JP2010287290A - Perpendicular magnetic recording medium - Google Patents

Perpendicular magnetic recording medium Download PDF

Info

Publication number
JP2010287290A
JP2010287290A JP2009141521A JP2009141521A JP2010287290A JP 2010287290 A JP2010287290 A JP 2010287290A JP 2009141521 A JP2009141521 A JP 2009141521A JP 2009141521 A JP2009141521 A JP 2009141521A JP 2010287290 A JP2010287290 A JP 2010287290A
Authority
JP
Japan
Prior art keywords
intermediate layer
layer
magnetic recording
experimental example
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009141521A
Other languages
Japanese (ja)
Other versions
JP5342935B2 (en
Inventor
Naoto Ito
直人 伊藤
Hiroyuki Suzuki
博之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HGST Netherlands BV
Original Assignee
Hitachi Global Storage Technologies Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Storage Technologies Netherlands BV filed Critical Hitachi Global Storage Technologies Netherlands BV
Priority to JP2009141521A priority Critical patent/JP5342935B2/en
Publication of JP2010287290A publication Critical patent/JP2010287290A/en
Application granted granted Critical
Publication of JP5342935B2 publication Critical patent/JP5342935B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a perpendicular magnetic recording medium which enable high density recording. <P>SOLUTION: The perpendicular magnetic recording medium includes a first intermediate layer 106, a second intermediate layer 107, and magnetic recording layers 108 and 109 on a substrate 100. The first intermediate layer includes Ru or an Ru alloy. The second intermediate layer contains at least one element selected from Co and Fe, contains Cu as a principal component is constituted of an alloy whose total rate of Co and Fe is 10 to 30 at.%, and has a film thickness between 5 nm and 100 nm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、磁気記録媒体に関し、特に高密度磁気記録を実現する垂直磁気記録媒体に関する。   The present invention relates to a magnetic recording medium, and more particularly to a perpendicular magnetic recording medium that realizes high-density magnetic recording.

市販されているハードディスクドライブに搭載されている垂直磁気記録媒体は、基板上に軟磁性裏打ち層、シード層、中間層、磁気記録層、保護層の順に積層された構造を有する。   A perpendicular magnetic recording medium mounted on a commercially available hard disk drive has a structure in which a soft magnetic backing layer, a seed layer, an intermediate layer, a magnetic recording layer, and a protective layer are laminated in this order on a substrate.

優れた特性をもつ垂直磁気記録媒体は、磁気記録層に含まれる結晶粒子の結晶配向や粒子形状などが均一であることが期待されている。さらに記録ヘッドから生じる磁界の勾配を高める構造によっても記録特性を向上出来る。   A perpendicular magnetic recording medium having excellent characteristics is expected to have uniform crystal orientation and grain shape of crystal grains contained in the magnetic recording layer. Further, the recording characteristics can be improved by a structure that increases the gradient of the magnetic field generated from the recording head.

960メガビット/平方ミリメートル(620ギガビット/平方インチ)といった高密度記録を実現する為には、上記磁気記録層に含まれる結晶粒子の均一性や記録ヘッドの磁界勾配の向上以外に、媒体の記録層を構成する粒子径を10nm以下に小さくすることや、保護膜を薄くして記録・再生ヘッドと磁気記録層との距離を狭めて高分解能で記録再生できるようにする必要がある。   In order to realize high-density recording such as 960 megabits / square millimeter (620 gigabits / square inch), in addition to improving the uniformity of crystal grains contained in the magnetic recording layer and the magnetic field gradient of the recording head, the recording layer of the medium Must be reduced to 10 nm or less, or the protective film can be thinned to reduce the distance between the recording / reproducing head and the magnetic recording layer so that recording / reproduction can be performed with high resolution.

一方、媒体の記録層を構成する粒子径を10nm以下に小さくすると記録された信号の熱安定性が問題となる。単に粒子径を小さくすると、記録層粒子のもつ磁化の向きを固定する磁気異方性エネルギーが下がる。磁気異方性エネルギーが下がると、熱エネルギーの影響を受けて記録層の磁化が乱されやすくなる。その結果、記録された信号が減衰して信号品質が低下し、場合によっては再生信号の信頼性が低下する。その為、粒子径を小さくすると同時に、記録された信号の熱安定性を向上することが必要である。その解決手段として高磁気異方性材料の採用が考えられる。しかし、Co−Cr−Pt合金系を記録層に用いた磁気記録媒体では大幅に磁気異方性を高めることは難しい。また、媒体の磁気異方性が大幅に向上できた場合でも、これまで通りの記録特性を確保するためにヘッド磁界強度を大幅に高める必要がある。しかし、ヘッド磁界強度を大幅に高めるのは容易ではない。また、保護膜を薄くした場合には雰囲気中に含まれる水分や酸素によって腐食することが問題となり、十分な耐食性を確保できることが必要である。   On the other hand, if the particle diameter constituting the recording layer of the medium is reduced to 10 nm or less, the thermal stability of the recorded signal becomes a problem. If the particle diameter is simply reduced, the magnetic anisotropy energy that fixes the magnetization direction of the recording layer particles decreases. When the magnetic anisotropy energy decreases, the magnetization of the recording layer is easily disturbed by the influence of thermal energy. As a result, the recorded signal is attenuated and the signal quality is lowered, and in some cases, the reliability of the reproduced signal is lowered. For this reason, it is necessary to reduce the particle size and improve the thermal stability of the recorded signal. As a solution to this problem, it is conceivable to use a highly magnetic anisotropic material. However, it is difficult to significantly increase the magnetic anisotropy in a magnetic recording medium using a Co—Cr—Pt alloy system as a recording layer. Even when the magnetic anisotropy of the medium can be greatly improved, it is necessary to greatly increase the head magnetic field strength in order to ensure the same recording characteristics as before. However, it is not easy to significantly increase the head magnetic field strength. Further, when the protective film is thinned, it becomes a problem that it is corroded by moisture or oxygen contained in the atmosphere, and it is necessary to ensure sufficient corrosion resistance.

このような背景から、近年実用化された垂直磁気記録方式を用いた媒体として、たとえば特許文献1に記載されているように、シード層と非磁性中間層との間に磁束スリット層を設けることにより、ヘッド磁界の強度と勾配を高めて記録信号の品質を向上している。   Against this background, as a medium using a perpendicular magnetic recording method that has been put into practical use in recent years, a magnetic flux slit layer is provided between a seed layer and a nonmagnetic intermediate layer, as described in Patent Document 1, for example. Therefore, the strength and gradient of the head magnetic field are increased to improve the quality of the recording signal.

特開2006−190486号公報JP 2006-190486 A

特許文献1では磁界勾配を向上しているが、媒体記録層の熱安定性や信頼性について配慮されていなかった。960メガビット/平方ミリメートル(620ギガビット/平方インチ)といった高密度記録を実現する為には、以下の3条件を満たす必要がある。
(1)媒体記録層の磁気異方性を大幅に高めることなしに熱安定性を向上する。
(2)保護膜が薄くても十分な耐食信頼性を確保する。
(3)熱安定性や耐食性を確保した上で信号ノイズ比は12.0dB以上にする。
In Patent Document 1, although the magnetic field gradient is improved, the thermal stability and reliability of the medium recording layer are not considered. In order to realize high-density recording such as 960 megabits / square millimeter (620 gigabits / square inch), the following three conditions must be satisfied.
(1) The thermal stability is improved without significantly increasing the magnetic anisotropy of the medium recording layer.
(2) Ensuring sufficient corrosion resistance reliability even if the protective film is thin.
(3) The signal-to-noise ratio is 12.0 dB or more while ensuring thermal stability and corrosion resistance.

本発明の垂直磁気記録媒体は、磁気記録層の下に中間層を備える。
中間層は、Cuを主成分としCoとFeから選ばれる少なくとも一元素を含み、CoとFeの合計割合が10〜30at.%、膜厚が5〜100nmとすることができる。
The perpendicular magnetic recording medium of the present invention includes an intermediate layer under the magnetic recording layer.
The intermediate layer contains Cu as a main component and contains at least one element selected from Co and Fe, and the total ratio of Co and Fe can be 10 to 30 at.% And the film thickness can be 5 to 100 nm.

中間層は、また、第一中間層と第二中間層が順次積層された構造とし、基板側の第一中間層をRu又はRu合金で構成し、その上の第二中間層は、Cuを主成分としCoとFeから選ばれる少なくとも一元素を含み、CoとFeの合計割合が10〜30at.%となる合金で構成してもよい。このとき、第二中間層の膜厚は5nm以上100nm以下とする。   The intermediate layer also has a structure in which a first intermediate layer and a second intermediate layer are sequentially laminated, and the first intermediate layer on the substrate side is made of Ru or a Ru alloy, and the second intermediate layer thereon is made of Cu. You may comprise with the alloy which contains at least 1 element chosen from Co and Fe as a main component, and the total ratio of Co and Fe becomes 10-30 at.%. At this time, the film thickness of the second intermediate layer is set to 5 nm to 100 nm.

中間層は、また、基板側から見て第一中間層、第二中間層、第三中間層及び第四中間層が順次積層された構造としてもよい。その場合、第一中間層及び第三中間層はRu又はRu合金で構成し、第二中間層及び第四中間層は、Cuを主成分としCoとFeから選ばれる少なくとも一元素を含み、CoとFeの合計割合が10〜60at.%となる合金で構成する。第二中間層と第四中間層の合計膜厚は15nm以上100nm以下とする。   The intermediate layer may have a structure in which a first intermediate layer, a second intermediate layer, a third intermediate layer, and a fourth intermediate layer are sequentially stacked as viewed from the substrate side. In that case, the first intermediate layer and the third intermediate layer are made of Ru or a Ru alloy, and the second intermediate layer and the fourth intermediate layer contain Cu as a main component and contain at least one element selected from Co and Fe. And an alloy in which the total proportion of Fe is 10 to 60 at.%. The total film thickness of the second intermediate layer and the fourth intermediate layer is 15 nm or more and 100 nm or less.

中間層は、また、6〜12層の偶数層からなる積層構造としてもよい。その場合、基板側から見て奇数番目の中間層はRu又はRu合金で構成し、偶数番目の中間層は、Cuを主成分としCoとFeから選ばれる少なくとも一元素を含み、CoとFeの合計割合が10〜60at.%となる合金で構成する。偶数番目の中間層の合計膜厚は15nm以上100nm以下とする。   The intermediate layer may have a laminated structure composed of an even number of 6 to 12 layers. In that case, the odd-numbered intermediate layer as viewed from the substrate side is made of Ru or a Ru alloy, and the even-numbered intermediate layer contains Cu as a main component and contains at least one element selected from Co and Fe. It is made of an alloy having a total ratio of 10 to 60 at.%. The total thickness of the even-numbered intermediate layers is 15 nm or more and 100 nm or less.

中間層は、また、基板側から見て第一中間層、第二中間層及び第三中間層が順次積層された構造としてもよい。その場合、第一中間層及び第三中間層はRu又はRu合金で構成し、第二中間層は、Cuを主成分としCoとFeから選ばれる少なくとも一元素を含み、CoとFeの合計割合が10〜30at.%となる合金で構成する。第二中間層の膜厚は5〜100nmとし、第三中間層の膜厚は20nm以下とする。   The intermediate layer may have a structure in which a first intermediate layer, a second intermediate layer, and a third intermediate layer are sequentially stacked as viewed from the substrate side. In that case, the first intermediate layer and the third intermediate layer are made of Ru or a Ru alloy, and the second intermediate layer contains Cu as a main component and contains at least one element selected from Co and Fe, and the total ratio of Co and Fe Is made of an alloy having a content of 10 to 30 at. The film thickness of the second intermediate layer is 5 to 100 nm, and the film thickness of the third intermediate layer is 20 nm or less.

本発明によれば、熱揺らぎによる経時変化を低減し、同時に耐食信頼性を満足し、信号ノイズ比を12.0dB以上とすることが出来る。   According to the present invention, it is possible to reduce a change with time due to thermal fluctuation, at the same time to satisfy corrosion resistance reliability, and to make a signal-to-noise ratio 12.0 dB or more.

本発明による垂直磁気記録媒体の断面構成例を示す図。1 is a diagram showing a cross-sectional configuration example of a perpendicular magnetic recording medium according to the present invention. 比較例1の垂直磁気記録媒体の断面構成を示す図。FIG. 3 is a diagram showing a cross-sectional configuration of a perpendicular magnetic recording medium of Comparative Example 1. 実験例1において裏打ち層の特性及び膜厚を変えた垂直磁気記録媒体の特性を示す図。FIG. 5 is a diagram showing the characteristics of the backing layer and the characteristics of the perpendicular magnetic recording medium with the film thickness changed in Experimental Example 1. 実験例1及び比較例1の垂直磁気記録媒体の特性を示す図。The figure which shows the characteristic of the perpendicular magnetic recording medium of Experimental example 1 and Comparative example 1. FIG. 実験例2及び比較例1の垂直磁気記録媒体の特性を示す図。The figure which shows the characteristic of the perpendicular magnetic recording medium of Experimental example 2 and Comparative example 1. FIG. 実験例3及び比較例1の垂直磁気記録媒体の特性を示す図。The figure which shows the characteristic of the perpendicular magnetic recording medium of Experimental example 3 and Comparative example 1. FIG. 実験例4の信号ノイズ比と信号減衰率を示す図。The figure which shows the signal noise ratio and signal attenuation factor of Experimental example 4. 本発明による他の垂直磁気記録媒体の断面構成例を示す図。The figure which shows the cross-sectional structural example of the other perpendicular magnetic recording medium by this invention. 実験例5の垂直磁気記録媒体の特性を示す図。FIG. 10 is a diagram illustrating characteristics of the perpendicular magnetic recording medium of Experimental Example 5. 本発明による他の垂直磁気記録媒体の断面構成例を示す図。The figure which shows the cross-sectional structural example of the other perpendicular magnetic recording medium by this invention. 本発明による他の垂直磁気記録媒体の断面構成例を示す図。The figure which shows the cross-sectional structural example of the other perpendicular magnetic recording medium by this invention. 実験例7の垂直磁気記録媒体の特性を示す図。FIG. 10 is a diagram showing characteristics of the perpendicular magnetic recording medium of Experimental Example 7. 本発明による他の垂直磁気記録媒体の断面構成例を示す図。The figure which shows the cross-sectional structural example of the other perpendicular magnetic recording medium by this invention. 本発明による他の垂直磁気記録媒体の断面構成例を示す図。The figure which shows the cross-sectional structural example of the other perpendicular magnetic recording medium by this invention. 本発明による他の垂直磁気記録媒体の断面構成例を示す図。The figure which shows the cross-sectional structural example of the other perpendicular magnetic recording medium by this invention. 実験例11の垂直磁気記録媒体の特性を示す図。FIG. 10 is a diagram showing characteristics of the perpendicular magnetic recording medium of Experimental Example 11.

以下、図面を参照して本発明の実施形態について説明する。
〔実験例1〕
図1に、本発明の実験例1の垂直軸記録媒体の断面構成を示す。
この磁気記録媒体は、基板100の上に密着層101、軟磁性裏打ち層102、非磁性結合層103、軟磁性裏打ち層104、シード層105、非磁性中間層106、強磁性中間層107、記録層(108,109)、保護層110が積層された構造である。保護膜110の上には潤滑膜が形成されても良い。また、基板100の両面に同様の磁気記録媒体を構成しても良い。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Experimental Example 1]
FIG. 1 shows a cross-sectional configuration of a vertical axis recording medium of Experimental Example 1 of the present invention.
This magnetic recording medium includes an adhesion layer 101, a soft magnetic backing layer 102, a nonmagnetic coupling layer 103, a soft magnetic backing layer 104, a seed layer 105, a nonmagnetic intermediate layer 106, a ferromagnetic intermediate layer 107, a recording on a substrate 100. The layer (108, 109) and the protective layer 110 are stacked. A lubricating film may be formed on the protective film 110. Further, a similar magnetic recording medium may be configured on both surfaces of the substrate 100.

101〜110層の製造方法は、DCマグネトロンスパッタ法やRFマグネトロンスパッタ法、パルススパッタ法、対向ターゲットスパッタ法などが使用できる。以下、多層膜を連続形成できるスパッタ装置でDCマグネトロンスパッタ法を用いた実験例について詳述する。   As a manufacturing method of the 101 to 110 layers, a DC magnetron sputtering method, an RF magnetron sputtering method, a pulse sputtering method, a counter target sputtering method, or the like can be used. Hereinafter, an experimental example using the DC magnetron sputtering method in a sputtering apparatus capable of continuously forming a multilayer film will be described in detail.

基板100は、例えば化学強化されたガラス基板、あるいはリンを含有したニッケル合金をアルミニウム合金にめっきした剛体基板、Si基板、などを用いることができる。ここでは外径65mm、内径20mm、厚さ0.8mmの化学強化されたガラス基板を水洗・乾燥させて用いた。   As the substrate 100, for example, a chemically strengthened glass substrate, a rigid substrate obtained by plating a nickel alloy containing phosphorus on an aluminum alloy, a Si substrate, or the like can be used. Here, a chemically strengthened glass substrate having an outer diameter of 65 mm, an inner diameter of 20 mm, and a thickness of 0.8 mm was used after being washed with water and dried.

密着層101として、厚さ10nmのNiTa層を形成した。密着層101の特性として基板と密着層の上部層に対して密着性の高い材料が良く、常磁性のNi系合金やCo系合金、Al系合金等が使用できる。例えば、AlTi合金、NiAl合金、CoTi合金、AlTa合金などがある。   As the adhesion layer 101, a NiTa layer having a thickness of 10 nm was formed. As the characteristics of the adhesion layer 101, a material having high adhesion to the substrate and the upper layer of the adhesion layer is good, and a paramagnetic Ni-based alloy, Co-based alloy, Al-based alloy or the like can be used. For example, there are AlTi alloy, NiAl alloy, CoTi alloy, AlTa alloy and the like.

第一軟磁性裏打ち層102及び第二軟磁性裏打ち層104を薄い非磁性結合層103を介して積層した三層構造の軟磁性裏打ち層を用いた。ここで第一及び第二軟磁性裏打ち層として92at.%Co−3at.%Ta−5at.%Zrを、非磁性結合層103としてRu層を用いた。このような三層構成とすることで、上下のCoTaZr合金層がRu層を介して反強磁性的に結合し、軟磁性下地層に起因するノイズを低減することができる。本実験例では、このRu層の膜厚を第一及び第二軟磁性裏打ち層間の反強磁性結合が保たれるように0.7nmとした。また、膜の平坦性が保たれる範囲でRuに添加元素を加えても良い。   A soft magnetic backing layer having a three-layer structure in which the first soft magnetic backing layer 102 and the second soft magnetic backing layer 104 are laminated via a thin nonmagnetic coupling layer 103 was used. Here, 92 at.% Co-3 at.% Ta-5 at.% Zr was used as the first and second soft magnetic backing layers, and an Ru layer was used as the nonmagnetic coupling layer 103. With such a three-layer configuration, the upper and lower CoTaZr alloy layers are antiferromagnetically coupled via the Ru layer, and noise caused by the soft magnetic underlayer can be reduced. In this experimental example, the thickness of this Ru layer was set to 0.7 nm so that the antiferromagnetic coupling between the first and second soft magnetic backing layers was maintained. Further, an additive element may be added to Ru as long as the flatness of the film is maintained.

第一及び第二軟磁性裏打ち層の膜厚は、記録ヘッドや記録層の特性に応じて調整すればよく、本実験例ではそれぞれ30nmずつ形成した。軟磁性下地層まで積層したサンプルも作製し、振動型磁力計を用いて膜面内方向に最大1035kA/mの磁界を印加して評価した飽和磁束密度は1.25Tであった。非磁性結合層103を設けない場合にも飽和磁束密度は1.23Tあった。Coを主成分とする92at.%Co−3at.%Ta−5at.%Zr合金に代わり、51at.%Fe−34at.%Co−10at.%Ta−5at.%Zr合金のようなFeを主成分とする合金を用いることもできる。   The film thicknesses of the first and second soft magnetic underlayers may be adjusted according to the characteristics of the recording head and the recording layer. A sample laminated up to the soft magnetic underlayer was also prepared, and the saturation magnetic flux density evaluated by applying a maximum magnetic field of 1035 kA / m in the in-plane direction using a vibration type magnetometer was 1.25T. Even when the nonmagnetic coupling layer 103 was not provided, the saturation magnetic flux density was 1.23 T. Instead of the 92at.% Co-3at.% Ta-5at.% Zr alloy containing Co as the main component, Fe such as 51at.% Fe-34at.% Co-10at.% Ta-5at.% Zr alloy is mainly used. An alloy as a component can also be used.

第一軟磁性裏打ち層と第二軟磁性裏打ち層の間に形成する非磁性結合層103は、第一軟磁性裏打ち層と第二軟磁性裏打ち層を反強磁性的に結合させる働きがある。非磁性層に用いる材料としては、両軟磁性層にCoを主成分とする非晶質合金を用いる場合にはRuやCuを、両軟磁性層にFeを主成分とする非晶質合金を用いる場合にはCrやRuを用いるのが望ましい。例えば、RuFe合金等、Ruを含んだ合金或いはRuを主成分とする合金を用いることも可能である。非磁性層103の厚さは、反強磁性の結合磁界が大きくなるようにするため、Ruを含んだ合金或いはRuを主成分とする合金を用いる場合、概ねその膜厚として0.5nmから0.8nmを設定するとよい。   The nonmagnetic coupling layer 103 formed between the first soft magnetic backing layer and the second soft magnetic backing layer functions to antiferromagnetically couple the first soft magnetic backing layer and the second soft magnetic backing layer. As the material used for the nonmagnetic layer, Ru and Cu are used in the case where an amorphous alloy containing Co as a main component is used for both soft magnetic layers, and an amorphous alloy containing Fe as a main component is used for both soft magnetic layers. When used, it is desirable to use Cr or Ru. For example, it is possible to use an alloy containing Ru or an alloy containing Ru as a main component, such as a RuFe alloy. In order to increase the antiferromagnetic coupling magnetic field, the thickness of the nonmagnetic layer 103 is approximately 0.5 nm to 0 nm when using an alloy containing Ru or an alloy containing Ru as a main component. .8 nm should be set.

第一軟磁性裏打ち層と第二軟磁性裏打ち層には、Co−Ta−Zr合金磁性層,Fe−Co−Ta−Zr合金磁性層等の透磁率が高く、耐食信頼性が得られる合金を用いることが望ましい。軟磁性の各層の残留磁束密度と膜厚の積は略等しく、非磁性層103を介して反強磁性結合が可能な大きさであることが好ましい。軟磁性下地層を反強磁性結合させ、かつ上部記録層の磁化状態が決まった後で軟磁性下地層の残留磁化に起因したノイズを抑制するため、第一軟磁性裏打ち層102として厚さ30nmの51at.%Fe−34at.%Co−10at.%Ta−5at.%Zr合金膜を形成し、非磁性層103として厚さ0.7nmのRu膜を形成後、再び第二軟磁性裏打ち層104として厚さ30nmの51at.%Fe−34at.%Co−10at.%Ta−5at.%Zr合金膜を形成することもできる。   For the first soft magnetic underlayer and the second soft magnetic underlayer, an alloy that has high magnetic permeability such as a Co—Ta—Zr alloy magnetic layer, an Fe—Co—Ta—Zr alloy magnetic layer, and provides corrosion resistance reliability is used. It is desirable to use it. It is preferable that the products of the residual magnetic flux density and the film thickness of each soft magnetic layer are substantially equal and have a size capable of antiferromagnetic coupling through the nonmagnetic layer 103. In order to suppress the noise caused by the residual magnetization of the soft magnetic underlayer after the soft magnetic underlayer is antiferromagnetically coupled and the magnetization state of the upper recording layer is determined, the first soft magnetic underlayer 102 has a thickness of 30 nm. A 51 at.% Fe-34 at.% Co-10 at.% Ta-5 at.% Zr alloy film is formed, a 0.7 nm thick Ru film is formed as the nonmagnetic layer 103, and then the second soft magnetic backing layer is formed again. It is also possible to form a 51 at.% Fe-34 at.% Co-10 at.% Ta-5 at.% Zr alloy film having a thickness of 30 nm as 104.

シード層105は、膜厚2nmのNi−37.5at.%Taと膜厚9nmのNi−10at.%Cr−3at.%Wを順次形成した構成とした。シード層105は、非磁性中間層106の結晶配向性や結晶粒径を制御する役割を果たす。シード層105の膜厚、構成、材料は、上記効果が得られる範囲で設定すればよく、特に上記の膜厚、構成、材料に限定されない。   The seed layer 105 has a structure in which Ni-37.5 at. Ta with a thickness of 2 nm and Ni-10 at.% Cr-3 at.% W with a thickness of 9 nm are sequentially formed. The seed layer 105 plays a role of controlling the crystal orientation and crystal grain size of the nonmagnetic intermediate layer 106. The film thickness, configuration, and material of the seed layer 105 may be set within a range in which the above effects can be obtained, and are not particularly limited to the above film thickness, configuration, and material.

シード層105の構成において、NiTa層の役割はNiCrW層の配向を制御し、NiCrWの(111)配向性を高めることである。これが満足される範囲で膜厚を設定すればよく、通常1nmから5nm程度の値が用いられる。NiTa合金の代わりに、AlTi合金、CrTi合金、CrTa合金などのアモルファス材料や、Taなどの微結晶材料を用いてもよい。NiCrW層の役割は、その上の非磁性中間層(Ru)の膜面垂直方向のc軸配向性を高めることと粒径及び凹凸の制御である。これが満足される範囲で膜厚を設定すればよく、通常2nmから12nm程度の値が用いられる。NiCrW合金の代わりに、面心立方格子(fcc)構造を有するPd,Pt,Cu,Niやこれらを含有する合金を用いることもできる。特に、Niを主成分とする少なくともW,Cr,Cuから選ばれる少なくとも一元素を含む合金とすると、記録層の偏析を促進できるため好ましい。   In the configuration of the seed layer 105, the role of the NiTa layer is to control the orientation of the NiCrW layer and to increase the (111) orientation of NiCrW. The film thickness may be set within a range where this is satisfied, and a value of about 1 nm to 5 nm is usually used. Instead of the NiTa alloy, an amorphous material such as an AlTi alloy, CrTi alloy or CrTa alloy, or a microcrystalline material such as Ta may be used. The role of the NiCrW layer is to increase the c-axis orientation in the direction perpendicular to the film surface of the nonmagnetic intermediate layer (Ru) thereon and to control the grain size and unevenness. The film thickness may be set within a range where this is satisfied, and a value of about 2 nm to 12 nm is usually used. Instead of the NiCrW alloy, Pd, Pt, Cu, Ni having a face-centered cubic lattice (fcc) structure or an alloy containing these can also be used. In particular, an alloy containing at least one element selected from at least W, Cr, and Cu mainly composed of Ni is preferable because segregation of the recording layer can be promoted.

非磁性中間層106としては、厚さ28nmのRu層を形成した。非磁性中間層106の役割は記録層の結晶粒径、結晶配向性の制御と結晶粒間の交換結合の低減である。この特性を満足すれば良く、Ru以外に、RuとTi,V,Co,Cr,Cu,Nb,Mo,Rh,Ta,W,Re,Ir,Pt,C,Si,Zr,Hf,Al,B,C等との合金を用いてもよい。   As the nonmagnetic intermediate layer 106, a Ru layer having a thickness of 28 nm was formed. The role of the nonmagnetic intermediate layer 106 is to control the crystal grain size and crystal orientation of the recording layer and to reduce exchange coupling between crystal grains. What is necessary is just to satisfy this characteristic. In addition to Ru, Ru, Ti, V, Co, Cr, Cu, Nb, Mo, Rh, Ta, W, Re, Ir, Pt, C, Si, Zr, Hf, Al, An alloy with B, C or the like may be used.

ここでは、非磁性中間層106を二層に分けて形成した。はじめに下層半分をガス圧1Pa、製膜レート4nm/sで形成し、後から上層半分をガス圧6.5Pa、製膜レート1.5nm/sで形成した。下層Ruを低ガス圧、高レートで形成し、上層Ruを高ガス圧、低レートで形成することにより、配向の劣化を抑えて、記録層の偏析が促進できる。   Here, the nonmagnetic intermediate layer 106 is formed in two layers. First, the lower half was formed at a gas pressure of 1 Pa and a film formation rate of 4 nm / s, and later the upper half was formed at a gas pressure of 6.5 Pa and a film formation rate of 1.5 nm / s. By forming the lower layer Ru at a low gas pressure and a high rate and forming the upper layer Ru at a high gas pressure and a low rate, it is possible to suppress the deterioration of orientation and promote segregation of the recording layer.

強磁性中間層107の役割は、非磁性中間層106と同様な記録層の結晶粒径、結晶配向性の制御や結晶粒間の交換結合の低減に加え、上部の記録層(108,109)からもたらされる磁束を吸収することである。本実験例では、強磁性中間層107として、Cu−14at.%Co−6at.%Fe層をガス圧6.5Pa、製膜レート1.5nm/sで1.5〜200nmの範囲で形成した。面心立方(fcc)構造をとるCuの(111)面の原子配置は六方稠密(hcp)構造を持つRuの(00.1)面と同じであることから、下部Ru層の結晶配向性を維持向上させつつCuを積層することが出来る。また、CoやFeのほとんどがCu母相中に固溶することなく析出し、CoFe微粒子を形成した。軟磁性裏打ち層を省いて強磁性中間層まで積層したサンプルを作製し、強磁性中間層107のみの磁気特性を振動型磁力計により評価したところ、2.4MA/mの印加磁界のとき強磁性中間層107の磁束密度は0.43Tであった。   The role of the ferromagnetic intermediate layer 107 is to control the crystal grain size and crystal orientation of the recording layer similar to the nonmagnetic intermediate layer 106 and to reduce exchange coupling between crystal grains, as well as the upper recording layer (108, 109). Is to absorb the magnetic flux that comes from. In this experimental example, a Cu-14 at.% Co-6 at.% Fe layer was formed as the ferromagnetic intermediate layer 107 in a range of 1.5 to 200 nm at a gas pressure of 6.5 Pa and a film formation rate of 1.5 nm / s. . Since the atomic arrangement of the (111) plane of Cu having a face-centered cubic (fcc) structure is the same as the (00.1) plane of Ru having a hexagonal close-packed (hcp) structure, the crystal orientation of the lower Ru layer is Cu can be laminated while maintaining and improving. Further, most of Co and Fe precipitated without being dissolved in the Cu matrix, thereby forming CoFe fine particles. A sample in which the soft magnetic backing layer was omitted and the ferromagnetic intermediate layer was laminated was prepared, and the magnetic properties of only the ferromagnetic intermediate layer 107 were evaluated by a vibration type magnetometer. When the magnetic field was applied to 2.4 MA / m, the sample was ferromagnetic. The magnetic flux density of the intermediate layer 107 was 0.43T.

第一の記録層108は、Coを主成分としCrとPt含み更に酸化物を含んだ層であり、複数の層が積層されていても良い。形成にはCoCrPt合金とSiOxを含有する複合型のターゲットを用いた。第一記録層108の形成時には、スパッタガスとしてアルゴンと酸素の混合ガスを用い、総ガス圧5Pa、酸素濃度1.67%とした。第一記録層108の膜厚は14nmとし、3nm/sの製膜レートで基板バイアス−200Vの条件で形成した。第一記録層の組成(at.%)の比率は、(Co+Cr+Pt):(Si+O)=83.4:16.6、Co:Cr:Pt=60.6:14.1:25.3、O:Si=3.2:1である。   The first recording layer 108 is a layer containing Co as a main component, Cr and Pt, and further an oxide, and a plurality of layers may be laminated. For the formation, a composite target containing a CoCrPt alloy and SiOx was used. When forming the first recording layer 108, a mixed gas of argon and oxygen was used as the sputtering gas, and the total gas pressure was 5 Pa and the oxygen concentration was 1.67%. The film thickness of the first recording layer 108 was 14 nm, and the film was formed at a film forming rate of 3 nm / s under the condition of a substrate bias of −200V. The composition ratio (at.%) Of the first recording layer was (Co + Cr + Pt) :( Si + O) = 83.4: 16.6, Co: Cr: Pt = 60.6: 14.1: 25.3, O : Si = 3.2: 1.

第二の記録層109は、Coを主成分としCrを含み酸化物を含まない層であり、複数の層が積層された構造でも良い。第二記録層109を形成する際にはCoCrPt合金ターゲットを用い、スパッタガスとしてアルゴンを用い、ガス圧は1Paで製膜レートは2nm/sとした。第二記録層109の膜厚は9nmとし、70at.%Co−16at.%Cr−14at.%Ptとした。   The second recording layer 109 is a layer containing Co as a main component and containing Cr and no oxide, and may have a structure in which a plurality of layers are stacked. When forming the second recording layer 109, a CoCrPt alloy target was used, argon was used as the sputtering gas, the gas pressure was 1 Pa, and the film formation rate was 2 nm / s. The film thickness of the second recording layer 109 was 9 nm and 70 at.% Co-16 at.% Cr-14 at.% Pt.

保護層110として、厚さ3nmのダイアモンドライクカーボン膜を形成した。その表面に有機系の潤滑剤であるパーフルオロポリエーテルを塗布して潤滑層を形成した。   As the protective layer 110, a diamond-like carbon film having a thickness of 3 nm was formed. The surface was coated with perfluoropolyether, which is an organic lubricant, to form a lubricating layer.

[比較例1]
比較例1として、図2に示す断面構成の媒体を作成した。比較例1は、上記実験例1において強磁性中間層107を設けない以外は実験例1の媒体と同じ層構成である。
[Comparative Example 1]
As Comparative Example 1, a medium having a cross-sectional configuration shown in FIG. Comparative Example 1 has the same layer configuration as the medium of Experimental Example 1 except that the ferromagnetic intermediate layer 107 is not provided in Experimental Example 1.

実験例1と比較例1の媒体について次に示す方法で評価した。
熱揺らぎ耐性の評価では、80℃の環境温度において媒体上に記録密度9.2メガビット/メートルの信号を記録した後、再生信号振幅の経時変化を測定した。その結果から、記録直後と記録から1万秒後の信号出力との比である信号減衰率を求めた。この信号減衰率は小さいほど優れており、製品化には25%以下であることが必要である。
The media of Experimental Example 1 and Comparative Example 1 were evaluated by the following method.
In the evaluation of thermal fluctuation resistance, a signal having a recording density of 9.2 megabit / meter was recorded on a medium at an environmental temperature of 80 ° C., and then a change in reproduction signal amplitude with time was measured. From the result, the signal attenuation rate, which is the ratio between the signal output immediately after recording and the signal output after 10,000 seconds from recording, was obtained. The smaller the signal attenuation rate, the better. The product needs to be 25% or less for commercialization.

記録再生評価には、主磁極幅が50nmのラップ・アラウンド・シールド型記録ヘッド及び幾何素子幅が30nmの再生ヘッドを使用した。信号ノイズ比は、線記録密度が38kbits/mmの信号を記録した直後の再生波形における信号の0−p出力とノイズ出力の比から求めた。960Mbit/mm2を達成するには、信号ノイズ比が12.0dB以上あることが必要である。 For the recording / reproduction evaluation, a wrap around shield type recording head having a main magnetic pole width of 50 nm and a reproducing head having a geometric element width of 30 nm were used. The signal-to-noise ratio was obtained from the ratio of the 0-p output of the signal and the noise output in the reproduced waveform immediately after recording a signal with a linear recording density of 38 kbits / mm. In order to achieve 960 Mbit / mm 2 , the signal to noise ratio needs to be 12.0 dB or more.

耐食性は以下の方法で評価した。外径65mφのガラス基板上に形成した垂直磁気記録媒体を、温度が60℃で、相対湿度が95%の温湿度環境槽内に4日間、磁気ディスクを放置し、その後温湿度環境槽から磁気ディスクを取り出し、米国Candela Instruments社製Optical Surface Analyzer Model 2120のCorrosion Analysis測定によって、磁気ディスク表面の腐食点を計数した。本試験による腐食点数は概ね75個以下であれば、ハードディスクドライブ用に用いる磁気ディスクとして十分な耐食性を得られることが経験的に分かっている。   Corrosion resistance was evaluated by the following method. A perpendicular magnetic recording medium formed on a glass substrate having an outer diameter of 65 mφ is left in a temperature / humidity environment tank at a temperature of 60 ° C. and a relative humidity of 95% for 4 days. The disk was taken out, and the corrosion point on the surface of the magnetic disk was counted by the Corrosion Analysis measurement of Optical Surface Analyzer Model 2120 manufactured by Candela Instruments. It has been empirically found that if the corrosion score in this test is approximately 75 or less, sufficient corrosion resistance can be obtained as a magnetic disk used for a hard disk drive.

これらの比較実験の結果を図4に示す。
この結果から、比較例1では、信号ノイズ比は12.0dBを上回り、腐食点数も64と基準である75以下の範囲であるものの、信号減衰率が32%と基準となる25%以下に入っていない。
The results of these comparative experiments are shown in FIG.
From this result, in Comparative Example 1, the signal-to-noise ratio exceeds 12.0 dB and the number of corrosion points is 64 and the standard 75 or less, but the signal attenuation rate is 32% and the standard 25% or less. Not.

一方、実験例1では強磁性中間層であるCuCoFe合金膜が厚くなるほど信号減衰率は改善し、強磁性中間層の膜厚が5nm以上になると信号減衰率の基準値である25%以下にすることが出来た。さらに、信号ノイズ比はCuCoFe膜厚が3nm以上100nm以下において基準値である12.0dBを上回っていた。   On the other hand, in Experimental Example 1, the signal attenuation rate is improved as the CuCoFe alloy film, which is a ferromagnetic intermediate layer, becomes thicker. I was able to. Further, the signal-to-noise ratio exceeded the reference value of 12.0 dB when the CuCoFe film thickness was 3 nm or more and 100 nm or less.

これらの結果から、図1に示した膜構成の媒体で、強磁性中間膜107の膜厚を5〜100nmとすることによって本発明の目的を達成できることが明らかになった。   From these results, it became clear that the object of the present invention can be achieved by setting the film thickness of the ferromagnetic intermediate film 107 to 5 to 100 nm in the medium having the film configuration shown in FIG.

また、非磁性結合層103を設けないことを除き、実験例1と同様にして磁気記録媒体を作製した。その結果、スパイクノイズは認められず、図3に示すように非磁性結合層103を設けた場合と似たエラーレート特性の膜厚依存性が認められた。これらの結果から、非磁性結合層103は必須ではない。   Further, a magnetic recording medium was manufactured in the same manner as in Experimental Example 1 except that the nonmagnetic coupling layer 103 was not provided. As a result, no spike noise was observed, and the film thickness dependence of the error rate characteristics similar to the case where the nonmagnetic coupling layer 103 was provided as shown in FIG. 3 was recognized. From these results, the nonmagnetic coupling layer 103 is not essential.

〔実験例2〕
実験例1の強磁性中間層107の組成を除き、実験例2は実験例1と同じ媒体構成である。本実験例では、強磁性中間層107としてCu−20at.%Co層をガス圧6.5Pa、製膜レート1.5nm/sで1.5〜200nmの範囲で形成した。本実験例について、実験例1記載の方法で評価した結果を図5に示す。本実験例では中間層107の膜厚が5nm以上になると信号減衰率の基準値である25%以下にすることが出来た。さらに、信号ノイズ比は強磁性中間層107の膜厚が3nm以上100nm以下において基準値である12.0dBを上回った。
[Experimental example 2]
Except for the composition of the ferromagnetic intermediate layer 107 of Experimental Example 1, Experimental Example 2 has the same medium configuration as Experimental Example 1. In this experimental example, a Cu-20 at.% Co layer was formed as the ferromagnetic intermediate layer 107 in a range of 1.5 to 200 nm at a gas pressure of 6.5 Pa and a film formation rate of 1.5 nm / s. FIG. 5 shows the results of evaluation of this experimental example by the method described in Experimental Example 1. In this experimental example, when the thickness of the intermediate layer 107 was 5 nm or more, it was possible to reduce the reference value of the signal attenuation rate to 25% or less. Furthermore, the signal-to-noise ratio exceeded the reference value of 12.0 dB when the film thickness of the ferromagnetic intermediate layer 107 was 3 nm or more and 100 nm or less.

図には示さないが、中間層107の組成をCoとFeの合計が20at.%になるようにして、Feを0〜6at.%の範囲で変化させた場合にも、強磁性中間層107の膜厚が5nm以上100nm以下の範囲において、信号減衰率及び信号ノイズ比の基準値である12.0dBを上回り、また腐食点数も基準値を満たしていた。   Although not shown in the drawing, when the composition of the intermediate layer 107 is such that the total of Co and Fe is 20 at.% And Fe is changed in the range of 0 to 6 at.%, The ferromagnetic intermediate layer 107 is also changed. In the range of 5 nm to 100 nm, the signal attenuation rate and the signal-to-noise ratio were over 12.0 dB, and the number of corrosion points also satisfied the standard value.

〔実験例3〕
実験例3は、実験例1の強磁性中間層107の組成を変えた他は同じ媒体構成である。本実験例3において、Cu−20at.%Fe層をガス圧6.5Pa、製膜レート1.5nm/sで1.5〜200nmの範囲で形成した。本実験例3の磁気記録媒体について、実験例1記載した方法で評価した結果を図6に示す。本実験例では強磁性中間層の膜厚が5nm以上になると信号減衰率の基準値である25%以下にすることが出来た。さらに、信号ノイズ比は強磁性中間層107の膜厚が3nm以上100nm以下において基準値である12.0dBを上回った。
[Experimental Example 3]
Experimental Example 3 has the same medium configuration except that the composition of the ferromagnetic intermediate layer 107 of Experimental Example 1 is changed. In Experimental Example 3, a Cu-20 at.% Fe layer was formed in the range of 1.5 to 200 nm at a gas pressure of 6.5 Pa and a film formation rate of 1.5 nm / s. FIG. 6 shows the results of evaluating the magnetic recording medium of Experimental Example 3 by the method described in Experimental Example 1. In this experimental example, when the film thickness of the ferromagnetic intermediate layer was 5 nm or more, it was possible to reduce the reference value of the signal attenuation rate to 25% or less. Furthermore, the signal-to-noise ratio exceeded the reference value of 12.0 dB when the film thickness of the ferromagnetic intermediate layer 107 was 3 nm or more and 100 nm or less.

図には示さないが、中間層107の組成をCoとFeの割合が20at.%になるようにして、Feを6〜20at.%の範囲で変化させた場合にも、強磁性中間層107の膜厚が5nm以上100nm以下の範囲において、信号減衰率及び信号ノイズ比の基準値である12.0dBを上回り、また腐食点数も基準値を満たしていた。   Although not shown in the figure, when the composition of the intermediate layer 107 is such that the ratio of Co and Fe is 20 at.% And Fe is changed in the range of 6 to 20 at.%, The ferromagnetic intermediate layer 107 is also changed. In the range of 5 nm to 100 nm, the signal attenuation rate and the signal-to-noise ratio were over 12.0 dB, and the number of corrosion points also satisfied the standard value.

〔実験例4〕
実験例4の構成は、実験例1の強磁性中間層107の組成を変えた以外、同じ媒体構成である。本実験例において強磁性中間層107はガス圧6.5Pa、製膜レート1.5nm/sで30nm形成し、組成は次のようにした。
(実験例401)Cu
(実験例402)Cu−7at.%Co−3at.%Fe
(実験例403)Cu−14at.%Co−6at.%Fe
(実験例404)Cu−21at.%Co−9at.%Fe
(実験例405)Cu−24.5at.%Co−10.5at.%Fe
(実験例406)Cu−28at.%Co−12at.%Fe
(実験例407)Cu−35at.%Co−15at.%Fe
[Experimental Example 4]
The configuration of Experimental Example 4 is the same medium configuration except that the composition of the ferromagnetic intermediate layer 107 of Experimental Example 1 is changed. In this experimental example, the ferromagnetic intermediate layer 107 was formed to a thickness of 30 nm at a gas pressure of 6.5 Pa and a film formation rate of 1.5 nm / s, and the composition was as follows.
(Experimental example 401) Cu
(Experimental example 402) Cu-7 at.% Co-3 at.% Fe
(Experimental example 403) Cu-14 at.% Co-6 at.% Fe
(Experimental Example 404) Cu-21 at.% Co-9 at.% Fe
(Experimental example 405) Cu-24.5at.% Co-10.5at.% Fe
(Experimental example 406) Cu-28at.% Co-12at.% Fe
(Experimental example 407) Cu-35at.% Co-15at.% Fe

これらの組成を用いた実験例4の信号ノイズ比と信号減衰率を図7に示す。CoとFe合計の割合が10at.%以上30at.%以下の範囲で、目標値である信号ノイズ比が12.0dB以上で信号減衰率は25%以下となった。また実験例1に示した方法で実験例4の耐食性を評価した結果、全ての媒体で腐食点数は基準である75個を下回った。   FIG. 7 shows the signal noise ratio and the signal attenuation rate of Experimental Example 4 using these compositions. When the ratio of the total of Co and Fe is in the range of 10 at. Moreover, as a result of evaluating the corrosion resistance of Experimental Example 4 by the method shown in Experimental Example 1, the corrosion score of all the media was lower than the standard 75.

また、図には示さないが、中間層を実験例401〜407と同様の組成で膜厚5〜100nmの範囲で変化させて評価した結果、いずれもCoとFe合計の割合が10at.%以上30at.%以下の範囲で、信号ノイズ比、信号減衰率、及び耐食性の全ての基準値を満たしていた。   Although not shown in the figure, as a result of evaluating the intermediate layer with a composition similar to that of Experimental Examples 401 to 407 in a film thickness range of 5 to 100 nm, the ratio of the total amount of Co and Fe is 10 at. In the range of 30 at.% Or less, all the standard values of the signal noise ratio, the signal attenuation rate, and the corrosion resistance were satisfied.

〔実験例5〕
図8を用いて実験例5の磁気記録媒体の構成を説明する。基板100の上に密着層101、軟磁性裏打ち層102、非磁性結合層103、軟磁性裏打ち層104、シード層105、非磁性中間層106、強磁性中間層501、非磁性中間層502、強磁性中間層503、記録層(108,109)、保護層110が積層された構造である。保護膜110の上には潤滑膜が形成されても良い。また、基板100の両面に同様の磁気記録媒体を構成しても良い。
この媒体構成は、強磁性中間層501及び503と非磁性中間層502以外は実験例1と同じである。
[Experimental Example 5]
The configuration of the magnetic recording medium of Experimental Example 5 will be described with reference to FIG. Adhesion layer 101, soft magnetic backing layer 102, nonmagnetic coupling layer 103, soft magnetic backing layer 104, seed layer 105, nonmagnetic intermediate layer 106, ferromagnetic intermediate layer 501, nonmagnetic intermediate layer 502, strong on substrate 100 The magnetic intermediate layer 503, the recording layers (108, 109), and the protective layer 110 are stacked. A lubricating film may be formed on the protective film 110. Further, a similar magnetic recording medium may be configured on both surfaces of the substrate 100.
This medium configuration is the same as that of Experimental Example 1 except for the ferromagnetic intermediate layers 501 and 503 and the nonmagnetic intermediate layer 502.

実験例5においては、強磁性中間層501及び503の組成は、実験例4で用いたのと同じく以下のようにし、ガス圧6.5Pa、製膜レート1.5nm/sでそれぞれの膜厚を15nm積層した。非磁性中間層502は、Ru層をガス圧6.5Pa、製膜レート1.5nm/sで5nm形成した。
(実験例501)Cu
(実験例502)Cu−7at.%Co−3at.%Fe
(実験例503)Cu−14at.%Co−6at.%Fe
(実験例504)Cu−21at.%Co−9at.%Fe
(実験例505)Cu−24.5at.%Co−10.5at.%Fe
(実験例506)Cu−28at.%Co−12at.%Fe
(実験例507)Cu−35at.%Co−15at.%Fe
(実験例508)Cu−42at.%Co−18at.%Fe
(実験例509)Cu−49at.%Co−21at.%Fe
実験例5と実験例4の違いは、非磁性中間層502と強磁性中間層503の有無である。
In Experimental Example 5, the compositions of the ferromagnetic intermediate layers 501 and 503 are the same as those used in Experimental Example 4 as follows, and the respective film thicknesses are obtained at a gas pressure of 6.5 Pa and a film forming rate of 1.5 nm / s. 15 nm was laminated. As the nonmagnetic intermediate layer 502, a Ru layer was formed to 5 nm at a gas pressure of 6.5 Pa and a film formation rate of 1.5 nm / s.
(Experiment 501) Cu
(Experimental example 502) Cu-7 at.% Co-3 at.% Fe
(Experimental example 503) Cu-14 at.% Co-6 at.% Fe
(Experimental example 504) Cu-21 at.% Co-9 at.% Fe
(Experimental example 505) Cu-24.5at.% Co-10.5at.% Fe
(Experimental example 506) Cu-28 at.% Co-12 at.% Fe
(Experimental example 507) Cu-35at.% Co-15at.% Fe
(Experimental example 508) Cu-42at.% Co-18at.% Fe
(Experimental example 509) Cu-49 at.% Co-21 at.% Fe
The difference between Experimental Example 5 and Experimental Example 4 is the presence or absence of the nonmagnetic intermediate layer 502 and the ferromagnetic intermediate layer 503.

これらの磁気記録媒体について測定した信号ノイズ比を図9に示す。実験例4ではCoとFe合計の割合が35at.%以上で信号ノイズ比が低下しているが、実験例5ではCoとFe合計の割合が10〜60at.%の範囲で信号ノイズ比12.0dB以上、信号低下率25%以下、及び腐食点数75個以下の基準値を達成した。   The signal-to-noise ratio measured for these magnetic recording media is shown in FIG. In Experimental Example 4, the signal-to-noise ratio is reduced when the ratio of the total of Co and Fe is 35 at.% Or more. In Experimental Example 5, the signal-to-noise ratio is 12. Reference values of 0 dB or more, a signal decrease rate of 25% or less, and a corrosion point of 75 or less were achieved.

〔実験例6〕
実験例6の磁気記録媒体の構成を図10を用いて説明する。基板100の上に密着層101、軟磁性裏打ち層102、非磁性結合層103、軟磁性裏打ち層104、シード層105、非磁性中間層106、強磁性中間層601を積層し、さらに非磁性中間層602から強磁性中間層603を2〜5周期積層し、その上部に記録層(108,109)、保護層110が積層された構造である。
[Experimental Example 6]
The configuration of the magnetic recording medium of Experimental Example 6 will be described with reference to FIG. An adhesion layer 101, a soft magnetic backing layer 102, a nonmagnetic coupling layer 103, a soft magnetic backing layer 104, a seed layer 105, a nonmagnetic intermediate layer 106, and a ferromagnetic intermediate layer 601 are laminated on the substrate 100, and further a nonmagnetic intermediate layer is laminated. In this structure, the ferromagnetic intermediate layer 603 is laminated for 2 to 5 periods from the layer 602, and the recording layers (108, 109) and the protective layer 110 are laminated thereon.

保護膜110の上には潤滑膜が形成されても良い。また、基板100の両面に同様の磁気記録媒体を構成しても良い。
この媒体構成は、強磁性中間層601から強磁性中間層603の間にある層以外は実験例5と同じである。
A lubricating film may be formed on the protective film 110. Further, a similar magnetic recording medium may be configured on both surfaces of the substrate 100.
This medium configuration is the same as that of Experimental Example 5 except for the layer between the ferromagnetic intermediate layer 601 and the ferromagnetic intermediate layer 603.

強磁性中間層601及び603は、合計の膜厚が15〜100nmで各層が均等な厚さとし、CoとFe合計の割合が10〜60at.%としてガス圧6.5Pa、製膜レート1.5nm/sで形成した。非磁性中間層602は、Ru層をガス圧6.5Pa、製膜レート1.5nm/sで5nmずつ形成した。
これらの実験例を評価した結果、信号ノイズ比、信号低下率、及び腐食点数において基準値を達成した。
The ferromagnetic intermediate layers 601 and 603 have a total film thickness of 15 to 100 nm and uniform thicknesses. The ratio of the total amount of Co and Fe is 10 to 60 at.%, The gas pressure is 6.5 Pa, and the film formation rate is 1.5 nm. / S. As the nonmagnetic intermediate layer 602, a Ru layer was formed by 5 nm at a gas pressure of 6.5 Pa and a film formation rate of 1.5 nm / s.
As a result of evaluating these experimental examples, reference values were achieved in the signal-to-noise ratio, the signal decrease rate, and the number of corrosion points.

〔実験例7〕
実験例7の媒体構成を図11を用いて説明する。実験例7の磁気記録媒体は、基板100の上に密着層101、軟磁性裏打ち層102、非磁性結合層103、軟磁性裏打ち層104、シード層105、非磁性中間層106を積層し、さらに強磁性中間層701、非磁性中間層702、記録層(108,109)、保護層110が積層された構造である。保護膜110の上には潤滑膜を形成した。基板100の両面に同様の磁気記録媒体を構成しても良い。
[Experimental Example 7]
The medium configuration of Experimental Example 7 will be described with reference to FIG. In the magnetic recording medium of Experimental Example 7, an adhesion layer 101, a soft magnetic backing layer 102, a nonmagnetic coupling layer 103, a soft magnetic backing layer 104, a seed layer 105, and a nonmagnetic intermediate layer 106 are stacked on a substrate 100, and The ferromagnetic intermediate layer 701, the nonmagnetic intermediate layer 702, the recording layers (108, 109), and the protective layer 110 are stacked. A lubricating film was formed on the protective film 110. A similar magnetic recording medium may be formed on both sides of the substrate 100.

この媒体構成は、非磁性中間層702以外は実験例1と同じである。実験例7においては、強磁性中間層701はCu−21at.%Co−9at.%Fe層を膜厚30nmで作製した。非磁性中間層702は、Ru層をガス圧6.5Pa、製膜レート1.5nm/sで膜厚を1〜30nm形成した。   This medium configuration is the same as that of Experimental Example 1 except for the nonmagnetic intermediate layer 702. In Experimental Example 7, the ferromagnetic intermediate layer 701 was formed of a Cu-21 at.% Co-9 at.% Fe layer with a film thickness of 30 nm. The nonmagnetic intermediate layer 702 was formed by forming a Ru layer with a gas pressure of 6.5 Pa, a film formation rate of 1.5 nm / s, and a thickness of 1 to 30 nm.

これらの磁気記録媒体についての評価結果を図12に示す。信号ノイズ比や腐食点数は全てで基準値を満たしている。信号減衰率は、非磁性中間層702の膜厚が20nm以下において、基準値である25%以下を満たした。また、非磁性中間層702の膜厚が20nm以下のとき、強磁性中間層701を膜厚5〜100nmの範囲で変化させて評価したところ、CoとFe合計の割合が10at.%以上30at.%以下の範囲で、信号ノイズ比、信号減衰率、及び耐食性の全ての基準値を満たしていた。   The evaluation results for these magnetic recording media are shown in FIG. The signal noise ratio and the number of corrosion points all satisfy the standard values. The signal attenuation rate satisfied the reference value of 25% or less when the film thickness of the nonmagnetic intermediate layer 702 was 20 nm or less. Further, when the film thickness of the nonmagnetic intermediate layer 702 is 20 nm or less, the ferromagnetic intermediate layer 701 was evaluated by changing the film thickness in the range of 5 to 100 nm. As a result, the total ratio of Co and Fe was 10 at. Within the range of% or less, all the standard values of the signal-to-noise ratio, the signal attenuation rate, and the corrosion resistance were satisfied.

〔実験例8〕
実験例8の媒体構成を図13を用いて説明する。実験例8の磁気記録媒体は、基板100の上に密着層101、シード層105、非磁性中間層106、強磁性中間層107、記録層(108,109)、保護層110が積層された構造である。保護膜110の上には潤滑膜を形成した。基板100の両面に同様の磁気記録媒体を構成しても良い。
[Experimental Example 8]
The medium configuration of Experimental Example 8 will be described with reference to FIG. The magnetic recording medium of Experimental Example 8 has a structure in which an adhesion layer 101, a seed layer 105, a nonmagnetic intermediate layer 106, a ferromagnetic intermediate layer 107, recording layers (108, 109), and a protective layer 110 are stacked on a substrate 100. It is. A lubricating film was formed on the protective film 110. A similar magnetic recording medium may be formed on both sides of the substrate 100.

この媒体構成は、軟磁性裏打ち層102及び104と非磁性結合層103がないことを除くと実験例1と同じである。本実験例において強磁性中間層107の膜厚は30nmとした。   This medium configuration is the same as that of Experimental Example 1 except that the soft magnetic backing layers 102 and 104 and the nonmagnetic coupling layer 103 are not provided. In this experimental example, the film thickness of the ferromagnetic intermediate layer 107 was 30 nm.

本実験例の媒体を評価した結果、信号減衰率及び信号ノイズ比はそれぞれ3%と12.2dBであった。耐食性の評価でも、腐食点数は64個であった。したがって、信号減衰率、信号ノイズ比及び耐食性の観点から基準を満たしていることが確認された。   As a result of evaluating the medium of this experimental example, the signal attenuation rate and the signal noise ratio were 3% and 12.2 dB, respectively. Even in the evaluation of corrosion resistance, the number of corrosion points was 64. Therefore, it was confirmed that the standard was satisfied from the viewpoint of signal attenuation rate, signal noise ratio, and corrosion resistance.

〔実験例9〕
実験例9の媒体構成を図14を用いて説明する。本実験例の磁気記録媒体は、基板100の上に密着層101、軟磁性裏打ち層102、シード層105、非磁性中間層106、強磁性中間層107、記録層(108,109)、保護層110が積層された構造である。保護膜110の上には潤滑膜を形成した。基板100の両面に同様の磁気記録媒体を構成しても良い。
[Experimental Example 9]
The medium configuration of Experimental Example 9 will be described with reference to FIG. The magnetic recording medium of this experimental example includes an adhesion layer 101, a soft magnetic backing layer 102, a seed layer 105, a nonmagnetic intermediate layer 106, a ferromagnetic intermediate layer 107, a recording layer (108, 109), a protective layer on a substrate 100. 110 is a laminated structure. A lubricating film was formed on the protective film 110. A similar magnetic recording medium may be formed on both sides of the substrate 100.

この媒体構成は、非磁性結合層103と軟磁性裏打ち層104がないことを除くと実験例1と同じである。本実験例において強磁性中間層107の膜厚は30nmとした。   This medium configuration is the same as Experimental Example 1 except that the nonmagnetic coupling layer 103 and the soft magnetic backing layer 104 are not provided. In this experimental example, the thickness of the ferromagnetic intermediate layer 107 was 30 nm.

本実験例において評価した結果、信号減衰率、信号ノイズ比及び耐食性について基準を満たしていた。また、磁気記録ヘッドを用いてDC消磁した後に得られた再生信号には、フラックスリターンパスに起因するスパイク性ノイズの発生は見られなかった。   As a result of evaluation in this experimental example, the standards were satisfied with respect to the signal attenuation rate, the signal noise ratio, and the corrosion resistance. In addition, the reproduction signal obtained after DC demagnetization using the magnetic recording head did not show the occurrence of spike noise due to the flux return path.

〔実験例10〕
実験例10の媒体構成を図15を用いて説明する。本実験例の磁気記録媒体は、基板100の上に密着層101、軟磁性裏打ち層102、非磁性結合層103、軟磁性裏打ち層104、シード層105、強磁性中間層107、記録層(108,109)、保護層110が積層された構造である。保護膜110の上には潤滑膜が形成されても良い。また、基板100の両面に同様の磁気記録媒体を構成しても良い。
[Experimental Example 10]
The medium configuration of Experimental Example 10 will be described with reference to FIG. The magnetic recording medium of this experimental example includes an adhesion layer 101, a soft magnetic backing layer 102, a nonmagnetic coupling layer 103, a soft magnetic backing layer 104, a seed layer 105, a ferromagnetic intermediate layer 107, a recording layer (108) on a substrate 100. 109), and a protective layer 110 is laminated. A lubricating film may be formed on the protective film 110. Further, a similar magnetic recording medium may be configured on both surfaces of the substrate 100.

この媒体構成は、非磁性中間層106がないことを除くと実験例1と同じである。本実験例において強磁性中間層107の膜厚は5〜100nmで組成はCoとFe合計の割合が10〜30at.%の範囲で、ガス圧6.5Pa、製膜レート1.5nm/sで形成した。   This medium configuration is the same as that of Experimental Example 1 except that the nonmagnetic intermediate layer 106 is not provided. In this experimental example, the thickness of the ferromagnetic intermediate layer 107 is 5 to 100 nm, the composition is within the range of the ratio of the total amount of Co and Fe of 10 to 30 at.%, The gas pressure is 6.5 Pa, and the film forming rate is 1.5 nm / s. Formed.

本実験例に記載の磁気記録媒体について評価した結果、全ての膜厚組成において信号減衰率及び信号ノイズ比はそれぞれ0%及び12.0dB以上、かつ耐食性評価では腐食点数は50個以下であった。従って、信号減衰率、信号ノイズ比及び耐食性について基準を満たしていた。   As a result of evaluating the magnetic recording medium described in this experimental example, the signal attenuation ratio and the signal noise ratio were 0% and 12.0 dB or more, respectively, and the corrosion score was 50 or less in the corrosion resistance evaluation in all film thickness compositions. . Therefore, the standards for the signal attenuation rate, the signal noise ratio, and the corrosion resistance were satisfied.

〔実験例11〕
実験例11の磁気記録媒体は、基板100の上に密着層101、軟磁性裏打ち層102、非磁性結合層103、軟磁性裏打ち層104、シード層105、非磁性中間層106、強磁性中間層107、記録層(108,109)、保護層110が積層された構造である。保護膜110の上に潤滑膜を形成した。基板100の両面に同様の磁気記録媒体を構成しても良い。
[Experimental Example 11]
The magnetic recording medium of Experimental Example 11 includes an adhesion layer 101, a soft magnetic backing layer 102, a nonmagnetic coupling layer 103, a soft magnetic backing layer 104, a seed layer 105, a nonmagnetic intermediate layer 106, and a ferromagnetic intermediate layer on a substrate 100. 107, a recording layer (108, 109), and a protective layer 110 are laminated. A lubricating film was formed on the protective film 110. A similar magnetic recording medium may be formed on both sides of the substrate 100.

この媒体構成は、強磁性中間層107を除くと実験例1と同じである。実験例11において、強磁性中間層107の組成は以下のとおりとし、ガス圧6.5Pa、製膜レート1.5nm/sで膜厚30nm形成した。
(実験例1101)Cu−14at.%Co−6at.%Fe−5at%Cr
(実験例1102)Cu−14at.%Co−6at.%Fe−5at%Ru
(実験例1103)Cu−14at.%Co−6at.%Fe−5at%Ni
これらの実験例は、実験例11における強磁性中間層107をCu−14at.%Co−6at.%Fe層とした媒体にCrやRu、Niを添加したものである。
This medium configuration is the same as that of Experimental Example 1 except for the ferromagnetic intermediate layer 107. In Experimental Example 11, the composition of the ferromagnetic intermediate layer 107 was as follows, and a film thickness of 30 nm was formed at a gas pressure of 6.5 Pa and a film formation rate of 1.5 nm / s.
(Experimental example 1101) Cu-14 at.% Co-6 at.% Fe-5 at% Cr
(Experimental example 1102) Cu-14 at.% Co-6 at.% Fe-5 at% Ru
(Experimental Example 1103) Cu-14 at.% Co-6 at.% Fe-5 at% Ni
In these experimental examples, Cr, Ru, and Ni are added to a medium in which the ferromagnetic intermediate layer 107 in Experimental Example 11 is a Cu-14 at.% Co-6 at.% Fe layer.

これらの磁気記録媒体について実験例1記載の方法で評価した結果を図16に示す。図16から明らかなように、本実験例の媒体は、信号減衰率、信号ノイズ比、及び腐食点数について基準を満たしていた。特に、強磁性中間層107にCrを添加した場合には、腐食点数が減少し、耐食性に優れる媒体が得られることが分かった。   Results of evaluating these magnetic recording media by the method described in Experimental Example 1 are shown in FIG. As is clear from FIG. 16, the medium of this experimental example satisfied the standards for the signal attenuation rate, the signal noise ratio, and the number of corrosion points. In particular, it has been found that when Cr is added to the ferromagnetic intermediate layer 107, the number of corrosion points decreases and a medium having excellent corrosion resistance can be obtained.

100…基板、101…密着層、102…第一の軟磁性裏打ち層、103…非磁性結合層、104…第二の軟磁性裏打ち層、105…シード層、106…非磁性中間層、107…強磁性中間層、108…第一の記録層、109…第二の記録層、110…保護層、501…強磁性中間層、502…非磁性中間層、503…強磁性中間層、601…強磁性中間層、602…非磁性中間層、603…強磁性中間層、701…強磁性中間層、702…非磁性中間層 DESCRIPTION OF SYMBOLS 100 ... Substrate, 101 ... Adhesion layer, 102 ... First soft magnetic backing layer, 103 ... Nonmagnetic coupling layer, 104 ... Second soft magnetic backing layer, 105 ... Seed layer, 106 ... Nonmagnetic intermediate layer, 107 ... Ferromagnetic intermediate layer 108 ... first recording layer 109 ... second recording layer 110 ... protective layer 501 ... ferromagnetic intermediate layer 502 ... nonmagnetic intermediate layer 503 ... ferromagnetic intermediate layer 601 ... strong Magnetic intermediate layer, 602 ... Nonmagnetic intermediate layer, 603 ... Ferromagnetic intermediate layer, 701 ... Ferromagnetic intermediate layer, 702 ... Nonmagnetic intermediate layer

Claims (6)

基板上に中間層と磁気記録層とを備える垂直磁気記録媒体において、
前記中間層は、Cuを主成分としCoとFeから選ばれる少なくとも一元素を含み、CoとFeの合計割合が10〜30at.%であり、かつ膜厚が5〜100nmであることを特徴とする垂直磁気記録媒体。
In a perpendicular magnetic recording medium comprising an intermediate layer and a magnetic recording layer on a substrate,
The intermediate layer contains Cu as a main component and contains at least one element selected from Co and Fe, the total ratio of Co and Fe is 10 to 30 at.%, And the film thickness is 5 to 100 nm. Perpendicular magnetic recording medium.
基板上に中間層と磁気記録層とを備える垂直磁気記録媒体において、
前記中間層は、前記基板側から見て第一中間層と第二中間層が順次積層された構造を有し、
前記第一中間層はRu又はRu合金を含有し、
前記第二中間層は、Cuを主成分としCoとFeから選ばれる少なくとも一元素を含み、CoとFeの合計割合が10〜30at.%となる合金で構成され、膜厚が5nm以上100nm以下であることを特徴とする垂直磁気記録媒体。
In a perpendicular magnetic recording medium comprising an intermediate layer and a magnetic recording layer on a substrate,
The intermediate layer has a structure in which a first intermediate layer and a second intermediate layer are sequentially stacked as viewed from the substrate side,
The first intermediate layer contains Ru or a Ru alloy,
The second intermediate layer is composed of an alloy containing Cu as a main component and containing at least one element selected from Co and Fe, and having a total ratio of Co and Fe of 10 to 30 at.%, And a film thickness of 5 nm to 100 nm. A perpendicular magnetic recording medium characterized by the above.
基板上に中間層と磁気記録層とを備える垂直磁気記録媒体において、
前記中間層は、前記基板側から見て第一中間層、第二中間層、第三中間層及び第四中間層が順次積層された構造を有し、
前記第一中間層及び前記第三中間層はRu又はRu合金を含有し、
前記第二中間層及び前記第四中間層は、Cuを主成分としCoとFeから選ばれる少なくとも一元素を含み、CoとFeの合計割合が10〜60at.%となる合金で構成され、
前記第二中間層と前記第四中間層の合計膜厚が15nm以上100nm以下であることを特徴とする垂直磁気記録媒体。
In a perpendicular magnetic recording medium comprising an intermediate layer and a magnetic recording layer on a substrate,
The intermediate layer has a structure in which a first intermediate layer, a second intermediate layer, a third intermediate layer, and a fourth intermediate layer are sequentially stacked when viewed from the substrate side,
The first intermediate layer and the third intermediate layer contain Ru or a Ru alloy,
The second intermediate layer and the fourth intermediate layer are made of an alloy containing Cu as a main component and containing at least one element selected from Co and Fe, and a total ratio of Co and Fe of 10 to 60 at.%.
A perpendicular magnetic recording medium, wherein a total film thickness of the second intermediate layer and the fourth intermediate layer is 15 nm or more and 100 nm or less.
基板上に中間層と磁気記録層とを備える垂直磁気記録媒体において、
前記中間層は6〜12層の偶数層からなる積層構造を有し、
前記基板側から見て奇数番目の中間層はRu又はRu合金を含有し、
前記基板側から見て偶数番目の中間層は、Cuを主成分としCoとFeから選ばれる少なくとも一元素を含み、CoとFeの合計割合が10〜60at.%となる合金で構成され、
前記偶数番目の中間層の合計膜厚が15nm以上100nm以下であることを特徴とする垂直磁気記録媒体。
In a perpendicular magnetic recording medium comprising an intermediate layer and a magnetic recording layer on a substrate,
The intermediate layer has a laminated structure composed of an even number of 6 to 12 layers,
The odd-numbered intermediate layer when viewed from the substrate side contains Ru or a Ru alloy,
The even-numbered intermediate layer as viewed from the substrate side is made of an alloy containing Cu as a main component and containing at least one element selected from Co and Fe, and a total ratio of Co and Fe of 10 to 60 at.%.
A perpendicular magnetic recording medium, wherein the total thickness of the even-numbered intermediate layers is 15 nm or more and 100 nm or less.
基板上に中間層と磁気記録層とを備える垂直磁気記録媒体において、
前記中間層は、前記基板側から見て第一中間層、第二中間層及び第三中間層が順次積層された構造を有し、
前記第一中間層及び前記第三中間層はRu又はRu合金を含有し、
前記第二中間層は、Cuを主成分としCoとFeから選ばれる少なくとも一元素を含み、CoとFeの合計割合が10〜30at.%となる合金で構成され、
第二中間層の膜厚が5〜100nmであり、前記第三中間層の膜厚が20nm以下であることを特徴とする垂直磁気記録媒体。
In a perpendicular magnetic recording medium comprising an intermediate layer and a magnetic recording layer on a substrate,
The intermediate layer has a structure in which a first intermediate layer, a second intermediate layer, and a third intermediate layer are sequentially stacked as viewed from the substrate side,
The first intermediate layer and the third intermediate layer contain Ru or a Ru alloy,
The second intermediate layer is composed of an alloy containing Cu as a main component and containing at least one element selected from Co and Fe, and a total ratio of Co and Fe of 10 to 30 at.%.
A perpendicular magnetic recording medium, wherein the second intermediate layer has a thickness of 5 to 100 nm, and the third intermediate layer has a thickness of 20 nm or less.
請求項1〜5に記載の垂直磁気記録媒体において、前記CoとFeから選ばれる少なくとも一元素を含みCuを主成分とする中間層はNi,Ru,Crから選ばれる少なくとも一種類の添加元素を含有していることを特徴とする垂直磁気記録媒体。   6. The perpendicular magnetic recording medium according to claim 1, wherein the intermediate layer containing at least one element selected from Co and Fe and containing Cu as a main component contains at least one additive element selected from Ni, Ru, and Cr. A perpendicular magnetic recording medium comprising:
JP2009141521A 2009-06-12 2009-06-12 Perpendicular magnetic recording medium Expired - Fee Related JP5342935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009141521A JP5342935B2 (en) 2009-06-12 2009-06-12 Perpendicular magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009141521A JP5342935B2 (en) 2009-06-12 2009-06-12 Perpendicular magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2010287290A true JP2010287290A (en) 2010-12-24
JP5342935B2 JP5342935B2 (en) 2013-11-13

Family

ID=43542867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009141521A Expired - Fee Related JP5342935B2 (en) 2009-06-12 2009-06-12 Perpendicular magnetic recording medium

Country Status (1)

Country Link
JP (1) JP5342935B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017021873A (en) * 2015-07-08 2017-01-26 昭和電工株式会社 Method for manufacturing magnetic recording medium and magnetic recording and reproducing device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05109044A (en) * 1991-10-15 1993-04-30 Denki Kagaku Kogyo Kk Vertical magnetic recording medium
JPH11149628A (en) * 1997-11-17 1999-06-02 Nec Corp Perpendicular magnetic recording medium
JP2002109720A (en) * 2000-09-28 2002-04-12 Hitachi Ltd Perpendicular magnetic recording medium and magnetic storage device using this
JP2003248914A (en) * 2002-02-26 2003-09-05 Hitachi Ltd Perpendicular magnetic recording medium and method for producing the same
JP2004039030A (en) * 2002-06-28 2004-02-05 Showa Denko Kk Magnetic recording medium, its manufacturing method, and magnetic recording/reproducing device
JP2004054972A (en) * 2002-07-16 2004-02-19 Showa Denko Kk Magnetic recording medium and manufacturing method therefore, and magnetic recording/reproducing device
JP2005302184A (en) * 2004-04-14 2005-10-27 Matsushita Electric Ind Co Ltd Magnetic recording medium
JP2007052852A (en) * 2005-08-17 2007-03-01 Toshiba Corp Perpendicular magnetic recording medium, and magnetic recording and reproducing device
JP2007087602A (en) * 2006-12-27 2007-04-05 Toshiba Corp Perpendicular magnetic recording medium and magnetic recording/reproducing device using same
JP2007172704A (en) * 2005-12-20 2007-07-05 Toshiba Corp Magnetic recording medium and magnetic recording and reproducing device
JP2007257798A (en) * 2006-03-24 2007-10-04 Fujitsu Ltd Magnetic recording medium and magnetic recorder

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05109044A (en) * 1991-10-15 1993-04-30 Denki Kagaku Kogyo Kk Vertical magnetic recording medium
JPH11149628A (en) * 1997-11-17 1999-06-02 Nec Corp Perpendicular magnetic recording medium
JP2002109720A (en) * 2000-09-28 2002-04-12 Hitachi Ltd Perpendicular magnetic recording medium and magnetic storage device using this
JP2003248914A (en) * 2002-02-26 2003-09-05 Hitachi Ltd Perpendicular magnetic recording medium and method for producing the same
JP2004039030A (en) * 2002-06-28 2004-02-05 Showa Denko Kk Magnetic recording medium, its manufacturing method, and magnetic recording/reproducing device
JP2004054972A (en) * 2002-07-16 2004-02-19 Showa Denko Kk Magnetic recording medium and manufacturing method therefore, and magnetic recording/reproducing device
JP2005302184A (en) * 2004-04-14 2005-10-27 Matsushita Electric Ind Co Ltd Magnetic recording medium
JP2007052852A (en) * 2005-08-17 2007-03-01 Toshiba Corp Perpendicular magnetic recording medium, and magnetic recording and reproducing device
JP2007172704A (en) * 2005-12-20 2007-07-05 Toshiba Corp Magnetic recording medium and magnetic recording and reproducing device
JP2007257798A (en) * 2006-03-24 2007-10-04 Fujitsu Ltd Magnetic recording medium and magnetic recorder
JP2007087602A (en) * 2006-12-27 2007-04-05 Toshiba Corp Perpendicular magnetic recording medium and magnetic recording/reproducing device using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017021873A (en) * 2015-07-08 2017-01-26 昭和電工株式会社 Method for manufacturing magnetic recording medium and magnetic recording and reproducing device

Also Published As

Publication number Publication date
JP5342935B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
JP4380577B2 (en) Perpendicular magnetic recording medium
JP4580817B2 (en) Perpendicular magnetic recording medium and perpendicular magnetic recording / reproducing apparatus
JP2007035139A (en) Vertical magnetic recording medium and magnetic recording and reproducing apparatus
US20100209741A1 (en) Perpendicular magnetic recording medium, process for production thereof, and magnetic recording/reproduction apparatus
JP5337451B2 (en) Perpendicular magnetic recording medium
JP4623594B2 (en) Perpendicular magnetic recording medium
KR20070067600A (en) Perpendicular magnetic recording disk with ultrathin nucleation film for improved corrosion resistance and method for making the disk
JP4707265B2 (en) Perpendicular magnetic recording medium
JP4557880B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
US20090226763A1 (en) Perpendicular magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
JP4534711B2 (en) Perpendicular magnetic recording medium
JP4771222B2 (en) Perpendicular magnetic recording medium
US20060147760A1 (en) Perpendicular magnetic recording medium
JP2012027989A (en) Perpendicular magnetic recording medium
JP5782819B2 (en) Perpendicular magnetic recording medium
US20100079911A1 (en) Magnetic recording medium, process for producing same, and magnetic recording reproducing apparatus using the magnetic recording medium
US8071228B2 (en) Perpendicular magnetic recording medium
US9028984B2 (en) Perpendicular magnetic recording medium
JP5342935B2 (en) Perpendicular magnetic recording medium
JP2006179133A (en) Magnetic recording medium and magnetic storage device using the same
US20030219627A1 (en) Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
US8105707B2 (en) Perpendicular magnetic recording medium
JP5516283B2 (en) Perpendicular magnetic recording medium
JP2001093139A (en) Magnetic recording medium and magnetic recording and reproducing device
JP2006294106A (en) Magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130618

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R150 Certificate of patent or registration of utility model

Ref document number: 5342935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees