JPH06111829A - Mixed body suitable for electrode material for solid electrolyte type fuel cell, and electrode for solid electrolyte type fuel cell - Google Patents

Mixed body suitable for electrode material for solid electrolyte type fuel cell, and electrode for solid electrolyte type fuel cell

Info

Publication number
JPH06111829A
JPH06111829A JP3257054A JP25705491A JPH06111829A JP H06111829 A JPH06111829 A JP H06111829A JP 3257054 A JP3257054 A JP 3257054A JP 25705491 A JP25705491 A JP 25705491A JP H06111829 A JPH06111829 A JP H06111829A
Authority
JP
Japan
Prior art keywords
oxide
electrode
fuel cell
solid solution
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3257054A
Other languages
Japanese (ja)
Other versions
JP3342502B2 (en
Inventor
Takehisa Fukui
武久 福井
Shinji Kawasaki
真司 川崎
Takekimi Bougauchi
丈仁 坊ケ内
Shinji Takeuchi
伸二 竹内
Yasuhei Kikuoka
泰平 菊岡
Yoshimi Ezaki
義美 江崎
Masatoshi Hattori
雅俊 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FINE CERAMICS CENTER
Kansai Electric Power Co Inc
Chubu Electric Power Co Inc
Original Assignee
FINE CERAMICS CENTER
Kansai Electric Power Co Inc
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FINE CERAMICS CENTER, Kansai Electric Power Co Inc, Chubu Electric Power Co Inc filed Critical FINE CERAMICS CENTER
Priority to JP25705491A priority Critical patent/JP3342502B2/en
Publication of JPH06111829A publication Critical patent/JPH06111829A/en
Application granted granted Critical
Publication of JP3342502B2 publication Critical patent/JP3342502B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To improve electric performance of an electrode for a solid electrolyte type fuel cell (SOFC), by mixing a specific oxide solid solution with zirconium at a fixed ratio. CONSTITUTION:In the mixed body of an oxide solid solution and cubic and/or solution has main components of magnesium oxide and nickel oxide, the magnesium oxide is made to have 5mol or more and 25mol% or less to total mol quantity of the magnesium oxide and the nickel oxide, and the remainder is the nickel oxide. In cubic and/or tetragonal zirconium, its mixed quantity is made 35mol% or less to the total mol quantity of the mixed body. An SOFC electrode is manufactured by a usual method with the mixed body as material. At that time, it is required to reduce the oxide solid solvent to deposit Ni. Consequently electronic conductivity by Ni is given, and concurrently thermal expansion coefficient approaches that of the cubic oxide zirconium, usually used as solid electrolyte material, in the zirconium oxide, and ion conductivity is given.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体電解質型燃料電池用
電極材料に適した混合体及びこの混合体を主材料として
作製した固体電解質型燃料電池用電極に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mixture suitable for an electrode material for a solid oxide fuel cell and a solid oxide fuel cell electrode produced by using this mixture as a main material.

【0002】[0002]

【従来の技術】従来、固体電解質型燃料電池(以下、S
OFCという)の燃料側電池(以下、燃料極という)の
材料には、ニッケル(Ni)やニッケルと酸化ジルコニ
ウム(ZrO2 )のサーメットが使用されていた。
2. Description of the Related Art Conventionally, solid oxide fuel cells (hereinafter referred to as S
Nickel (Ni) or cermet of nickel and zirconium oxide (ZrO 2 ) has been used as a material for a fuel side cell (hereinafter referred to as a fuel electrode) of OFC.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来のSOF
C用電極材料から得られる電極はその電気性能が充分で
はなく、より電気性能の高いSOFC用電極を与え得る
電極材料が望まれていた。そこで本発明の課題は従来よ
りも電気性能が改良されたSOFC用電極を与え得るS
OFC用電極材料及び電気性能が改良されたSOFC用
電極を提供することにある。
[Problems to be Solved by the Invention] However, the conventional SOF
The electrode obtained from the electrode material for C has insufficient electric performance, and an electrode material capable of providing an SOFC electrode having higher electric performance has been desired. Therefore, an object of the present invention is to provide an electrode for SOFC whose electric performance is improved as compared with the conventional one.
An object of the present invention is to provide an electrode material for OFC and an electrode for SOFC with improved electric performance.

【0004】[0004]

【課題を解決するための手段】前記課題を解決する為、
請求項1に記載の固体電解質型燃料電池用電極材料に適
した混合体は主として酸化物固溶体と立方晶及び/又は
正方晶酸化ジルコニウムとからなる混合体であって、前
記酸化物固溶体は酸化マグネシウム及び酸化ニッケルよ
り主としてなり、それらの総モル量に対して酸化マグネ
シウムは5モル以上25モル%以下であり、残部が酸化
ニッケルである一方、前記立方晶及び/又は正方晶酸化
ジルコニウムはその混合量が前記混合体の総モル量に対
して35モル%以下であることを特徴とする。そして前
記課題を解決するための請求項2に記載の固体電解質型
燃料電池用電極は請求項1の混合体を主材料としてなる
固体電解質型燃料電池用電極であって、主に微細ニッケ
ルよりなる部分と主に酸化ジルコニウムよりなる部分と
を有し、前記二つの部分がネットワーク状の構造を有す
ることを特徴とする。
[Means for Solving the Problems] In order to solve the above problems,
The mixture suitable for the electrode material for solid oxide fuel cells according to claim 1 is a mixture mainly composed of an oxide solid solution and cubic and / or tetragonal zirconium oxide, and the oxide solid solution is magnesium oxide. And 25% by mole or less of magnesium oxide with respect to the total molar amount thereof, and the balance being nickel oxide, while the cubic and / or tetragonal zirconium oxide is in a mixed amount thereof. Is 35 mol% or less based on the total molar amount of the mixture. The electrode for a solid oxide fuel cell according to claim 2 for solving the above-mentioned problems is an electrode for a solid oxide fuel cell which uses the mixture according to claim 1 as a main material, and is mainly composed of fine nickel. It has a part and a part mainly made of zirconium oxide, and the two parts have a network structure.

【0005】前記酸化物固溶体とはニッケル原子(N
i)、マグネシウム原子(Mg)及び酸素原子(O)が
原子オーダーで均一に混合されているものを意味する。
この酸化物固溶体を製造する方法としては、Ni及びM
gの酢酸塩水溶液の熱分解法又はNi及びMgの硝酸塩
水溶液の熱分解法等のウェット・プロセス(wet proces
s) やNiO粉末とMgO粉末を混合し、仮焼する方法
又はNi塩粉末とMg塩粉末を混合し仮焼する方法等の
ドライ・プロセス(dry process) など通常の方法を用い
得る。
The oxide solid solution is a nickel atom (N
i), a magnesium atom (Mg) and an oxygen atom (O) are uniformly mixed in atomic order.
As a method for producing this oxide solid solution, Ni and M are used.
wet processes such as thermal decomposition of an aqueous solution of acetic acid salt of g or thermal decomposition of an aqueous solution of nitrate of Ni and Mg.
s) or a dry process such as a method of mixing NiO powder and MgO powder and calcining, or a method of mixing Ni salt powder and Mg salt powder and calcining, etc. can be used.

【0006】また前記立方晶及び/又は正方晶酸化ジル
コニウムとは各々立方晶系又は正方晶系に結晶系を安定
化した酸化ジルコニウム(ZrO2 )を意味する。結晶
系を安定化する方法としては、例えば、イットリア(Y
2 3 )を用いて安定化したり又は酸化カルシウム(C
aO)を用いて安定化するなど種々の方法を用い得る。
このようにZrO2 を立方晶系又は正方晶系に安定化す
る必要があるのは、温度変化によってZrO2 の結晶系
が変化すると、その体積が大きく変化してしまい、その
ために電極作製時に電極と電解質との剥離が生じてしま
うからである。そして立方晶又は正方晶酸化ジルコニウ
ムのいずれか一方を用いてもよく、又はこれら両方を用
いてもよい。
The cubic and / or tetragonal zirconium oxide means zirconium oxide (ZrO 2 ) whose crystal system is stabilized in the cubic system or the tetragonal system, respectively. As a method for stabilizing the crystal system, for example, yttria (Y
2 O 3 ) or calcium oxide (C
Various methods can be used, such as stabilization with aO).
As described above, it is necessary to stabilize ZrO 2 to a cubic system or a tetragonal system because when the crystal system of ZrO 2 changes due to a temperature change, the volume of the ZrO 2 changes greatly, which is why the electrode is made during electrode preparation. This is because peeling between the electrolyte and the electrolyte occurs. And either one of cubic crystal and tetragonal zirconium oxide may be used, or both of them may be used.

【0007】次に前記混合体とは前記酸化物固溶体の粉
末と立方晶及び/又は正方晶酸化ジルコニウム(以下、
酸化ジルコニウムという)の粉末を単に略均一に混合し
たものを意味する。
Next, the mixture means the powder of the oxide solid solution and cubic and / or tetragonal zirconium oxide (hereinafter,
Zirconium oxide) is simply mixed in a substantially uniform manner.

【0008】前記酸化物固溶体の総モル量に対して酸化
マグネシウムは5モル%以上25モル%以下であり、残
部が酸化ニッケルとされるのは酸化マグネシウムが5モ
ル%より少ない場合、及び25モル%より多い場合には
SOFC用電極の電気性能が従来より改良されないため
であり、より好ましい酸化マグネシウム量は10〜20
モル%である。
Magnesium oxide is 5 mol% or more and 25 mol% or less with respect to the total molar amount of the oxide solid solution, and the balance is defined as nickel oxide when magnesium oxide is less than 5 mol% and This is because the electrical performance of the SOFC electrode is not improved when it is more than 10%, and the more preferable amount of magnesium oxide is 10 to 20.
Mol%.

【0009】前記酸化ジルコニウムの混合量が混合体の
総モル量に対して35モル%以下とされるのも35モル
%より多い場合にはSOFC用電極の電気特性が従来よ
り改良されないためであり、より好ましい酸化ジルコニ
ウムの混合量は10〜30モル%、特に好ましくは20
モル%である。
The amount of the zirconium oxide mixed is set to 35 mol% or less with respect to the total molar amount of the mixture because the electrical characteristics of the SOFC electrode are not improved as compared with the conventional case when it is more than 35 mol%. More preferably, the mixing amount of zirconium oxide is 10 to 30 mol%, particularly preferably 20.
Mol%.

【0010】請求項1の混合体を材料としてSOFC用
電極を製造する方法としては電解質上に印刷して焼成す
る方法、電解質上にデイッピングして焼成する方法、化
学蒸着法(CVD)又は電解質上に溶射する方法等、通
常の種々の方法を用いうる。但し前記酸化物固溶体を還
元してNiを析出させることが必要とされる。また、請
求項1の混合体はSOFC用電極材料として用いるのに
適しているが、それ以外の用途もあり、例えば触媒とし
ても用いうる。
The method for producing an SOFC electrode using the mixture of claim 1 as a material includes printing on an electrolyte and firing, dipping on the electrolyte and firing, chemical vapor deposition (CVD) or on electrolyte. Various conventional methods such as thermal spraying can be used. However, it is necessary to reduce the oxide solid solution to precipitate Ni. Further, the mixture according to claim 1 is suitable for use as an electrode material for SOFC, but it has other uses, for example, it can be used as a catalyst.

【0011】請求項2において、主に微細ニッケルより
なる部分とはニッケル含量が50モル%以上、好ましく
は80〜90%以上である部分であり、この部分は微細
ニッケル粒子による多孔質構造を有している。また前記
微細ニッケルとは0.5μm以下、より好ましくは0.
1〜0.2μmのニッケル粒子を意味する。
In the second aspect, the portion mainly composed of fine nickel is a portion having a nickel content of 50 mol% or more, preferably 80 to 90% or more, and this portion has a porous structure of fine nickel particles. is doing. Further, the fine nickel is 0.5 μm or less, more preferably 0.
It means nickel particles of 1 to 0.2 μm.

【0012】また請求項2中、主に酸化ジルコニウムよ
りなる部分とは酸化ジルコニウム含量が50モル%以
上、より好ましくは80〜90モル%以上の部分をい
う。
In the second aspect, the portion mainly composed of zirconium oxide means a portion having a zirconium oxide content of 50 mol% or more, more preferably 80 to 90 mol% or more.

【0013】そして、前記二つの部分がネットワーク状
の構造を有するとは前記二つの部分が三次元的に結合
し、全体として多孔質体の構造を形成していることを意
味する。
The fact that the two parts have a network-like structure means that the two parts are three-dimensionally connected and form a porous structure as a whole.

【0014】[0014]

【作用】請求項1の混合体によると酸化物固溶体におい
てはNi、Mg及びO原子が原子オーダーで均一に混合
されていることにより、NiOの還元によって析出する
Ni粒子が微細化される。またこの酸化物固溶体に含ま
れるNiとMgの含有量が特定の割合であるため、Ni
による電子導電性を有すると同時に、その熱膨脹率が、
前記酸化ジルコニウムの内で通常、固体電解質材料とし
て用いられている立方晶酸化ジルコニウム(以下YSZ
という)に近づく。さらに請求項1の混合体は前記酸化
ジルコニウムを特定量含有しているので、イオン導電性
が付与されると共にその熱膨脹率がさらにYSZに近づ
く。
According to the mixture of the first aspect, the Ni, Mg and O atoms are uniformly mixed in the oxide solid solution in the atomic order, whereby the Ni particles precipitated by the reduction of NiO are miniaturized. Moreover, since the content of Ni and Mg contained in this oxide solid solution is a specific ratio,
It has electronic conductivity due to
Among the zirconium oxides, cubic zirconium oxide (hereinafter referred to as YSZ) which is usually used as a solid electrolyte material.
Say)). Furthermore, since the mixture according to claim 1 contains a specific amount of the zirconium oxide, ionic conductivity is imparted and the coefficient of thermal expansion thereof further approaches YSZ.

【0015】請求項2のSOFC用電極によると請求項
1の混合体を主材料としているので前記混合体の各作用
が生じると共に、主に微細ニッケルよりなる部分が電子
導電性を有し、一方、主に酸化ジルコニウムよりなる部
分がイオン導電性を有し、さらにこれら二つの部分によ
るネットワーク状の構造を有することにより反応の場が
拡大される。そしてニッケルが微細化されていることに
よっても反応の場が拡大される。また酸化ジルコニウム
及びMgOによりニッケルの焼結が抑制されているので
耐熱性が改良される。
According to the SOFC electrode of claim 2, since the mixture of claim 1 is used as a main material, each action of the mixture occurs and at the same time, a portion mainly made of fine nickel has electronic conductivity, while The field mainly composed of zirconium oxide has ionic conductivity, and the network structure of these two parts further expands the field of reaction. And the field of reaction is expanded by the miniaturization of nickel. Moreover, since the sintering of nickel is suppressed by zirconium oxide and MgO, the heat resistance is improved.

【0016】[0016]

【実施例】次に本発明の具体例である固体電解質型燃料
電池用電極の製造方法について説明する。まず最初に請
求項1における酸化物固溶体及び混合体の製造方法の一
具体例について説明する。
EXAMPLES Next, a method for manufacturing a solid oxide fuel cell electrode, which is a specific example of the present invention, will be described. First, a specific example of the method for producing an oxide solid solution and a mixture according to claim 1 will be described.

【0017】製造例1 酸化物固溶体の製造 酢酸ニッケル4水和物(Ni(CH3 COO)2 ・4H
2 O、特級、和光純薬工業製)及び酢酸マグネシウム4
水和物(Mg(CH3 COO)2 ・4H2 O、特級、キ
シダ化学製)をモル数9:1、8:2、7:3又は6:
4に秤量し、純水を加えた後、マグネティックスターラ
ーで攪拌し、0.5規定水溶液を作製した。これらの水
溶液を750〜850℃に保った石英管中に約2cc/分
の速度で滴下し、熱分解を行った。その後1000℃に
て24時間、空気中で熱処理を施して得られた粉末のX
線チャートを、X線発生源として銅のKαの線を用いて
調べた。その結果、全ての粉末において岩塩型結晶の回
折ピークのみが存在し、この回析ピークがMgOの添加
量増加につれて連続的に低角度側にシフトしているこ
と、各々の回析ピークが分離せずに1本であること、か
つ回析ピークがシャーブであることから、上記製造方法
で得られた粉末はNiO成分とMgO成分が充分に固溶
していることがわかった。
Production Example 1 Production of Oxide Solid Solution Nickel acetate tetrahydrate (Ni (CH 3 COO) 2 .4H
2 O, special grade, Wako Pure Chemical Industries) and magnesium acetate 4
The hydrate (Mg (CH 3 COO) 2 .4H 2 O, special grade, manufactured by Kishida Chemical) has a molar number of 9: 1, 8: 2, 7: 3 or 6:
After weighing 4 and adding pure water, the mixture was stirred with a magnetic stirrer to prepare a 0.5N aqueous solution. These aqueous solutions were dropped into a quartz tube kept at 750 to 850 ° C. at a rate of about 2 cc / min for thermal decomposition. Then, X of powder obtained by heat treatment in air at 1000 ° C. for 24 hours
The line chart was examined using the copper Kα line as the X-ray source. As a result, in all powders, only diffraction peaks of rock salt type crystals were present, and this diffraction peak continuously shifted to the lower angle side as the amount of MgO added increased, and each diffraction peak was separated. It was found that the NiO component and the MgO component were sufficiently solid-dissolved in the powder obtained by the above-mentioned production method, since it was one and the diffraction peak was a sherb.

【0018】以後の記述においては酸化物固溶体の製造
時に用いた酢酸ニッケル4水和物及び酢酸マグネシウム
4水和物のモル数比が9:1、8:2、7:3又は6:
4である場合の酸化物固溶体を各々MgO 10%固溶
体、MgO 20%固溶体、MgO 30%固溶体及び
MgO 40%固溶体と表す。そして、例えばMgO2
0%固溶体においてはMgOの固溶量が20モル%であ
り、NiOの固溶量が80モル%であるというように表
す。他の酸化物固溶体についても同様に表すこととす
る。
In the following description, the molar ratio of nickel acetate tetrahydrate and magnesium acetate tetrahydrate used in the production of the oxide solid solution is 9: 1, 8: 2, 7: 3 or 6 :.
The oxide solid solutions in the case of 4 are represented as MgO 10% solid solution, MgO 20% solid solution, MgO 30% solid solution and MgO 40% solid solution, respectively. And, for example, MgO2
In the 0% solid solution, the solid solution amount of MgO is 20 mol%, and the solid solution amount of NiO is 80 mol%. The same applies to other oxide solid solutions.

【0019】製造例2 混合体の製造 製造例1で得られた各種の酸化物固溶体にサブミクロン
のYSZを得られる混合体の総モルに対して0、10、
20、30、40又は60モル%の量を各々添加し、乳
鉢で均一になるまで混合することによって、各種混合体
を作製した。
Production Example 2 Production of Mixture 0 to 10, based on the total moles of the mixture, which can obtain submicron YSZ in the various oxide solid solutions obtained in Production Example 1.
Various mixtures were prepared by adding amounts of 20, 30, 40 or 60 mol% each and mixing until uniform in a mortar.

【0020】実施例 SOFC用電極の作製 製造例2にて作製した各種混合体に対して、バインダー
としてポリエチレングリコールを添加し、ペーストと
し、これを日本化学陶業社製YSZペレット(直径13
mm、厚さ1mm)上にスクリーン(#(メッシュ)20
0)印刷した。これを1400℃、2時間で焼付けた。
この場合の燃料極肉厚は15μmであった。なお焼付け
の際の昇降温速度は200℃/時間とした。そして後述
の試験例1〜4における電気性能測定前に電極を3時間
で1000℃にまで加熱し、次に水素を50cc/分の流
速にて30分間流すことにより電極の還元を行った。
Example Preparation of SOFC electrode Polyethylene glycol was added as a binder to the various mixtures prepared in Production Example 2 to form a paste, which was made into a YSZ pellet (diameter 13).
mm (thickness: 1 mm) and screen (# (mesh) 20
0) Printed. This was baked at 1400 ° C. for 2 hours.
The fuel electrode wall thickness in this case was 15 μm. The rate of temperature increase / decrease during baking was 200 ° C./hour. The electrode was heated to 1000 ° C. for 3 hours and then hydrogen was flowed at a flow rate of 50 cc / min for 30 minutes to reduce the electrode before measuring electrical performance in Test Examples 1 to 4 described below.

【0021】製造例3 燃料極セルの作製 次に実施例で得られたSOFC用電極の性能を評価する
ために、以下の方法で燃料極セルを作製した。すなわ
ち、実施例で得られた電極のYSZペレットの裏面に空
気極(La0.8Sr0.2 0.9 MnO3 )をスクリーン
印刷し、1200℃、4時間で焼付けた。次に参照極を
1000℃、2時間で焼付け、燃料極セルを得た。焼付
けの際の昇降温度速度は、全て200℃/時間とした。
Production Example 3 Production of Fuel Electrode Cell Next, in order to evaluate the performance of the SOFC electrode obtained in the example, a fuel electrode cell was produced by the following method. That is, an air electrode (La 0.8 Sr 0.2 ) 0.9 MnO 3 ) was screen-printed on the back surface of the YSZ pellet of the electrode obtained in the example, and baked at 1200 ° C. for 4 hours. Next, the reference electrode was baked at 1000 ° C. for 2 hours to obtain a fuel electrode cell. The rate of temperature rise and fall during baking was 200 ° C./hour.

【0022】次に製造例3にて作成した燃料極セルにつ
いてその電気性能を調べるために以下の試験1〜4を行
った。 試験例1 分極値の測定 表1に示す組成を有する各種の混合物を用いて製造例1
〜3及び実施例のごとくに作成した各種燃料極セル1〜
4について、電流遮断法によりその分極値η(200A
/cm2 通電時)を測定した。また比較のために塗付焼結
法で作成した従来の電極であるNi−YSZサーメット
(YSZの量は電極材料全体のモル%に対して31モル
%のもの)から製造例3のごとくに作成した燃料極セル
(以下、従来例という)についても同条件で分極値ηを
測定した。
Next, the following tests 1 to 4 were conducted for the electric performance of the fuel electrode cell prepared in Production Example 3. Test Example 1 Measurement of Polarization Value Production Example 1 using various mixtures having the compositions shown in Table 1
3 and various fuel electrode cells prepared as in Examples 1 to 3
4, the polarization value η (200 A
/ Cm 2 when energized) was measured. For comparison, as in Production Example 3, a conventional electrode made of Ni-YSZ cermet (the amount of YSZ is 31 mol% based on the total mol% of the electrode material) is prepared by the coating and sintering method. The polarization value η of the fuel electrode cell (hereinafter, referred to as a conventional example) was also measured under the same conditions.

【0023】[0023]

【表1】 [Table 1]

【0024】表1中、数値単位はモル%である。表1に
示されるように燃料極セル1〜4は酸化物固溶体として
MgO 20%固溶体を用い、及び混合体の総モルに対
して各々0、20、30、40モル%のYSZを用い、
製造例1〜2のごとくに製造した混合体を電極材料とし
ている。燃料極セル1〜4及び従来例についての結果を
図5に示す。図5中、横軸は混合体全体に対するYSZ
のモル%(以下YSZ含量という)を表し、縦軸は分極
値η(数値単位mV)を表す。また白丸は燃料極セル1
〜4についての結果であり、黒丸は従来例についての結
果である。
In Table 1, the numerical unit is mol%. As shown in Table 1, each of the anode cells 1 to 4 uses MgO 20% solid solution as an oxide solid solution, and 0, 20, 30, and 40 mol% YSZ with respect to the total moles of the mixture, respectively.
The mixture produced as in Production Examples 1 and 2 is used as the electrode material. The results of the fuel electrode cells 1 to 4 and the conventional example are shown in FIG. In FIG. 5, the horizontal axis represents YSZ for the entire mixture.
(Hereinafter referred to as YSZ content), and the vertical axis represents the polarization value η (numerical unit mV). The white circle is the fuel electrode cell 1.
4 are the results, and the black circles are the results of the conventional example.

【0025】図5に示されるようにMgO 20%固溶
体及びYSZ含量35モル%以下からなる混合体を電極
材料とした場合は従来例と比べてその分極値がより小さ
く、より好ましいYSZ含量は10〜30モル%であ
り、特に好ましくは20モル%であった。特にYSZ含
量20モル%の場合、その分極値は19mVであり、一
方従来例は75mVであった。すなわち本実施例のSO
FC用電極は現在SOFC用電極として使用されている
Ni−YSZサーメットと比べてその分極値が約1/4
に大きく改良された。
As shown in FIG. 5, when a mixture of a solid solution of MgO 20% and a YSZ content of 35 mol% or less was used as an electrode material, its polarization value was smaller than that of the conventional example, and a more preferable YSZ content was 10. ˜30 mol%, particularly preferably 20 mol%. In particular, when the YSZ content was 20 mol%, the polarization value was 19 mV, while that in the conventional example was 75 mV. That is, the SO of the present embodiment
The FC electrode has a polarization value of about 1/4 of that of the Ni-YSZ cermet currently used as the SOFC electrode.
Was greatly improved.

【0026】試験例2 分極成分の測定 前記燃料極セル1〜4及び従来例について交流周波数
0.1Hz 〜65000Hz にて交流インピーダンス測
定を行ないコールコールプロットを作成し、各電極の分
極成分R(数値単位Ω・cm2 )を求めた。なお実施例に
おいてスクリーン印刷後の焼付け温度1400℃を13
00℃とした場合についても同様に測定し、分極成分R
を求めた。その結果を図6に示す。
Test Example 2 Measurement of Polarization Component AC impedance measurement was performed on the fuel electrode cells 1 to 4 and the conventional example at an AC frequency of 0.1 Hz to 65000 Hz to prepare a Cole-Cole plot, and the polarization component R (numerical value) of each electrode was measured. The unit Ω · cm 2 ) was calculated. In the examples, a baking temperature of 1400 ° C. after screen printing is 13
The polarization component R
I asked. The result is shown in FIG.

【0027】図6中、横軸は混合体全体に対するYSZ
含量(数値単位モル%)であり、縦軸は分極成分R(数
値単位Ω・cm2 )である。また白丸は焼付け温度140
0℃の場合の結果を示し、白抜きの三角は焼付け温度1
300℃の場合の結果を示し、黒丸は従来例(焼付け温
度1400℃)についての結果を示す。図6より焼付け
温度1300℃の場合よりも1400℃の場合の方が電
気性能がより良いことがわかる。そして試験例1の結果
と同様にMgO 20%固溶体及びYSZ含量が35モ
ル%以下からなる混合体を電極材料とした場合は、従来
例と比べて分極成分Rがより小さく、より好ましいYS
Z含量は10〜30モル%であり、特に好ましくは20
モル%であった。
In FIG. 6, the horizontal axis represents YSZ for the entire mixture.
The content (numerical unit: mol%), and the vertical axis is the polarization component R (numerical unit: Ω · cm 2 ). The white circles are the baking temperature 140.
The results for 0 ° C are shown, the open triangles indicate the baking temperature 1
The results for 300 ° C. are shown, and the black circles are the results for the conventional example (baking temperature 1400 ° C.). From FIG. 6, it can be seen that the electrical performance is better when the baking temperature is 1400 ° C. than when the baking temperature is 1300 ° C. When the mixture of MgO 20% solid solution and YSZ content of 35 mol% or less was used as the electrode material, the polarization component R was smaller than that of the conventional example, and more preferable YS was obtained.
The Z content is 10 to 30 mol%, and particularly preferably 20.
It was mol%.

【0028】試験例3 次に前記燃料極セル1、2及び従来例について電流遮断
法により電流密度と分極値との関係を測定し、ターフェ
ルプロットを作成した。その結果を図7に示す。図7
中、横軸は分極値η(数値単位mV)を示し、縦軸は電
流密度I(数値単位A/cm2 )を示す。また白丸は燃料
極セル2(焼付け温度1400℃)についての結果であ
り、白抜きの三角は燃料極セル2(焼付け温度1300
℃)についての結果であり、黒丸は燃料極セル1につい
ての結果であり、白抜きの四角は従来例についての結果
である。図7に示されるターフェルプロットから各セル
について交換電流密度を算出した。その結果を表2に示
す。
Test Example 3 Next, the relationship between the current density and the polarization value of the fuel electrode cells 1 and 2 and the conventional example was measured by the current interruption method to prepare a Tafel plot. The result is shown in FIG. 7. Figure 7
In the figure, the horizontal axis represents the polarization value η (numerical unit mV), and the vertical axis represents the current density I (numerical unit A / cm 2 ). The white circles are the results for the fuel electrode cell 2 (baking temperature 1400 ° C), and the open triangles are the fuel electrode cell 2 (baking temperature 1300 ° C).
C.), the black circles are the results for the fuel electrode cell 1, and the open squares are the results for the conventional example. The exchange current density was calculated for each cell from the Tafel plot shown in FIG. The results are shown in Table 2.

【0029】[0029]

【表2】 [Table 2]

【0030】なお表2中、交換電流密度の数値単位はA
/cm2 )である。図7及び表2に示されるようにMgO
20%固溶体のみを電極材料とした燃料極セル1は、
従来例に比べてその交換電流密度がより大きいが、Mg
O 20%固溶体含量80モル%及びYSZ含量20モ
ル%からなる混合体を電極材料とした燃料極セル2の方
がさらに交換電流密度が大きかった。すなわち従来例と
比べて燃料極セル2(焼付け温度1400℃)の交換電
流密度は約6.4倍に大きく改善された。また燃料極セ
ル1と比べても約3.4倍に改善された。
In Table 2, the numerical unit of the exchange current density is A.
/ Cm 2 ). As shown in FIG. 7 and Table 2, MgO
The fuel electrode cell 1 using only a 20% solid solution as an electrode material,
Its exchange current density is higher than that of the conventional example, but Mg
The exchange current density was further higher in the fuel electrode cell 2 in which the electrode material was a mixture of O 20% solid solution content 80 mol% and YSZ content 20 mol%. That is, the exchange current density of the fuel electrode cell 2 (baking temperature 1400 ° C.) was greatly improved to about 6.4 times that of the conventional example. Also, it was improved about 3.4 times compared to the fuel electrode cell 1.

【0031】試験例4 次に表3に示す組成を有する各種の混合体を用いて、製
造例1〜3及び実施例のごとくに作成した各種燃料極セ
ル5〜8について、試験例3と同様の方法でその分極成
分R(数値単位Ω・cm2 )を測定した。その結果を図8
に示す。
Test Example 4 Next, various fuel electrode cells 5 to 8 prepared as in Production Examples 1 to 3 and Examples using various mixtures having the compositions shown in Table 3 were the same as in Test Example 3. The polarization component R (numerical unit: Ω · cm 2 ) was measured by the method described in 1. The result is shown in Fig. 8.
Shown in.

【0032】[0032]

【表3】 [Table 3]

【0033】なお表3中の数値単位はモル%である。表
3に示されるように燃料極セル5〜8は、YSZと酸化
物固溶体との混合物を電極材料とし、そのYSZ含量が
20モル%であり、酸化物固溶体としては各々MgO
10、20、30又は40モル%の固溶体を用いた場合
に相当する。図8中、横軸は酸化物固溶体のMgO固溶
量(数値単位モル%)を示し、縦軸は分極成分R(数値
単位Ω・cm2 )を示す。図8に示されるように、電極材
料のYSZ含量が20モル%と一定の場合、酸化物固溶
体のMgO固溶量としては5〜25モル%とされるのが
分極成分の値が従来よりもより小さいので好ましく、さ
らに好ましいMgO固溶量は10〜20モル%であっ
た。
The numerical unit in Table 3 is mol%. As shown in Table 3, in the fuel electrode cells 5 to 8, a mixture of YSZ and an oxide solid solution was used as an electrode material, the YSZ content was 20 mol%, and each of the oxide solid solutions was MgO.
This corresponds to the case where a solid solution of 10, 20, 30 or 40 mol% is used. In FIG. 8, the horizontal axis represents the MgO solid solution amount (numerical unit: mol%) of the oxide solid solution, and the vertical axis represents the polarization component R (numerical unit: Ω · cm 2 ). As shown in FIG. 8, when the YSZ content of the electrode material is constant at 20 mol%, the MgO solid solution amount of the oxide solid solution is set to 5 to 25 mol%. Since it is smaller, it is preferable, and the more preferable MgO solid solution amount is 10 to 20 mol%.

【0034】試験例5 試験例1にて分極値測定後の燃料極セル2の燃料極電極
(以下、本例の電極という)の微構造を走査型電子顕微
鏡(以下、SEMという)及びエネルギー分散型X線分
析装置(以下、EDXという)を用いて観察した。
Test Example 5 The microstructure of the fuel electrode (hereinafter, referred to as the electrode of this example) of the fuel electrode cell 2 after the polarization value was measured in Test Example 1 was examined with a scanning electron microscope (hereinafter referred to as SEM) and energy dispersion. It observed using the type | mold X-ray analyzer (henceforth EDX).

【0035】SEM観察の結果、図1〜4に示されるよ
うに本例の電極は0.1〜0.2μmの微細粒の多孔質
部分1と約1μmの粒部分2とを有しており、これらの
多孔質部分1と粒部分2とが三次元的に焼結してネット
ワーク状につながった構造を有し、全体としても多孔質
であった。さらに多孔質部分1と粒部分2のEDX分析
結果から、両部分ともNi、MgO、YSZよりなり、
多孔質部分1はNiが主相であり、粒部分2はYSZが
主相であることがわかった。また、水素還元後の酸化物
固溶体中のNi及びMg量をEDXにより線分析したと
ころ、微細なNi粒子をMgOが取囲んだ多孔体を形成
していることがわかった。このことから多孔質部分1の
微細粒は析出したNiであることがわかった。
As a result of SEM observation, as shown in FIGS. 1 to 4, the electrode of this example had a porous portion 1 of fine particles of 0.1 to 0.2 μm and a grain portion 2 of about 1 μm. The porous portion 1 and the granular portion 2 had a structure in which they were three-dimensionally sintered and connected in a network form, and were porous as a whole. Further, from the EDX analysis results of the porous portion 1 and the grain portion 2, both portions are made of Ni, MgO and YSZ,
It was found that the porous portion 1 had Ni as the main phase and the grain portion 2 had YSZ as the main phase. Further, line analysis of the amounts of Ni and Mg in the oxide solid solution after hydrogen reduction was found by EDX to reveal that a fine Ni particle was surrounded by MgO to form a porous body. From this, it was found that the fine particles in the porous portion 1 were precipitated Ni.

【0036】以上の結果より、本例の電極の微構造は電
子導電性物質である微細Ni粒子とイオン導電性物質で
あるYSZとが焼結したネットワーク構造を有している
ことがわかった。
From the above results, it was found that the microstructure of the electrode of this example had a network structure in which fine Ni particles as an electron conductive substance and YSZ as an ion conductive substance were sintered.

【0037】以上の試験例1の観察結果から、本例の電
極は(1) 多孔質であること、(2) 電子導電性を有してい
ること、(3) イオン導電性を有していること、(4) Ni
が微細粒として析出することにより、反応の場が拡大し
ていること、(5) Niが主相である部分とYSZが主相
である部分とがネットワーク構造を形成していることに
より、反応の場が拡大していること、(6) YSZが分散
して多孔質部分1の焼結が抑制されていること及び微細
Ni粒子間のMgOがNiの焼結を抑制していることに
より、耐熱性が向上していること、(7) 酸化物固溶体に
YSZを添加したことにより、熱膨脹率が通常固体電解
質として用いられるYSZに近づくこと等のSOFC用
電極として好ましい性質を多数有していた。
From the above observation result of Test Example 1, the electrode of this example has (1) porous property, (2) electronic conductivity, and (3) ionic conductivity. (4) Ni
Is expanded as fine particles, the field of the reaction is expanded, and (5) the part where Ni is the main phase and the part where YSZ is the main phase forms a network structure. (6) YSZ is dispersed to suppress the sintering of the porous portion 1 and MgO between the fine Ni particles suppresses the sintering of Ni. The heat resistance was improved, and (7) YSZ was added to the oxide solid solution, so that the coefficient of thermal expansion was close to that of YSZ which is usually used as a solid electrolyte. .

【0038】[0038]

【発明の効果】請求項1の混合体は特定の酸化物固溶体
と酸化ジルコニウムとを一定の割合で含むので、SOF
C用電極とした場合、その電気性能が従来より改良でき
るので、SOFC用電極材料に適するものである。請求
項1の混合体を主材料として得られた請求項2のSOF
C用電極によると従来のSOFC用電極よりも電気性能
が改良される。
The mixture according to claim 1 contains a specific oxide solid solution and zirconium oxide in a fixed ratio, so that SOF can be obtained.
When used as an electrode for C, its electrical performance can be improved as compared with conventional ones, and thus it is suitable as an electrode material for SOFC. The SOF of claim 2 obtained by using the mixture of claim 1 as a main material
The C electrode improves the electric performance over the conventional SOFC electrode.

【図面の簡単な説明】[Brief description of drawings]

【図1】本例1の電極表面の結晶構造の電子顕微鏡写真
である(倍率1万倍)。
FIG. 1 is an electron micrograph of the crystal structure of the electrode surface of Example 1 (magnification: 10,000 times).

【図2】本例1の電極表面の結晶構造の電子顕微鏡写真
である(倍率2千倍)。
2 is an electron micrograph of the crystal structure of the electrode surface of Example 1 (magnification: 2,000 times).

【図3】本例1の電極表面の結晶構造の電子顕微鏡写真
である(倍率7千倍)。
FIG. 3 is an electron micrograph of the crystal structure of the electrode surface of Example 1 (magnification: 7,000 times).

【図4】本例1の電極の断面の結晶構造の電子顕微鏡写
真である(倍率7千倍)。
FIG. 4 is an electron micrograph of a crystal structure of a cross section of an electrode of Example 1 (magnification: 7,000 times).

【図5】SOFC用電極材料中のYSZ含量と電極の分
極値との関係を表すグラフである。
FIG. 5 is a graph showing the relationship between the YSZ content in the SOFC electrode material and the polarization value of the electrode.

【図6】SOFC用電極材料中のYSZ含量と電極の分
極成分との関係を表すグラフである。
FIG. 6 is a graph showing the relationship between the YSZ content in the SOFC electrode material and the polarization component of the electrode.

【図7】燃料極セル1、2及び従来例についてのターフ
ェルプロットである。
FIG. 7 is a Tafel plot for fuel electrode cells 1 and 2 and a conventional example.

【図8】SOFC用電極材料中の酸化物固溶体のMgO
固溶量と電極の分極成分との関係を表すグラフである。
FIG. 8: MgO of oxide solid solution in electrode material for SOFC
It is a graph showing the relationship between the amount of solid solution and the polarization component of the electrode.

【符号の説明】[Explanation of symbols]

1 多孔質部分 2 粒部分 1 porous part 2 grain part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川崎 真司 愛知県名古屋市瑞穂区竹田町2丁目15番地 (72)発明者 坊ケ内 丈仁 兵庫県神戸市北区長尾町上津2429番地 (72)発明者 竹内 伸二 兵庫県尼崎市若王寺3−11−20 (72)発明者 菊岡 泰平 兵庫県尼崎市若王寺3−11−20 (72)発明者 江崎 義美 愛知県名古屋市緑区大高町字北関山20−1 (72)発明者 服部 雅俊 愛知県名古屋市緑区大高町字北関山20−1 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinji Kawasaki 2-15 Takeda-cho, Mizuho-ku, Nagoya, Aichi (72) Inventor Takehito Bokenai 2429 Uetsu, Nagao-cho, Kita-ku, Kobe-shi, Hyogo (72) Invention Shinji Takeuchi 3-11-20 Wakaoji, Amagasaki City, Hyogo Prefecture (72) Inventor Taihei Kikuoka 3-11-20 Wakaoji Temple, Amagasaki City, Hyogo Prefecture Inventor Yoshimi Ezaki Kita Otakacho, Midori-ku, Aichi Prefecture Aichi Prefecture 20-1 Sekiyama (72) Inventor Masatoshi Hattori 20-1 Kitakousan, Otaka-cho, Midori-ku, Nagoya-shi, Aichi

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 主として酸化物固溶体と立方晶及び/又
は正方晶酸化ジルコニウムとからなる混合体であって、 前記酸化物固溶体は酸化マグネシウム及び酸化ニッケル
より主としてなり、それらの総モル量に対して酸化マグ
ネシウムは5モル以上25モル%以下であり、残部が酸
化ニッケルである一方、 前記立方晶及び/又は正方晶酸化ジルコニウムはその混
合量が前記混合体の総モル量に対して35モル%以下で
あることを特徴とする固体電解質型燃料電池用電極材料
に適した混合体。
1. A mixture mainly composed of an oxide solid solution and cubic and / or tetragonal zirconium oxide, wherein the oxide solid solution is mainly composed of magnesium oxide and nickel oxide, relative to a total molar amount thereof. Magnesium oxide is 5 mol or more and 25 mol% or less, and the balance is nickel oxide, while the cubic and / or tetragonal zirconium oxide has a mixing amount of 35 mol% or less with respect to the total molar amount of the mixture. Which is suitable for an electrode material for a solid oxide fuel cell.
【請求項2】 請求項1の混合体を主材料としてなる固
体電解質型燃料電池用電極であって、主に微細ニッケル
よりなる部分と主に酸化ジルコニウムよりなる部分とを
有し、前記二つの部分がネットワーク状の構造を有する
ことを特徴とする固体電解質型燃料電池用電極。
2. An electrode for a solid oxide fuel cell using the mixture of claim 1 as a main material, which has a part mainly made of fine nickel and a part mainly made of zirconium oxide, An electrode for a solid oxide fuel cell, characterized in that the portion has a network-like structure.
JP25705491A 1991-09-09 1991-09-09 Fuel electrode of solid oxide fuel cell Expired - Fee Related JP3342502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25705491A JP3342502B2 (en) 1991-09-09 1991-09-09 Fuel electrode of solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25705491A JP3342502B2 (en) 1991-09-09 1991-09-09 Fuel electrode of solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH06111829A true JPH06111829A (en) 1994-04-22
JP3342502B2 JP3342502B2 (en) 2002-11-11

Family

ID=17301099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25705491A Expired - Fee Related JP3342502B2 (en) 1991-09-09 1991-09-09 Fuel electrode of solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3342502B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111570A1 (en) * 2007-03-09 2008-09-18 Sumitomo Chemical Company, Limited Membrane-electrode assembly and fuel cell using the membrane-electrode assembly
JP2008258152A (en) * 2007-03-09 2008-10-23 Sumitomo Chemical Co Ltd Membrane-electrode assembly and fuel cell using this
JP2010044966A (en) * 2008-08-13 2010-02-25 Toshiba Corp Solid oxide electrochemical cell and method for manufacturing the same
JP2010073648A (en) * 2008-09-22 2010-04-02 Toshiba Corp Solid oxide type electrochemical cell
JP2010287412A (en) * 2009-06-11 2010-12-24 Yokogawa Electric Corp Fuel cell-evaluating method and device
JP2013175479A (en) * 2013-05-09 2013-09-05 Toshiba Corp Fuel electrode of solid oxide electrochemical cell, and solid oxide electrochemical cell
US9306221B2 (en) 2007-09-05 2016-04-05 Kabushiki Kaisha Toshiba Fuel electrodes for solid oxide electrochemical cell, processes for producing the same, and solid oxide electrochemical cells

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111570A1 (en) * 2007-03-09 2008-09-18 Sumitomo Chemical Company, Limited Membrane-electrode assembly and fuel cell using the membrane-electrode assembly
JP2008258152A (en) * 2007-03-09 2008-10-23 Sumitomo Chemical Co Ltd Membrane-electrode assembly and fuel cell using this
US9306221B2 (en) 2007-09-05 2016-04-05 Kabushiki Kaisha Toshiba Fuel electrodes for solid oxide electrochemical cell, processes for producing the same, and solid oxide electrochemical cells
JP2010044966A (en) * 2008-08-13 2010-02-25 Toshiba Corp Solid oxide electrochemical cell and method for manufacturing the same
JP2010073648A (en) * 2008-09-22 2010-04-02 Toshiba Corp Solid oxide type electrochemical cell
JP2010287412A (en) * 2009-06-11 2010-12-24 Yokogawa Electric Corp Fuel cell-evaluating method and device
JP2013175479A (en) * 2013-05-09 2013-09-05 Toshiba Corp Fuel electrode of solid oxide electrochemical cell, and solid oxide electrochemical cell

Also Published As

Publication number Publication date
JP3342502B2 (en) 2002-11-11

Similar Documents

Publication Publication Date Title
JP3193294B2 (en) Composite ceramic powder, method for producing the same, electrode for solid oxide fuel cell, and method for producing the same
JP3527099B2 (en) Cathode composition for solid oxide fuel cell
CN108832136B (en) Composite oxygen electrode for solid oxide battery and preparation method thereof
Kim et al. Electrochemical performance of unsintered Ba0. 5Sr0. 5Co0. 8Fe0. 2O3− δ, La0. 6Sr0. 4Co0. 8Fe0. 2O3− δ, and La0. 8Sr0. 2MnO3− δ cathodes for metal-supported solid oxide fuel cells
JP2012227142A (en) Positive electrode material for fuel cell, positive electrode for fuel cell including the same, and solid oxide fuel cell
Tan et al. Thermally driven in situ exsolution of Ni nanoparticles from (Ni, Gd) CeO 2 for high-performance solid oxide fuel cells
AU2008325771B2 (en) Nickel oxide powder material for solid oxide fuel cell, process for producing the nickel oxide powder material, and fuel electrode material, fuel electrode, and solid oxide fuel cell using the nickel oxide powder material
Hussain et al. Stannate-based ceramic oxide as anode materials for oxide-ion conducting low-temperature solid oxide fuel cells
JPH11297333A (en) Fuel electrode and solid electrolyte fuel cell using the same
JPH08505490A (en) How to attach the cermet electrode layer to the sintered electrolyte
WO2018084279A1 (en) Composite particle powder, electrode material for solid oxide cells, and electrode for solid oxide cells using same
US20090189115A1 (en) Mixtures of nanoparticles
WO2013060669A1 (en) A modified anode/electrolyte structure for a solid oxide electrochemical cell and a method for making said structure
JPH06111829A (en) Mixed body suitable for electrode material for solid electrolyte type fuel cell, and electrode for solid electrolyte type fuel cell
Ferrel-Alvarez et al. Microwave irradiation synthesis to obtain La0. 7-xPrxCa0. 3MnO3 perovskites: Electrical and electrochemical performance
JP5439959B2 (en) Electrode for solid oxide fuel cell and cell for solid oxide fuel cell
JP5196502B2 (en) Composite material suitable for use as an electrode material in SOC
Xin et al. Fabrication of dense YSZ electrolyte membranes by a modified dry-pressing using nanocrystalline powders
KR20130097962A (en) Manufacturing method of cathode powder for solid oxide fuel cell using sol-gel process
Wei et al. La 0.6 Sr 0.4 CoO 3− δ–Ce 0.8 Gd 0.2 O 2− δ nanocomposites prepared by a sol–gel process for intermediate temperature solid oxide fuel cell cathode applications
CN106159288B (en) A kind of Ni base anode material, preparation method and the purposes of anti-carbon
JPWO2020004333A1 (en) Electrode for solid oxide cell and solid oxide cell using it
Yin et al. Unveiling the importance of the interface in nanocomposite cathodes for proton‐conducting solid oxide fuel cells
JP2947495B2 (en) Fuel electrode fabrication method for solid oxide fuel cells
WO2022004253A1 (en) Fuel electrode for solid oxide cell, laminated structure, manufacturing method therefor, solid oxide cell, and manufacturing method therefor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees