強度確保、締付ボルト10の緩み防止及び耐絶縁性の向上等を図るために、放熱板7の上方全体をエポキシ樹脂14でモールドしている。この場合、図1(a)に想像線で示すように、放熱板7の周辺上部に載置される矩形枠状のケース本体21と、端子11が挿通可能なスリット22を設けた蓋体23とからなる外装ケース20によってエポキシ樹脂14を包囲する方が好ましい。   As shown in FIGS. 1A and 2, the epoxy resin 14, which will be described later, is exposed from the upper surface of the heat radiating plate 7 so as not to directly touch the electrode portion 3 of the resistor 1 and the lower portion of the terminal 11 that are heated during operation. A withstand voltage and heat resistant silicon rubber 30 is coated over the lower half of the intermediate presser plate 9. Then, as shown in FIGS. 1 (a), 2 and 4, in order to ensure the strength of the terminal 11, prevent the tightening bolt 10 from loosening and improve the insulation resistance, the entire upper part of the heat sink 7 is made of epoxy. Molded with resin 14. In this case, as indicated by an imaginary line in FIG. 1A, a rectangular frame-shaped case main body 21 placed on the upper periphery of the heat sink 7 and a lid 23 provided with a slit 22 into which the terminal 11 can be inserted. It is preferable to surround the epoxy resin 14 with an outer case 20 composed of

上記のように構成される大電力無誘導抵抗器はヒートシンク12に取り付けることができる。この場合、放熱板7とヒートシンク12の接合面にサーマルグリース6が塗布される。これにより、放熱板7とヒートシンク12の接合面に空洞が生じることなく、熱抵抗を下げることができる。   The high power non-inductive resistor configured as described above can be attached to the heat sink 12. In this case, thermal grease 6 is applied to the joint surface between the heat sink 7 and the heat sink 12. Thereby, the thermal resistance can be lowered without generating a cavity in the joint surface between the heat radiating plate 7 and the heat sink 12.

大電力無誘導抵抗器をヒートシンク12に取り付けるには、例えば図1(a),図2及び図4に示すように、放熱板7に設けられた取付孔17を貫通する取付けボルト18を用いてヒートシンク12に螺合して接合する。ヒートシンク12は熱伝導性に優れた材料、例えばタフピッチ銅が使用される。図1(a),図2に示すようにヒートシンク12内部に形成された冷却水流路12aに、冷却水を流すことにより、冷却効果を高めている。ここでは、水冷式のヒートシンク12について説明したが、例えば自然空冷、強制空冷などにより冷却することも可能である。   In order to attach the high-power non-inductive resistor to the heat sink 12, for example, as shown in FIGS. 1 (a), 2 and 4, a mounting bolt 18 penetrating a mounting hole 17 provided in the heat sink 7 is used. The heat sink 12 is screwed and joined. The heat sink 12 is made of a material having excellent thermal conductivity, such as tough pitch copper. As shown in FIGS. 1A and 2, the cooling effect is enhanced by flowing cooling water through the cooling water passage 12 a formed inside the heat sink 12. Here, the water-cooled heat sink 12 has been described, but it is also possible to cool by, for example, natural air cooling or forced air cooling.

上記のように構成することにより、締付板8、中押え板9及び締付ボルト10を用いた締付手段を用いることにより、サーマルグリース6を介して、抵抗体1と一対のセラミック基板4,5及び放熱板7を圧着すると共に、均一な締付圧をセラミック基板4,5、放熱板7等に加えることが可能な抵抗器の内部構造を形成することができる。これにより熱伝導性及び放熱性の向上を図ることができると共に、熱サイクルに強い構造が達成され、高圧パルスに対する耐久性に極めて優れた大電力無誘導抵抗器を提供することができる。   With the configuration described above, the resistor 1 and the pair of ceramic substrates 4 are interposed via the thermal grease 6 by using the fastening means using the fastening plate 8, the intermediate presser plate 9 and the fastening bolt 10. , 5 and the heat radiating plate 7, and an internal structure of the resistor that can apply a uniform clamping pressure to the ceramic substrates 4, 5, the heat radiating plate 7, and the like can be formed. As a result, thermal conductivity and heat dissipation can be improved, and a structure that is resistant to thermal cycling can be achieved, and a high-power non-inductive resistor that is extremely excellent in durability against high-voltage pulses can be provided.

<第2実施形態>
図6は、この発明に係る大電力無誘導抵抗器の第2実施形態を示す断面図、図7は、第2実施形態の要部の分解斜視図である。なお、図6,図7中、第1実施形態と同一の部材または要素には、同一の符号を付して説明を省略する。
<Second Embodiment>
FIG. 6 is a cross-sectional view showing a second embodiment of the high-power non-inductive resistor according to the present invention, and FIG. 7 is an exploded perspective view of the main part of the second embodiment. 6 and 7, the same members or elements as those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.

第2実施形態は、抵抗器の両面に放熱板7を積層(接合)し冷却効果を更に高めようとした場合である。第2実施形態では、第1実施形態における締付板8を両面放熱用締付板13に変更する。すなわち、第2実施形態では、両面放熱用締付板13には、締付板8と同様に4個のボルト孔15が形成されている。   In the second embodiment, the heat sink 7 is laminated (joined) on both surfaces of the resistor to further enhance the cooling effect. In the second embodiment, the fastening plate 8 in the first embodiment is changed to a double-sided heat radiation fastening plate 13. In other words, in the second embodiment, four bolt holes 15 are formed in the double-sided heat radiation fastening plate 13 in the same manner as the fastening plate 8.

また、両面放熱用締付板13は、図7に示すように、中押え板9との接合面である下面には、中押え板9の中央表面部に接触する凸条部8aと、この凸条部8aの両側に設けられ、中押え板9と非接触な一対の凹条部8bが、両側端部の締付ボルト10間に互いに平行に形成されている。また、撓み抑制効果が有効に発揮されるように、凸条部8aを接合面から隔離すべく一対の凹条部8bと共に矩形状の溝を形成する一対の有底溝8cを設けている。一対の有底溝8cは凹条部8bより底の深い凹部であり、凸条部8aと中押え板9の横幅が略同一の長さとなる位置に形成されている。   Further, as shown in FIG. 7, the double-sided heat radiation fastening plate 13 has, on the lower surface, which is a joint surface with the intermediate presser plate 9, a ridge portion 8 a that contacts the central surface portion of the intermediate presser plate 9, A pair of concave strips 8b that are provided on both sides of the convex strip 8a and are not in contact with the intermediate presser plate 9 are formed in parallel with each other between the fastening bolts 10 at both ends. Further, a pair of bottomed grooves 8c that form a rectangular groove together with the pair of concave ridge portions 8b are provided in order to isolate the convex ridge portions 8a from the joint surface so that the bending suppression effect is effectively exhibited. The pair of bottomed grooves 8c is a recess having a deeper bottom than the recess 8b, and is formed at a position where the lateral widths of the protrusion 8a and the intermediate presser plate 9 are substantially the same length.

この場合、ボルト孔15は、締付ボルト10の頭部10aを収容する大径部15aを有する段付き孔にて形成されており、締付ボルト10により圧着後、熱伝導性の高い材質、例えばエポキシ樹脂製の塞ぎ材40により埋没させ、両面放熱用締付板13表面を平滑とすることが望ましい。図6に示すように端子11の強度確保、締付ボルト10の緩み防止及び耐絶縁性の向上等を図るために、放熱板7と両面放熱用締付板13との挟装部をエポキシ樹脂14でモールドしている。   In this case, the bolt hole 15 is formed by a stepped hole having a large-diameter portion 15a that accommodates the head portion 10a of the tightening bolt 10, and after being crimped by the tightening bolt 10, a material having high thermal conductivity, For example, it is desirable to make the surface of the double-sided heat radiation fastening plate 13 smooth by burying it with a plug 40 made of epoxy resin. As shown in FIG. 6, in order to ensure the strength of the terminal 11, prevent loosening of the tightening bolt 10, and improve insulation resistance, the sandwiched portion between the heat radiating plate 7 and the double-sided heat radiating tightening plate 13 is made of epoxy resin. 14 is molded.

上記のように構成される大電力無誘導抵抗器は、図6に示すように、放熱板7と両面放熱用締付板13の両面にヒートシンク12に取り付けることができる。この場合、図6,図7に示すように、放熱板7と両面放熱用締付板13の間から放熱板表面と略平行に端子11が導出されることにより他の機器との接続が可能である。   The high-power non-inductive resistor configured as described above can be attached to the heat sink 12 on both surfaces of the heat radiating plate 7 and the double-sided heat radiation fastening plate 13 as shown in FIG. In this case, as shown in FIG. 6 and FIG. 7, the terminal 11 is led out between the heat sink 7 and the double-sided heat radiation fastening plate 13 so as to be substantially parallel to the surface of the heat sink, thereby enabling connection to other devices. It is.

上記のように構成することにより、抵抗体1に生じた発熱を放熱板7と両面放熱用締付板13の両面から放熱することができるため、更に高圧パルスに対する耐久性に優れ、更に大電力への対応が可能な大電力無誘導抵抗器を提供することができる。   By configuring as described above, the heat generated in the resistor 1 can be dissipated from both surfaces of the heat radiating plate 7 and the double-sided heat radiating clamping plate 13, so that it is further excellent in durability against high-pressure pulses and has a higher power. It is possible to provide a high power non-inductive resistor that can cope with the above.

1 抵抗体
2 抵抗部
3 電極部
4 上層セラミック基板(絶縁板)
5 下層セラミック基板(絶縁板)
6 サーマルグリース(熱伝導性を有する液状耐熱絶縁物質)
7 放熱板
8 締付板
8a 凸条部
8b 凹条部
8c 有底溝
9 中押え板
10 締付ボルト
13 両面放熱用締付板
15 ボルト孔
16 ねじ穴
1 Resistor 2 Resistor 3 Electrode 4 Upper Ceramic Substrate (Insulating Plate)
5 Lower layer ceramic substrate (insulating plate)
6 Thermal grease (liquid heat-resistant insulating material with thermal conductivity)
7 Radiating plate 8 Clamping plate 8a Convex strip 8b Concave strip 8c Bottomed groove 9 Intermediate presser plate 10 Tightening bolt 13 Double-sided heat dissipation tightening plate 15 Bolt hole 16 Screw hole

Claims (6)

両端に電極を設けた板状の抵抗部を有する抵抗体と、この抵抗体を絶縁する絶縁板及び放熱板を積層してなる大電力無誘導抵抗器において、
上記絶縁板は、上記抵抗体の抵抗部の両面に積層される一対のセラミック基板にて形成され、
上記抵抗体、セラミック基板と抵抗部の接合面、及びセラミック基板と上記放熱板の接合面に、熱伝導性を有する液状耐熱性絶縁物質が介在され、
上記両セラミック基板及び放熱板が締付手段により圧着されている、
ことを特徴とする大電力無誘導抵抗器。
In a high-power non-inductive resistor formed by laminating a resistor having a plate-like resistor portion provided with electrodes at both ends, an insulating plate and a heat radiating plate for insulating the resistor,
The insulating plate is formed by a pair of ceramic substrates laminated on both surfaces of the resistor portion of the resistor,
A liquid heat-resistant insulating material having thermal conductivity is interposed between the resistor, the bonding surface of the ceramic substrate and the resistance portion, and the bonding surface of the ceramic substrate and the heat sink,
Both the ceramic substrate and the heat radiating plate are pressure-bonded by a tightening means.
A high-power non-inductive resistor characterized by that.
請求項1記載の大電力無誘導抵抗器において、
上記熱伝導性を有する液状耐熱性絶縁物質が耐熱絶縁高熱伝導性グリースである、
ことを特徴とする大電力無誘導抵抗器。
The high power non-inductive resistor according to claim 1,
The liquid heat-resistant insulating material having heat conductivity is a heat-resistant insulating high heat conductive grease.
A high-power non-inductive resistor characterized by that.
請求項1または2記載の大電力無誘導抵抗器において、
上記締付手段は、上記一対のセラミック基板の一方に跨って積層される締付板と、締付板の上記セラミック基板を挟む両側端部と上記放熱板とを締結する複数のボルトとからなる、
ことを特徴とする大電力無誘導抵抗器。
The high power non-inductive resistor according to claim 1 or 2,
The fastening means includes a fastening plate that is stacked over one of the pair of ceramic substrates, and a plurality of bolts that fasten both side ends of the fastening plate sandwiching the ceramic substrate and the heat radiating plate. ,
A high-power non-inductive resistor characterized by that.
請求項3記載の大電力無誘導抵抗器において、
上記締付板とセラミック基板の間に、中押え板を介在してなる、
ことを特徴とする大電力無誘導抵抗器。
The high power non-inductive resistor according to claim 3,
An intermediate presser plate is interposed between the clamping plate and the ceramic substrate.
A high-power non-inductive resistor characterized by that.
請求項4記載の大電力無誘導抵抗器において、
上記締付板における上記中押え板との接合面に、上記中押え板の中央部表面に接触する押圧凸条と、この押圧凸条の両側に設けられる一対の凹条とを、上記両側の締結ボルト間に互いに平行に形成してなる、
ことを特徴とする大電力無誘導抵抗器。
The high power non-inductive resistor according to claim 4,
On the joint surface of the clamping plate with the intermediate presser plate, a pressing ridge that contacts the center surface of the intermediate presser plate, and a pair of concave ridges provided on both sides of the pressing ridge, Formed between the fastening bolts in parallel with each other,
A high-power non-inductive resistor characterized by that.
請求項3ないし5のいずれかに記載の大電力無誘導抵抗器において、
上記締付板は、上記放熱板と対向する放熱板を兼用している、
ことを特徴とする大電力無誘導抵抗器。
The high power non-inductive resistor according to any one of claims 3 to 5,
The fastening plate also serves as a heat sink facing the heat sink,
A high-power non-inductive resistor characterized by that.
JP2009142376A 2009-06-15 2009-06-15 High-power non-inductive resistor Withdrawn JP2010287842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009142376A JP2010287842A (en) 2009-06-15 2009-06-15 High-power non-inductive resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009142376A JP2010287842A (en) 2009-06-15 2009-06-15 High-power non-inductive resistor

Publications (1)

Publication Number Publication Date
JP2010287842A true JP2010287842A (en) 2010-12-24

Family

ID=43543297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009142376A Withdrawn JP2010287842A (en) 2009-06-15 2009-06-15 High-power non-inductive resistor

Country Status (1)

Country Link
JP (1) JP2010287842A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015105124A1 (en) * 2014-01-08 2015-07-16 三菱マテリアル株式会社 Resistor and production method for resistor
JP2016139732A (en) * 2015-01-28 2016-08-04 三菱マテリアル株式会社 Resistor and method of manufacturing resistor
WO2021024394A1 (en) 2019-08-06 2021-02-11 東芝三菱電機産業システム株式会社 Power conversion system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015105124A1 (en) * 2014-01-08 2015-07-16 三菱マテリアル株式会社 Resistor and production method for resistor
KR102186331B1 (en) * 2014-01-08 2020-12-03 미쓰비시 마테리알 가부시키가이샤 Resistor and production method for resistor
US10037837B2 (en) * 2014-01-08 2018-07-31 Mitsubishi Materials Corporation Resistor and method for manufacturing resistor
KR20160106065A (en) * 2014-01-08 2016-09-09 미쓰비시 마테리알 가부시키가이샤 Resistor and production method for resistor
US20160336099A1 (en) * 2014-01-08 2016-11-17 Mitsubishi Material Corporation Resistor and method for manufacturing resistor
JP6086150B2 (en) * 2014-01-08 2017-03-01 三菱マテリアル株式会社 Resistor and manufacturing method of resistor
CN107112100A (en) * 2015-01-28 2017-08-29 三菱综合材料株式会社 The manufacture method of resistor and resistor
KR20170104994A (en) * 2015-01-28 2017-09-18 미쓰비시 마테리알 가부시키가이샤 Resistor device and method for producing resistor device
WO2016121838A1 (en) * 2015-01-28 2016-08-04 三菱マテリアル株式会社 Resistor device and method for producing resistor device
EP3252781A4 (en) * 2015-01-28 2018-10-24 Mitsubishi Materials Corporation Resistor device and method for producing resistor device
US10121574B2 (en) 2015-01-28 2018-11-06 Mitsubishi Materials Corporation Resistor and method for manufacturing resistor
TWI695390B (en) * 2015-01-28 2020-06-01 日商三菱綜合材料股份有限公司 Resistor and method for producing resistor
JP2016139732A (en) * 2015-01-28 2016-08-04 三菱マテリアル株式会社 Resistor and method of manufacturing resistor
KR102359146B1 (en) * 2015-01-28 2022-02-04 미쓰비시 마테리알 가부시키가이샤 Resistor device and method for producing resistor device
WO2021024394A1 (en) 2019-08-06 2021-02-11 東芝三菱電機産業システム株式会社 Power conversion system

Similar Documents

Publication Publication Date Title
JP4867793B2 (en) Semiconductor device
KR101219566B1 (en) Led with integral thermal via
WO2017119226A1 (en) Power semiconductor device
WO2018146933A1 (en) Semiconductor device and method for manufacturing semiconductor device
JP2013219267A (en) Power module
TW200917435A (en) Heat dissipation plate and semiconductor device
TWI676255B (en) Semiconductor device
JP2012119597A (en) Semiconductor device and manufacturing method of the same
TW201513301A (en) Power module
JP2008028163A (en) Power module device
WO2015132969A1 (en) Insulating substrate and semiconductor device
JP5392196B2 (en) Semiconductor device
JP2010287842A (en) High-power non-inductive resistor
JP2005236276A (en) Insulated heat transfer structure and substrate for power module
JP2009059821A (en) Semiconductor device
JP2019134018A (en) Semiconductor device
JP2001267475A (en) Mounting structure of semiconductor device and its mounting method
JP2005236266A (en) Insulating heat transfer structure and substrate for power module
JP2015069982A (en) Power module
JPH09139525A (en) Peltier cooling unit structure
WO2021235002A1 (en) Power module
JP2004327711A (en) Semiconductor module
JP7156155B2 (en) semiconductor module
JP2007073904A (en) Circuit board
JP4992302B2 (en) Power semiconductor module

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120904