JP2010286288A - Control method for x-ray spectrometer, and x-ray spectrometer using the same - Google Patents
Control method for x-ray spectrometer, and x-ray spectrometer using the same Download PDFInfo
- Publication number
- JP2010286288A JP2010286288A JP2009138695A JP2009138695A JP2010286288A JP 2010286288 A JP2010286288 A JP 2010286288A JP 2009138695 A JP2009138695 A JP 2009138695A JP 2009138695 A JP2009138695 A JP 2009138695A JP 2010286288 A JP2010286288 A JP 2010286288A
- Authority
- JP
- Japan
- Prior art keywords
- ray
- spectral crystal
- intensity
- spectrometer
- constant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
本発明は、蛍光X線分析装置や電子線プローブ微小分析装置(EPMA)、走査電子顕微鏡(SEM)等のX線分析装置に用いられるX線分光器及びX線分光方法に関し、さらに詳しくは、波長分散型(WDS)のX線分析装置に用いられるX線分光器の制御方法及び該制御方法を用いたX線分光器に関する。 The present invention relates to an X-ray spectrometer and an X-ray spectroscopy method used in an X-ray analyzer such as an X-ray fluorescence analyzer, an electron probe microanalyzer (EPMA), and a scanning electron microscope (SEM). The present invention relates to a control method of an X-ray spectrometer used in a wavelength dispersion type (WDS) X-ray analyzer and an X-ray spectrometer using the control method.
電子線プローブ微小分析装置(EPMA)では、20〜30keV程度の中エネルギーを有する微小径の電子線を励起線として試料に照射し、それによって試料の含有成分の内殻電子が励起された際に外部に放出される固有X線(特性X線)を分析することにより、元素の同定や定量を行ったり、元素の分布を調べたりする。また、走査電子顕微鏡(SEM)では一般的には電子線の照射位置から発生した二次電子や反射電子を検出するが、最近は、エネルギー分散型X線検出部を併設することでX線分析を可能とした装置も開発されている。 In an electron beam probe microanalyzer (EPMA), when a sample is irradiated with an electron beam having a medium diameter of about 20 to 30 keV as an excitation beam, the inner electrons of the sample contained therein are excited. By analyzing the characteristic X-rays emitted to the outside (characteristic X-rays), the elements are identified and quantified, and the distribution of the elements is examined. In addition, the scanning electron microscope (SEM) generally detects secondary electrons and reflected electrons generated from the irradiation position of the electron beam, but recently, an X-ray analysis is performed by adding an energy dispersive X-ray detector. A device that enables this is also being developed.
この種のX線分析装置では、試料面上のほぼ一点とみなせる微小領域から放出される固有X線を効率良く分光するためのX線分光器として、従来、図5に示すような構成が広く利用されている(例えば特許文献1など参照)。このX線分光器では、試料1上で電子線が照射される微小領域2とヨハンソン型の湾曲分光結晶4とX線検出器6とを同一基準面(図の紙面)上のローランド円3上に配置し、試料1上の微小領域2を固定点として、湾曲分光結晶4及びX線検出器6をリンク機構等の図示しない移動手段によってローランド円3に沿って移動させる。この湾曲分光結晶4及びX線検出器6の位置によって分光波長が決まるから、それらの移動によって波長走査を行って元素の種類を特定する。
Conventionally, this type of X-ray analyzer has a wide configuration as shown in FIG. 5 as an X-ray spectrometer for efficiently separating intrinsic X-rays emitted from a minute region that can be regarded as one point on the sample surface. (See, for example, Patent Document 1). In this X-ray spectrometer, a
また、図6に示すように、試料1から放出されたX線をマルチキャピラリX線レンズ(ポリキャピラリと呼ばれることもある)7で集束して平行化して平板分光結晶8に導入し、平板分光結晶8で分光されたX線をX線検出器6に送って検出するX線分光器の構成も従来知られている(特許文献2など参照)。この場合にも、図7の例と同様に、平板分光結晶8とX線検出器6とが倍角の関係(θ,2θ)を保つようにしながらθを変化させることで、波長走査を行うことができる。
In addition, as shown in FIG. 6, the X-rays emitted from the
ところで、図5に示す湾曲分光結晶型のX線分光器は、上述のように、波長走査を行うためにローランド円3上で所定の角度関係を保ったまま湾曲分光結晶4及びX線検出器6を移動させる必要がある。しかしながら、分光結晶4を移動させると、分光結晶4と試料1との相対位置及び方向が変化するため、試料から放射されるX線の取り出し角度が変化し、分析精度及びデータ解析に支障をきたしてしまう。これを防ぐため、実際には図7に示す構造のX線分光器を用いている。このX線分光器では、X線の取り出し角度が一定に保たれるよう、分光結晶4が微小領域2を通る直線9上を移動するように構成されている。従って、分光結晶4の移動に伴い、ローランド円3の中心位置が移動し、X線検出器6もこの中心位置が移動したローランド円上で分光結晶と所定の角度関係を保つように移動する。このX線分光器では、試料1から分光結晶4までの距離が波長に比例するため、分光結晶を動かすモータの回転数と波長も比例する。これにより、分光結晶及びX線検出器を走査させることで得られるX線強度分布のデータ点の間隔は波長に対して一定となる。
Incidentally, as described above, the curved spectral crystal type X-ray spectrometer shown in FIG. 5 has the curved
一方、図6に示す平板分光結晶型のX線分光器は、平板分光結晶8を紙面に垂直な軸8aを中心に回転させ、X線検出器6を同じく軸8aを中心にして分光結晶8の回転角θの2倍の角度2θを保つように分光結晶8の周囲を移動させる。このX線分光器では、X線の取り出し角度が常に一定に保たれるため、図5又は図7のX線分光器のように分光結晶を移動させる必要がない。また、湾曲分光結晶型のX線分光器とは異なり、ローランド円上に試料、分光結晶及びX線検出器を配置させる必要がないため、平板分光結晶型のX線分光器は湾曲分光結晶を用いた場合に比べて設計自由度が高い。従って、試料や設置スペース等の制約から、湾曲分光結晶型のX線分光器ではX線分析装置の設計が困難な場合でも比較的応用が利くという利点がある。
On the other hand, the X-ray spectrometer of the flat plate crystal type shown in FIG. 6 rotates the
しかしながら、図6の構成のX線分光器で波長走査を行うと、X線強度分布のデータ点の間隔が波長に対して一定にならないという問題がある。これは分光結晶及びX線検出器を動かすモータの回転数が角度θに比例するためであり、ブラッグの条件から、短波長側で波長間隔が広く長波長側で波長間隔が狭いX線強度分布となってしまう。 However, when wavelength scanning is performed with the X-ray spectrometer having the configuration shown in FIG. This is because the rotational speed of the motor that moves the spectroscopic crystal and the X-ray detector is proportional to the angle θ. From the Bragg condition, the X-ray intensity distribution has a wide wavelength interval on the short wavelength side and a narrow wavelength interval on the long wavelength side. End up.
本発明は上記課題を解決するために成されたものであり、その目的とするところは、X線強度分布のデータ点の間隔が波長に対して一定となる平板分光結晶型のX線分光器の制御方法及び該制御方法を用いた平板分光結晶型X線分光器を提供することである。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a flat plate crystal type X-ray spectrometer in which the interval between data points of the X-ray intensity distribution is constant with respect to the wavelength. And a flat plate crystal X-ray spectrometer using the control method.
上記課題を解決するために成された第1発明に係るX線分光器の制御方法は、試料に照射された励起線に応じて該試料上の微小領域から放出されるX線を平行光化させるマルチキャピラリX線レンズと、前記マルチキャピラリX線レンズから出射される平行X線の光路上に配置された平板分光結晶と、前記平板分光結晶により分光されたX線を検出するX線検出器と、前記平板分光結晶及び前記X線検出器を、該平板分光結晶の表面と前記平行X線の交点を中心に所定の角度関係を保って回転駆動させる駆動手段と、前記X線検出器からの検出信号を選別し、該選別された検出信号を一定の時間間隔で計数することでX線強度を取得するX線強度取得手段と、を有するX線分光器の制御方法であって、前記X線強度の取得波長間隔を一定とするよう前記駆動手段を制御することを特徴とする。 The X-ray spectrometer control method according to the first aspect of the present invention for solving the above-described problem is that X-rays emitted from a minute region on a sample are converted into parallel light in accordance with excitation rays irradiated on the sample. A multi-capillary X-ray lens, a flat plate crystal disposed on the optical path of parallel X-rays emitted from the multi-capillary X-ray lens, and an X-ray detector for detecting X-rays dispersed by the flat plate crystal Driving means for rotating the flat plate crystal and the X-ray detector while maintaining a predetermined angular relationship around the intersection of the surface of the flat plate crystal and the parallel X-ray, and the X-ray detector An X-ray spectroscope control method comprising: X-ray intensity acquisition means for acquiring X-ray intensity by selecting the detection signals of (2) and counting the selected detection signals at regular time intervals, Keep X-ray intensity acquisition wavelength interval constant And controlling said drive means so.
また、第2発明に係るX線分光器の制御方法は、試料に照射された励起線に応じて該試料上の微小領域から放出されるX線を平行光化させるマルチキャピラリX線レンズと、前記マルチキャピラリX線レンズから出射される平行X線の光路上に配置された平板分光結晶と、前記平板分光結晶により分光されたX線を検出するX線検出器と、前記平板分光結晶及び前記X線検出器を、該平板分光結晶の表面と前記平行X線の交点を中心に所定の角度関係を保って一定の回転速度で回転駆動させる駆動手段と、前記X線検出器からの検出信号を選別し、該選別された検出信号を計数することでX線強度を取得するX線強度取得手段と、を有するX線分光器の制御方法であって、前記X線強度の取得波長間隔を一定とするよう前記計数の時間間隔を変化させると共に、前記X線強度取得手段で取得されるX線強度と前記計数時間に基づいて、単位時間当たりのX線強度を算出することを特徴とする。 The X-ray spectrometer control method according to the second invention includes a multicapillary X-ray lens that collimates X-rays emitted from a minute region on the sample in accordance with excitation rays irradiated on the sample, A plate spectral crystal disposed on the optical path of parallel X-rays emitted from the multicapillary X-ray lens, an X-ray detector for detecting X-rays dispersed by the plate spectral crystal, the plate spectral crystal, and the Driving means for driving the X-ray detector to rotate at a constant rotational speed while maintaining a predetermined angular relationship around the intersection of the surface of the flat plate spectral crystal and the parallel X-ray; and a detection signal from the X-ray detector And an X-ray intensity acquisition means for acquiring the X-ray intensity by counting the selected detection signals, and a method for controlling the X-ray intensity acquisition wavelength interval. The counting time interval is set to be constant. Causes ized, based on the X-ray intensity obtained by the X-ray intensity acquisition means the count time, and calculates the X-ray intensity per unit time.
また、第3発明に係るX線分光器は、試料に照射された励起線に応じて該試料上の微小領域から放出されるX線を平行光化させるマルチキャピラリX線レンズと、前記マルチキャピラリX線レンズから出射される平行X線の光路上に配置された平板分光結晶と、前記平板分光結晶により分光されたX線を検出するX線検出器と、前記平板分光結晶及び前記X線検出器を、該平板分光結晶の表面と前記平行X線の交点を中心に所定の角度関係を保って回転駆動させる駆動手段と、前記X線検出器からの検出信号を選別し、該選別された検出信号を一定の時間間隔で計数することでX線強度を取得するX線強度取得手段と、を有するX線分光器であって、前記X線強度の取得波長間隔を一定とするよう前記駆動手段を制御する駆動制御手段を備えることを特徴とする。 According to a third aspect of the present invention, there is provided an X-ray spectrometer comprising: a multicapillary X-ray lens that collimates X-rays emitted from a minute region on a sample in accordance with excitation rays irradiated on the sample; and the multicapillary A plate spectral crystal disposed on the optical path of parallel X-rays emitted from the X-ray lens, an X-ray detector for detecting X-rays dispersed by the plate spectral crystal, the plate spectral crystal, and the X-ray detection And a drive means for rotationally driving the detector while maintaining a predetermined angular relationship around the intersection of the surface of the plate spectral crystal and the parallel X-ray, and a detection signal from the X-ray detector. An X-ray spectrometer having an X-ray intensity acquisition means for acquiring an X-ray intensity by counting a detection signal at a constant time interval, wherein the driving is performed so that the acquisition wavelength interval of the X-ray intensity is constant. Drive control means for controlling the means I am characterized in.
また、第4発明に係るX線分光器は、試料に照射された励起線に応じて該試料上の微小領域から放出されるX線を平行光化させるマルチキャピラリX線レンズと、前記マルチキャピラリX線レンズから出射される平行X線の光路上に配置された平板分光結晶と、前記平板分光結晶により分光されたX線を検出するX線検出器と、前記平板分光結晶及び前記X線検出器を、該平板分光結晶の表面と前記平行X線の交点を中心に所定の角度関係を保って一定の回転速度で回転駆動させる駆動手段と、前記X線検出器からの検出信号を選別し、該選別された検出信号を計数することでX線強度を取得するX線強度取得手段と、を有するX線分光器であって、前記X線強度の取得波長間隔を一定とするよう前記計数の時間間隔を変化させる計数時間制御手段と、前記X線強度取得手段で取得されるX線強度と前記計数時間に基づいて、単位時間当たりのX線強度を算出する演算処理手段と、を備えることを特徴とする。 An X-ray spectrometer according to a fourth aspect of the invention includes a multicapillary X-ray lens that collimates X-rays emitted from a minute region on the sample according to excitation rays irradiated on the sample, and the multicapillary. A plate spectral crystal disposed on the optical path of parallel X-rays emitted from the X-ray lens, an X-ray detector for detecting X-rays dispersed by the plate spectral crystal, the plate spectral crystal, and the X-ray detection And selecting a detection signal from the X-ray detector, and a driving means for rotating the detector at a constant rotational speed while maintaining a predetermined angular relationship about the intersection of the surface of the flat plate crystal and the parallel X-ray. An X-ray spectrometer having an X-ray intensity acquisition means for acquiring an X-ray intensity by counting the selected detection signals, wherein the counting is performed so that an acquisition wavelength interval of the X-ray intensity is constant. Counting time system that changes the time interval of And means, based on the X-ray intensity with the counting time to be acquired by the X-ray intensity acquisition means, characterized in that it comprises a processing means for calculating the X-ray intensity per unit time, the.
本発明に係るX線分光器の制御方法及び該制御方法を用いたX線分光器によれば、平板分光結晶とX線検出器の角度方向の変化速度又はX線強度の計数時間を時々刻々と制御することによって、X線強度の取得波長間隔を一定にすることができる。本発明は、従来の平板分光結晶型X線分光器に対して、分光結晶とX線検出器を回転駆動させる回転駆動手段の制御、若しくはX線検出器からの検出信号のデータ処理を行うだけで良いため、既存の装置の構成を用いて容易に実現することができる。 According to the control method of the X-ray spectrometer and the X-ray spectrometer using the control method according to the present invention, the change rate of the angle direction of the flat plate crystal and the X-ray detector or the counting time of the X-ray intensity is momentarily measured. By controlling the above, the acquisition wavelength interval of the X-ray intensity can be made constant. The present invention only controls the rotation driving means for rotating the spectral crystal and the X-ray detector or the data processing of the detection signal from the X-ray detector with respect to the conventional flat plate spectral crystal type X-ray spectrometer. Therefore, it can be easily realized by using the configuration of an existing apparatus.
本発明に係るX線分光器の第1実施例を図1を用いて説明する。図1は本実施例によるX線分光器の概略構成図である。既に説明した図6中に記載の構成要素と同一の構成要素については同一符号を付して詳しい説明を省略する。 A first embodiment of an X-ray spectrometer according to the present invention will be described with reference to FIG. FIG. 1 is a schematic configuration diagram of an X-ray spectrometer according to the present embodiment. The same components as those already described in FIG. 6 are denoted by the same reference numerals, and detailed description thereof is omitted.
この実施例によるX線分光器は、図6で説明した従来の構成のものと同様に、試料1の微小領域2から放出されたX線を集束し、平行化するマルチキャピラリX線レンズ7と、マルチキャピラリX線レンズ7によって平行化されたX線を分光させる平板分光結晶8と、平板分光結晶8で分光されたX線のX線強度を検出するX線検出器6を備えている。平板分光結晶8とX線検出器6は、リンク機構等から成る図示しない駆動部によって、紙面に垂直な軸8aを中心に倍角の関係(θ,2θ)を保ったまま回転駆動される。これにより、微小領域2から放出されたX線の波長走査が行われる。
The X-ray spectrometer according to this embodiment has a
X線検出器6は例えばシンチレーション計数管などが利用され、X線光子が入射するとそのX線光子が有するエネルギーに応じた波高を持つパルス信号を生成する。このパルス信号は信号処理部9に入力され、プリアンプで増幅された後、波高選別器により予め設定された所定の弁別範囲に収まる波高値を持つパルス信号のみが選択される。この選択されたパルス信号は計数部23で計数され、一定の計数時間に得られたパルス信号の数に応じた計数値がX線強度としてデータ処理部24に与えられる。データ処理部24は入力データからX線強度分布を作成し、該強度分布に基づいた定性分析、定量分析或いは状態分析を実行する。作成されたX線強度分布や分析結果は表示部25に表示される。
For example, a scintillation counter is used as the
本実施例のX線分光器は、計数部23の計数時間を一定とし、平板分光結晶8とX線検出器6の回転速度を時々刻々と変化させることでX線強度の取得波長間隔を一定にするものであり、従来のX線分光器の構成に加えて、駆動部を制御する駆動制御部26が設けられている。駆動制御部26には入力部21が付設され、分析者(オペレータ)が入力部21にX線強度の取得波長間隔Δλを入力設定すると、駆動制御部26は、計数部23から出力されるX線強度の波長間隔がΔλで一定になるよう、駆動部の制御を実行する。
In the X-ray spectrometer of the present embodiment, the counting time of the
次に、図2及び図3を用いて、本実施例の分光器で得られるX線強度分布と従来の分光器で得られるX線強度分布を比較する。図2(a)は従来の分光器から得られるX線強度分布の一例を、図3(a)は図2(a)と同一の例に対して本実施例の分光器で得られるX線強度分布を示している。また、図2(b)及び図3(b)はそれぞれ図2(a)及び図3(a)の一部を拡大したものである。 Next, using FIG. 2 and FIG. 3, the X-ray intensity distribution obtained with the spectrometer of the present embodiment is compared with the X-ray intensity distribution obtained with a conventional spectrometer. 2A shows an example of an X-ray intensity distribution obtained from a conventional spectroscope, and FIG. 3A shows an X-ray obtained by the spectroscope of this embodiment for the same example as FIG. 2A. The intensity distribution is shown. 2 (b) and 3 (b) are enlarged views of parts of FIG. 2 (a) and FIG. 3 (a), respectively.
図2(a)と図3(a)では、同じX線強度分布が得られているように見える。しかしながら、これらの分布は実際にはデータ点の集合であり、一部を拡大するとデータ点が互いに間隔を取りながらプロットされていることが分かる(図2(b)、図3(b))。さらに、従来の分光器のX線強度分布では、横軸(波長)の間隔が一定にならず、短波長側の波長間隔Δλiは長波長側の波長間隔Δλjより大きくなることが、図2(b)から見て取れる。この理由は、ブラッグの条件
λ = 2 d sinθ (λ:波長、d:格子定数)
を用いて説明することができる。即ち、従来のX線分光器は一定の回転速度及び一定の計数時間でX線強度を取得しているため、θが時間に対して等間隔に変化する。しかしながら、分光波長λはsinθで変化するため、θの変化が一定であると、λの変化は一定にならない。
一方、本実施例ではλが等間隔に変化するよう、θの間隔を制御している。具体的には計数時間を一定としながら、平板分光結晶8とX線検出器6の回転速度を時々刻々と変化させることにより、sinθが一定に変化するように制御している。これにより、図3(b)に示すように、波長間隔が一定となるグラフを得ることができる。
2A and 3A, it seems that the same X-ray intensity distribution is obtained. However, these distributions are actually a collection of data points, and it can be seen that when a part of the distribution is enlarged, the data points are plotted while being spaced apart from each other (FIGS. 2B and 3B). Furthermore, in the X-ray intensity distribution of the conventional spectrometer, the horizontal axis (wavelength) interval is not constant, and the wavelength interval Δλi on the short wavelength side is larger than the wavelength interval Δλj on the long wavelength side. It can be seen from b). This is because Bragg's condition λ = 2 d sinθ (λ: wavelength, d: lattice constant)
Can be used to explain. That is, since the conventional X-ray spectrometer acquires the X-ray intensity at a constant rotation speed and a constant counting time, θ changes at regular intervals with respect to time. However, since the spectral wavelength λ changes with sin θ, if the change in θ is constant, the change in λ does not become constant.
On the other hand, in this embodiment, the interval of θ is controlled so that λ changes at equal intervals. Specifically, the sin θ is controlled to be constant by changing the rotational speeds of the plate
本発明に係るX線分光器の第2実施例を図4を用いて説明する。この実施例によるX線分光器は、平板分光結晶8とX線検出器6の回転速度を一定とし、計数時間を時々刻々と制御することでX線強度の取得波長間隔を一定にするものであり、従来の平板分光結晶型X線分光器の構成に加えて、計数時間制御部27と、計数時間制御部27で決定された計数時間の測定を行う第2計数部29と、を備えている。第1計数部28は第1実施例の計数部23と同じく信号処理部22で選別された検出信号の計数を行うが、その計数時間は第2計数部で測定されている。入力部21は計数時間制御部27に付設され、分析者が入力部21にX線強度の取得波長間隔Δλを入力設定すると、計数時間制御部27は、第1計数部28から出力されるX線強度の波長間隔がΔλで一定になるよう、第2計数部29の計数時間の制御を実行する。
A second embodiment of the X-ray spectrometer according to the present invention will be described with reference to FIG. The X-ray spectrometer according to this embodiment is such that the rotation speed of the
本実施例の計数時間制御部27は第1計数部28の計数時間を時々刻々と変化させることでX線強度の波長間隔を一定にするが、X線強度の計数時間が波長によって異なるという問題が生じる。これを防ぐために、データ処理部24では第1計数部28で得られたX線強度を第2計数部の計数時間で除することで単位時間当たりのX線強度を算出している。これにより、計数時間の変化の影響を受けない正確なX線強度を求めることができる。
The counting
1…試料
2…微小領域
3…ローランド円
4…湾曲分光結晶
5…検出器スリット
6…X線検出器
7…マルチキャピラリX線レンズ
8…平板分光結晶
8a…軸
9…直線
21…入力部
22…信号処理部
23…計数部
24…データ処理部
25…表示部
26…駆動制御部
27…計数時間制御部
28…第1計数部
29…第2計数部
DESCRIPTION OF
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009138695A JP2010286288A (en) | 2009-06-09 | 2009-06-09 | Control method for x-ray spectrometer, and x-ray spectrometer using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009138695A JP2010286288A (en) | 2009-06-09 | 2009-06-09 | Control method for x-ray spectrometer, and x-ray spectrometer using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010286288A true JP2010286288A (en) | 2010-12-24 |
Family
ID=43542103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009138695A Pending JP2010286288A (en) | 2009-06-09 | 2009-06-09 | Control method for x-ray spectrometer, and x-ray spectrometer using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010286288A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103698350A (en) * | 2013-12-26 | 2014-04-02 | 北京师范大学 | X-ray double spectrometer |
JP2021032584A (en) * | 2019-08-19 | 2021-03-01 | 株式会社島津製作所 | Electron probe micro analyzer |
-
2009
- 2009-06-09 JP JP2009138695A patent/JP2010286288A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103698350A (en) * | 2013-12-26 | 2014-04-02 | 北京师范大学 | X-ray double spectrometer |
JP2021032584A (en) * | 2019-08-19 | 2021-03-01 | 株式会社島津製作所 | Electron probe micro analyzer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6468844B2 (en) | X-ray analyzer in which multiple excitation energy bands are generated using an X-ray tube anode and monochromating optics | |
EP2564186B1 (en) | Method and apparatus for using an area x-ray detector as a point detector in an x-ray diffractometer | |
JP5855573B2 (en) | Method and apparatus for performing X-ray analysis of sample | |
JP5539906B2 (en) | XRF system with multiple excitation energy bands in a highly aligned housing | |
JP5127976B2 (en) | Radiometric apparatus with variable collimator | |
WO2005005969A1 (en) | Energy dispersion type x-ray diffraction/spectral device | |
CN109791116B (en) | Wavelength dispersion type fluorescent X-ray analyzer | |
JP6026936B2 (en) | Foreign object detection device | |
US9601308B2 (en) | Spectroscopic element and charged particle beam device using the same | |
JP4715345B2 (en) | X-ray analyzer | |
US8488740B2 (en) | Diffractometer | |
JP2002189004A (en) | X-ray analyzer | |
JP2010286288A (en) | Control method for x-ray spectrometer, and x-ray spectrometer using the same | |
JP3968350B2 (en) | X-ray diffraction apparatus and method | |
JP2010286346A (en) | Spectroscope | |
JP2000146871A (en) | Micro x-ray diffraction measuring method and micro x- ray diffractometer | |
JP2000206061A (en) | Fluorescent x-ray measuring device | |
JP5347559B2 (en) | X-ray analyzer | |
JP2000258366A (en) | Minute part x-ray diffraction apparatus | |
JP4365687B2 (en) | Analysis method and analyzer | |
JP4639971B2 (en) | X-ray analyzer | |
JP5646147B2 (en) | Method and apparatus for measuring a two-dimensional distribution | |
JP2014196925A (en) | Fluorescent x-ray analyzer, and depth direction analysis method used for the same | |
JP2015184092A (en) | X-ray analyzer | |
JP6862710B2 (en) | X-ray diffractometer |