JP4623594B2 - Perpendicular magnetic recording medium - Google Patents

Perpendicular magnetic recording medium Download PDF

Info

Publication number
JP4623594B2
JP4623594B2 JP2006240161A JP2006240161A JP4623594B2 JP 4623594 B2 JP4623594 B2 JP 4623594B2 JP 2006240161 A JP2006240161 A JP 2006240161A JP 2006240161 A JP2006240161 A JP 2006240161A JP 4623594 B2 JP4623594 B2 JP 4623594B2
Authority
JP
Japan
Prior art keywords
layer
magnetic
magnetic recording
recording medium
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006240161A
Other languages
Japanese (ja)
Other versions
JP2008065879A (en
Inventor
武仁 島津
基 青井
北上  修
貞幸 渡辺
洋之 上住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Fuji Electric Co Ltd
Original Assignee
Tohoku University NUC
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Fuji Electric Holdings Ltd filed Critical Tohoku University NUC
Priority to JP2006240161A priority Critical patent/JP4623594B2/en
Publication of JP2008065879A publication Critical patent/JP2008065879A/en
Application granted granted Critical
Publication of JP4623594B2 publication Critical patent/JP4623594B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Description

この発明は、磁気記録媒体、特にコンピュータの外部記憶装置を初めとする各種磁気記録装置に使用される垂直磁気記録媒体に関する。   The present invention relates to a magnetic recording medium, and more particularly to a perpendicular magnetic recording medium used in various magnetic recording devices including an external storage device of a computer.

近年、磁気記録は高記録密度化に伴い、面内記録方式から垂直磁気記録方式へ移行しつつある。垂直磁気記録方式では、記録磁化が記録媒体の面内方向に対して垂直になっている。垂直磁気記録に用いられる垂直磁気記録媒体(略して垂直媒体)は主に、硬質磁性材料の磁気記録層と、磁気記録層の記録磁化を垂直方向に配向させるための下地層、磁気記録層の表面を保護する保護層、そしてこの記録層への記録に用いられる磁気ヘッドが発生する磁束を集中させる役割を担う軟磁性材料の裏打ち層から構成される。裏打ち層は無くても記録は可能なため、それを除いた構成である場合もある。   In recent years, magnetic recording is shifting from an in-plane recording method to a perpendicular magnetic recording method with an increase in recording density. In the perpendicular magnetic recording system, the recording magnetization is perpendicular to the in-plane direction of the recording medium. A perpendicular magnetic recording medium (or perpendicular medium for short) used for perpendicular magnetic recording is mainly composed of a magnetic recording layer of a hard magnetic material, an underlayer for orienting the recording magnetization of the magnetic recording layer in the vertical direction, and a magnetic recording layer. It is composed of a protective layer for protecting the surface, and a backing layer of a soft magnetic material that plays a role of concentrating the magnetic flux generated by the magnetic head used for recording on the recording layer. Since recording is possible without a backing layer, the structure may be omitted.

前記磁気記録層の微細構造としては、各強磁性の粒子が磁気的に分離された構造であって、強磁性の結晶粒子を非磁性の粒界成分が取り囲む構造としたものが一般的に用いられる。現在でも一般的に用いられている面内磁気記録媒体(略して面内媒体)では、磁気記録層材料としてCoPtCrやCoPtCrTa、CoPtCrBなど、少なくともCoとCrを含む強磁性材料を用い、粒界にCrを偏析させ、磁性元素であるCoの粒界の濃度を、結晶粒内に対して相対的に下げることによりこのような構造を実現している。   As the fine structure of the magnetic recording layer, a structure in which each ferromagnetic particle is magnetically separated and a structure in which a ferromagnetic crystal particle is surrounded by a nonmagnetic grain boundary component is generally used. It is done. In-plane magnetic recording media that are generally used today (abbreviated to in-plane media) use ferromagnetic materials containing at least Co and Cr, such as CoPtCr, CoPtCrTa, and CoPtCrB, as the magnetic recording layer material. Such a structure is realized by segregating Cr and lowering the concentration of Co, the magnetic element, relative to the crystal grains.

これらの材料も、例えば特許文献1のように、下地層などを用いて結晶配向を制御し、磁化容易軸を垂直方向に向けることにより、垂直媒体用の磁気記録層材料として用いることが可能である。一方、これまで面内媒体で用いられてきた材料の他に、同様な構造をとる前記硬質磁性材料として、特許文献2に開示されたCoPtCr-SiO2、特許文献3に開示された[Co/Pt]n-SiO2などが提案されている。これらは、非磁性粒界成分として酸化物や窒化物を採用している点が、先に列挙した一般的な面内媒体材料とは大きく異なる。 These materials can also be used as magnetic recording layer materials for perpendicular media by controlling the crystal orientation using an underlayer or the like and directing the easy axis of magnetization in the vertical direction, as in Patent Document 1, for example. is there. On the other hand, in addition to the materials used in the in-plane medium, CoPtCr—SiO 2 disclosed in Patent Document 2 and [Co / Pt] n-SiO 2 has been proposed. These are greatly different from the general in-plane medium materials listed above in that oxides and nitrides are employed as nonmagnetic grain boundary components.

磁気記録媒体に求められる特性は、まず、いかに多くの信号を書き込めるか、すなわち高記録密度化であり、これを実現するためには、磁気記録層の磁性粒子の微細化、磁性粒子の磁気的な相互作用の低減が有効である。ただし、粒子の微細化を推し進めると、いわゆる熱揺らぎによる熱安定性の劣化が起こるため、磁性粒子のもつ垂直磁気異方性エネルギーKuを増加させる必要がある。   The characteristic required for magnetic recording media is how many signals can be written, that is, high recording density. To achieve this, the magnetic particles in the magnetic recording layer are made finer, the magnetic particles magnetically Reducing the interaction is effective. However, if the particles are further miniaturized, the thermal stability deteriorates due to so-called thermal fluctuation, so that it is necessary to increase the perpendicular magnetic anisotropy energy Ku of the magnetic particles.

非特許文献1によれば、垂直媒体においては、従来の面内媒体で用いられてきた材料であるCoPtCrBに比して、酸化物を添加したCoPtCr-SiO2の方が、粒間相互作用の低減と、高Ku値の両特性に優れていることが報告されている。このことから、酸化物や窒化物を非磁性粒界成分とした硬質磁性材料の方が、垂直媒体の高記録密度化に有利であると考えられる。 According to Non-Patent Document 1, in a vertical medium, CoPtCr—SiO 2 to which an oxide is added is more effective in intergranular interaction than CoPtCrB, which is a material used in a conventional in-plane medium. It has been reported that it is excellent in both reduction and high Ku value characteristics. For this reason, it is considered that a hard magnetic material containing oxide or nitride as a nonmagnetic grain boundary component is more advantageous for increasing the recording density of a perpendicular medium.

一方、HDDにおいて、記録時に必要なヘッド磁界強度は、Ku値に比例することが知られている。従って、Ku値を大きくする場合には、前記磁界強度も増加してしまい、磁化を完全に一方向に向ける飽和記録が困難になり、さらにその度合いが著しい場合は、記録が不可能になるという問題が生じる。また、粒子(粒径)の微細化を進めると、粒子にかかる反磁界が低減し、これも磁化反転磁界の増大を招く。すなわち、高記録密度化に向けた磁性粒子の微細化とKu値の増加は、磁気記録媒体の書き込み性能を劣化させるという、トレードオフの関係にある。以上のような背景から、書き込み性能を維持したまま、磁気記録媒体の信号品質や安定性を向上させる方法が求められている。   On the other hand, in the HDD, it is known that the head magnetic field strength required for recording is proportional to the Ku value. Therefore, when the Ku value is increased, the magnetic field intensity also increases, and it becomes difficult to perform saturation recording in which the magnetization is completely directed in one direction. Further, if the degree is significant, recording is impossible. Problems arise. Further, as the particle (particle size) is further refined, the demagnetizing field applied to the particle is reduced, which also increases the magnetization reversal field. That is, the refinement of the magnetic particles and the increase in the Ku value for increasing the recording density are in a trade-off relationship of deteriorating the writing performance of the magnetic recording medium. From the above background, there is a need for a method for improving the signal quality and stability of a magnetic recording medium while maintaining the writing performance.

この問題に対して、例えば特許文献4では、Ku値の大きな強磁性粒子とKu値の非常に小さな軟磁性粒子を積層して直接結合させた構造が提案されており、Ku値の非常に小さな軟磁性層の効果により反転磁界を下げ、書き込み性能の改善に成功している。さらに、非特許文献2では、特許文献4のような、Ku値の大きな差がある粒子の積層構造に関して、さらにその粒子間の交換結合力を変化させる(弱める)ことにより、さらに反転磁界を低減させることができるというシミュレーション結果が報告されている。   To solve this problem, for example, Patent Document 4 proposes a structure in which ferromagnetic particles having a large Ku value and soft magnetic particles having a very small Ku value are stacked and directly coupled, and the Ku value is very small. The reversal magnetic field is lowered by the effect of the soft magnetic layer, and the writing performance is successfully improved. Further, in Non-Patent Document 2, the switching magnetic field is further reduced by changing (weakening) the exchange coupling force between the particles with a large difference in Ku value as in Patent Document 4 Simulation results have been reported that can be achieved.

本発明者らも、Ku値の異なる二層を積層して、両層の交換結合力を変化させた理論計算を行い、適度に交換結合力を弱めた場合、直接結合させた(非常に交換結合力の大きい)場合に比して反転磁界を低減できるという結果を得ている。これは、両層が同時に磁化反転を起こさず、Ku値の小さな層が先に磁化反転を起こし、それに伴い弱く交換結合したKu値の大きな層も磁化反転を開始するためであり、結果として、両層が直接結合した場合よりも(無論、Ku値の大きな単層のみの場合よりも)反転磁界が低下することによる。交換結合力を、反転磁界を最も小さくできる値に設定した場合、熱安定性の指標であるエネルギー障壁はわずかに減少するが、反転磁界の低減効果の方が顕著であるため、このような構造の磁気記録層が、書き込み性能と高密度化性能を両立した垂直磁気記録媒体に適していると考えられる。   The present inventors also made a theoretical calculation by laminating two layers having different Ku values, and changing the exchange coupling force of both layers. When the exchange coupling force was moderately weakened, the layers were directly coupled (very exchangeable). As a result, the reversal magnetic field can be reduced as compared with the case of high coupling force. This is because both layers do not cause magnetization reversal at the same time, a layer with a small Ku value first undergoes magnetization reversal, and a layer with a large Ku value that is weakly exchange-coupled accordingly starts magnetization reversal. This is because the reversal magnetic field is lower than when both layers are directly coupled (of course, compared with a single layer having a large Ku value). When the exchange coupling force is set to a value that can minimize the reversal magnetic field, the energy barrier, which is an indicator of thermal stability, slightly decreases, but the effect of reducing the reversal magnetic field is more significant. This magnetic recording layer is considered to be suitable for a perpendicular magnetic recording medium having both writing performance and high density performance.

実際に上記のような構成を有する磁気記録媒体を実現する上で鍵となるのが、両層の交換結合力を制御する方法であり、一つの手法として、両層の間に非磁性層を挿入する方法が考えられる。目的は異なるが、2層の磁性層間に非磁性層を挿入した構造の磁気記録層を有する媒体としては、これまでに例えば特許文献5の提案がある。特許文献5では、各磁性層の膜厚が数十nm程度と比較的厚い磁性層膜厚の場合に、膜厚方向の磁気的な相互作用を低減する目的で、上層のエピタキシャル成長を妨げないような非磁性中間層を選択して挿入している。逆に、特許文献6では、磁気記録層を非晶質の中間層により分割し、エピタキシャル成長を中断した構造とすることで、熱安定性を維持する磁化反転体積を維持しながら、磁気記録媒体ノイズを低減する方法を提案している。   The key to actually realizing a magnetic recording medium having the above-described configuration is a method for controlling the exchange coupling force of both layers. As one method, a nonmagnetic layer is provided between both layers. A method of inserting can be considered. As a medium having a magnetic recording layer having a structure in which a nonmagnetic layer is inserted between two magnetic layers, the purpose of which has been proposed in, for example, Patent Document 5 is different. In Patent Document 5, when the thickness of each magnetic layer is a relatively large magnetic layer thickness of about several tens of nanometers, the epitaxial growth of the upper layer is not hindered in order to reduce the magnetic interaction in the thickness direction. A non-magnetic intermediate layer is selected and inserted. On the other hand, in Patent Document 6, the magnetic recording layer is divided by an amorphous intermediate layer, and the epitaxial growth is interrupted to maintain the magnetization reversal volume that maintains the thermal stability, while maintaining the magnetic recording medium noise. We propose a method to reduce this.

ところで、前記特許文献5に記載されたような厚い磁性層を適用した場合、軟磁性裏打ち層と磁気ヘッドのスペーシングが大きくならざるを得ず、書き込み性能の面からは不利となることが明らかである。また、特許文献5には磁気記録層材料として酸化物を含む場合の記載は無い。酸化物(すなわち、酸素元素)の存在は、少なからず結合界面へ影響を及ぼす可能性があり、このような磁性層の間に挿入される層は、この点を十分に考慮する必要があると考えられる。   By the way, when a thick magnetic layer as described in Patent Document 5 is applied, the spacing between the soft magnetic underlayer and the magnetic head must be increased, which is disadvantageous in terms of writing performance. It is. Patent Document 5 does not describe the case where an oxide is included as the magnetic recording layer material. The presence of oxides (ie, elemental oxygen) can have a significant impact on the bonding interface, and layers inserted between such magnetic layers should be fully considered. Conceivable.

また、前記特許文献6では、上下層で磁化容易軸が異なるため、垂直方向で同一の場合に比して垂直成分の信号出力が小さくなるというデメリットがあると共に、非晶質層でエピタキシャル成長を中断するために、非晶質層の直上に形成された磁性層の磁性粒子と非磁性成分との分離構造を乱してしまう、すなわち、膜厚方向に一貫して磁性粒子を成長させることは困難であった。   Further, in Patent Document 6, since the easy axes of the upper and lower layers are different, there is a demerit that the signal output of the vertical component is smaller than in the case of the same in the vertical direction, and the epitaxial growth is interrupted in the amorphous layer. Therefore, the separation structure of the magnetic particles and nonmagnetic components of the magnetic layer formed immediately above the amorphous layer is disturbed, that is, it is difficult to consistently grow the magnetic particles in the film thickness direction. Met.

以上のように、良好な書き込み性能、高信号品質(即ち、高記録分解能)及び安定性を備えた垂直磁気記録媒体の実現には、解決すべき多くの課題が残されている。   As described above, many problems to be solved remain in realizing a perpendicular magnetic recording medium having good writing performance, high signal quality (that is, high recording resolution) and stability.

なお、特許文献7や特許文献8にも、2つの磁気記録磁性層の間に結合層または中間層を設け、さらに磁気記録磁性層間を強磁性結合あるいは反強磁性交換結合させた垂直磁気記録媒体が開示されているが、説明の便宜上、特許文献7や特許文献8の詳細については後述する。
特開2002−358615号公報 特開2003−178412号公報 特開2005−71401号公報 特開2005−222675号公報 特開平7−176027号公報 特開2003−157516号公報 特開2006−48900号公報 特開2004−39033号公報 T.Oikawa et al.,"Microstructure and Magnetic Properties of CoPtCr-SiO2 Perpendicular Recording Media", IEEE TRANSACTIONS ON MAGNETICS, VOL.38,NO.5,SEPTEMBER 2002, p.1976-1978 R.H.Victora et al.,"Exchange Coupled Composite Media for Perpendicular Magnetic Recording", IEEE TRANSACTIONS ON MAGNETICS, VOL.41,NO.10,OCTOBER 2005, p.2828-2833
Patent Documents 7 and 8 also provide a perpendicular magnetic recording medium in which a coupling layer or an intermediate layer is provided between two magnetic recording magnetic layers, and the magnetic recording magnetic layers are ferromagnetically coupled or antiferromagnetic exchange coupled. However, for the convenience of explanation, details of Patent Document 7 and Patent Document 8 will be described later.
JP 2002-358615 A JP 2003-178812 A JP-A-2005-7401 JP 2005-222675 A JP-A-7-176027 JP 2003-157516 A JP 2006-48900 A JP 2004-39033 A T. Oikawa et al., “Microstructure and Magnetic Properties of CoPtCr-SiO2 Perpendicular Recording Media”, IEEE TRANSACTIONS ON MAGNETICS, VOL.38, NO.5, SEPTEMBER 2002, p.1976-1978 RHVictora et al., "Exchange Coupled Composite Media for Perpendicular Magnetic Recording", IEEE TRANSACTIONS ON MAGNETICS, VOL.41, NO.10, OCTOBER 2005, p.2828-2833

この発明は、上記の点に鑑みてなされたもので、本発明の課題は、高記録分解能、高信号安定性、高書き込み性能、特性均一性に優れた垂直磁気記録媒体を提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is to provide a perpendicular magnetic recording medium excellent in high recording resolution, high signal stability, high writing performance, and uniform characteristics. .

上記課題は、以下により達成される。即ち、本発明によれば、非磁性基体上に少なくとも下地層、磁気記録層、保護層が順次積層されてなる垂直磁気記録媒体において、前記磁気記録層は、第1の磁性層、交換結合制御層、第2の磁性層を順次積層した構造を少なくとも含み、かつ前記第1の磁性層と第2の磁性層の垂直磁気異方性定数(Ku)の値が異なり、かつ前記磁性層のうち、少なくともKu値の大きな方には非磁性の酸化物を含み、かつ前記交換結合制御層は、Pt-SiO 2 若しくはNiFeCr-SiO 2 からなり、その膜厚は2nm未満とすることを特徴とする(請求項1)。 The above-mentioned subject is achieved by the following. That is, according to the present invention, in a perpendicular magnetic recording medium in which at least an underlayer, a magnetic recording layer, and a protective layer are sequentially laminated on a nonmagnetic substrate, the magnetic recording layer includes the first magnetic layer and the exchange coupling control. The first magnetic layer and the second magnetic layer have different perpendicular magnetic anisotropy constants (Ku), and include at least a structure in which the first magnetic layer and the second magnetic layer are sequentially stacked. includes the larger the nonmagnetic oxide of at least Ku value, and the exchange coupling control layer is made of Pt-SiO 2 or NiFeCr-SiO 2, the thickness thereof and wherein to Rukoto and less than 2nm (Claim 1).

さらに、前記請求項1の発明の実施態様としては、下記請求項2ないしの発明が好ましい。即ち、前記請求項1に記載の垂直磁気記録媒体において、前記第1の磁性層及び第2の磁性層における一方の磁性層のKu値が少なくとも1×106erg/cm3以上であり、かつ他方の磁性層のKu値が1×105erg/cm3以下であることを特徴とする(請求項)。 Further, as an embodiment of the invention of claim 1, the inventions of claims 2 to 7 below are preferable. That is, in the perpendicular magnetic recording medium according to claim 1, Ku value of one magnetic layer before Symbol first magnetic layer and the second magnetic layer is at least 1 × 10 6 erg / cm 3 or more, The Ku value of the other magnetic layer is 1 × 10 5 erg / cm 3 or less (claim 2 ).

また、前記請求項1または2に記載の垂直磁気記録媒体において、前記磁気記録層中の結晶粒子は、第1の磁性層、交換結合制御層、第2の磁性層を貫いて、下地層界面から柱状に成長した構造を有し、かつその柱状の各粒子は非磁性成分によって磁気的に分離してなるものとする(請求項)。 3. The perpendicular magnetic recording medium according to claim 1, wherein crystal grains in the magnetic recording layer penetrate through the first magnetic layer, the exchange coupling control layer, and the second magnetic layer to form an underlayer interface. have grown structures columnar from, and each particle of the columnar shall formed by magnetically separated by non-magnetic components (claim 3).

さらに、前記請求項1ないしのいずれか1項に記載の垂直磁気記録媒体において、前記磁気記録層に含まれる酸化物が、Si、Ti、Cr、Coの中から選ばれた少なくとも1つの元素の酸化物であるものとする(請求項)。 The perpendicular magnetic recording medium according to any one of claims 1 to 3 , wherein the oxide contained in the magnetic recording layer is at least one element selected from Si, Ti, Cr, and Co. (Claim 4 ).

また、前記請求項1ないしのいずれか1項に記載の垂直磁気記録媒体において、前記第1の磁性層及び第2の磁性層の結晶粒子は、六方細密充填構造の結晶構造(hcp構造)若しくは面心立方格子構造の結晶構造(fcc)を主体とする結晶構造を有することを特徴とする(請求項)。 Further, in a perpendicular magnetic recording medium according to any one of the claims 1 to 4, wherein the crystal grains of the first magnetic layer and the second magnetic layer is a hexagonal close-packed structure crystal structure (hcp structure) Alternatively, it has a crystal structure mainly composed of a crystal structure (fcc) having a face-centered cubic lattice structure (claim 5 ).

さらに、前記請求項1ないしのいずれか1項に記載の垂直磁気記録媒体において、前記Ku値の大きな磁性層の飽和磁化をMsh、もう一方のKu値の小さな磁性層の飽和磁化をMslとしたとき、Msh<Mslであることを特徴とする(請求項)。 Further, in the perpendicular magnetic recording medium according to any one of claims 1 to 5 , the saturation magnetization of the magnetic layer having a large Ku value is Msh, and the saturation magnetization of the other magnetic layer having a small Ku value is Msl. Then, Msh <Msl is satisfied (claim 6 ).

また、前記請求項1ないしのいずれか1項に記載の垂直磁気記録媒体において、前記Ku値の小さな磁性層の飽和磁化Mslが少なくとも800emu/cc以上であることを特徴とする(請求項)。 Further, in a perpendicular magnetic recording medium according to any one of the claims 1 to 6, the saturation magnetization Msl of small magnetic layer of the Ku value is equal to or is at least 800 emu / cc or more (claim 7 ).

次に、上記本発明の作用効果に関して概括的に述べる。詳細は後述する。磁気記録層の非磁性成分として少なくとも酸化物を含むKu値の大きな磁性層材料を適用することにより、信号の品質と安定性に優れたポテンシャルを持たせることができる。さらに、Ku値の非常に小さな層と組み合わせ、両層間に交換結合制御層を挿入することによって、良好な書き込み性能を持たせることが可能になる。   Next, the operational effects of the present invention will be described generally. Details will be described later. By applying a magnetic layer material having a large Ku value and containing at least an oxide as the nonmagnetic component of the magnetic recording layer, it is possible to have a potential excellent in signal quality and stability. Further, by combining with a layer having a very low Ku value and inserting an exchange coupling control layer between both layers, it becomes possible to have good writing performance.

この時、交換結合制御層にも磁性層と同様な酸化物を含ませ、結晶粒子が酸化物で囲まれた構造とすることにより、直上の磁性層もこの構造を反映した、結晶粒子と非磁性粒界成分が分離した構造を形成することが可能となる。この際の結晶質の金属としては、前記Pt若しくはPd、或いは、Pt若しくはPdを主成分とする合金を用いることができる。   At this time, the exchange coupling control layer also includes an oxide similar to that of the magnetic layer so that the crystal particles are surrounded by the oxide, so that the magnetic layer immediately above reflects the structure. A structure in which magnetic grain boundary components are separated can be formed. As the crystalline metal at this time, Pt or Pd, or an alloy containing Pt or Pd as a main component can be used.

このような金属、或いは合金を用いることで、上下層との交換結合力の粒子毎の制御が容易となる。これは、Pt若しくはPdは他の非磁性元素に比して、耐酸化性に優れることと、単体では非磁性であるが、Coなどの磁性材料と積層することにより生じる分極の量が大きいことに起因すると考えられる。すなわち、充分な膜厚均一性が確保できる1.5nm以上という、他の非磁性元素に比べ広範囲の膜厚領域で、上下層間との交換結合力を安定に保つことができる。   By using such a metal or alloy, the exchange coupling force with the upper and lower layers can be easily controlled for each particle. This is because Pt or Pd is superior in oxidation resistance compared to other nonmagnetic elements, and is non-magnetic by itself but has a large amount of polarization caused by lamination with a magnetic material such as Co. It is thought to be caused by. That is, the exchange coupling force between the upper and lower layers can be stably maintained in a wider range of film thickness than that of other nonmagnetic elements of 1.5 nm or more that can ensure sufficient film thickness uniformity.

この他、Co、Ni、Feから選ばれた元素と非磁性の金属との合金も好ましく用いることができる。上記金属、或いは合金は前述したような、結晶粒子と酸化物の分離構造を形成しやすい。すなわち、磁性層と交換結合制御層の結晶粒子間に良好な結合界面を形成することができる。もう一つの利点は、非磁性元素との組成比で交換結合力を制御することができる点である。結晶粒子が非磁性元素の単体或いは非磁性元素同士の合金の場合、交換結合力の制御は膜厚によってのみ行われる。例えば、0.5nm以下という、比較的薄い膜厚で交換結合力が最適になる場合は、膜厚分布による粒子間毎の結合力の分布が大きくなってしまう。本願発明によれば、十分膜厚均一性の確保できる0.5〜2.0nmという比較的厚い膜厚においても、交換結合力の制御が可能となるものである。   In addition, an alloy of an element selected from Co, Ni, and Fe and a nonmagnetic metal can be preferably used. The metal or alloy easily forms a separated structure of crystal particles and oxide as described above. That is, a good coupling interface can be formed between crystal grains of the magnetic layer and the exchange coupling control layer. Another advantage is that the exchange coupling force can be controlled by the composition ratio with the nonmagnetic element. When the crystal grains are a single nonmagnetic element or an alloy of nonmagnetic elements, the exchange coupling force is controlled only by the film thickness. For example, when the exchange coupling force is optimal at a relatively thin film thickness of 0.5 nm or less, the distribution of bonding force between particles due to the film thickness distribution becomes large. According to the present invention, the exchange coupling force can be controlled even at a relatively thick film thickness of 0.5 to 2.0 nm, which can ensure sufficient film thickness uniformity.

さらに、Pt若しくはPdはfccの結晶構造をとり、Co、Ni、Feから選ばれた元素と非磁性の金属との合金も、Co或いはNiの組成比率を多くすることでhcp或いはfccの結晶構造を取ることが可能であり、磁性層のhcp(002)或いはfcc(111)上に、交換結合制御層のfcc(111)或いはhcp(002)がエピタキシャル成長することができる。   Further, Pt or Pd has an fcc crystal structure, and an alloy of an element selected from Co, Ni and Fe and a nonmagnetic metal can also be obtained by increasing the composition ratio of Co or Ni to increase the crystal structure of hcp or fcc. The fcc (111) or hcp (002) of the exchange coupling control layer can be epitaxially grown on the hcp (002) or fcc (111) of the magnetic layer.

以上のようにして、高記録分解能、高信号安定性、高書き込み性能、特性均一性に優れた垂直磁気記録媒体の実現が可能となる。   As described above, it is possible to realize a perpendicular magnetic recording medium excellent in high recording resolution, high signal stability, high writing performance, and characteristic uniformity.

なお、特許文献7はKu値の異なる2つの磁気記録磁性層の間に結合層を設け、さらに磁気記録層磁性層間を強磁性交換結合させた垂直磁気記録媒体を開示している。しかしながら、前記本願発明のように、少なくともPt若しくはPdを主成分とする交換結合制御層に関する記載はなく、結合層に酸化物を含む場合の記載もない。   Patent Document 7 discloses a perpendicular magnetic recording medium in which a coupling layer is provided between two magnetic recording magnetic layers having different Ku values, and the magnetic recording layer magnetic layers are ferromagnetically exchange coupled. However, as in the present invention, there is no description about the exchange coupling control layer mainly containing at least Pt or Pd, and there is no description about the case where the coupling layer contains an oxide.

また、前記特許文献8は、2つの磁気記録磁性層の間に中間層を設け、さらに磁気記録磁性層間を反強磁性交換結合させた垂直磁気記録媒体を開示し、また中間層(M1)の材料として、例えばRu,Re,Rh,Ir,Tc,Au,Ag,Cu,Si,Fe,Ni,Pt,Pd,Cr,Mn,及びAl等の非磁性金属材料を開示している(特許文献8の段落[0052]〜[0054]参照)。しかしながら、特許文献8に記載された前記Pt若しくはPdは、非磁性金属材料の一例として単に列記されているに過ぎず、本発明の前記Pt若しくはPdの技術的意義に関する記載はない。また、特許文献8には、Ku値の異なる2つの磁気記録磁性層や酸化物を含む等のその他の本発明の構成要件や作用効果に関わる記載もない。   Further, Patent Document 8 discloses a perpendicular magnetic recording medium in which an intermediate layer is provided between two magnetic recording magnetic layers, and the magnetic recording magnetic layers are antiferromagnetic exchange coupled, and the intermediate layer (M1) is also disclosed. Non-magnetic metal materials such as Ru, Re, Rh, Ir, Tc, Au, Ag, Cu, Si, Fe, Ni, Pt, Pd, Cr, Mn, and Al are disclosed as materials (Patent Literature) 8 paragraphs [0052] to [0054]). However, the Pt or Pd described in Patent Document 8 is merely listed as an example of a nonmagnetic metal material, and there is no description regarding the technical significance of the Pt or Pd of the present invention. In addition, Patent Document 8 has no description relating to other constituent requirements and operational effects of the present invention, including two magnetic recording magnetic layers and oxides having different Ku values.

この発明によれば、磁気記録層中の1つの磁性層材料として、少なくとも、Ku値が大きくかつ磁気的分離性に優れた、酸化物を非磁性粒界成分とした材料を使用し、これとKu値の非常に小さな材料からなるもう1つの磁性層とを上下に配する構造を採用し、さらには両層の交換結合が適切に制御される垂直磁気記録媒体を提供することができ、これにより高記録分解能、高信号安定性、高書き込み性能、特性均一性に優れた垂直磁気記録媒体を提供することができる。   According to the present invention, as one magnetic layer material in the magnetic recording layer, at least a material having a large Ku value and excellent magnetic separation and having an oxide as a nonmagnetic grain boundary component is used. It is possible to provide a perpendicular magnetic recording medium that employs a structure in which another magnetic layer made of a material having a very low Ku value is disposed above and below, and in which exchange coupling between both layers is appropriately controlled. Thus, a perpendicular magnetic recording medium excellent in high recording resolution, high signal stability, high writing performance, and characteristic uniformity can be provided.

次に、この発明の実施形態に関して、図面を参照して説明する。図1は本発明の実施形態に係る垂直磁気記録媒体の模式的断面図で、軟磁性裏打ち層を有する、いわゆる二層垂直媒体の構成例を示している。垂直磁気記録媒体は、非磁性基体1上に、軟磁性裏打ち層2、シード層3、下地層4、磁気記録層5及び保護層6が順次積層され、更に、保護層6の上には液体潤滑層7が形成されて構成されている。本発明においては、磁気記録層5に特徴を有している。磁気記録層5は、図のように、少なくとも磁性層(1)5−1、交換結合制御層5−2、磁性層(2)5−3の構成を含み、交換結合制御層5−2が磁性層(1)5−1と磁性層(2)5−3の間に挿入された構造になっている。   Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view of a perpendicular magnetic recording medium according to an embodiment of the present invention, showing a configuration example of a so-called double-layer perpendicular medium having a soft magnetic backing layer. In the perpendicular magnetic recording medium, a soft magnetic backing layer 2, a seed layer 3, an underlayer 4, a magnetic recording layer 5, and a protective layer 6 are sequentially laminated on a nonmagnetic substrate 1, and further a liquid is placed on the protective layer 6. The lubricating layer 7 is formed and configured. In the present invention, the magnetic recording layer 5 is characterized. As shown in the figure, the magnetic recording layer 5 includes at least a magnetic layer (1) 5-1, an exchange coupling control layer 5-2, and a magnetic layer (2) 5-3, and the exchange coupling control layer 5-2 includes It has a structure inserted between the magnetic layer (1) 5-1 and the magnetic layer (2) 5-3.

本発明の垂直磁気記録媒体において、非磁性基体(非磁性基板)1としては、通常の磁気記録媒体用に用いられるNiPメッキを施したAl合金、化学強化ガラス或いは結晶化ガラス等を用いることができる。基板加熱温度を100℃以内に抑える場合は、ポリカーボネイト、ポリオレフィン等の樹脂からなるプラスチック基板を用いることもできる。その他、Si基板を用いることもできる。   In the perpendicular magnetic recording medium of the present invention, as the non-magnetic substrate (non-magnetic substrate) 1, an Al alloy plated with NiP, chemically strengthened glass, crystallized glass, or the like used for a normal magnetic recording medium is used. it can. When the substrate heating temperature is suppressed to 100 ° C. or less, a plastic substrate made of a resin such as polycarbonate or polyolefin can be used. In addition, a Si substrate can also be used.

軟磁性裏打ち層2は、磁気記録に用いる磁気ヘッドからの磁束を制御して記録・再生特性を向上するために形成することが好ましい層で、軟磁性裏打ち層を省略することも可能である。軟磁性裏打ち層としては、結晶質のNiFe合金、センダスト(FeSiAl)合金、CoFe合金等、微結晶質のFeTaC、CoFeNi、CoNiP等を用いることができる。記録能力を向上するためには、軟磁性裏打ち層の飽和磁化は大きい方が好ましく、そのため、結晶質のNiFe合金やCoFe合金の場合、Feを20%以上含むことが好ましい。また、非晶質のCo合金、例えばCoNbZr、CoTaZrなどを用いることでより良好な電磁変換特性を得ることができる。前述のように大きな飽和磁化を得るために、Coの含有量は80%以上とすることが好ましい。   The soft magnetic backing layer 2 is preferably formed to improve the recording / reproducing characteristics by controlling the magnetic flux from the magnetic head used for magnetic recording, and the soft magnetic backing layer can be omitted. As the soft magnetic backing layer, crystalline NiFe alloy, Sendust (FeSiAl) alloy, CoFe alloy, etc., microcrystalline FeTaC, CoFeNi, CoNiP, or the like can be used. In order to improve the recording capability, it is preferable that the soft magnetic underlayer has a larger saturation magnetization. Therefore, in the case of a crystalline NiFe alloy or CoFe alloy, it is preferable to contain 20% or more of Fe. Further, by using an amorphous Co alloy such as CoNbZr or CoTaZr, better electromagnetic conversion characteristics can be obtained. In order to obtain a large saturation magnetization as described above, the Co content is preferably 80% or more.

なお、軟磁性裏打ち層2の膜厚の最適値は、磁気記録に用いる磁気ヘッドの構造や特性によって変化するが、他の層と連続成膜で形成する場合などは、生産性との兼ね合いから10nm以上500nm以下であることが望ましい。他の層の成膜前に、めっき法などによって、あらかじめ非磁性基体に成膜しておく場合はこの限りではなく、数百nm〜数μmと厚くすることも可能である。軟磁性裏打ち層2の飽和磁化が大きいため、磁区が乱れているとノイズを発生する恐れがあるため、磁区制御層を付与することも可能である。   The optimum value of the thickness of the soft magnetic backing layer 2 varies depending on the structure and characteristics of the magnetic head used for magnetic recording. However, when it is formed by continuous film formation with other layers, the balance with productivity is required. It is desirable that it is 10 nm or more and 500 nm or less. This is not the case when the non-magnetic substrate is previously formed by plating or the like before forming the other layers, and the thickness can be increased to several hundred nm to several μm. Since the saturation magnetization of the soft magnetic underlayer 2 is large, there is a possibility that noise is generated when the magnetic domain is disturbed. Therefore, a magnetic domain control layer can be provided.

シード層3は、下地層4の配向性を向上するため、或いは粒径を微細化するために、下地層直下に形成することが好ましい層で、シード層3は省略することも可能である。シード層3は非磁性材料、軟磁性材料を用いることができるが、記録能力の観点からは、磁気ヘッド−軟磁性層間の距離は小さくすることが望ましい。従って、シード層3が軟磁性裏打ち層と同様に機能するように、軟磁性材料が好適に用いられ、非磁性材料とする場合はできるだけ薄くすることが望ましい。   The seed layer 3 is a layer that is preferably formed immediately below the underlayer in order to improve the orientation of the underlayer 4 or to reduce the particle size, and the seed layer 3 can be omitted. The seed layer 3 can be made of a nonmagnetic material or a soft magnetic material, but from the viewpoint of recording capability, it is desirable to reduce the distance between the magnetic head and the soft magnetic layer. Therefore, a soft magnetic material is preferably used so that the seed layer 3 functions in the same manner as the soft magnetic backing layer, and it is desirable to make it as thin as possible when using a nonmagnetic material.

軟磁気特性を示すシード層3の材料としては、NiFe、NiFeNb、NiFeSi、NiFeB、NiFeCrなどのNi基合金を用いることができる。また、Co単体、或いはCoB、CoSi、CoNi、CoFe等のCo基合金、或いはCoNiFe、CoNiFeSiなどを用いることもできる。結晶構造としては、hcp若しくはfcc構造が好ましい。Feを含有する場合には、含有量が多いとbcc構造になり易いため、Feの含有量は20%以下とすることが好ましい。非磁性を示すシード層3の材料としては、NiP等のNi基合金や、CoCr等のCo基合金の他、Pt、Ta、Tiなども用いることができる。   As a material for the seed layer 3 exhibiting soft magnetic properties, Ni-based alloys such as NiFe, NiFeNb, NiFeSi, NiFeB, and NiFeCr can be used. Also, Co alone, Co-based alloys such as CoB, CoSi, CoNi, CoFe, CoNiFe, CoNiFeSi, or the like can be used. The crystal structure is preferably an hcp or fcc structure. In the case where Fe is contained, if the content is large, a bcc structure is likely to be formed. Therefore, the Fe content is preferably 20% or less. As a material for the seed layer 3 exhibiting nonmagnetic properties, Ni-based alloy such as NiP, Co-based alloy such as CoCr, Pt, Ta, Ti, or the like can be used.

下地層4は、磁気記録層5の結晶配向性、結晶粒径、粒径分布、粒界偏析を好適に制御するために磁気記録層5の直下に形成することが好ましい層である。結晶構造は、磁気記録層5により適宜変更することができる。磁気記録層5がhcp若しくはfcc構造をとる場合、下地層も同様にhcp若しくはfccの結晶構造を取ることが好ましい。下地層4の材料としては、Ru、Rh、Os、IrまたはPtなどが好適に用いられる。また、Ru、Rh、Os、IrまたはPtを主成分とする合金も用いられる。また、磁気記録層5と軟磁性裏打ち層2の磁気的な相互作用を分断するために、下地層4は非磁性とすることが好ましい。磁気ヘッドと軟磁性裏打ち層2の間の磁気スペーシングを低減する意味で、膜厚は薄いほうが好ましく、3〜30nmの膜厚が好ましく用いられる。   The underlayer 4 is a layer that is preferably formed immediately below the magnetic recording layer 5 in order to suitably control the crystal orientation, crystal grain size, grain size distribution, and grain boundary segregation of the magnetic recording layer 5. The crystal structure can be appropriately changed by the magnetic recording layer 5. When the magnetic recording layer 5 has an hcp or fcc structure, it is preferable that the underlayer also has an hcp or fcc crystal structure. As the material of the underlayer 4, Ru, Rh, Os, Ir, Pt or the like is preferably used. An alloy containing Ru, Rh, Os, Ir, or Pt as a main component is also used. Further, in order to break the magnetic interaction between the magnetic recording layer 5 and the soft magnetic backing layer 2, the underlayer 4 is preferably nonmagnetic. In order to reduce the magnetic spacing between the magnetic head and the soft magnetic backing layer 2, the film thickness is preferably thin, and a film thickness of 3 to 30 nm is preferably used.

磁気記録層5は、少なくとも、磁性層(1)5−1、交換結合制御層5−2、磁性層(2)5−3が順次積層された構造を含む。Ku値の大きな磁性層(1)5−1とKu値の小さな磁性層(2)5−3が交換結合制御層5−2を介して磁気的に弱く結合しており、その磁性層(1)5−1と磁性層(2)5−3との交換結合力が、交換結合制御層5−2によって制御されている。   The magnetic recording layer 5 includes at least a structure in which the magnetic layer (1) 5-1, the exchange coupling control layer 5-2, and the magnetic layer (2) 5-3 are sequentially stacked. The magnetic layer (1) 5-1 having a large Ku value and the magnetic layer (2) 5-3 having a small Ku value are magnetically weakly coupled via the exchange coupling control layer 5-2, and the magnetic layer (1 ) The exchange coupling force between 5-1 and the magnetic layer (2) 5-3 is controlled by the exchange coupling control layer 5-2.

Ku値の大きな磁性層(1)5−1は、磁気記録層5全体のKu値を担う層であり、Ku値ができるだけ大きい材料が好ましい。Ku値としては、少なくとも1×106erg/cm3以上が好ましい。磁化容易軸が基板面に対して垂直な材料で、このような性能を示す材料として、強磁性粒子が酸化物の非磁性粒界成分によって分離された構造であるものを用いる。例えば、CoPtCr−SiO2、CoPt−SiO2など、少なくともCoPtを含む強磁性材料に、酸化物を添加したものが好適に用いられる。この他、少なくともいずれか一方に酸化物を含むCo及びPtを2nm以下の薄膜で多数回積層した積層多層膜なども用いることができる。いずれも、六方細密充填構造の結晶構造(hcp構造)若しくは面心立方格子構造の結晶構造(fcc)を主体とする結晶構造とすることが好ましい。膜厚(積層多層膜であれば総膜厚)は、磁気スペーシングの関係上、必要なKu値を確保できる範囲で、きるだけ薄くすることが好ましく、20nm以下、さらに好ましくは5〜10nmとする。 The magnetic layer (1) 5-1 having a large Ku value is a layer that bears the Ku value of the entire magnetic recording layer 5, and a material having as large a Ku value as possible is preferable. The Ku value is preferably at least 1 × 10 6 erg / cm 3 or more. As a material having an easy axis of magnetization perpendicular to the substrate surface and exhibiting such performance, a material in which ferromagnetic particles are separated by a nonmagnetic grain boundary component of an oxide is used. For example, a material obtained by adding an oxide to a ferromagnetic material containing at least CoPt, such as CoPtCr—SiO 2 or CoPt—SiO 2 , is preferably used. In addition, a multilayer multilayer film in which Co and Pt containing an oxide in at least one of them are laminated many times with a thin film of 2 nm or less can be used. In any case, it is preferable to have a crystal structure mainly composed of a hexagonal close-packed structure (hcp structure) or a face-centered cubic lattice structure (fcc). The film thickness (total film thickness in the case of a multilayered multilayer film) is preferably made as thin as possible within a range in which the required Ku value can be ensured in terms of magnetic spacing, and is preferably 20 nm or less, more preferably 5 to 10 nm. To do.

交換結合制御層5−2は、結晶質の金属若しくは合金と、酸化物とを含む。そして、結晶質となる金属或いは合金の材料としては、Pt若しくはPd、或いはそれらの合金を用いる。結晶質の合金としては、Co、Ni、Feから選ばれた元素と非磁性の金属との合金も用いることができる。結晶質部分の結晶構造としては、fcp構造或いはfcc構造をとることができる。酸化物は、交換結合制御層の粒界成分となり、下層の磁性層(1)5−1からの連続的な粒子成長を促進するために好ましく添加される。   The exchange coupling control layer 5-2 includes a crystalline metal or alloy and an oxide. As the material of the crystalline metal or alloy, Pt or Pd or an alloy thereof is used. As the crystalline alloy, an alloy of an element selected from Co, Ni, and Fe and a nonmagnetic metal can also be used. The crystal structure of the crystalline part can be an fcp structure or an fcc structure. The oxide serves as a grain boundary component of the exchange coupling control layer, and is preferably added to promote continuous grain growth from the lower magnetic layer (1) 5-1.

上下の磁性層(1)5−1と磁性層(2)5−3との交換結合力の強さは、交換結合制御層5−2の膜厚を変化させることにより、最も簡単に制御することができる。膜厚は薄すぎると、均一性が損なわれる可能性があり、厚すぎると上下層の結合が切れてしまい所期の効果を奏さない。従って、実用的な膜厚としては、概ね0.5nm〜2.0nmとすることが好ましい。   The strength of the exchange coupling force between the upper and lower magnetic layers (1) 5-1 and (2) 5-3 is most easily controlled by changing the film thickness of the exchange coupling control layer 5-2. be able to. If the film thickness is too thin, the uniformity may be impaired, and if it is too thick, the upper and lower layers are disconnected and the desired effect is not achieved. Therefore, the practical film thickness is preferably about 0.5 nm to 2.0 nm.

膜厚の他、合金の組成により、結合力を制御することもできる。Pt若しくはPdを含む合金の場合、例えば、膜厚を、均一性の確保できる1.0nmとし、Pt若しくはPdへ他の非磁性元素を添加する手法を用いることができる。なお、磁性元素の添加は、上下層の交換結合力と共に、粒子間の相互作用を強める方向にも働くので好ましくないように思われるが、本発明では、交換結合制御層に酸化物を含み、粒子間の相互作用を充分に小さくすることができるため、適用が可能である。   In addition to the film thickness, the bonding force can be controlled by the alloy composition. In the case of an alloy containing Pt or Pd, for example, a method can be used in which the film thickness is 1.0 nm that can ensure uniformity, and another nonmagnetic element is added to Pt or Pd. The addition of the magnetic element seems to be unfavorable because it also works in the direction of strengthening the interaction between particles together with the exchange coupling force of the upper and lower layers, but in the present invention, the exchange coupling control layer contains an oxide, Since the interaction between particles can be made sufficiently small, application is possible.

Co、Ni、Feから選ばれた元素と非磁性の金属との合金の場合も、組成を制御することにより、同様に交換結合力を制御することができる。例えば非磁性元素としてCrを適用した場合は、CoCr、NiFeCr、CoNiFeCrなどが一例として挙げられ、磁性元素Co、Ni、Feに対するCrの割合を変化させることにより結合力を制御することが可能である。   In the case of an alloy of an element selected from Co, Ni, and Fe and a nonmagnetic metal, the exchange coupling force can be similarly controlled by controlling the composition. For example, when Cr is applied as the nonmagnetic element, CoCr, NiFeCr, CoNiFeCr, and the like are given as examples, and the binding force can be controlled by changing the ratio of Cr to the magnetic elements Co, Ni, and Fe. .

Ku値の小さな磁性層(2)5−3は、磁化反転磁界を低減させる役割を主に担うため、Ku値はできるだけ小さい材料が好ましい。Ku値としては、1×105erg/cm3以下のものが好ましい。主に、Co、NiFe、CoNiFeなど、単層で軟磁気特性を示す材料が好適に用いられる。これらの材料は、飽和磁化Msが非常に大きいため、粒子間の相互作用が大きい。従って、磁性層(1)5−1と同様に、非磁性粒界成分となる材料を添加することが好ましい。非磁性粒界成分としては、磁性層(1)5−1と同様、酸化物が好適に用いられる。 Since the magnetic layer (2) 5-3 having a small Ku value mainly plays a role of reducing the magnetization reversal magnetic field, a material having a Ku value as small as possible is preferable. The Ku value is preferably 1 × 10 5 erg / cm 3 or less. Mainly, a material that exhibits a soft magnetic property with a single layer, such as Co, NiFe, and CoNiFe, is preferably used. Since these materials have a very large saturation magnetization Ms, the interaction between particles is large. Therefore, like the magnetic layer (1) 5-1, it is preferable to add a material that becomes a nonmagnetic grain boundary component. As the nonmagnetic grain boundary component, an oxide is preferably used as in the magnetic layer (1) 5-1.

自身の反磁界を増加させることにより、磁気記録層5全体の磁化反転磁界を効果的に低減させるために、磁性層(2)5−3は、磁性層(1)5−1よりもMsは大きく、膜厚は薄いものが好ましい。すなわち、Ku値の大きな磁性層(1)5−1の飽和磁化をMsh、もう一方のKu値の小さな磁性層(2)5−3の飽和磁化をMslとしたとき、Msh<Mslとすることが好ましく、Mslは800emu/cc以上とすることがさらに好ましい。膜厚は10nm以下とすることが好ましく、さらに好ましくは5nm以下とする。   In order to effectively reduce the magnetization reversal field of the entire magnetic recording layer 5 by increasing its own demagnetizing field, the magnetic layer (2) 5-3 has Ms higher than that of the magnetic layer (1) 5-1. Large and thin films are preferred. That is, when the saturation magnetization of the magnetic layer (1) 5-1 having a large Ku value is Msh and the saturation magnetization of the other magnetic layer (2) 5-3 having a small Ku value is Msl, Msh <Msl. Msl is more preferably 800 emu / cc or more. The film thickness is preferably 10 nm or less, more preferably 5 nm or less.

磁性層(1)5−1、交換結合制御層5−2、磁性層(2)5−3を総合的に見た場合、磁化反転の最小単位となる1つの結晶粒子は、磁性層(1)5−1、交換結合制御層5−2、磁性層(2)5−3を貫いて、下地層界面から柱状に成長した構造をとり、かつその柱状の各磁性粒子が非磁性成分によって隔てられた構造であることが好ましい。このような構造とすることで粒子間相互作用を低減し、記録後の残留磁化状態で、磁性層(1)5−1と磁性層(2)5−3の磁化方向を膜面に対して垂直方向に一致させることができる。   When the magnetic layer (1) 5-1, the exchange coupling control layer 5-2, and the magnetic layer (2) 5-3 are viewed comprehensively, one crystal grain that is the minimum unit of magnetization reversal is the magnetic layer (1 ) 5-1 through the exchange coupling control layer 5-2 and the magnetic layer (2) 5-3, and has a structure in which the pillar-shaped magnetic particles are separated from each other by a non-magnetic component. It is preferable that it is a structure. With such a structure, the interaction between particles is reduced, and the magnetization directions of the magnetic layer (1) 5-1 and the magnetic layer (2) 5-3 with respect to the film surface in the residual magnetization state after recording. Can match in the vertical direction.

保護層5は、従来使用されている保護膜を用いることができ、例えば、カーボンを主体とする保護膜を用いることができる。単層ではなく、例えば異なる性質の二層カーボンや、金属膜とカーボン膜、酸化膜とカーボンの積層膜とすることもできる。液体潤滑層7には、例えばパーフルオロポリエーテル系の潤滑剤を用いることができる。   The protective layer 5 can be a conventionally used protective film, for example, a protective film mainly composed of carbon. Instead of a single layer, for example, a double-layer carbon having different properties, a metal film and a carbon film, or a laminated film of an oxide film and carbon can be used. For the liquid lubricant layer 7, for example, a perfluoropolyether lubricant can be used.

次に、図2〜7に基づき、本発明の実施例について比較例と共に述べる。なお、これらの実施例は、本発明の磁気記録媒体を好適に説明するための代表例に過ぎず、これらに限定されるものではない。また、以後の説明において、圧力をTorrの単位で表記するが、これをSI単位であるPa(パスカル)に変換する場合には、1Torr=133Paにより換算すればよい。さらに、垂直磁気異方性エネルギーKu値(既出)は、erg/cm3の単位で表記したが、これをSI単位であるJ/m3 に変換する場合には、1erg/cm3(erg/cc)=0.1 J/m3 により換算すればよい。また、飽和磁化の単位emu/ccをSI単位に変換する場合には、1emu/cc=0.0012566Wb/m2により換算すればよい。 Next, based on FIGS. 2-7, the Example of this invention is described with a comparative example. These examples are merely representative examples for suitably explaining the magnetic recording medium of the present invention, and are not limited thereto. In the following description, the pressure is expressed in units of Torr. However, when this is converted into Pa (Pascal) which is an SI unit, it may be converted by 1 Torr = 133 Pa. Furthermore, although the perpendicular magnetic anisotropy energy Ku value (previously described) is expressed in units of erg / cm 3 , when this is converted to SI unit J / m 3 , 1 erg / cm 3 (erg / may be converted by cc) = 0.1 J / m 3 . Further, when the saturation magnetization unit emu / cc is converted to the SI unit, it may be converted by 1 emu / cc = 0.0005125 Wb / m 2 .

(実施例1)
非磁性基体1として表面が平滑な円盤状のガラス基板を用い、これを洗浄後、スパッタリング装置内に導入し、Taターゲットを用いてArガス圧2.3mTorr下でTaを5nm形成し、続いてPtターゲットを用いてArガス圧2.3mTorr下でPtを10nm形成し、Ta/Ptシード層3を形成した。続いて、Ruターゲットを用いArガス圧11.3mTorr下でRu下地層4を膜厚20nmで成膜した。
Example 1
A disc-shaped glass substrate having a smooth surface is used as the non-magnetic substrate 1, and after cleaning, this is introduced into a sputtering apparatus, and a Ta target is used to form 5 nm of Ta under an Ar gas pressure of 2.3 mTorr. Using a Pt target, 10 nm of Pt was formed under an Ar gas pressure of 2.3 mTorr, and a Ta / Pt seed layer 3 was formed. Subsequently, a Ru underlayer 4 was formed to a thickness of 20 nm under an Ar gas pressure of 11.3 mTorr using a Ru target.

その後、Arガス圧30mTorr下で、Ptターゲットを用いてPtを0.6nm、Co93−(SiO27ターゲットを用いてCoを、交互に9回積層することにより、[Co−SiO2/Pt]多層積層膜の磁性層(1)5−1を形成した。引き続いて、Pt93−(SiO27ターゲットを用いてArガス圧2.3mTorr下にてPt−SiO2交換結合制御層5−2を形成したが、このときの膜厚を0.2〜4.0nmまで変化させ、膜厚が2nm以上の場合は、参考例として後述した。 Then, under an Ar gas pressure of 30 mTorr, 0.6 nm of Pt with Pt target, Co 93 - the Co with (SiO 2) 7 targets, by stacking 9 times alternately, [Co-SiO 2 / A magnetic layer (1) 5-1 of a Pt] multilayer laminated film was formed. Subsequently, the Pt—SiO 2 exchange coupling control layer 5-2 was formed under an Ar gas pressure of 2.3 mTorr using a Pt 93 — (SiO 2 ) 7 target. When the thickness was changed to 4.0 nm and the film thickness was 2 nm or more, it was described later as a reference example .

引き続いて、Arガス圧2.3mTorr下で、Co88−(SiO212ターゲットを用いてCo−SiO2磁性層(2)5−3を2nm形成した。以上のように、磁性層(1)5−1/交換結合制御層5−2/磁性層(2)5−3からなる、[Co−SiO2/Pt]x9/Pt−SiO2/Co−SiO2磁気記録層5を形成した。なお、ここまでの各層の成膜は、ターゲット材にSiO2を含むものはRFマグネトロンスパッタリング法、それ以外のものは全てDCマグネトロンスパッタリング法により行った。次に、CVD法によりカーボンからなる保護層6を4nm成膜後、真空装置から取り出した。その後、パーフルオロポリエーテルからなる液体潤滑層7をディップ法により2nm形成し、磁気記録媒体とした。 Subsequently, under the Ar gas pressure of 2.3 mTorr, a Co—SiO 2 magnetic layer (2) 5-3 was formed to 2 nm using a Co 88 — (SiO 2 ) 12 target. As described above, [Co—SiO 2 / Pt] × 9 / Pt—SiO 2 / Co— composed of the magnetic layer (1) 5-1 / exchange coupling control layer 5-2 / magnetic layer (2) 5-3. A SiO 2 magnetic recording layer 5 was formed. The layers formed so far were formed by the RF magnetron sputtering method for the target material containing SiO 2 and the DC magnetron sputtering method for all other layers. Next, the protective layer 6 made of carbon was formed with a thickness of 4 nm by the CVD method and then taken out from the vacuum apparatus. Thereafter, a liquid lubricating layer 7 made of perfluoropolyether was formed to a thickness of 2 nm by a dipping method to obtain a magnetic recording medium.

(比較例1)
交換結合制御層5−2のPt−SiO2を成膜せず、磁気記録層5を[Co−SiO2/Pt]x9/Co−SiO2としたこと以外は、全て実施例1と同様にして垂直磁気記録媒体とした。
(Comparative Example 1)
Except that the Pt—SiO 2 film of the exchange coupling control layer 5-2 was not formed and the magnetic recording layer 5 was [Co—SiO 2 / Pt] × 9 / Co—SiO 2 , everything was the same as in Example 1. Thus, a perpendicular magnetic recording medium was obtained.

(比較例2)
磁性層(2)5−3のCo−SiO2を成膜せず、磁気記録層5を[Co−SiO2/Pt]x9としたこと以外は、全て比較例1と同様にして垂直磁気記録媒体とした。
(Comparative Example 2)
Perpendicular magnetic recording was performed in the same manner as in Comparative Example 1 except that the Co—SiO 2 film of the magnetic layer (2) 5-3 was not formed and the magnetic recording layer 5 was [Co—SiO 2 / Pt] × 9. The medium.

(比較例3)
Cr93−(SiO27ターゲットを用いてArガス圧2.3mTorr下にてCr−SiO2交換結合制御層5−2を形成したこと以外は全て実施例1と同様にして垂直磁気記録媒体とした。
(Comparative Example 3)
A perpendicular magnetic recording medium is the same as in Example 1 except that the Cr—SiO 2 exchange coupling control layer 5-2 is formed under the Ar gas pressure of 2.3 mTorr using a Cr 93 — (SiO 2 ) 7 target. It was.

(比較例4)
Ru93−(SiO27ターゲットを用いてArガス圧2.3mTorr下にてRu−SiO2交換結合制御層5−2を形成したこと以外は全て実施例1と同様にして垂直磁気記録媒体とした。
(Comparative Example 4)
Perpendicular magnetic recording medium in the same manner as in Example 1 except that the Ru—SiO 2 exchange coupling control layer 5-2 was formed under an Ar gas pressure of 2.3 mTorr using a Ru 93 — (SiO 2 ) 7 target. It was.

(実施例2)
Ta層の成膜の前に、Co88Nb7Zr5ターゲットを用い、Arガス圧2.3mTorr下でCoNbZr軟磁性裏打ち層2を100nm形成したこと以外は全て実施例1と同様にして二層垂直磁気記録媒体とした。
(Example 2)
Two layers were formed in the same manner as in Example 1 except that a Co 88 Nb 7 Zr 5 target was used and a CoNbZr soft magnetic backing layer 2 was formed to 100 nm under an Ar gas pressure of 2.3 mTorr before the Ta layer was formed. A perpendicular magnetic recording medium was obtained.

(比較例5)
交換結合制御層5−2のPt−SiO2を成膜せず、磁気記録層5を[Co−SiO2/Pt]x9/Co−SiO2としたこと以外は、全て実施例2と同様にして二層垂直磁気記録媒体とした。
(Comparative Example 5)
Except that the Pt—SiO 2 film of the exchange coupling control layer 5-2 was not formed and the magnetic recording layer 5 was [Co—SiO 2 / Pt] × 9 / Co—SiO 2 , everything was the same as in Example 2. Thus, a two-layer perpendicular magnetic recording medium was obtained.

(比較例6)
磁性層(2)5−3のCo−SiO2を成膜せず、磁気記録層5を[Co−SiO2/Pt]x9としたこと以外は、全て比較例5と同様にして二層垂直磁気記録媒体とした。
(Comparative Example 6)
Two layers perpendicular to each other in the same manner as in Comparative Example 5 except that the magnetic layer (2) 5-3 is not formed of Co—SiO 2 and the magnetic recording layer 5 is [Co—SiO 2 / Pt] × 9. A magnetic recording medium was obtained.

(実施例3)
{(Ni80Fe2075Cr2593−{SiO27ターゲットを用いてArガス圧2.3mTorr下にてNiFeCr−SiO2交換結合制御層5−2を形成したこと以外は全て実施例1と同様にして垂直磁気記録媒体とした。
(Example 3)
{(Ni 80 Fe 20) 75 Cr 25} 93 - All the embodiments except for forming the {SiO 2} 7 NiFeCr-SiO 2 exchange coupling control layer 5-2 in an Ar gas pressure 2.3mTorr under using a target A perpendicular magnetic recording medium was obtained in the same manner as in Example 1.

(実施例4)
{(Ni80Fe2060Cr4093−{SiO27ターゲットを用いてArガス圧2.3mTorr下にてNiFeCr−SiO2交換結合制御層5−2を形成したこと以外は全て実施例1と同様にして垂直磁気記録媒体とした。
Example 4
{(Ni 80 Fe 20) 60 Cr 40} 93 - All the embodiments except for forming the {SiO 2} 7 NiFeCr-SiO 2 exchange coupling control layer 5-2 in an Ar gas pressure 2.3mTorr under using a target A perpendicular magnetic recording medium was obtained in the same manner as in Example 1.

次に、本実施例の垂直媒体の性能評価結果について述べる。   Next, the performance evaluation results of the perpendicular medium of this example will be described.

まず、事前検討として、比較例2の[Co93−(SiO27/Pt]x9層(以下、単に[Co−SiO2/Pt]層と記載する。)の磁気異方性をトルクメーターで測定したところ、Ku=6.3×106erg/cc(膜平均のMs=360emu/cc)であった。また、比較例2の[Co−SiO2/Pt]層を、Co88−(SiO212層(以下、単にCo−SiO2層と記載する。)2nmで置き換えたサンプルを測定したところ、Ku=1.2×104erg/cc(膜平均のMs=1000emu/cc)であった。すなわち、実施例1と比較例1で用いた、高Ku値の[Co−SiO2/Pt]磁性層と、低Ku値のCo−SiO2磁性層では、2桁以上の大きな磁気異方性の差があることがわかった。 First, as a preliminary study, the magnetic anisotropy of the [Co 93 — (SiO 2 ) 7 / Pt] × 9 layer (hereinafter simply referred to as a [Co—SiO 2 / Pt] layer) of Comparative Example 2 was measured as a torque meter. And Ku = 6.3 × 10 6 erg / cc (average Ms of film = 360 emu / cc). Moreover, when the sample in which the [Co—SiO 2 / Pt] layer of Comparative Example 2 was replaced with 2 nm of Co 88 — (SiO 2 ) 12 layers (hereinafter simply referred to as “Co—SiO 2 layer”) was measured, Ku = 1.2 × 10 4 erg / cc (Ms of membrane average = 1000 emu / cc). That is, the high Ku value [Co—SiO 2 / Pt] magnetic layer and the low Ku value Co—SiO 2 magnetic layer used in Example 1 and Comparative Example 1 have a large magnetic anisotropy of two orders of magnitude or more. I found that there is a difference.

次に、実施例1、比較例1〜3の磁気特性評価を行った。磁気特性評価にはVSM測定装置を用いた。+20kOe→−20kOe→+20kOeと磁場を印加しながら磁化を測定する「磁化曲線」測定と、一旦−20kOeを印加して磁化を一方向に飽和させた後、磁界0で磁化測定→磁界をある設定値まで増加後、磁界を0に戻した時に磁化測定→前記磁界設定値を+20kOeまで増加させながら繰り返しこの測定を行う、「残留磁化曲線」測定の2種類の評価を行った。   Next, the magnetic characteristics of Example 1 and Comparative Examples 1 to 3 were evaluated. A VSM measuring device was used for magnetic property evaluation. “Magnetic curve” measurement, which measures magnetization while applying a magnetic field of +20 kOe → −20 kOe → + 20 kOe, and once saturates the magnetization in one direction by applying −20 kOe, then measures the magnetization with a magnetic field of 0 → sets a certain magnetic field After the increase to the value, two types of evaluations were performed: “residual magnetization curve” measurement in which the measurement was repeated while the magnetic field was returned to 0, and this measurement was repeated while increasing the magnetic field setting value to +20 kOe.

図2〜図3にそれぞれ、比較例2、比較例1の磁化曲線及び残留磁化曲線を示し、図4に実施例1のPt−SiO2交換結合制御層の膜厚を、1.5nmとした場合の磁化曲線及び残留磁化曲線を示す。また、図5および6に、それぞれ、前記交換結合制御層の膜厚を、2.5nm、4.0nmとした場合の磁化曲線及び残留磁化曲線を、参考例1および2として示す。図2と図3において、比較例2と比較例1とを比べると、Co−SiO2層を付与した比較例1(Pt−SiO2=0nm)の場合には、比較例2に比して保磁力Hcが大幅に低減し、磁化が飽和する磁界Hsも低減している。これは、Ku値の低いCo−SiO2層を積層したためであるが、[Co−SiO2/Pt]層とCo−SiO2層は強く結合し、一体となって磁化反転を起こしているためと考えられる。 Respectively in FIGS 3, Comparative Example 2, shows the magnetization curves and residual magnetization curves of Comparative Example 1, the film thickness of the Pt-SiO 2 exchange coupling control layer in Example 1 in FIG. 4, 1. Shows the magnetization curves and residual magnetization curve when an 5n m. 5 and 6 show as reference examples 1 and 2 a magnetization curve and a residual magnetization curve when the film thickness of the exchange coupling control layer is 2.5 nm and 4.0 nm, respectively. 2 and 3, when Comparative Example 2 and Comparative Example 1 are compared, Comparative Example 1 (Pt—SiO 2 = 0 nm) provided with a Co—SiO 2 layer is compared with Comparative Example 2. The coercive force Hc is greatly reduced, and the magnetic field Hs at which the magnetization is saturated is also reduced. This is because a Co—SiO 2 layer having a low Ku value is stacked, but the [Co—SiO 2 / Pt] layer and the Co—SiO 2 layer are strongly coupled to cause magnetization reversal as a whole. it is conceivable that.

実施例1の交換結合制御層(Pt−SiO2層)の膜厚を1.5nmとした図4では、Hc及びHsはさらに低減し、磁化曲線及び残留磁化曲線の傾きも急峻になる。この膜厚で、Hc及びHsが低減したのは、両磁性層間の交換結合力が低減され、まずCo−SiO2層の磁化反転が起きた後、[Co−SiO2/Pt]層の磁化反転が起こるためと考えられる。なお、磁化曲線の傾きが急峻になるのは、上層Co−SiO2の膜厚が2nmと薄く、かつMsも大きいために、上層が自身に及ぼす反磁界エネルギーが大きいことに起因するものと考えられる。この、膜厚1.5nmの場合に、本発明の効果が最もよく生じていることが、後述する図からわかる。 In FIG. 4 where the film thickness of the exchange coupling control layer (Pt—SiO 2 layer) of Example 1 is 1.5 nm, Hc and Hs are further reduced, and the slopes of the magnetization curve and the residual magnetization curve become steep. With this film thickness, Hc and Hs are reduced because the exchange coupling force between the two magnetic layers is reduced. First, after the magnetization reversal of the Co—SiO 2 layer occurs, the magnetization of the [Co—SiO 2 / Pt] layer This is probably because reversal occurs. Note that the steep inclination of the magnetization curve is attributed to the fact that the demagnetizing field energy exerted on itself is large because the upper layer Co—SiO 2 is as thin as 2 nm and Ms is large. It is done. It can be seen from the figures described later that the effects of the present invention are most effectively generated when the film thickness is 1.5 nm.

さらに膜厚を増加させた図5のPt−SiO22.5nmとした参考例1の場合には、磁化曲線の形状が変化し、H≒±3kOe及びH≒±6kOe近辺での、おおむね2段階の磁化反転が行われており、この場合、両磁性層間の交換結合力が弱すぎるためと考えられる。また図5の場合、残留磁化曲線の軌跡は磁化曲線とは一致せず、1段階の曲線を示している。これは、磁界印加時は、Ku値の小さなCo−SiO2は磁界に従って反転するが、Ku値の大きな[Co−SiO2/Pt]は磁化反転しないことによる。そして、磁界を印加しない残留磁化状態では、弱いながらも層間の結合力は残っているために、Co−SiO2は[Co−SiO2/Pt]の磁化と同方向になる(戻る)ということを示している。 Further, in the case of Reference Example 1 in which Pt—SiO 2 = 2.5 nm in FIG. 5 in which the film thickness was increased, the shape of the magnetization curve changed, and H≈ ± 3 kOe and H≈ ± 6 kOe vicinity. This is probably because two-stage magnetization reversal is performed, and in this case, the exchange coupling force between the two magnetic layers is too weak. In the case of FIG. 5, the locus of the remanent magnetization curve does not coincide with the magnetization curve and shows a one-step curve. This is because, when a magnetic field is applied, Co—SiO 2 having a small Ku value is reversed according to the magnetic field, but [Co—SiO 2 / Pt] having a large Ku value is not reversed. And in the residual magnetization state where no magnetic field is applied, the coupling force between the layers remains although it is weak, so that Co—SiO 2 is in the same direction (returns) as the magnetization of [Co—SiO 2 / Pt]. Is shown.

図6のPt−SiO2を4.0nmとした参考例2の場合には、磁化曲線と残留磁化曲線は一致し、その形状からは2段階の磁化反転をしていることがわかる。すなわち、Co−SiO2と[Co−SiO2/Pt]層の交換結合は完全に切れており、各層が独立して反転、残留磁化状態でもその状態を保持することがわかる。 In the case of Reference Example 2 in which Pt—SiO 2 in FIG. 6 is 4.0 nm, the magnetization curve and the remanent magnetization curve coincide with each other, and it can be seen from the shape that the magnetization reversal is performed in two stages. That is, exchange coupling between the Co-SiO 2 [Co-SiO 2 / Pt] layer is completely cut, each layer independently reversed, it can be seen that also retain its state residual magnetization state.

次に、図7について述べる。図7は、磁化曲線から求めた保磁力Hcと残留磁化曲線から求めた残留保磁力Hrの、交換結合制御層膜厚(Pt−SiO2膜厚)依存性を示す。交換結合制御層膜厚(Pt−SiO2膜厚)が0.2〜1.8nmの間においては、Pt−SiO2=0.0nmの場合に比してHc及びHrが低減しており、本発明の効果を示している。膜厚2nm以上では、HcとHrが一致しないことから、両層の交換結合力が弱まりすぎて効果を示さないことがわかる。 Next, FIG. 7 will be described. FIG. 7 shows the dependence of the coercive force Hc obtained from the magnetization curve and the residual coercive force Hr obtained from the residual magnetization curve on the exchange coupling control layer thickness (Pt—SiO 2 film thickness). When the exchange coupling control layer thickness (Pt—SiO 2 thickness) is between 0.2 and 1.8 nm, Hc and Hr are reduced as compared with the case of Pt—SiO 2 = 0.0 nm. The effect of the present invention is shown. When the film thickness is 2 nm or more, Hc and Hr do not coincide with each other, indicating that the exchange coupling force of both layers is too weak to show an effect.

交換結合制御層が、Cr−SiO2である比較例3、Ru−SiO2である比較例4で同様な測定を行ったところ、いずれの交換結合制御層においても、膜厚が0.5nm以上でHcとHrが一致しなかった。すなわち、0.5nmの膜厚では、すでに結合力が弱まりすぎるか或いは完全に切れている部分が生じていることになる。これらと比較して、Pt−SiO2の場合には、図7から明らかなように、膜厚2.0nm未満の比較的広範囲の膜厚領域において交換結合力を維持できる効果があることがわかる。 When the same measurement was performed in Comparative Example 3 in which the exchange coupling control layer was Cr—SiO 2 and Comparative Example 4 in which Ru—SiO 2 was used, the film thickness was 0.5 nm or more in any exchange coupling control layer. Hc and Hr did not match. That is, when the film thickness is 0.5 nm, a portion where the bonding force is already weakened or completely cut is generated. Compared with these, in the case of Pt—SiO 2 , as is apparent from FIG. 7, it can be seen that there is an effect that the exchange coupling force can be maintained in a relatively wide range of film thickness of less than 2.0 nm. .

次に、本発明の実用的な効果を明らかにするために、実施例2と比較例5及び比較例6の電磁変換特性の測定を行った。ここで比較するサンプル実施例2、比較例5、比較例6は、記録再生特性を十分に発揮できるよう、先に述べた実施例1、比較例1、比較例2に、それぞれ同一の軟磁性裏打ち層を付与した構造になっている。軟磁性裏打ち層として適用したCoNbZrは、アモルファス構造であるために、上層の結晶配向や微細構造に影響を与えず、Kerr効果測定装置で確認した磁気記録層の磁化曲線、磁気特性の変化はそれぞれ実施例1、比較例1、比較例2で説明したものと一致していた。なお、電磁変換特性評価は、スピンスタンドテスターにて、GMRヘッドを用いて行った。記録トラック幅は180nm、再生トラック幅140nmのヘッドを用いた。   Next, in order to clarify the practical effect of the present invention, the electromagnetic conversion characteristics of Example 2, Comparative Example 5 and Comparative Example 6 were measured. Sample Example 2, Comparative Example 5, and Comparative Example 6 to be compared here have the same soft magnetism as Example 1, Comparative Example 1, and Comparative Example 2 described above so that the recording / reproducing characteristics can be sufficiently exhibited. It has a structure with a backing layer. Since CoNbZr applied as a soft magnetic underlayer has an amorphous structure, it does not affect the crystal orientation and microstructure of the upper layer, and the change in the magnetization curve and magnetic characteristics of the magnetic recording layer confirmed by the Kerr effect measurement device This was consistent with that described in Example 1, Comparative Example 1, and Comparative Example 2. The electromagnetic conversion characteristics were evaluated using a GMR head with a spin stand tester. A head having a recording track width of 180 nm and a reproducing track width of 140 nm was used.

表1に、実施例2、比較例5、比較例6の電磁変換特性評価結果を示す。   Table 1 shows the results of evaluating the electromagnetic conversion characteristics of Example 2, Comparative Example 5, and Comparative Example 6.

Figure 0004623594
Figure 0004623594

表1には、SNR(信号対雑音比)、重ねがきOW(Over Write)特性、信号出力の劣化度合(Decay)特性をまとめて示した。SNRは、線記録密度600kFCIでの値で、信号品質、すなわち記録密度の指標である。OWは、線記録密度500kFCIの信号上に70kFCIの信号を重ねがきした時の値で、媒体への書き込み易さの指標となる。Decayは記録密度50kFCIで書き込んだ信号出力の経時変化を測定したもので、信号安定性の指標である。なお、表1の実施例2における交換結合制御層(Pt−SiO2層)の膜厚は、実施例1において良好であった膜厚と同等の1.5nmとした。 Table 1 collectively shows SNR (signal-to-noise ratio), overlay OW (Over Write) characteristics, and signal output degradation degree (Decay) characteristics. SNR is a value at a linear recording density of 600 kFCI, and is an indicator of signal quality, that is, recording density. OW is a value obtained by superimposing a 70 kFCI signal on a signal having a linear recording density of 500 kFCI, and serves as an index of the ease of writing on the medium. Decay is a measure of signal stability measured by measuring the change over time of the signal output written at a recording density of 50 kFCI. The thickness of the exchange coupling control layer in Example 2 of Table 1 (Pt-SiO 2 layer) was set to the thickness equivalent to 1.5nm was good in Example 1.

表1から、Ku値の大きい[Co−SiO2/Pt]層のみである比較例6では、OWが非常に悪く、書き込み性能の悪い媒体であることがわかる。そのため、磁化が充分に飽和しない未飽和記録が起こり、SNRも劣化し、他の比較例5及び実施例2に比べて大幅に劣ることが分かる。交換結合制御層の無い[Co−SiO2/Pt]/Co−SiO2の構成である比較例5の場合は、先に述べたKu値の小さなCo−SiO2層付与によるHcの低減効果で比較例6よりは大幅にOWが改善されている。また、飽和記録が可能になることから、SNRも比較例6よりは優れる。 From Table 1, it can be seen that Comparative Example 6, which has only a [Co—SiO 2 / Pt] layer with a large Ku value, is a medium with very poor OW and poor writing performance. Therefore, it is understood that unsaturated recording in which the magnetization is not sufficiently saturated occurs, the SNR is deteriorated, and is significantly inferior to those of other comparative examples 5 and 2. In the case of the comparative example 5 having the configuration of [Co—SiO 2 / Pt] / Co—SiO 2 without an exchange coupling control layer, the effect of reducing Hc by providing the Co—SiO 2 layer having a small Ku value as described above. OW is significantly improved as compared with Comparative Example 6. Further, since saturation recording becomes possible, the SNR is also superior to that of Comparative Example 6.

そして、比較例6に交換結合制御層を挿入した構造である実施例5では、比較例5に比べ、さらに5dBOWが改善されている。これが、上下層の交換結合力を適度に弱めた効果である。また、SNRも1.6dB良好な値となった。これは、磁気特性の変化で、磁化曲線の傾きが増加したことによる、ビット間の遷移ノイズの低減によるものと考えられる。   And in Example 5 which is the structure which inserted the exchange coupling control layer in the comparative example 6, 5 dBOW is further improved compared with the comparative example 5. FIG. This is the effect of moderately weakening the exchange coupling force of the upper and lower layers. Also, the SNR was a good value of 1.6 dB. This is considered to be due to a reduction in transition noise between bits due to an increase in the slope of the magnetization curve due to a change in magnetic characteristics.

また、いずれのサンプルにおいてもDecayは0であり、実施例2で交換結合力を弱めた場合でも信号出力の経時変化は見られず、ビットを安定に保持できることが明らかである。なお、前記実施例1の磁気特性の検討で、結合力を弱めすぎた、或いは完全に切れたPt−SiO2膜厚2nm以上では、OWの改善は見られず、書き込み能力の改善効果が見られなかった。 Moreover, Decay is 0 in any sample, and even when the exchange coupling force is weakened in Example 2, it is clear that the signal output does not change with time, and the bit can be held stably. In the examination of the magnetic characteristics of Example 1, when the coupling force was weakened too much or when the Pt—SiO 2 film thickness was 2 nm or more, the OW was not improved and the effect of improving the writing ability was observed. I couldn't.

最後に、交換結合制御層材料による効果を比較した。実施例1(Pt−SiO2)、実施例3({(NiFe)75Cr25}−SiO2)、実施例4({(NiFe)60Cr40}−SiO2)、比較例3(Cr−SiO2)の保磁力の交換結合制御層膜厚依存性を測定した。その結果、実施例1、実施例3、実施例4は、それぞれ膜厚1.5nm、1.0nm、1.5nmで保磁力が極小値をとり、この時の比較例1(すなわち、交換結合制御層がない場合)に対する保磁力の変化率はそれぞれ、−12%、−18%、−7%であり、全て保磁力の低減効果が見られた。すなわち、Ni、FeとCrとの合金を結晶質とした実施例3と実施例4では、Pt−SiO2である実施例1の場合と同様な効果が見られ、界面の結合力を適度に制御することができていることがわかる。また、実施例3と実施例4では、NiFeとCrの組成比が異なり、この例ではCr量が比較的少ない実施例4で、保磁力の低下率が大きく、NiFeとCrの組成比でも結合力を制御できることがわかる。 Finally, the effects of the exchange coupling control layer material were compared. Example 1 (Pt-SiO 2), Example 3 ({(NiFe) 75 Cr 25} -SiO 2), Example 4 ({(NiFe) 60 Cr 40} -SiO 2), Comparative Example 3 (Cr- The dependence of the coercivity of SiO 2 ) on the exchange coupling control layer thickness was measured. As a result, Example 1, Example 3, and Example 4 have film thicknesses of 1.5 nm, 1.0 nm, and 1.5 nm, respectively, and the coercive force has a minimum value. The change rates of the coercive force with respect to the case without the control layer were −12%, −18%, and −7%, respectively. That is, in Example 3 and Example 4 in which an alloy of Ni, Fe, and Cr is crystalline, the same effect as in Example 1 that is Pt—SiO 2 is observed, and the bonding force at the interface is moderately increased. It turns out that it can control. Also, the composition ratio of NiFe and Cr is different between Example 3 and Example 4. In this example, the amount of Cr is relatively small in Example 4, and the rate of decrease in coercive force is large. Even in the composition ratio of NiFe and Cr, bonding is achieved. It can be seen that the force can be controlled.

一方、比較例3では、保磁力の低下がみられず、膜厚増加に対して単調に保磁力が増加し、所望の効果を得ることができない。これは、Crが添加したSiO2に含まれる酸素によって酸化される影響で交換結合制御層5−2全体が酸化膜層となってしまい、磁性層との界面の結合力を大きく低下させ、結合を完全に分断していることが推測される。これは、膜厚での結合制御が困難であることを意味している。以上により、酸化物を含む交換結合制御層の結晶質の材料として、Co、Ni、Feのうちから選ばれた少なくとも一つの元素と非磁性の合金を適用した場合の効果が明らかとなった。 On the other hand, in Comparative Example 3, the coercive force does not decrease, the coercive force increases monotonously with increasing film thickness, and the desired effect cannot be obtained. This, Cr will be overall exchange coupling control layer 5-2 influence being oxidized becomes an oxide film layer by oxygen is contained in the SiO 2 was added, greatly reduces the binding strength of the interface between the magnetic layer, bond Is presumed to be completely divided . This means that the coupling control with the film thickness is difficult. From the above, the effect of applying a nonmagnetic alloy with at least one element selected from Co, Ni, and Fe as the crystalline material of the exchange coupling control layer containing an oxide has been clarified.

この発明の実施形態に係る垂直磁気記録媒体の模式的断面図。1 is a schematic cross-sectional view of a perpendicular magnetic recording medium according to an embodiment of the present invention. この発明の実施例に対する比較例2の磁化曲線と残留磁化曲線を示す図。The figure which shows the magnetization curve and the residual magnetization curve of the comparative example 2 with respect to the Example of this invention. この発明の実施例に対する比較例1の磁化曲線と残留磁化曲線を示す図。The figure which shows the magnetization curve and the remanent magnetization curve of the comparative example 1 with respect to the Example of this invention. この発明の実施例1の交換結合制御層膜厚1.5nmの場合の磁化曲線と残留磁化曲線を示す図。The figure which shows the magnetization curve in the case of the exchange coupling control layer film thickness of 1.5 nm of Example 1 of this invention, and a remanent magnetization curve. この発明の参考例1の交換結合制御層膜厚2.5nmの場合の磁化曲線と残留磁化曲線を示す図。The figure which shows the magnetization curve and remanent magnetization curve in the case of the exchange coupling control layer film thickness of 2.5 nm of the reference example 1 of this invention. この発明の参考例2の交換結合制御層膜厚4.0nmの場合の磁化曲線と残留磁化曲線を示す図。The figure which shows the magnetization curve in the case of the exchange coupling control layer film thickness of 4.0 nm of the reference example 2 of this invention, and a residual magnetization curve. この発明の実施例に関わり、磁化曲線から求めた保磁力Hcと残留磁化曲線から求めた残留保磁力Hrの、交換結合制御膜厚(Pt-SiO2膜厚nm)依存性を示す図。Involved in an embodiment of the present invention, the residual coercivity Hr calculated from the coercive force Hc and the residual magnetization curve obtained from the magnetization curve, shows the exchange coupling control thickness (Pt-SiO 2 film thickness nm) dependence.

1:非磁性基体、2:軟磁性裏打ち層、3:シード層、4:下地層、5:磁気記録層、5−1:磁性層(1)、5−2:交換結合制御層、5−3:磁性層(2)、6:保護層、7:液体潤滑層。   1: nonmagnetic substrate, 2: soft magnetic backing layer, 3: seed layer, 4: underlayer, 5: magnetic recording layer, 5-1: magnetic layer (1), 5-2: exchange coupling control layer, 5- 3: Magnetic layer (2), 6: Protective layer, 7: Liquid lubricating layer.

Claims (7)

非磁性基体上に少なくとも下地層、磁気記録層、保護層が順次積層されてなる垂直磁気記録媒体において、前記磁気記録層は、第1の磁性層、交換結合制御層、第2の磁性層を順次積層した構造を少なくとも含み、かつ前記第1の磁性層と第2の磁性層の垂直磁気異方性定数(Ku)の値が異なり、かつ前記磁性層のうち、少なくともKu値の大きな方には非磁性の酸化物を含み、かつ前記交換結合制御層は、Pt-SiO 2 若しくはNiFeCr-SiO 2 からなり、その膜厚は2nm未満とすることを特徴とする垂直磁気記録媒体。 In a perpendicular magnetic recording medium in which at least an underlayer, a magnetic recording layer, and a protective layer are sequentially laminated on a nonmagnetic substrate, the magnetic recording layer includes a first magnetic layer, an exchange coupling control layer, and a second magnetic layer. The first magnetic layer and the second magnetic layer include at least a sequentially laminated structure, and the perpendicular magnetic anisotropy constant (Ku) of the first magnetic layer is different from that of the magnetic layer. comprises an oxide of a non-magnetic, and the exchange coupling control layer, Pt-SiO 2 or consists NiFeCr-SiO 2, the perpendicular magnetic recording medium has a film thickness, wherein to Rukoto and less than 2 nm. 請求項1に記載の垂直磁気記録媒体において、前記第1の磁性層及び第2の磁性層における一方の磁性層のKu値が少なくとも1×106erg/cm3以上であり、かつ他方の磁性層のKu値が1×105erg/cm3以下であることを特徴とする垂直磁気記録媒体。 2. The perpendicular magnetic recording medium according to claim 1 , wherein the Ku value of one magnetic layer of the first magnetic layer and the second magnetic layer is at least 1 × 10 6 erg / cm 3 or more and the other magnetic layer is magnetic. A perpendicular magnetic recording medium, wherein the Ku value of the layer is 1 × 10 5 erg / cm 3 or less. 請求項1または2に記載の垂直磁気記録媒体において、前記磁気記録層中の結晶粒子は、第1の磁性層、交換結合制御層、第2の磁性層を貫いて、下地層界面から柱状に成長した構造を有し、かつその柱状の各粒子は非磁性成分によって磁気的に分離してなることを特徴とする垂直磁気記録媒体。 3. The perpendicular magnetic recording medium according to claim 1, wherein crystal grains in the magnetic recording layer pass through the first magnetic layer, the exchange coupling control layer, and the second magnetic layer, and form a columnar shape from the underlayer interface. A perpendicular magnetic recording medium having a grown structure and each of its columnar grains magnetically separated by a nonmagnetic component. 請求項1ないしのいずれか1項に記載の垂直磁気記録媒体において、前記磁気記録層に含まれる酸化物が、Si、Ti、Cr、Coの中から選ばれた少なくとも1つの元素の酸化物であることを特徴とする垂直磁気記録媒体。 The perpendicular magnetic recording medium according to any one of claims 1 to 3, oxide contained in the magnetic recording layer, Si, Ti, Cr, an oxide of at least one element selected from among Co A perpendicular magnetic recording medium characterized by the above. 請求項1ないしのいずれか1項に記載の垂直磁気記録媒体において、前記第1の磁性層及び第2の磁性層の結晶粒子は、六方細密充填構造の結晶構造(hcp構造)若しくは面心立方格子構造の結晶構造(fcc)を主体とする結晶構造を有することを特徴とする垂直磁気記録媒体。 The perpendicular magnetic recording medium according to any one of claims 1 to 4, the crystal grains of the first magnetic layer and the second magnetic layer, the crystal structure (hcp structure) having a hexagonal close-packed structure or a face-centered A perpendicular magnetic recording medium having a crystal structure mainly composed of a crystal structure (fcc) having a cubic lattice structure. 請求項1ないしのいずれか1項に記載の垂直磁気記録媒体において、前記Ku値の大きな磁性層の飽和磁化をMsh、もう一方のKu値の小さな磁性層の飽和磁化をMslとしたとき、Msh<Mslであることを特徴とする垂直磁気記録媒体。 The perpendicular magnetic recording medium according to any one of claims 1 to 5 , wherein the saturation magnetization of the magnetic layer having a large Ku value is Msh, and the saturation magnetization of the other magnetic layer having a small Ku value is Msl. A perpendicular magnetic recording medium, wherein Msh <Msl. 請求項1ないしのいずれか1項に記載の垂直磁気記録媒体において、前記Ku値の小さな磁性層の飽和磁化Mslが少なくとも800emu/cc以上であることを特徴とする垂直磁気記録媒体。 The perpendicular magnetic recording medium according to any one of claims 1 to 6, the perpendicular magnetic recording medium, wherein the saturation magnetization Msl of small magnetic layer of the Ku value is at least 800 emu / cc or more.
JP2006240161A 2006-09-05 2006-09-05 Perpendicular magnetic recording medium Active JP4623594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006240161A JP4623594B2 (en) 2006-09-05 2006-09-05 Perpendicular magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006240161A JP4623594B2 (en) 2006-09-05 2006-09-05 Perpendicular magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2008065879A JP2008065879A (en) 2008-03-21
JP4623594B2 true JP4623594B2 (en) 2011-02-02

Family

ID=39288483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006240161A Active JP4623594B2 (en) 2006-09-05 2006-09-05 Perpendicular magnetic recording medium

Country Status (1)

Country Link
JP (1) JP4623594B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008108395A (en) * 2006-10-27 2008-05-08 Hoya Corp Perpendicular magnetic recording medium and its manufacturing method
JP2008176858A (en) * 2007-01-18 2008-07-31 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium and hard disk drive using the same
WO2008126133A1 (en) * 2007-03-19 2008-10-23 Fujitsu Limited Perpendicular magnetic recording medium
WO2008149812A1 (en) * 2007-05-30 2008-12-11 Hoya Corporation Vertical magnetic recording medium and vertical magnetic recording medium manufacturing method
US8871368B2 (en) 2008-09-16 2014-10-28 Wd Media (Singapore) Pte. Ltd. Perpendicular magnetic recording medium and process for manufacture thereof
JP2010199192A (en) * 2009-02-24 2010-09-09 Showa Denko Kk Perpendicular magnetic recording medium, recording device, and multilayer structure film
US8580409B2 (en) 2009-11-09 2013-11-12 HGST Netherlands B.V. Perpendicular magnetic recording media having a dual onset layer
JP5448750B2 (en) * 2009-11-26 2014-03-19 エイチジーエスティーネザーランドビーブイ Magnetic recording medium
US8168310B2 (en) 2009-12-15 2012-05-01 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording media with oxide-containing exchange coupling layer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001056922A (en) * 1999-06-08 2001-02-27 Fujitsu Ltd Magnetic recording medium
JP2004039033A (en) * 2002-06-28 2004-02-05 Toshiba Corp Magnetic recording medium and magnetic recording/reproducing device
JP2006048900A (en) * 2004-07-05 2006-02-16 Fuji Electric Device Technology Co Ltd Perpendicular magnetic recording medium
JP2006209943A (en) * 2005-01-26 2006-08-10 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium with magnetic torque layer coupled to perpendicular recording layer
JP2007220177A (en) * 2006-02-15 2007-08-30 Fujitsu Ltd Perpendicular magnetic recording medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001056922A (en) * 1999-06-08 2001-02-27 Fujitsu Ltd Magnetic recording medium
JP2004039033A (en) * 2002-06-28 2004-02-05 Toshiba Corp Magnetic recording medium and magnetic recording/reproducing device
JP2006048900A (en) * 2004-07-05 2006-02-16 Fuji Electric Device Technology Co Ltd Perpendicular magnetic recording medium
JP2006209943A (en) * 2005-01-26 2006-08-10 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium with magnetic torque layer coupled to perpendicular recording layer
JP2007220177A (en) * 2006-02-15 2007-08-30 Fujitsu Ltd Perpendicular magnetic recording medium

Also Published As

Publication number Publication date
JP2008065879A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
JP5103097B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same
JP5762448B2 (en) Magnetic recording medium
JP4540557B2 (en) Perpendicular magnetic recording medium
JP4623594B2 (en) Perpendicular magnetic recording medium
JP4628294B2 (en) Magnetic storage
JP4379817B2 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording apparatus
JP5088629B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JP5274998B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic recording / reproducing apparatus
JP2008176858A (en) Perpendicular magnetic recording medium and hard disk drive using the same
EP1930882A1 (en) Perpendicular magnetic recording medium with multilayer recording structure including intergranular exchange enhancement layer
JP5413389B2 (en) Perpendicular magnetic recording medium
JP2007035139A (en) Vertical magnetic recording medium and magnetic recording and reproducing apparatus
JP5337451B2 (en) Perpendicular magnetic recording medium
JP2008123626A (en) Perpendicular magnetic recording medium and magnetic storage apparatus using the same
US20150332721A1 (en) Stack Including a Magnetic Zero Layer
JPWO2009014205A1 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP2008226416A (en) Perpendicular magnetic recording medium and its manufacturing method
JP3900999B2 (en) Perpendicular magnetic recording medium
JP5232730B2 (en) Magnetic recording medium, method of manufacturing magnetic recording medium, and magnetic recording / reproducing apparatus
JP2006286106A (en) Vertical magnetic recording medium and magnetic storage apparatus
JP2000268339A (en) In-plane magnetic recording medium and magnetic storage device
JP2012226792A (en) Magnetic recording medium
JP4626861B2 (en) Perpendicular magnetic recording medium
JPWO2008133035A1 (en) Perpendicular magnetic recording medium
JP5213470B2 (en) Perpendicular magnetic recording medium and magnetic storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101028

R150 Certificate of patent or registration of utility model

Ref document number: 4623594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313118

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250