JP2010287412A - Fuel cell-evaluating method and device - Google Patents

Fuel cell-evaluating method and device Download PDF

Info

Publication number
JP2010287412A
JP2010287412A JP2009139876A JP2009139876A JP2010287412A JP 2010287412 A JP2010287412 A JP 2010287412A JP 2009139876 A JP2009139876 A JP 2009139876A JP 2009139876 A JP2009139876 A JP 2009139876A JP 2010287412 A JP2010287412 A JP 2010287412A
Authority
JP
Japan
Prior art keywords
fuel cell
cell
current
state
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009139876A
Other languages
Japanese (ja)
Inventor
Daisuke Yamazaki
大輔 山崎
Nobuhiro Tomosada
伸浩 友定
Atsushi Kimura
篤史 木村
Tomomi Akutsu
智美 阿久津
Makoto Kawano
誠 川野
Soichiro Torai
総一朗 虎井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2009139876A priority Critical patent/JP2010287412A/en
Publication of JP2010287412A publication Critical patent/JP2010287412A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell-evaluating method and device for evaluating the condition of a fuel cell in details. <P>SOLUTION: The method includes a step of changing the amount of hydrogen to be supplied to the fuel cell being in a half-cell condition, and a step of measuring the electric characteristics of the fuel cell being in the half-cell condition while using the hydrogen supply amount changing step of changing the amount of hydrogen to be supplied. Measuring the electric characteristics of the fuel cell being in the half-cell condition while changing the amount of hydrogen to be supplied to the fuel cell being in a half-cell condition enables the condition of the fuel cell to be evaluated in details. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、半電池計測によって燃料電池の状態を評価する燃料電池の評価方法および燃料電池の評価装置に関する。   The present invention relates to a fuel cell evaluation method and a fuel cell evaluation device for evaluating the state of a fuel cell by half-cell measurement.

燃料電池の劣化の程度を評価する方法として、特開2006−331849号公報には、燃料電池から得られる電力を用いた方法が記載されている。この方法では、燃料電池の出力電流および出力電圧を検出し、電力を算出する。そして、算出された電力を予め定めた基準電力と比較することにより、燃料電池の劣化の程度を判定している。   As a method for evaluating the degree of deterioration of a fuel cell, Japanese Patent Application Laid-Open No. 2006-331849 describes a method using electric power obtained from a fuel cell. In this method, the output current and output voltage of the fuel cell are detected and the power is calculated. Then, the degree of deterioration of the fuel cell is determined by comparing the calculated power with a predetermined reference power.

また、特開2009−43645号公報には、燃料電池のリフレッシュ制御時の電気量を求め、予め作成した電気量と活性化過電圧との関係を示すマップを用いてセル電圧を推定するとともに、推定により得られたセル電圧と、実際に検出されたセル電圧とを比較することで燃料電池の劣化の程度を評価する方法が記載されている。   Japanese Patent Application Laid-Open No. 2009-43645 obtains the amount of electricity at the time of refresh control of the fuel cell, estimates the cell voltage using a map showing the relationship between the amount of electricity created in advance and the activation overvoltage, and estimates Describes a method of evaluating the degree of deterioration of the fuel cell by comparing the cell voltage obtained by the above and the actually detected cell voltage.

特開2006−331849号公報JP 2006-331849 A

特開2009−43645号公報JP 2009-43645 A

しかし、上記の方法では、燃料電池の劣化の程度は評価できるものの、主要な劣化の要因を判定することはできない。例えば、劣化の主要な要因として、アノード要因、カソード要因、活性化要因、拡散要因などが考えられるが、いずれが主要な要因であるのかを把握できれば、燃料電池の正確な劣化状況が判定できるとともに、判定結果を燃料電池の開発設計や運転制御に有効利用することが可能となる。   However, with the above method, although the degree of deterioration of the fuel cell can be evaluated, the main cause of deterioration cannot be determined. For example, anode factors, cathode factors, activation factors, diffusion factors, etc. can be considered as the main factors of deterioration, but if you can grasp which is the main factor, you can determine the exact deterioration status of the fuel cell The determination result can be effectively used for development design and operation control of the fuel cell.

本発明の目的は、燃料電池の状態を詳細に評価することが可能な燃料電池の評価方法および燃料電池の評価装置を提供することにある。   An object of the present invention is to provide a fuel cell evaluation method and a fuel cell evaluation apparatus capable of evaluating the state of the fuel cell in detail.

本発明の燃料電池の評価方法は、半電池計測によって燃料電池の状態を評価する燃料電池の評価方法において、半電池状態にある燃料電池への水素供給量を変化させるステップと、水素供給量を変化させるステップにより変化する各水素供給量における前記燃料電池の電気特性を計測するステップと、を備えることを特徴とする。
この燃料電池の評価方法によれば、半電池状態にある燃料電池への水素供給量を変化させつつ、半電池状態にある前記燃料電池の電気特性を計測するので、燃料電池の状態を詳細に評価することができる。
The fuel cell evaluation method of the present invention is a fuel cell evaluation method for evaluating the state of a fuel cell by half-cell measurement, the step of changing the hydrogen supply amount to the fuel cell in the half-cell state, and the hydrogen supply amount Measuring the electrical characteristics of the fuel cell at each hydrogen supply amount that changes in accordance with the changing step.
According to this fuel cell evaluation method, the electric characteristics of the fuel cell in the half-cell state are measured while changing the amount of hydrogen supplied to the fuel cell in the half-cell state. Can be evaluated.

前記電気特性を計測するステップでは、半電池状態にある前記燃料電池の限界電流値を計測してもよい。   In the step of measuring the electrical characteristics, a limit current value of the fuel cell in a half-cell state may be measured.

前記電気特性を計測するステップでは、半電池状態にある前記燃料電池の電流−過電圧特性における傾きを計測してもよい。   In the step of measuring the electrical characteristics, a slope in the current-overvoltage characteristics of the fuel cell in a half-cell state may be measured.

前記電気特性を計測するステップでは、半電池状態にある前記燃料電池の交換電流密度を計測してもよい。   In the step of measuring the electrical characteristics, an exchange current density of the fuel cell in a half-cell state may be measured.

前記電気特性を計測するステップでは、半電池状態にある前記燃料電池の電流−過電圧特性における傾きの変化点を計測してもよい。
本発明の燃料電池の評価装置は、半電池計測によって燃料電池の状態を評価する燃料電池の評価装置において、半電池状態にある燃料電池への水素供給量を変化させる制御手段と、前記制御手段により変化する各水素供給量における前記燃料電池の電気特性を計測する計測手段と、を備えることを特徴とする。
In the step of measuring the electrical characteristics, a change point of the slope in the current-overvoltage characteristics of the fuel cell in a half-cell state may be measured.
The fuel cell evaluation apparatus according to the present invention is a fuel cell evaluation apparatus that evaluates the state of the fuel cell by half-cell measurement. The control means changes the amount of hydrogen supplied to the fuel cell in the half-cell state, and the control means Measuring means for measuring the electrical characteristics of the fuel cell at each hydrogen supply amount that varies according to the above.

この燃料電池の評価装置によれば、半電池状態にある燃料電池への水素供給量を変化させつつ、半電池状態にある前記燃料電池の電気特性を計測するので、燃料電池の状態を詳細に評価することができる。   According to this fuel cell evaluation apparatus, the electrical characteristics of the fuel cell in the half-cell state are measured while changing the amount of hydrogen supplied to the fuel cell in the half-cell state. Can be evaluated.

本発明の燃料電池の評価方法によれば、半電池状態にある燃料電池への水素供給量を変化させつつ、半電池状態にある前記燃料電池の電気特性を計測するので、燃料電池の状態を詳細に評価することができる。   According to the fuel cell evaluation method of the present invention, the electric characteristics of the fuel cell in the half-cell state are measured while changing the hydrogen supply amount to the fuel cell in the half-cell state. It can be evaluated in detail.

本発明の燃料電池の評価装置によれば、半電池状態にある燃料電池への水素供給量を変化させつつ、半電池状態にある前記燃料電池の電気特性を計測するので、燃料電池の状態を詳細に評価することができる。   According to the fuel cell evaluation apparatus of the present invention, the electric characteristics of the fuel cell in the half-cell state are measured while changing the hydrogen supply amount to the fuel cell in the half-cell state. It can be evaluated in detail.

燃料電池の計測システムを示すブロック図。The block diagram which shows the measurement system of a fuel cell. 半電池計測の結果を例示する図。The figure which illustrates the result of half-cell measurement. 半電池計測の結果を例示する図であり、(a)は拡散要因に起因する劣化が生じた場合を示す図、(b)はHの供給流量と電流値(最大値)との関係を示す図。Is a diagram illustrating the results of the half-cell measurement, the relationship between (a) is a diagram showing a case where there arises the deterioration due to the diffusion factor, (b) the supply flow rate of H 2 and the current value (maximum value) FIG. 半電池計測の結果を例示する図であり、触媒の活性化要因に起因する劣化が生じた場合の電流−過電圧特性を例示する図。It is a figure which illustrates the result of a half-cell measurement, and is a figure which illustrates the current-overvoltage characteristic at the time of degradation resulting from the activation factor of a catalyst. 半電池計測の結果を例示する図であり、(a)は交換電流密度が変化した場合の電流−過電圧特性を例示する図、(b)は電流−過電圧特性に反応電子数の変化点が現れる例を示す図。It is a figure which illustrates the result of half-cell measurement, (a) is a figure which illustrates current-overvoltage characteristic when exchange current density changes, and (b) is a point of change of the number of reaction electrons in current-overvoltage characteristics. The figure which shows an example.

以下、本発明による燃料電池の評価方法の実施形態について説明する。   Embodiments of a fuel cell evaluation method according to the present invention will be described below.

図1は、燃料電池10の計測システムを示すブロック図である。   FIG. 1 is a block diagram showing a measurement system of the fuel cell 10.

図1に示すように、燃料電池10は、電解質膜1と、電解質膜1を挟んで設けられたアノード電極層21およびカソード電極層31と、を備える。また、電解質膜1およびアノード電極層21の中間にはアノード触媒拡散層22が、電解質膜1およびカソード電極層31の中間にはアノード触媒拡散層32が、それぞれ設けられる。アノード電極層21にはアノードガス流路21aが、カソード電極層31にはカソードガス流路31aが、それぞれ形成される。   As shown in FIG. 1, the fuel cell 10 includes an electrolyte membrane 1, and an anode electrode layer 21 and a cathode electrode layer 31 that are provided with the electrolyte membrane 1 interposed therebetween. An anode catalyst diffusion layer 22 is provided between the electrolyte membrane 1 and the anode electrode layer 21, and an anode catalyst diffusion layer 32 is provided between the electrolyte membrane 1 and the cathode electrode layer 31. An anode gas channel 21 a is formed in the anode electrode layer 21, and a cathode gas channel 31 a is formed in the cathode electrode layer 31.

アノード電極層21のアノードガス流路21aおよびカソード電極層31のカソードガス流路31aには、図1に示すガス供給装置7を介してガスが供給される。   Gas is supplied to the anode gas passage 21a of the anode electrode layer 21 and the cathode gas passage 31a of the cathode electrode layer 31 via the gas supply device 7 shown in FIG.

図1に示すように、アノード電極層21およびアノード触媒拡散層22は、絶縁材24を介して図1において上下方向に分離され、分離されたそれぞれの領域にアノード本電極2Aおよびアノード参照電極2Bが形成される。また、図1に示すように、カソード電極層31およびカソード触媒拡散層32は、絶縁材34を介して図1において上下方向に分離され、分離されたそれぞれの領域にカソード本電極3Aおよびカソード参照電極3Bが形成される。アノード本電極2Aとカソード本電極3A、および、アノード参照電極2Bとカソード参照電極3Bは、それぞれ電解質膜1を介して対向して配置されている。   As shown in FIG. 1, the anode electrode layer 21 and the anode catalyst diffusion layer 22 are separated in the vertical direction in FIG. 1 via an insulating material 24, and the anode main electrode 2A and the anode reference electrode 2B are separated into the separated regions. Is formed. Further, as shown in FIG. 1, the cathode electrode layer 31 and the cathode catalyst diffusion layer 32 are separated in the vertical direction in FIG. 1 via an insulating material 34, and the cathode main electrode 3A and the cathode are referred to in the separated regions. Electrode 3B is formed. The anode main electrode 2A and the cathode main electrode 3A, and the anode reference electrode 2B and the cathode reference electrode 3B are arranged to face each other with the electrolyte membrane 1 interposed therebetween.

図1に示すように、アノード本電極2Aおよびカソード本電極3Aの間には、負荷装置4が接続され、負荷装置4は計測装置5に接続される。また、アノード本電極2Aおよびアノード参照電極2Bの間には電圧計61が、カソード本電極3Aおよびカソード参照電極3Bの間には電圧計62が、それぞれ接続され、電圧計61および電圧計62からの計測信号は計測装置5に与えられる。   As shown in FIG. 1, a load device 4 is connected between the anode main electrode 2 </ b> A and the cathode main electrode 3 </ b> A, and the load device 4 is connected to a measuring device 5. A voltmeter 61 is connected between the anode main electrode 2A and the anode reference electrode 2B, and a voltmeter 62 is connected between the cathode main electrode 3A and the cathode reference electrode 3B. The measurement signal is supplied to the measurement device 5.

図1に示すように、計測装置5は、ガス供給装置7等を制御する制御手段51と、燃料電池10の電気特性を計測する計測手段52と、を構成する。   As shown in FIG. 1, the measurement device 5 includes a control unit 51 that controls the gas supply device 7 and the like, and a measurement unit 52 that measures the electrical characteristics of the fuel cell 10.

次に、燃料電池1の特性を評価するための半電池計測の手法について説明する。   Next, a half-cell measurement method for evaluating the characteristics of the fuel cell 1 will be described.

アノード側の計測を行う場合、アノードガス流路21aにHガスを、カソードガス流路31aにNガスをそれぞれ供給する。この場合、アノード参照電極2Bを参照極、アノード本電極2Aを作用極、カソード本電極3Aを対極として、アノード本電極2Aおよびカソード本電極3A間に電流を流しながら、電圧計61を用いてアノード参照電極2Bに対するアノード本電極2Aの電圧(過電圧η)を計測する。 When measuring on the anode side, H 2 gas is supplied to the anode gas flow path 21a, and N 2 gas is supplied to the cathode gas flow path 31a. In this case, the anode reference electrode 2B is used as a reference electrode, the anode main electrode 2A is used as a working electrode, the cathode main electrode 3A is used as a counter electrode, and a current is passed between the anode main electrode 2A and the cathode main electrode 3A. The voltage (overvoltage η) of the anode main electrode 2A with respect to the reference electrode 2B is measured.

アノード本電極2Aおよびカソード本電極3A間の電流は、負荷装置4を介して制御手段51により制御する。また、アノード参照電極2Bに対するアノード本電極2Aの電圧(過電圧η)は計測手段52により計測される。これにより、アノード本電極2Aおよびカソード本電極3A間の電流および過電圧ηについて、電流−過電圧特性を計測する。   The current between the anode main electrode 2 </ b> A and the cathode main electrode 3 </ b> A is controlled by the control means 51 via the load device 4. The voltage of the anode main electrode 2A (overvoltage η) with respect to the anode reference electrode 2B is measured by the measuring means 52. Thereby, the current-overvoltage characteristic is measured for the current and the overvoltage η between the anode main electrode 2A and the cathode main electrode 3A.

本実施形態では、計測装置5の制御手段51によってガス供給装置7を制御することにより、アノードガス流路21aに供給されるHガスの流量を変更しつつ、上記の電流−過電圧特性を計測する。 In the present embodiment, by controlling the gas supply device 7 by the control means 51 of the measurement device 5, the current-overvoltage characteristic is measured while changing the flow rate of the H 2 gas supplied to the anode gas passage 21a. To do.

一方、カソード側の計測を行う場合、カソードガス流路31aにHガスを、アノードガス流路21aにNガスをそれぞれ供給する。この場合、カソード参照電極3Bを参照極、カソード本電極3Aを作用極、アノード本電極2Aを対極として、アノード本電極2Aおよびカソード本電極3A間に電流を流しながら、電圧計62を用いてカソード参照電極3Bに対するカソード本電極3Aの電圧(過電圧η)を計測する。 On the other hand, when measuring on the cathode side, H 2 gas is supplied to the cathode gas flow path 31a, and N 2 gas is supplied to the anode gas flow path 21a. In this case, the cathode reference electrode 3B is used as a reference electrode, the cathode main electrode 3A is used as a working electrode, the anode main electrode 2A is used as a counter electrode, and a current is passed between the anode main electrode 2A and the cathode main electrode 3A. The voltage (overvoltage η) of the cathode main electrode 3A with respect to the reference electrode 3B is measured.

アノード本電極2Aおよびカソード本電極3A間の電流は、負荷装置4を介して制御手段51により制御する。また、カソード参照電極3Bに対するカソード本電極3Aの電圧(過電圧η)は計測手段52により計測される。これにより、アノード本電極2Aおよびカソード本電極3A間の電流および過電圧ηについて、電流−過電圧特性を計測する。   The current between the anode main electrode 2 </ b> A and the cathode main electrode 3 </ b> A is controlled by the control means 51 via the load device 4. The voltage of the cathode main electrode 3A (overvoltage η) with respect to the cathode reference electrode 3B is measured by the measuring means 52. Thereby, the current-overvoltage characteristic is measured for the current and the overvoltage η between the anode main electrode 2A and the cathode main electrode 3A.

本実施形態では、計測装置5の制御手段51によってガス供給装置7を制御することにより、カソードガス流路31aに供給されるHガスの流量を変更しつつ、上記の電流−過電圧特性を計測する。 In the present embodiment, by controlling the gas supply device 7 by the control means 51 of the measurement device 5, the current-overvoltage characteristic is measured while changing the flow rate of the H 2 gas supplied to the cathode gas flow path 31a. To do.

図2は、半電池計測の結果を例示する図である。   FIG. 2 is a diagram illustrating a result of half-cell measurement.

図2の例では、Hの供給流量をQ1,Q2,Q3とし(Q1<Q2<Q3)、各供給流量における電流−過電圧特性を計測している。 In the example of FIG. 2, the supply flow rate of H 2 is Q1, Q2, and Q3 (Q1 <Q2 <Q3), and the current-overvoltage characteristic at each supply flow rate is measured.

図2に示すように、電流iの増加とともに過電圧ηは比例的に増加し、ある電流値で過電圧ηが急激に増大する。例えば、Hの供給流量がQ1のときに電流値i1において、Hの供給流量がQ2のときに電流値i2において、それぞれ過電圧ηが急激に増大する。このように、過電圧ηが急激に増大する電流値は、Hの供給流量不足により生ずる限界電流値を示している。 As shown in FIG. 2, as the current i increases, the overvoltage η increases proportionally, and the overvoltage η increases rapidly at a certain current value. For example, the overvoltage η increases abruptly at the current value i1 when the supply flow rate of H 2 is Q1, and at the current value i2 when the supply flow rate of H 2 is Q2. As described above, the current value at which the overvoltage η increases rapidly indicates a limit current value caused by an insufficient supply flow rate of H 2 .

また、Hの供給流量が反応に対して充分な量であっても、拡散要因に起因する限界(電流の最大値)が存在する。Hの供給流量をQ3としたときの電流値i3がこれに対応する。 Even if the supply flow rate of H 2 is sufficient for the reaction, there is a limit (maximum current value) due to the diffusion factor. Current i3 corresponding to the time of the supply flow rate of H 2 and Q3.

燃料電池の劣化は、電流−過電圧特性に反映される。図3(a)は、拡散要因に起因する燃料電池10の劣化が生じた場合の電流−過電圧特性を例示している。   The deterioration of the fuel cell is reflected in the current-overvoltage characteristics. FIG. 3A illustrates the current-overvoltage characteristic when the fuel cell 10 is deteriorated due to the diffusion factor.

図3(a)に示すように、拡散要因に起因する劣化が生じた場合、同じHの供給流量(この場合、Q3)でも、電流値がi3からi3´に減少する(Δi=i3−i3´)。したがって、このような経時変化を捉えることで、拡散要因に起因する劣化を検出することができる。 As shown in FIG. 3A, when deterioration due to a diffusion factor occurs, the current value decreases from i3 to i3 ′ (Δi = i3−3) even with the same H 2 supply flow rate (Q3 in this case). i3 '). Therefore, it is possible to detect deterioration due to a diffusion factor by capturing such a change with time.

図3(b)は、Hの供給流量と、電流値(最大値)との関係を示している。図3(b)に示すように、拡散要因に起因する劣化が生じた場合、Hの供給流量が大きい領域で電流値(最大値)が飽和する。 FIG. 3B shows the relationship between the supply flow rate of H 2 and the current value (maximum value). As shown in FIG. 3B, when deterioration due to a diffusion factor occurs, the current value (maximum value) is saturated in a region where the supply flow rate of H 2 is large.

図4は、触媒の活性化要因に起因する劣化が生じた場合の電流−過電圧特性を例示している。この場合、活性化要因に起因する劣化とともに、電流−過電圧の傾きが増大する。例えば、電流−過電圧の傾きがα(図2)からα´(図4)に増加する。したがって、このような経時変化を捉えることで、触媒の活性化要因に起因する劣化を検出することができる。   FIG. 4 illustrates the current-overvoltage characteristics when deterioration due to the activation factor of the catalyst occurs. In this case, the current-overvoltage gradient increases with deterioration due to the activation factor. For example, the current-overvoltage slope increases from α (FIG. 2) to α ′ (FIG. 4). Therefore, it is possible to detect deterioration due to the activation factor of the catalyst by capturing such a change with time.

図5(a)は、交換電流密度が変化した場合の電流−過電圧特性を例示している。図5(a)の例では、触媒機能が保たれているため電流−過電圧の傾きは不変であるが、触媒反応に寄与する面積が減少するため、交換電流密度がi0からi0´に減少している。したがって、このような経時変化を捉えることで、交換電流密度の変化を検出することができ、劣化要因等を詳細に解析できる。   FIG. 5A illustrates the current-overvoltage characteristics when the exchange current density changes. In the example of FIG. 5A, since the catalytic function is maintained, the slope of current-overvoltage is unchanged, but the area contributing to the catalytic reaction is reduced, so that the exchange current density is reduced from i0 to i0 ′. ing. Therefore, by capturing such a change with time, a change in the exchange current density can be detected, and a deterioration factor or the like can be analyzed in detail.

図5(b)は、電流−過電圧特性に反応電子数の変化点が現れる例を示している。   FIG. 5B shows an example in which the change point of the number of reaction electrons appears in the current-overvoltage characteristics.

一般的に、触媒活性は反応電子数(n)によって異なる。図5(b)の例では、電流−過電圧の傾きが領域Pでα1からα2に変化しており、このことは、この領域で反応電子数が変化することを示している。したがって、反応電子数の変化点の位置の経時変化を捉えることで、劣化要因等を詳細に解析できる。   In general, the catalytic activity varies depending on the number of reaction electrons (n). In the example of FIG. 5B, the current-overvoltage slope changes from α1 to α2 in the region P, which indicates that the number of reaction electrons changes in this region. Therefore, the deterioration factor and the like can be analyzed in detail by grasping the change with time of the change point of the number of reaction electrons.

以上のように、燃料電池に対して半電池計測を行うことにより劣化の要因等をアノード側、カソード側に分離して解析することができる。また、Hの供給流量を変えながら半電池計測を行うことで、燃料電池の劣化要因を拡散要因、活性化要因などに分離、特定することができる。これにより、燃料電池の設計をより的確なものにできるとともに、半電池計測の結果を燃料電池の運転制御に有効に活用できる。 As described above, by performing half-cell measurement on the fuel cell, it is possible to analyze the cause of deterioration separately on the anode side and the cathode side. Further, by performing half-cell measurement while changing the supply flow rate of H 2 , it is possible to separate and specify the deterioration factor of the fuel cell into a diffusion factor, an activation factor, and the like. As a result, the design of the fuel cell can be made more accurate, and the result of the half-cell measurement can be effectively utilized for operation control of the fuel cell.

以上説明したように、本発明の燃料電池の評価方法によれば、半電池状態にある燃料電池への水素供給量を変化させつつ、半電池状態にある前記燃料電池の電気特性を計測するので、燃料電池の状態を詳細に評価することができる。   As described above, according to the fuel cell evaluation method of the present invention, the electrical characteristics of the fuel cell in the half-cell state are measured while changing the hydrogen supply amount to the fuel cell in the half-cell state. The state of the fuel cell can be evaluated in detail.

本発明の適用範囲は上記実施形態に限定されることはない。本発明は、半電池計測によって燃料電池の状態を評価する燃料電池の評価方法および燃料電池の評価装置に対し、広く適用することができる。   The scope of application of the present invention is not limited to the above embodiment. The present invention can be widely applied to a fuel cell evaluation method and a fuel cell evaluation apparatus that evaluate the state of a fuel cell by half-cell measurement.

10 燃料電池
51 制御手段
52 計測手段
DESCRIPTION OF SYMBOLS 10 Fuel cell 51 Control means 52 Measuring means

Claims (6)

半電池計測によって燃料電池の状態を評価する燃料電池の評価方法において、
半電池状態にある燃料電池への水素供給量を変化させるステップと、
水素供給量を変化させるステップにより変化する各水素供給量における前記燃料電池の電気特性を計測するステップと、
を備えることを特徴とする燃料電池の評価方法。
In the fuel cell evaluation method for evaluating the state of the fuel cell by half-cell measurement,
Changing the amount of hydrogen supplied to the fuel cell in a half-cell state;
Measuring the electrical characteristics of the fuel cell at each hydrogen supply amount that varies with the step of changing the hydrogen supply amount; and
A method for evaluating a fuel cell, comprising:
前記電気特性を計測するステップでは、半電池状態にある前記燃料電池の限界電流値を計測することを特徴とする請求項1に記載の燃料電池の評価方法。 2. The method for evaluating a fuel cell according to claim 1, wherein in the step of measuring the electrical characteristics, a limit current value of the fuel cell in a half-cell state is measured. 前記電気特性を計測するステップでは、半電池状態にある前記燃料電池の電流−過電圧特性における傾きを計測することを特徴とする請求項1に記載の燃料電池の評価方法。 2. The method for evaluating a fuel cell according to claim 1, wherein in the step of measuring the electrical characteristics, an inclination in a current-overvoltage characteristic of the fuel cell in a half-cell state is measured. 前記電気特性を計測するステップでは、半電池状態にある前記燃料電池の交換電流密度を計測することを特徴とする請求項1に記載の燃料電池の評価方法。 2. The fuel cell evaluation method according to claim 1, wherein in the step of measuring the electrical characteristics, an exchange current density of the fuel cell in a half-cell state is measured. 前記電気特性を計測するステップでは、半電池状態にある前記燃料電池の電流−過電圧特性における傾きの変化点を計測することを特徴とする請求項1に記載の燃料電池の評価方法。 2. The fuel cell evaluation method according to claim 1, wherein in the step of measuring the electrical characteristics, a change point of the slope in the current-overvoltage characteristics of the fuel cell in the half-cell state is measured. 半電池計測によって燃料電池の状態を評価する燃料電池の評価装置において、
半電池状態にある燃料電池への水素供給量を変化させる制御手段と、
前記制御手段により変化する各水素供給量における前記燃料電池の電気特性を計測する計測手段と、
を備えることを特徴とする燃料電池の評価装置。
In a fuel cell evaluation device that evaluates the state of a fuel cell by half-cell measurement,
Control means for changing the amount of hydrogen supplied to the fuel cell in the half-cell state;
Measuring means for measuring electrical characteristics of the fuel cell at each hydrogen supply amount changed by the control means;
A fuel cell evaluation apparatus comprising:
JP2009139876A 2009-06-11 2009-06-11 Fuel cell-evaluating method and device Pending JP2010287412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009139876A JP2010287412A (en) 2009-06-11 2009-06-11 Fuel cell-evaluating method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009139876A JP2010287412A (en) 2009-06-11 2009-06-11 Fuel cell-evaluating method and device

Publications (1)

Publication Number Publication Date
JP2010287412A true JP2010287412A (en) 2010-12-24

Family

ID=43542963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009139876A Pending JP2010287412A (en) 2009-06-11 2009-06-11 Fuel cell-evaluating method and device

Country Status (1)

Country Link
JP (1) JP2010287412A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108562783A (en) * 2018-04-13 2018-09-21 武汉理工大学 A kind of subregion test system and method for cold boot of fuel cell current density and temperature

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01134868A (en) * 1987-11-20 1989-05-26 Mitsubishi Electric Corp Fuel cell device
JPH06111829A (en) * 1991-09-09 1994-04-22 Fine Ceramics Center Mixed body suitable for electrode material for solid electrolyte type fuel cell, and electrode for solid electrolyte type fuel cell
JPH08298129A (en) * 1995-04-28 1996-11-12 Toshiba Corp Fuel cell system
JP2004164909A (en) * 2002-11-11 2004-06-10 Denso Corp Fuel cell system
JP2007048647A (en) * 2005-08-11 2007-02-22 Yokogawa Electric Corp Fuel cell
JP2007066590A (en) * 2005-08-30 2007-03-15 Yokogawa Electric Corp Characteristic measuring method and device of fuel cell
JP2010287411A (en) * 2009-06-11 2010-12-24 Yokogawa Electric Corp Kinetic parameter calculation method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01134868A (en) * 1987-11-20 1989-05-26 Mitsubishi Electric Corp Fuel cell device
JPH06111829A (en) * 1991-09-09 1994-04-22 Fine Ceramics Center Mixed body suitable for electrode material for solid electrolyte type fuel cell, and electrode for solid electrolyte type fuel cell
JPH08298129A (en) * 1995-04-28 1996-11-12 Toshiba Corp Fuel cell system
JP2004164909A (en) * 2002-11-11 2004-06-10 Denso Corp Fuel cell system
JP2007048647A (en) * 2005-08-11 2007-02-22 Yokogawa Electric Corp Fuel cell
JP2007066590A (en) * 2005-08-30 2007-03-15 Yokogawa Electric Corp Characteristic measuring method and device of fuel cell
JP2010287411A (en) * 2009-06-11 2010-12-24 Yokogawa Electric Corp Kinetic parameter calculation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108562783A (en) * 2018-04-13 2018-09-21 武汉理工大学 A kind of subregion test system and method for cold boot of fuel cell current density and temperature

Similar Documents

Publication Publication Date Title
JP4807000B2 (en) Performance degradation determination apparatus and method
KR102096268B1 (en) Fuel cell system and controlling method thereof
US20140239962A1 (en) Fuel cell inspection method and inspection device
JP5343509B2 (en) FUEL CELL SYSTEM AND FUEL CELL STATE DETECTION METHOD
JP5326423B2 (en) FUEL CELL SYSTEM AND FUEL CELL STATE DETECTION METHOD
CN106856244B (en) Method and system for diagnosing the state of a fuel cell stack
JP2019518318A (en) Fuel cell prediction model based on equivalent circuit
JP4595367B2 (en) Deterioration diagnosis method and apparatus for fuel cell
JP5858023B2 (en) Durability inspection device and durability inspection method for membrane electrode assembly
JP2010021072A (en) Lower limit voltage setting method of fuel cell, upper limit voltage setting method of fuel cell, and fuel cell system
JP6252459B2 (en) Inspection method of fuel cell
JP5461051B2 (en) Fuel cell measuring device
JP2010287412A (en) Fuel cell-evaluating method and device
KR101349022B1 (en) Catalyst deterioration jundging method for fuel cell
KR101664611B1 (en) System and method for judging deterioration of fuel cell
JP2008176944A (en) Inspection method of fuel cell
JP5146723B2 (en) Fuel cell catalyst performance evaluation method and evaluation apparatus using the same
KR101308254B1 (en) Apparatus and method for monitoring of fuel cell stack status
Gunji et al. Quick crossover current measurement of a polymer electrolyte fuel cell stack with and without cell voltage terminals
JP2007095573A (en) Fuel cell and evaluation method of fuel cell
JP2006331731A (en) Film-electrode assembly and polymer electrolyte fuel cell using the same
JP2015185320A (en) Property evaluation method of fuel battery cell, fuel battery device, and manufacturing method of fuel battery cell
JP2014049266A (en) Method and device for measuring electrolyte membrane of fuel cell
JP5508633B2 (en) Fuel cell abnormality detection device, fuel cell device, and fuel cell abnormality detection method
JP2010287411A (en) Kinetic parameter calculation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140603